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Abstract
In two-sided platforms (e.g., video streaming or
e-commerce), viewers and providers engage in
interactive dynamics: viewers benefit from in-
creases in provider populations, while providers
benefit from increases in viewer population. De-
spite the importance of such “population effects”
on long-term platform health, recommendation
policies do not generally take the participation
dynamics into account. This paper thus stud-
ies the dynamics and recommender policy design
on two-sided platforms under the population ef-
fects for the first time. Our control- and game-
theoretic findings warn against the use of the stan-
dard “myopic-greedy" policy and shed light on the
importance of provider-side considerations (i.e.,
effectively distributing exposure among provider
groups) to improve social welfare via popula-
tion growth. We also present a simple algorithm
to optimize long-term social welfare by taking
the population effects into account, and demon-
strate its effectiveness in synthetic and real-data
experiments. Our experiment code is available
at https://github.com/sdean-group/dynamics-two-
sided-market.

1. Introduction
Two-sided platforms, where some individuals view content
or information provided by other individuals, are ubiquitous
in real-world decisions, e.g., video streaming, job matching,
and online ads (Boutilier et al., 2023). In such applications,
viewers and providers may co-evolve and mutually influence
each other: providers increase their content production if
they receive more attention from viewers (i.e., exposure),
and the platform gains more viewers if viewers receive high-
quality and favored content (i.e., satisfaction). These effects
are mediated by the platform’s recommendation algorithm.
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Considering such non-stationarity and two-sided dynamics
is crucial, as the viewers and providers are affected by each
others’ population in self-reinforcing feedback loops.

Example 1 (Video recommendation). When a platform has
many videos about sports, viewers can expect that top sports
videos have high quality (e.g., production and intellect).
Meanwhile, if a platform is popular among sports lovers,
creators will produce more sports videos to gain more views.

Example 2 (Job matching). When a platform has many
applicants from a target category, companies looking to fill
a specific role can identify more highly skilled applicants.
On the other hand, if a platform has more openings for a
specific job type, more applicants from target categories will
register for the service.

The “population effects” in the aforementioned examples
strongly affect viewer utility and their long-term satisfac-
tion. However, their implications for recommendation pol-
icy design have been under-explored. The conventional
formulation of recommendation follows (contextual) ban-
dits (Li et al., 2010) and assumes that viewers and providers
are static across timesteps. Some recent work studies con-
tent provider departures (Mladenov et al., 2020; Hutten-
locher et al., 2023) and the (negative) impacts on viewer
welfare (Yao et al., 2024b; 2023a). However, the viewer
population is modeled as static. In contrast, existing works
which consider dynamic viewer populations assume that
provider population is fixed (Hashimoto et al., 2018; Dean
et al., 2022). Therefore, we cannot tell how we should
optimize a policy, particularly in the initial launch of the
platform when two-sided dynamics exist. Finally, exist-
ing works considering strategic content providers (Hron
et al., 2022; Jagadeesan et al., 2022; Yao et al., 2023b;
2024a; Prasad et al., 2023) model the (strategic) evolution
of provider features, assuming that the total number of view-
ers and providers are fixed. These works cannot tell if a
platform can “grow the pie” (i.e., viewer and provider popu-
lations) to improve long-term welfare.

In response to this gap, we study the dynamics of “popu-
lation effects” on two-sided platforms. Specifically, we
consider viewer and provider participation dynamics which
operate as follows: (1) the population of providers increases
as their exposure increases, (2) the population of viewers
increases as their satisfaction increases, and (3) the potential
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Figure 1. Comparing the myopic-greedy policy, the uniform random policy, and the long-term policy in a synthetic simulation.
As shown, the myopic-greedy policy loses the provider population due to concentrated exposure allocation, resulting in the negative
impact on the viewer welfare in the long-run. The “long-term” policy is based on the algorithm proposed in Section 5 (Eq. (10)), and the
experiment setting follows Section 6 (with a small initial population).

for viewer satisfaction increases as provider populations
increase. We assume that these effects follow an arbitrary
monotonically increasing function, and the immediate util-
ity (in the form of exposure or satisfaction) is observed. The
key consequence of setting is that the default approach to
recommendation can perform much worse in the long term
than even a uniform random policy. Figure 1 illustrates
this shortcoming of the default approach, a myopic-greedy
policy that recommends providers to viewers on the basis
of immediate utility.

We examine success and failure cases of the myopic-greedy
policy through control- and game-theoretic analyses. Our
primary results are the following three points. First, by
analyzing the convergence conditions of the dynamics, we
argue that concentrated exposure allocation among provider
groups can easily cause polarization of viewer and provider
populations, potentially resulting in a smaller pie (i.e., pop-
ulations) and long-term social welfare compared to an
exposure-distributing policy. These findings highlight the
importance of provider-side awareness such as exposure fair-
ness (Singh & Joachims, 2018) for the long-term success
of two-sided platforms under population dynamics. Second,
we analyze the linear case to show that the myopic-greedy
policy is guaranteed to be optimal only if the population
effects (i.e., utility gain by the population growth) are ho-
mogeneous across provider groups. Third, we explain the
shortcomings of the myopic-greedy policy by decomposing
the welfare sub-optimality into two terms: the “policy regret”
and “population regret”. The former comes from the differ-
ence between the policy and the myopic-optimal policy at
each timestep given the current population, while the latter
comes from the difference between the current population
and the population under the optimal policy. By definition,
the myopic-greedy policy minimizes only the policy regret
(i.e., short-term objective). Because the myopic-policy ig-
nores the population regret (i.e., long-term impact on the
dynamics), the myopic-greedy policy fails when the scale
of the long-term utility gain from the population growth is
large.

Finally, we propose a simple algorithm that balances the pol-

icy and population regrets by projecting the long term pop-
ulation that will result from the current viewer satisfaction
and provider exposure. The proposed “look-ahead” policy
optimizes the utility at the projected long term popula-
tion instead of the immediate population. The synthetic and
real-data experiments using the KuaiRec dataset (Gao et al.,
2022) demonstrate that the proposed algorithm works better
than both myopic-greedy and uniform random policies in
multiple configurations by better trading off the long and
short term goals accounting for the population growth.

Our contributions are summarized as follows:

• We formulate the “population effects” in two-sided plat-
forms where viewer and provider populations evolve.

• We find that the myopic-greedy policy can fall short
when the population effects are heterogeneous.

• We also find that an exposure-guaranteeing policy can
be useful for growing populations and minimizing the
population regret.

• We propose a simple algorithm that considers the long
term population and demonstrate its effectiveness in
the synthetic and real-data experiments.

2. Viewer-provider two-sided systems
This section models the dynamics of viewer and provider
populations on a recommendation platform. Specifically, we
consider sub-group dynamics where viewers and providers
are categorized into K and L subgroups1. Then, we model
the populations, recommendation policy, payoffs, and social
welfare as follows.

1. (Viewer/provider population) Let λk ∈ R≥0 be the pop-
ulation of the viewer group k ∈ [K] and λl be that
of the provider group l ∈ [L]. We also let λ :=
(λ1, λ2, · · · , λK , λ1, λ2, · · · , λL) be the joint popula-
tion vector of viewers and providers.

1We can consider a “subgroup” of size 1. In such cases, the
viewer “population” corresponds to the time spent by an individual
viewer, while the provider “population” can be the amount of
content produced by an individual provider.
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2. (Platform’s recommendation policy) The platform
matches each viewer group k to a provider group l with a
recommendation policy denoted by a K-by-L matrix π.
Specifically, its (k, l)-th element πk,l represents the prob-
ability of allocating the provider group l to the viewer
group k. Thus

∑L
l=1 πk,l = 1,∀k ∈ [K]. For example,

the uniform random policy, which assigns equal exposure
probability across all provider groups is represented as
given by π = 1

L1L×K .
3. (Viewer/provider payoffs) After viewer and provider

groups are matched by the policy π, their perceived pay-
offs can be quantified by the following metrics:

Viewer Satisfaction: sk =
∑L

l=1 πk,lqk,l , (1)

Provider Exposure: el =
∑K

k=1 πk,lλk, (2)

where qk,l is the (expected) utility that viewers k receive
from the provider group l. Eqs. (1) and (2) define viewer
satisfaction as determined by the total utility they receive
from recommendations, while providers care about the
total amount of exposure they receive by recommenda-
tion. This model is prevalent is prior works including
(Singh & Joachims, 2018; Mladenov et al., 2020).

4. (Social welfare) Finally, we consider the following total
viewer welfare as the global metric of the platform:

R(π;λ) :=
∑K

k=1 λksk

Note that here we consider the sum of viewer-side satis-
faction as the social welfare, a formulation prevalent in
related works (Mladenov et al., 2020; Huttenlocher et al.,
2023). The sum of content-side exposure simplifies to
the total size of the viewer population.

2.1. Interaction dynamics and “population effects”

We have so far seen a typical formulation in two-sided plat-
forms. However, a key limitation of such formulation is to
ignore potential non-stationarity in the viewer and provider
populations, which is common in many real-world two-
sided systems (Boutilier et al., 2023; Deffayet et al., 2024).

First, consider the impact of provider population growth
on the utility experience by viewers, which we refer to as

“population effects”. An increase in provider population nat-
urally leads to more high-quality content. For example,
consider a two-stage recommendation policy, where our
higher-level policy π decides the matching between viewer
and provider groups, and a second-stage policy selects indi-
vidual providers among the selected group. Any reasonable
second stage policy should be able to select a better provider
from a larger provider pool (Su et al., 2023; Evnine et al.,
2024). To model such “population effects”, we introduce
the following utility decomposition:

qk,l = bk,l + fk,l(λl) (3)

where bk,l is the base utility, which indicates the matching
between the preference of viewer and provider groups (e.g.,
this viewer group likes sports articles). In contrast, fk,l(·)
represents the quality of the provider which improves as the
provider population increases. fk,l might be heterogeneous
among different viewer and provider groups because quality
might be multi-dimensional (e.g., visuals, intellects, nov-
elty), viewers may have different preferences, and providers
may have different abilities. We take fk,l to be a monotoni-
cally increasing function.

Next, consider the impact of viewer and provider payoffs on
the population. The number of viewers that a platform can
maintain is related to the level of satisfaction; similarly, the
number of providers is related to the exposure. We assume
that viewer and provider subgroups have some “reference”
population λ̄k(sk) and λ̄l(el) given the level of viewer sat-
isfaction sk and provider exposure el. We assume that λ̄
is a monotonically increasing function, so higher viewer
satisfaction and provider exposure result in increased pop-
ulations. Based on this, we model the viewer and provider
population dynamics as follows:

Viewer: λt+1,k = (1− ηk)λt,k + ηkλ̄k(st,k), (4)
Content: λt+1,l = (1− ηl)λt,l + ηlλ̄l(et,l), (5)

where η ∈ [0, 1] are the reactiveness hyperparams, deter-
mining how fast the population changes. Note that similar
models are widely adopted in performative predictions (Per-
domo et al., 2020; Brown et al., 2022). We thus have that the
viewer satisfaction sk depends on the provider population
via “population effects” fk,l, while the provider exposure di-
rectly depends on the viewer population. The two-sided plat-
form has complex dynamics between viewers and providers.
Our goal will be to consider long-term objectives under such
co-evolving and two-sided dynamics.

2.2. Game-theoretic interpretation

Next, we provide a further justification of and insight into
the dynamics model by introducing a game-theoretic formu-
lation that is equivalent to Eqs. (4) and (5).

Consider a (K+L)-player game involving K viewer groups
and L provider groups. Each viewer group selects a pure
strategy λk ∈ R≥0, and each provider group chooses a pure
strategy λl ∈ R≥0. The utility functions for the viewer
and provider groups, denoted by {uk}Kk=1 and {vl}Ll=1 are
defined as follows:

uk(λ) = λk · λ̄k

(
L∑

l=1

πk,l (bk,l + fk,l(λl))

)
− λ2

k

2
, (6)

vl(λ) = λl · λ̄l

(∑K
k=1 πk,lλk

)
− λ2

l

2
, (7)

We denote this game as G(π, B, f, λ̄), where B is a K-
by-L matrix whose (k, l)-element is bk,l. Observation 1
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establishes a connection between the game instance G and
the dynamical formulation presented in Section 2.1.

Observation 1. If all players in G apply gradient ascent to
optimize their utility functions with learning rates {ηk}Kk=1

and {ηl}Ll=1, the resulting joint strategy evolving dynamics
are exactly given by Eqs. (4) and (5).

Observation 1 provides a first-principles perspective for un-
derstanding the dynamical formulation in Eqs. (4) and (5).2

That is, we can interpret λ̄(·) as the marginal gain from
increasing the size of a viewer or provider group by one unit.
Consequently, the first terms λk · λ̄k(·) and λl · λ̄l(·) repre-
sent the collective payoffs for viewer and provider groups
of sizes λk and λl. The quadratic terms −λ2

k

2 and −λ2
l

2 cap-
ture the congestion costs associated with maintaining larger
populations (e.g., if a provider group becomes too large,
providers within the group may face intensified competi-
tion and thus reduce their productivity due to diminished
marginal gains). This suggests that Eqs. (4) and (5) are quite
reasonable formulation to capture real-world interactions.

3. Stability and sub-optimality
This section provides theoretical analyses3 of the stability
and sub-optimality under the two-sided dynamics.

3.1. Stability

An important question to ask about the two-sided dynamics
is on stability: Under what conditions do the dynamics con-
verge to a fixed point? The following Theorem 4 provides
an affirmative answer, demonstrating that the two-sided dy-
namics always converge to a stable fixed point, which is
also a Nash Equilibrium (NE) (Nash Jr, 1950) of the corre-
sponding game instance.4

Theorem 1. For any continuous functions f, λ̄ with
bounded first-order derivatives, consider the environment
defined by the game instance G(π, B, f, λ̄). We have:

1. The NE of G always exists, but is not necessarily unique;
2. The two-sided dynamics (Eqs. (4) and (5)) always con-

verge to one of G’s NE, provided that ηk, ηl are smaller
than a constant that depends on the game parameters.

Theorem 1 establishes a general stability result for the two-
sided dynamics, showing that as long as the reactiveness
hyperparams are sufficiently small, it always converges to

2The game G resembles the Cournot Duopoly competition
(Cournot, 1838). When K = L = 1 and λ̄(µ) = a − bµ and
µ̄(λ) = a − bλ for some positive constants a and b, the game
G corresponds exactly to the Cournot Duopoly model. The key
distinction in ours is that µ̄ and λ̄ are generic increasing functions.

3All proofs are provided in Appendix B.
4Definitions 1-3 in the Appendix formally define the concepts

of fixed point, stability, and Nash equilibrium.

some fixed point corresponding to an NE of G. This result
is surprising in two aspects. First, it stands in stark contrast
to prior work on one-sided markets, where NEs can fail
to exist (Hron et al., 2022; Jagadeesan et al., 2022; Yao
et al., 2023a). In comparison, Theorem 1 demonstrates that
when the previously passive resource (e.g., viewer atten-
tion) becomes an active participant—as in our two-sided
market model—the resulting market dynamics always ad-
mit a stable equilibrium. Second, it is well-documented
that the existence of NEs does not guarantee convergence
to them under gradient-based dynamics, as such dynam-
ics often get stuck in local equilibria (Yao et al., 2024b)
or even converge to non-Nash stationary points (Mazum-
dar et al., 1901). In contrast, we establish that gradient-
based dynamics—specifically in our setting, the two-sided
dynamics—provably converge to an NE under mild con-
ditions. This highlights a nice structural property of the
two-sided market.

Moreover, our result accommodates a wide range of mod-
eling choices, including reference functions λ̄, population
effects f , and recommendation policies π, without requiring
restrictive assumptions. The following sufficient condition
indicates an interesting relationship between the policy de-
sign and the stability of fixed points.

Proposition 1 (Sufficient condition for stability). Sup-
pose that the first-order derivative of dynamics functions
are bounded as (∇el λ̄l)(∇λl

fl) ≤ C1,∀l ∈ [L] and
(∇sk λ̄k) ≤ C2,∀k ∈ [K] at some fixed point λeq. Also,
suppose ηk ≤ η,∀k ∈ [K]. Then, λeq is stable when∑K

k=1 πl,k ≤ 4η−1

C1C2
. (8)

Consider an exposure-fair policy, which distributes the ex-
posure equally among provider subgroups. When f and λ̄
are monotonically increasing concave functions, Proposi-
tion 1 suggests that such an exposure-fair policy guarantees
a balanced equilibrium, where both viewer and provider sub-
groups maintain a moderate population and payoffs without
polarization. This is due to the following reasons. First, the
upper bound (i.e., RHS of the inequality) becomes more re-
strictive when the first order derivative of the dynamics (i.e.,
C1 and C2) is large, which is true when viewer satisfaction
(sk), provider exposure (el), and provider population (λl)
are small. Then, an exposure-fair policy can exclude such
equilibria due to the violation of Ineq. (8). In contrast, using
an exposure-concentrated policy, which does not distribute
exposure to some provider subgroups, can lead to a polar-
ized equilibrium with winners and losers, as such equilibria
are not excluded by Ineq. (8).

Consequently, the reduced subgroup population may nega-
tively impact the long-term viewer satisfaction, as we have
seen in Figure 1. We formally discuss such impacts through
the regret analysis in the next subsection.
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3.2. Sub-optimality

Our next question is: How does the “population effect”
affect the policy design when the dynamics converge? To
answer the question, we introduce the following notion of
sub-optimality, called regret, to measure the performance
difference between the optimal (static) policy5 π∗ and a
given (possibly time-varying) policy πt:

Regret(π) =
1

T

∑T
t=1 (R(π∗;λ∗

t )−R(πt;λt))

where λ∗
t is the population at timestep t under the policy π∗

and λt is that of π. T is the total horizon of the timesteps.
Assuming that the policy πt converges to within δ of a static
policy π, the above regret can be decomposed into two
factors as shown in the following Proposition 2.
Theorem 2 (Regret decomposition). The (total) regret is
decomposed into two main factors:

Regret(π) =
1

T

T∑
t=1

∆R(λ∗
t ,λ

π
t )︸ ︷︷ ︸

(1)

+
1

T

T∑
t=1

∆R(π1
t ,πt)︸ ︷︷ ︸

(2)

+O (δ/T ) + const.

We call (1) as “population regret” and (2) as “policy regret”.
Each component is defined as follows.

∆R(λ∗
t ,λt) := R(π1,∗

t ;λ∗
t )−R(π1

t ;λt)

∆R(π1
t ,πt) := R(π1

t ;λt)−R(πt;λt),

where π1
t is the one-step myopic-greedy policy at timestep t

given population λt, and π1,∗
t is that of under λ∗

t .

The population regret refers to the sub-optimality caused
by the difference of population (λt and λ∗

t ) at timestep t,
while the policy regret refers to the sub-optimality caused
by the difference of the policy (πt and π1

t ). This suggests
that the myopic policy makes the policy regret small, but
completely ignores the population regret. This presents
the reason why we have observed that the uniform random
policy outperformed the myopic policy in the toy example
presented in Figure 1 in the Introduction.

4. When is “myopic-greedy” optimal?
We have seen that the myopic-greedy policy is not always
optimal. Then, the next question will be as follows: When
does the myopic-greedy policy succeed? This section an-
swers the question with a game-theoretic analysis in the
case that f and λ̄ are linear functions.

Our main finding is that a myopic-greedy policy is nearly
optimal when the provider population effects f are homoge-
neous across provider groups. To formalize this, we define

5π∗ := argmaxπ∈Π

∑T
t=1 R(π;λt)

the family of ϵ-greedy policies as follows:

π
(ϵ)
k,l = (1− ϵ) I{l = argmaxl′∈[L]bk,l′}+ ϵ/L,

where I{·} is the indicator function and ϵ ∈ [0, 1] is the
degree of exploration (i.e., random choice). Notably, π(0)

corresponds to the myopic-greedy policy, while π(1) is the
uniform random. The subsequent results establish that π(0)

optimal in the homogeneous-linear setting.

Theorem 3 (Optimality of the myopic-greedy). Let λ∞
be the population at the NE under policy π. For any base
utility B and linear increasing and homogeneous functions
λ̄ and f , the social welfare R(π(ϵ);λ

(ϵ)
∞ ) under the ϵ-greedy

policy is decreasing in ϵ ∈ [0, 1]. In particular, we have

1. When K = 1, R(π(ϵ);λ
(ϵ)
∞ ) is strictly decreasing in ϵ.

2. When K > 1, we can identify functions g, h such that

g(ϵ) ≤ R(π(ϵ);λ(ϵ)
∞ ) ≤ g(ϵ)h(ϵ), (9)

and both g, h are decreasing in ϵ. In addition, when
(∇λl

fk,l)(∇el λ̄l)(∇sk λ̄k) is sufficiently small, the
function h(ϵ) → 1 and Eq. (9) is tight.

Theorem 3 suggests that when the population effect f is
linear and homogeneous across different provider groups,
the myopic-greedy policy will be always optimal. This also
holds in the case when there is no population effect, i.e.,
fk,l(λl) always equals to a constant, ∀λl ∈ R,∀(k, l) ∈
[K] × [L]. In such cases, the use of the myopic-greedy
policy is recommended.

However, when the population effect becomes heteroge-
neous across different provider groups, the myopic policy
ceases to be optimal, as illustrated by Proposition 2.

Proposition 2. The myopic-greedy policy can be sub-
optimal when {fk,l} are heterogeneous across provider
groups, even when λ̄ and f remain linear.

We provide a detailed example in Appendix B.5 to sup-
port Proposition 2. Intuitively, the heterogeneity matters
because it results in cross-over behaviors (e.g., provider
group A starts low utility but becomes high utility, while
provider group B has medium utility regardless of the pop-
ulation), which matter for policy design. Aside from the
linear case, saturation behaviors (e.g., no further increases
in utility once the population becomes adequately large)
also matter. When we encounter such heterogeneous or
concave population effects among multiple provider groups,
the myopic-greedy policy may not be optimal, as it ignores
the impact of policy to future population changes. These
results demonstrate that the myopic-greedy policy is guar-
anteed optimal only under highly restrictive conditions and
emphasize the need for practical solutions to account for the
long-term effects.
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5. Optimizing the long-term social welfare
The key observation from the previous sections is that
myopic-greedy policy fails by ignoring the population re-
gret, which comes from the difference between the pop-
ulation of the current policy and that of the optimal one.
Therefore, we first establish a policy learning method that
optimizes for the population regret and later consider bal-
ancing this with the policy regret. However, one difficulty in
minimizing the population regret ∆R(λ∗

t ,λt) (Theorem 2)
is that the population λt depends on the past choices of
policy π. This means that when optimizing the policy, we
should take into account its future influence on the pop-
ulation. Because we know that the population gradually
changes towards the reference population λ̄(·), we consider
the following Look-ahead policy:

π
(d)
t := argmaxπ∈Π R(π̄1

t (π); λ̄t(π)) (10)

Above, λ̄t(π) is the reference population at timestep t given
the viewer satisfaction and provider exposure realized by the
policy π at population λt, i.e., λ̄k(st,k) and λ̄l(et,l). π̄1

t (π)
is the myopic-greedy policy at the reference population
λ̄t(π). Thus, the lookahead policy focuses on reaching
reference populations which enable high user satisfaction.

The look-ahead policy’s optimization problem is potentially
nonconvex. To make it differential, one can consider the
following softmax policy as the approximation of π̄1

t :

π̄1
t,k,l =

exp(γ · (bk,l + fk,l(λ̄l(el)))∑
l′∈[L] exp(γ · (bk,l′ + fk,l′(λ̄l′(el′)))

where γ > 0 is the inverse temperature parameter. Then, we
can optimize the objective function in Eq. (10) via gradient
ascent, where we present the exact gradient in Appendix A.

Once we obtain the look-ahead policy, we can interpolate be-
tween the look-ahead policy and the myopic-greedy policy
to balance the population and policy regrets as follows:

πt = βπ
(d)
t + (1− β)π

(m)
t (11)

where β ∈ [0, 1] is the interpolation hyperparameter and
π

(m)
t is the myopic-greedy policy. β can be determined by

the platform’s desire to focus on short vs. long term goals,
while we later show that β = 1.0 can be a reasonable choice
from the experiment results.

5.1. Estimation the dynamics

In practice, there may be situations in which we need to
estimate the dynamics function (λ̄ and f ) using some func-
tion approximation. In such case, we can use the following
Explore-then-Commit style estimation:

1. For t ≤ Tb, deploy some epsilon-greedy policy and col-
lect the data of Dt := (sk, el, qk,l, λk, λl),∀(k, l) ∈

[K]×[L]. Then, update the dataset as Dt = Dt−1∪Dt

where D0 := ϕ (empty set). Tb is a burn-in period.
2. For t > Tb, update the dynamics models

(q̂l,k(λl), λ̂(sk), λ̂(el)) via supervised learning. Note
that the true “reference population” is obtained from
data as λ̄t′ = η−1(λt′+1 − λt′) + λt′ from Eqs. (4)
and (5). Then, optimize the policy with Eqs. (10) and
(11) using the estimated functions λ̂ and q̂, collect the
interaction data Dt, and add them to the dataset Dt.

6. Synthetic Experiment
We first study the dynamics and the performance of the
proposed method in a synthetic experiment. In this task, we
use K = L = 20 subgroups. To define the base utility, we
first sample 20-dimensional binary feature vectors (uk, cl)
from a Bernoulli distribution for each viewer and provider
group and let their inner products be the base utility bk,l =
u⊤
k cl,∀(k, l) ∈ [K]× [L]. Then we simulate the following

concave dynamics:

λ̄k(z) = λ
(max)
k (σ(z/τ

(λ)
k )− 0.5), (12)

where σ(z) := 1/(1 + exp(−z)) is the sigmoid function,
and λ̄(·) follows the upper half of the sigmoid function.

Next, to simulate a heterogeneous population effect, we
further take inner products between viewer embeddings uk

and the vector of population-dependent quality as follows.

fk,l(λl) = u⊤
k [f̄

(1)
l (λl), f̄

(2)
l (λl), · · · , f̄ (d)

l (λl)], (13)

where its i-th quality element follows the upper half of the
sigmoid, i.e., f̄ (i)

l (z) = F
(i),(max)
l (σ(z/τ

(i),(F )
l ) − 0.5).

We use d = 20. With this model, each provider group has
different improvements in quality of content, e.g., visuals,
humor, and technical depth, and each viewer group has dif-
ferent preferences on these aspects of quality. We visualize
the population effect in Figure 6 in the Appendix.

We initialized the subgroups populations by sampling values
from the normal distribution, so we have the majority and
minority subgroups at t = 0. Specifically, we use two
initializations: (1) a small population (λ ∼ N (20, 102))
and (2) a large one (λ ∼ N (100, 302)) to see how policies
perform in both increasing and decreasing dynamics.

Compared methods. We compare the proposed look-
ahead policy with varying interpolation hyperparameter
β ∈ [0.0, 0.2, . . . , 1.0]. We also compare with the uni-
form random policy as a reference. When computing the
look-ahead policy, we assume access to the dynamics and
population effect functions. The lookahead policy is com-
puted with gradient ascent on the objective (Eq. (10)) for
100 iterations.

Results. We run the compared methods for 200 timesteps
and report the results in Figure 2. The results demonstrate
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Figure 2. Comparing the total welfare, and the viewer and provider populations with varying values of interpolation hyperparam,
i.e., β. (Top) small initial population and (Bottom) large initial population. “uniform” represents the uniform random policy.

Figure 3. Comparing the utility matrix of the myopic (β = 0.0), long-term (β = 1.0), and uniform random policies at the final
timestep and the initial utility matrix. For the initial utility matrix, we use the one with a small initial population.

that the long-term (look-ahead) policy performs better than
the myopic-greedy policy, as the reward gain from the pop-
ulation effects is large in this setting. Specifically, we ob-
serve that the pure look-ahead policy (β = 1.0) increases
the provider populations while the myopic-greedy policy de-
creases the provider populations. These population changes
immediately affect the total welfare, suggesting that guar-
anteeing high population among multiple subgroups via
balanced exposure allocation is crucial when population ef-
fects matter. Indeed, we also observe a different distribution
of the utility matrix at the final timestep across compared
methods in Figure 3. Interestingly, while the uniform policy
has the largest provider population at the final timestep in
Figure 2, the look-ahead policy (β = 1.0) achieves better
total welfare (and population regret). This is because the
look ahead policy allocates exposure more efficiently than
the uniform policy to ensure both high viewer satisfaction
and high provider exposure among multiple subgroups, em-
pirically demonstrating the effectiveness of our approach.

7. Real-data Experiment
This section studies the empirical behavior of the proposed
method using the KuaiRec (Gao et al., 2022) dataset.

Datasets. KuaiRec (dense) (Gao et al., 2022) is a
viewer-provider interaction dataset consisting of 4,676,570
data samples with 1,411 viewers and 3,326 videos (i.e.,
providers). The data contains “watch ratio” (i.e., play dura-
tion divided by the video duration) as the viewers feedback
signal. We clip the maximum watch ratio by 10 and learn
the viewer-provider base utility b(u, c) using a neural col-
laborative filtering (CF) model (He et al., 2017). The base
utility is calculated as individual level ((u, c) ∈ U × C),
where u and c are viewer and provider embeddings.

Simulation. We simulate the subgroup of viewers and
providers, following the procedure presented in Bose et al.
(2023). Specifically, we cluster viewers and providers
into K = L = 20 subgroups respectively, based on the
viewer and provider embeddings learned by the neural CF
model (He et al., 2017). We use the same initialization and
dynamics of the population as described in Section 6. Then,

7
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Figure 4. Visualization of the (true) population effects in the real-world experiment. The population effects are based on the spline
function (Reinsch, 1967) fitted on the empirical population effect (dotted points) observed in the KuaiRec (Gao et al., 2022) dataset.
Figures 7 and 8 in the Appendix also report the population effects and dynamics learned by the long-term policy, following Section 5.1.

Figure 5. Comparing the total welfare, viewer and provider populations, and regrets in the real-data experiment. Cumulative
regret is the sum of total regret by the timestep t, and the total regret is decomposed into the population and policy regrets. Note that the
true optimal policies that minimize the total regret and population regret are not accessible. Thus, we report the empirical regrets by
letting one of the compared policies as the optimal baseline.

we simulate the utility and population effects as follows.

1. Let uk := E[u |u ∈ Uk] be the mean embeddings of
viewer group k. We define the group-wise base utility
as bl,k = E[b(uk, c) | c ∈ Cl] (i.e., mean utility that
viewer group k receives from providers in group l).

2. Next, to simulate a population effect, we generate a
random permutation of providers within each provider
group. Given the current provider population λt,l, we
let first λt,l samples in the permutation as the the
set of providers in the subgroup l used at timestep
t. We denote this subset as Ct,l. Then, we define
the utility from the provider group l as q(uk, cl) :=
argmaxc∈Ct,l

b(uk, c). Therefore, the population ef-
fects are defined as

fk,l(λl) := argmaxc∈Ct,l(λt,l)
b(uk, c)− bk,l,

which increases monotonically as provider population
(λt,l) increases.

To obtain a smooth population effect function, we gener-
ate 10 different random permutation in Step 2. Then, we
take the average of 10 population effects and fit spline func-

tions (Reinsch, 1967) implemented in SciPy (Virtanen et al.,
2020). The resulting population effects are in Figure 4.

Estimation of the dynamics. In this experiment, we esti-
mate the dynamics functions λ̄ and f using regression. We
use the model F (z) = a0(1−exp(−a1(x−a2)))+a3 due to
its concavity and flexibility, and fit the params (a0, · · · , a3)
from interaction data as described in Section 5.1. Note that
we add perturbations in the population dynamics ξt sampled
from a normal distribution as ξt ∼ N (0.0, 0.012)×λt (i.e.,
the scale of perturbation is proportional to the population)
to account for the difficulty in learning the real-world dy-
namics. During the burn-in period (10 steps), we deploy
epsilon-greedy with the corresponding value of β (= ϵ).

Results. Figure 5 report the population dynamics, to-
tal welfare, and the regret. Unlike synthetic experiment,
the myopic-greedy policy performs better than the uniform
random policy, while the proposed look-ahead policy is
competitive to the myopic-policy in the total welfare after
converging to the NE. However, we observe some tradeoff
between the myopic-greedy and look-ahead policy. Specif-
ically, Figure 5 (Bottom) suggests that the myopic-greedy
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policy (β = 0.0) has some population regret compared to
the look-ahead policy (β = 1.0), while the look-ahead pol-
icy retains some policy regret. As a result, an interpolated
policy with β = 0.6 is the best among the compared meth-
ods, while all interpolated policies with various values of
β perform quite well. It is also worth mentioning that the
look-ahead policy (β = 1.0) maintains high total welfare
even while achieving a similar level of the provider popula-
tion as the uniform policy. This suggests that the proposed
look-ahead policy is able to allocate exposure efficiently by
considering the long-term population effects.

Together with the synthetic experiment results, we observe
that the proposed look-ahead policy adaptively behaves
(near-)optimally in terms of total welfare, while also guar-
anteeing a high provider population through provider-fair
exposure allocation. This minimizes the effort to tune the
hyperparam β as the look-ahead policy (β = 1.0) works
reasonably well in practical situations.

8. Related work
Population shifts. The most relevant existing works
to ours are Mladenov et al. (2020) and Huttenlocher et al.
(2023), which consider the population dynamics by mod-
eling the departure of viewers and providers. Specifically,
Mladenov et al. (2020) assume that a provider will leave
the platform if the provider cannot receive adequate expo-
sure (i.e., exposure is below some given threshold). Then,
Mladenov et al. (2020) solve the constrained optimization
problem as a linear integer program and demonstrate that
provider fairness is crucial to maintain a high viewer wel-
fare. To extend, Huttenlocher et al. (2023) additionally
consider the departure of viewers who receive less utility
than given thresholds. Huttenlocher et al. (2023) also for-
mulate a matching problem to determine which viewers and
providers to keep in the platform to achieve high long-term
social welfare. However, both works ignore the possible
growth of the platform, and how a policy design affects
the “growing-the-pie” behavior has remained underexplored
(also, these existing works are not directly applicable to our
problem setting). Our work complements these works by
finding that provider fairness is important to ensure high
“population effects” in a generalized setting.

Note that our work is also closely related to the performa-
tive prediction literature (Perdomo et al., 2020; Brown et al.,
2022; Narang et al., 2023). This line of work studies the
policy optimization under a stationary point of dynamics,
when the algorithm affects the states (e.g., population) of the
environment, and the optimal algorithm can change depend-
ing on the states. While these works (theoretically) discuss
the model optimization and its convergence under a convex
loss function (Brown et al., 2020), our work empirically
demonstrates that the look-ahead policy gradient approach

(i.e., non-convex optimization) can work in a complex and
interactive dynamics of two-sided platforms.

Strategic content providers. Another related liter-
ature is the policy optimization under strategic content
providers (Hron et al., 2022; Jagadeesan et al., 2022;
Yao et al., 2023b). These works often formulate content
providers as “selfish” agents who maximize only their own
utility defined by the amount of exposure minus the cost
of content generation. As described in Section 2.2, our
problem setting can also be seen as a variant of policy op-
timization under strategic viewers and content providers.
However, our formulation is distinctive in modeling the in-
crease and decrease of the total population, while existing
works assume that the total number of viewers and providers
are fixed. This difference results in novel findings: while
Hron et al. (2022) find that more exploration (randomness)
can reduce incentives for producing high-quality “niche”
content, we find that a more random provider-fair policy can
be beneficial when taking the population growth of multiple
groups into account.

Fairness, diversity, and welfare. Fairness and diversity
among providers have been considered as necessary met-
rics or constraints when optimizing policies in two-sided
platforms (Singh & Joachims, 2018; Wang & Joachims,
2021; Boutilier et al., 2023). While provider-fairness is
initially considered important from provider-side perspec-
tives (Singh & Joachims, 2018), recent works consider the
impacts of provider fairness on viewer welfare. Specifically,
provider fairness turned out important to maintain provider
diversity (Yao et al., 2023b; Hron et al., 2022), and provider
diversity helps maintain viewer welfare in the long-run (Su
et al., 2023; Mladenov et al., 2020). Our findings align with
these works in pointing out that provider-fairness is impor-
tant for long-term viewer satisfaction, but from a different
viewpoint based on the growth of populations.

9. Conclusion
This paper studies recommender policy design in two-sided
platforms where viewer and provider populations matter.
Through the control- and game-theoretic analyses, we found
that the myopic-greedy policy is guaranteed to be optimal
only when the population effects are linear and homoge-
neous among provider groups, and otherwise may fall short
by ignoring the “population effects”. To take such long-
term effects into account, we proposed a simple algorithm
and empirically demonstrate that it provides both viewer
satisfaction and provider exposure for future population
growth. We believe our work provides a cornerstone to
build dynamics-aware allocation policies in two-sided plat-
forms where multiple stakeholders engage.
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A. Derivation of the gradient of Eq. (10)

We derive the gradient of the look-ahead policy using the chain-rule as follows:

∇π(R(π̄1
t (π); λ̄t(π))) = ∇π

(
K∑

k=1

λ̄k(π)

L∑
l=1

π̄1
k,l(π)(bk,l + fk,l(λ̄l(π)))

)

=

K∑
k=1

L∑
l=1

∇π(π̄
1
k,l) λ̄k(π)(bk,l + fk,l(λ̄l(π)))

+

K∑
k=1

∇π(λ̄k)

L∑
l=1

π̄1
k,l(π)(bk,l + fk,l(λ̄l(π)))

+

K∑
k=1

λ̄k(π)

L∑
l=1

∇λ̄l
(fk,l)∇π(λ̄l) π̄

1
k,l(π),

where the (k′, l′)-th element of the gradient matrix is defined as follows:

∇π(λ̄k)k′,l′ = ∇sk(λ̄k)∇π(sk)k′,l′ = ∇sk(λ̄k) · I{k′ = k} qk′,l′ ,

∇π(λ̄l)k′,l′ = ∇el(λ̄l)∇π(el)k′,l′ = ∇el(λ̄l) · I{l′ = l}λk′ .

Note that ∇λ̄l
(fk,l), ∇sk(λ̄k), and ∇el(λ̄l) can be the gradient of the estimated dynamics and population effect functions,

when the true dynamics are not accessible (i.e., we can use the estimation process described in Section 5.1).

When implementing the algorithm, one can also use autograd implemented in PyTorch (Paszke et al., 2019) to calculate
the gradient directly from the look-ahead objective.

B. Omitted Proofs
This section provides proofs for the Theorems and Propositions presented in the main text. Note that we define the fixed
point, stability, and Nash equilibrium as follows.

Definition 1 (Fixed point). Let S(·) be the dynamics function that maps the population from the previous timestep to the
next timestep, i.e., λt+1 = S(λt). Then, λeq is a fixed point under the policy π when λeq satisfies,

λeq = S(λeq),

where S is a static function under a static policy π.

Definition 2 (Stability). A fixed point λeq is stable under the policy π when λeq satisfies,

∀ϵ > 0, ∃δ > 0, ∥λ0 − λeq∥ < δ =⇒ ∥λt − λeq∥ < ϵ.

This condition is satisfied when det(∇λS) < 1 holds.

Definition 3 (Nash equilibrium). λ∗ is a Nash equilibrium of game G(π, B, f, λ̄) under the policy π when λ∗ satisfies,

λ∗
k = argmax

λk

uk(λk,λ−k = λ∗
−k),

λ∗
l = argmax

λl

vl(λl,λ−l = λ∗
−l),

where λ−k,λ−l denotes the vectors that contain all elements of λ∗ except λk and λl, and uk, vl are determined by Eqs. (6)
and (7).

Based on the definition of fixed point, we prove the properties of the policy and the corresponding fixed point below.

B.1. Proof of Proposition 1

To prove Proposition 1, we first introduce the following Theorem 4. We also use the fixed point described in the following in
the proof of Theorem 1.
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Theorem 4 (Conditions for a fixed point). λeq is a stable equilibrium when the following is satisfied for all l ∈ [L].

ηl(1− ηl)(∇el λ̄l)(∇λl
fl)

K∑
k=1

ηk(∇sk λ̄k)πk,l < 1

where (∇·) is the first-order derivative at λeq .

Proof. We prove the condition for the stable equilibrium. Let S(·) be the dynamics function that maps the population from
the previous timestep to the next timestep, i.e., λt+1 = S(λt). Then we have

λt+1 − λeq = (∇λS)(λt − λeq).

This matrix is decomposed into four sub-matrices as

(∇λS) =

[
A1,1 A1,2

A2,1 A2,2

]
where A1,1 is a (K,K)-dimensional matrix, A1,2 is a (K,L)-dimensional matrix, A2,1 is a (L,K)-dimensional matrix, and
A2,2 is a (L,L)-dimensional matrix. From the dynamics equations 4 and 5, the element of each matrix is derived as

{A1,1}k,k′ = (∇λk′λk) = (1− ηk)I{k = k′}
{A2,2}l,l′ = (∇λl′λl) = (1− ηl)I{l = l′}
{A1,2}k,l = (∇λl

λk) = ηk(∇qk λ̄k)πk,l(∇λl
fl)

{A2,1}l,k = (∇λk
λl) = ηl(∇el λ̄l)πk,l

. When the spectrum radius (i.e., the maximum eigenvalues) of (∇λS) is less than 1, λeq is a stable equilibrium of the
dynamics. Here, because A1,1 and A2,2 are invertible matrices, we can use the Schur complement as

det(∇λS) = det(A1,1) det(A2,2 −A2,1A
−1
1,1A1,2︸ ︷︷ ︸

:=A′

).

Therefore, when the eigenvalues of A1,1 is µ1 and that of A′ is µ2, the eigenvalues of (∇λS) is µ = [µ1, µ2]. Thus, the
eigenvalues of (∇λS) are

{µ1}k = (1− ηk)

{µ2}l = ηl(1− ηl)(∇el λ̄l)(∇λl
fl)

K∑
k=1

ηk(∇qk λ̄k)πk,l

When ηk ≤ η,∀k ∈ [K] hold and the gradient norm is bounded as (∇el λ̄l)(∇λl
fl) ≤ C1 and (∇qk λ̄k) ≤ C2 at λeq, we

have Proposition 1:

K∑
k=1

πk,l ≤
4η−1

C1C2
,

where we use ∀ηl ∈ [0, 1), ηl(1− ηl) ≤ 0.25.

B.2. Proof of Theorem 1

Proof. Existence of NE: First we show the Nash equilibrium must exist. Note that uk, vl take negative values as λk, λl

become sufficiently large, we can without loss of generality assume each player’s strategy is upper bounded by a finite
constant. As a result, for each player in the game, its strategy set is a convex, closed, and bounded region, and its utility

13



Policy Design for Two-sided Platforms with Participation Dynamics

function is clearly concave in its own strategies. According to Theorem 1 in (Rosen, 1965), such a game is a concave
n-person game and its Nash equilibrium must exist.

Non-uniqueness of NE: Next, we give an example showing that the Nash equilibrium is not necessarily unique, if we do
not impose any assumption on λ̄k, λ̄l, q. Consider the case when K = L = 1 and the following configurations

λ̄k(λ
(c)) = σ(4(2λ(c) − 1)), λ̄l(λ

(u)) = σ(3(2λ(u) − 1)),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. In this case, the two players have the following utility functions

u1(λ
(u), λ(c)) = λ(u) · σ(4(2λ(c) − 1))− 1

2
(λ(u))2,

u2(λ
(c), λ(u)) = λ(c) · σ(3(2λ(u) − 1))− 1

2
(λ(c))2. (14)

Any fixed point of system (14) should satisfy the following first-order condition

λ(u) = σ(4(2λ(c) − 1)), λ(c) = σ(3(2λ(u) − 1)), (15)

and we can easily verify that Eq. (15) has three solutions

[λ(u), λ(c)] = [0.0278, 0.0555], [0.5, 0.5], [0.9722, 0.9445]. (16)

On the other hand, since each player’s utility function is strictly concave in its own strategy, any fixed point of system (14)
must correspond to a Nash equilibrium of the game. Hence, the game has three distinct Nash equilibria, which are given by
Eq. (16).

Convergence of two-sided dynamics: According to Theorem 4, we know that two-sided dynamics converge to some stable
fixed point λeq , as long as for each reactiveness hyperparam η, it holds that

K∑
k=1

πk,l ≤
4η−1

C1C2
, (17)

where C1 and C2 are upper bounds of (∇el λ̄l)(∇λl
fl) and (∇qk λ̄k) at λeq. A sufficient condition for Eq. (17) to hold is

η ≤ 4
KC1C2

.

Next we argue that λeq must also correspond to the Nash equilibrium of G if η ≤ 4
KC1C2

. This is because λeq being a stable
point means that for each viewer k and provider l under λeq , they cannot alter their strategies unilaterally to improve their
payoffs uk or vl in a small region around λeq . That is, λk, λl given by λeq are the local maximum points of uk and vl under
λeq. Since both uk and vl are strictly concave quadratic functions in λk and λl, their local maximum points must also be
the global maximum points. Hence, they also cannot unilaterally improve their payoffs in their entire strategy sets. This
demonstrates that λeq satisfies the definition of Nash equilibrium.

B.3. Proof of Theorem 2

Proof. Here, we provide a proof of the regret decomposition. First of all, we have

R(π∗;λ∗
t )−R(πt;λt)

= R(π∗;λ∗
t )−R(π1,∗

t ;λ∗
t ) +R(π1,∗

t ;λ∗
t )−R(π1

t ;λt) +R(π1
t ;λt)−R(πt;λt)

= ∆R(λ∗
t ,λt) + ∆R(π1

t ,πt) + const.

where

• ∆R(λ∗
t ,λt) := R(π1,∗

t ;λ∗
t ) − R(π1

t ;λt) is the regret arises from the population difference of stationary optimal
policy (π∗) and the policy of interest (πt).

• ∆R(π1
t ,πt) := R(π1

t ;λt)−R(πt;λt) is the one-step regret of the policy.

14
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• const. = R(π1,∗
t ;λ∗

t )−R(π∗
t ;λ

∗
t ) is the one-step regret of the stationally optimal policy. This term does not depend

on π and only depends on π∗.

Then, let λπ
t to be the population dynamics of a stationary policy π. From the assumption about the policy convergence,

∀δ, δ′ > 0, ∃T0 ∈ Z, s.t., ∀t > T0, D(π,πt) < δ′ and D(λπ
t ,λt) < δ

holds true. Thus, we have 1
T

∑T
t=1 ∆R(λπ

t ,λt) ≤ O(δ/T ). Therefore,

Regret(π) =
1

T

T∑
t=1

(R(π∗;λ∗
t )−R(πt;λt))

=
1

T

T∑
t=1

(
∆R(λ∗

t ,λt) + ∆R(π1
t ,πt) + const.

)
=

1

T

T∑
t=1

(
∆R(λ∗

t ,λ
π
t ) + ∆R(λπ

t ,λt) + ∆R(π1
t ,πt)

)
+ const.

=
1

T

T∑
t=1

∆R(λ∗
t ,λ

π
t )︸ ︷︷ ︸

(1)

+
1

T

T∑
t=1

∆R(π1
t ,πt)︸ ︷︷ ︸

(2)

+O
(
δ

T

)
+ const.

B.4. Proof of Theorem 3

Proof. When f, λ̄ are linear functions, from Theorem 1 we know that the NE of G(π, B, f, λ̄) exists and is unique. For any
fixed π, let λ∞ = (λ∗

u,λ
∗
c) denote the NE obtained under π. By Proposition 1, (λ∗

u,λ
∗
c) is also the unique stable fixed

point of system (4),(5) and therefore satisfies

λ
(u)∗
k = λ̄k

(
L∑

l=1

πl,k

(
bl,k + f(λ

(c)∗
l )

))
, and λ

(c)∗
l = λ̄l

(
K∑

k=1

πl,kλ
(u)∗
k

)
, ∀1 ≤ l ≤ L, 1 ≤ k ≤ K. (18)

Next, we derive the closed-form of (λ∗
u,λ

∗
c). Suppose

f(x) = a0x+ b0, λ̄k(x) = a1x+ b1, λ̄l(x) = a2x+ b2, a0, a1, a2 > 0.

From Eq. (18) we know (λ∗
u,λ

∗
c) is the unique solution to the following linear system[

IK −a0a1π
⊤

−a2π IL

] [
λ∗
u

λ∗
c

]
=

[
a1

L∑
l=1

πl,1(bl,1 + b0) + b1, · · · , a1
L∑

l=1

πl,K(bl,K + b0) + b1, b2, · · · , b2

]⊤
, (19)

where IK , IL denote the identity matrices of sizes K,L. Since
∑L

l=1 πl,k = 1, we have

a1

L∑
l=1

πl,k(bl,k + b0) + b1 = a1

L∑
l=1

πl,k

(
bl,k + b0 +

b1
a1

)
,∀1 ≤ k ≤ K.

Without loss of generality, we let b0, b1 = 0 hereafter, since we can always absorb the term b0 + b1
a1

into B by letting
b̃l,k = bl,k + b0 +

b1
a1

. As a result, from Eq. (19) we can obtain the closed-form solution for (λ∗
u,λ

∗
c) as follows:

[
λ∗
u

λ∗
c

]
=

[
(IK − a0a1a2π

⊤π)−1 (IK − a0a1a2π
⊤π)−1a0a1π

⊤

a2π(IK − a0a1a2π
⊤π)−1 IL + a0a1a2π(IK − a0a1a2π

⊤π)−1π⊤

]

·

[
a1

L∑
l=1

πl,1bl,1, · · · , a1
L∑

l=1

πl,ubl,u, b2, · · · , b2

]⊤
, (20)
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where IK − a0a1a2π
⊤π is a positive definite matrix.

On the other hand, the user-side social welfare can be rewritten into

R(π; (λ∗
u,λ

∗
c)) =

K∑
k=1

λ
(u)∗
k

L∑
l=1

πl,k(bl,k + f(λ
(c)∗
l ))

=λ∗⊤
u ·

[
L∑

l=1

πl,1bl,1, · · · ,
L∑

l=1

πl,Kbl,K

]⊤
+ a0λ

∗⊤
u π⊤λ∗

c

=
1

a1
λ∗⊤
u (λ∗

u − a0a1π
⊤λ∗

c) + a0λ
∗⊤
u π⊤λ∗

c by Eq. (19)

=
λ∗⊤
u λ∗

u

a1
. (21)

From Eq. (20) we also have

λ∗
u = (IK − a0a1a2π

⊤π)−1 · a1 ·

[
L∑

l=1

πl,1bl,1, · · · ,
L∑

l=1

πl,Kbl,K

]⊤
+ (IK − a0a1a2π

⊤π)−1a0a1π
⊤ · b21L

= a1(IK − a0a1a2π
⊤π)−1

[
diag(π⊤B) + a0b21K

]
, by π⊤1L = 1K . (22)

Plug Eq. (22) into Eq. (21), we obtain the following explicit expression of R for any π and B:

R(π;λ∞) = R(π; (λ∗
u,λ

∗
c)) = a1

∥∥(IK − a0a1a2π
⊤π)−1

[
diag(π⊤B) + a0b21K

]∥∥2
2
, (23)

where 1K = (1, · · · , 1)⊤ is a column vector of length K. Let σmax(·) and σmin(·) denotes the largest and the smallest
eigenvalue of a matrix. Then Eq. (23) implies

R−(π;λ∞) ≜
a1
∥∥diag(π⊤B) + a0b21K

∥∥2
2

σ2
max(IK − a0a1a2π⊤π)

≤ R(π;λ∞) ≤
a1
∥∥diag(π⊤B) + a0b21K

∥∥2
2

σ2
min(IK − a0a1a2π⊤π)

≜ R+(π;λ∞). (24)

Next, we consider any ϵ-greedy policy π(ϵ) w.r.t. B and show that both R−(π
(ϵ);λ

(ϵ)
∞ ) and R+(π

(ϵ);λ
(ϵ)
∞ ) as functions of

ϵ are monotonically decreasing in ϵ ∈ [0, 1]. Without loss of generality, we may assume the greedy recommendation policy
π0 has the following form:

π0 = I{bl,k = arg max
1≤i≤L

bi,k}]L×K =


1K1

0 · · · 0 0
0 1K2 · · · 0 0
...

...
...

...
0 0 · · · 0 1Km

0 0 · · · 0 0

 ,

i.e., all user groups are clustered into m sub-groups and each has size Km. Each user within a sub-group prefers the same
content group and users from different sub-groups prefer different content groups. The total number of user sub-groups m
satisfies 1 ≤ m ≤ L, K = K1 + · · ·+Km, and K1 ≥ · · · ≥ Km.

Denote b0 = diag(π⊤
0 B) = [max1≤l≤L{bl,k}]kk=1, and b1 = [ 1L

∑L
l=1 bl,k]

K
k=1. By plugging πϵ = (1− ϵ)π0 +

ϵ
L1L×K

into Eq. (23), we obtain

diag(π⊤
ϵ B) + a0b21K = (1− ϵ)b0 + ϵb1 + a0b21K .

Since b0 ≥ b1 elementary-wise, we conclude that ∥diag(π⊤
ϵ B) + a0b21K∥2 as a function of ϵ is decreasing in [0, 1].
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On the other hand, direct calculation shows

IK − a0a1a2π
⊤
ϵ πϵ =Ik − a0a1a2

[
(1− ϵ)π⊤

0 +
ϵ

L
1K×L

]
·
[
(1− ϵ)π0 +

ϵ

L
1L×K

]
=IK − a0a1a2(1− ϵ)2π⊤

0 π0 −
a0a1a2ϵ(2− ϵ)

L
1K×K .

Given the explicit form of the block matrix π0, we can directly compute the smallest and the largest eigenvalues of matrix
IK − a0a1a2(1− ϵ)2π⊤

0 π0 as followings:

σmax(IK − a0a1a2(1− ϵ)2π⊤
0 π0) = 1,

σmin(IK − a0a1a2(1− ϵ)2π⊤
0 π0) = 1− a0a1a2(1− ϵ)2K1.

In addition, from Weyl’s inequality (Fan, 1949; Bunch et al., 1978), we conclude that

σmax(IK − a0a1a2π
⊤
ϵ πϵ) = 1,

σmin(IK − a0a1a2π
⊤
ϵ πϵ) ≥ σmin(IK − a0a1a2(1− ϵ)2π⊤

0 π0)− σmax

(
a0a1a2ϵ(2− ϵ)

L
1K×K

)
= 1− a0a1a2(1− ϵ)2K1 −

a0a1a2ϵ(2− ϵ)K

L

= 1− a0a1a2K1 + a0a1a2ϵ(2− ϵ)

(
K1 −

K

L

)
. (25)

Note that by the definition of K1, it holds that K1 ≥ K
m ≥ K

L . Hence, the lower bound of σmin in Eq. (25) is an increasing
function in ϵ ∈ [0, 1].

Hence, we have

R−(π
(ϵ);λ(ϵ)

∞ ) = a1∥(1− ϵ)b0 + ϵb1 + a0b21K∥22, (26)

R+(π
(ϵ);λ(ϵ)

∞ ) ≤ a1∥(1− ϵ)b0 + ϵb1 + a0b21K∥22(
1− a0a1a2K1 − a0a1a2ϵ(2− ϵ)

(
K1 − K

L

))2 , (27)

and the RHS of both Eqs. (26) and (27) are decreasing functions of ϵ in [0, 1].

Take g(ϵ) = a1∥(1− ϵ)b0 + ϵb1 + a0b21K∥22, and h(ϵ) =
(
1− a0a1a2K1 − a0a1a2ϵ(2− ϵ)

(
K1 − K

L

))−2
, we conclude

that
g(ϵ) ≤ R(π(ϵ);λ(ϵ)

∞ ) ≤ g(ϵ)h(ϵ),

and h(ϵ) =
(
1− a0a1a2K1 − a0a1a2ϵ(2− ϵ)

(
K1 − K

L

))−2
< (1 − 2a0a1a2K)−2. Since by definition

(∇λl
fk,l)(∇el λ̄l)(∇sk λ̄k) = a0a1a2, our claim holds.

B.5. Proof of Proposition 2

Proof. Consider a two-sided system with K = 1, L = 2, B = [1, 0.9]⊤ and

λ̄u
1 (x) = a0x, λ̄

c
1(x) = a1x, λ̄

c
2(x) = a2x, f1(x) = b1x, f2(x) = b2x.

According to Theorem 1, the NE of the system exists and is unique when a0, a1, a2 > 0 are sufficiently small. Moreover,
(λ

(u)
1 , λ

(c)
1 , λ

(c)
2 ) at the NE satisfies

λ
(u)
1 = λ̄

(u)
1 (π11f1(λ

(c)
1 ) + π21f2(λ

(c)
2 ) + π11 + 0.9π21),

λ
(c)
1 = λ̄

(c)
1 (π11λ

(u)
1 ),

λ
(c)
2 = λ̄

(c)
2 (π21λ

(u)
1 ),
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which is equivalent to 
λ
(u)
1 = a0(b1π11λ

(c)
1 + b2π21λ

(c)
2 + π11 + 0.9π21),

λ
(c)
1 = a1π11λ

(u)
1 ,

λ
(c)
2 = a2π21λ

(u)
1 .

(28)

Plugin the last two equations into the first one in Eq. (28), we obtain that

λ
(u)
1 = a0(a1b1π

2
11λ

(u)
1 + a2b2π

2
21λ

(u)
1 + π11 + 0.9π21),

and therefore

λ
(u)
1 =

a0(π11 + 0.9π21)

1− a0a1b1π2
11 − a0a2b2π2

21

=
a0(0.9 + 0.1π11)

1− a0a1b1π2
11 − a0a2b2(1− π11)2

.

Now we can write R(π;λ∗) as a function of π11 as the following:

R(π;λ∗) = λ
(u)
1 (π11f1(λ

(c)
1 ) + π21f2(λ

(c)
2 ) + π11 + 0.9π21) =

1

a0
(λ

(u)
1 )2

=
a0(0.9 + 0.1π11)

2

[1− a0a1b1π2
11 − a0a2b2(1− π11)2]2

.

Take b1 = 0, a0a2b2 = 0.4, we have √
R(π,λ∗)

a0
=

0.9 + 0.1π11

1− 0.4(1− π11)2
≜ R̃(π11), (29)

and it is easy to verify that the RHS of Eq. (29) is not achieved at π11 = 1. In fact, for any π′
11 < 0.7, it holds that

R̃(π′
11) > R̃(1) = 1. This means the greedy policy [π11, π21] = [1, 0] is not optimal in this example.

C. Additional experiment settings and observations
Here, we report additional details of the experiment settings and results.

Difference of population effects in the synthetic and real-world experiments. Figure 6 shows the population effect used
in the synthetic experiment, defined by Eq. (13). The biggest difference between the synthetic and real-world experiment
setting is that we observe saturation of the population effects as an early stage of the provider population growth, i.e.,
around λl = 100, which is also a reasonable phenomenon in real-world situations. Therefore, in the synthetic experiment,
it is important to distribute the content exposure among multiple subgroups to receive high population effects in many
different provider groups. Thus, even the uniform policy outperforms the myopic-policy in this setting.6 In contrast, when
using KuaiRec dataset (Gao et al., 2022), the situation is milder than the synthetic experiment, and therefore the myopic
policy works well in the real-world experiment. Together, our synthetic and real-world experiments show that the proposed
look-ahead policy performs reasonably well in two different configurations. This is because seeking for both (immediate)
viewer utility (sk) and provider exposure (el) is important to maximize the look-ahead objective, which depends on reference
populations λ̄(sk) and λ̄(el).

6Throughout the experiments, we found that there are tradeoffs in concentrating and distributing exposures, and which is better often
depends on the problem instance. For example, suppose the special case where viewers do not change their population (ηk = 0, ∀k ∈ [K])
and the total viewer population is fixed to 100. Then, consider a scenario with 100 provider groups. In this situation, distributing exposure
among different subgroups can result in expected exposure of 1 for each provider group. In such cases, concentrating the exposure to one
provider group can be a better strategy than distributing allocation for the total population growth. This is why myopic policy performs
well in some scenarios, and our argument is that the proposed method can work adaptively well (i.e., at least better or competitive than
both myopic and uniform) regardless if the myopic policy succeeds or falls short.
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Figure 6. Visualization of the population effects in the synthetic experiment. We randomly sample the scaler and temperature parameter
of the sigmoid function from a normal distribution for each content-quality feature pair as described in Section 6. The resulting quality
vector is provider-dependent, and the population effects are heterogeneous across viewer-provider pairs.

Figure 7. Comparing the true and estimated population effect in the real-world experiment. (Top) True population effect used in
the real-world experiment (the same figure as Figure 4 in the main text). (Bottom) Population effect learned by the long-term optimal
policy at the final timestep.

Estimation results of the dynamics and population effect functions. We also report how the dynamics estimation
works in the real-world experiment in Figures 7 and 8. While we initialize the population effect and dynamics estimation
with a homogeneous function across viewer-provider pairs, the results demonstrate that our estimation scheme provides an
accurate estimation of heterogeneous functions by using the dynamics logs in the rollout process. We also observe that the
policy optimization results in the main text (w/ population effect and dynamics estimation) are quite similar to those without
dynamics estimation (i.e., using the true dynamics) in the experiment.
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Figure 8. Comparing the true and estimated population dynamics in the real-world experiment. (Top) True population dynamics
simulated in the real-world experiment. (Bottom) Population dynamics learned by the long-term optimal policy at the final timestep.
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