
Large Language Models as End-to-end Combinatorial
Optimization Solvers

Xia Jiang
Eindhoven University of Technology

x.jiang1@tue.nl

Yaoxin Wu∗

Eindhoven University of Technology
y.wu2@tue.nl

Minshuo Li
Eindhoven University of Technology

m.li7@tue.nl

Zhiguang Cao
Singapore Management University

zgcao@smu.edu.sg

Yingqian Zhang
Eindhoven University of Technology

YQZhang@tue.nl

Abstract

Combinatorial optimization (CO) problems, central to decision-making scenarios
like logistics and manufacturing, are traditionally solved using problem-specific
algorithms requiring significant domain expertise. While large language models
(LLMs) have shown promise in automating CO problem solving, existing ap-
proaches rely on intermediate steps such as code generation or solver invocation,
limiting their generality and accessibility. This paper introduces a novel framework
that empowers LLMs to serve as end-to-end CO solvers by directly mapping natu-
ral language problem descriptions to solutions. We propose a two-stage training
strategy: supervised fine-tuning (SFT) imparts LLMs with solution generation
patterns from domain-specific solvers, while a feasibility-and-optimality-aware
reinforcement learning (FOARL) process explicitly mitigates constraint viola-
tions and refines solution quality. Evaluation across seven NP-hard CO problems
shows that our method achieves a high feasibility rate and reduces the average
optimality gap to 1.03–8.20% by tuning a 7B-parameter LLM, surpassing both
general-purpose LLMs (e.g., GPT-4o), reasoning models (e.g., DeepSeek-R1),
and domain-specific heuristics. Our method establishes a unified language-based
pipeline for CO without extensive code execution or manual architectural adjust-
ments for different problems, offering a general and language-driven alternative to
traditional solver design while maintaining relative feasibility guarantees.

1 Introduction

Large language models (LLMs) have emerged as powerful tools with the potential to revolutionize
not only traditional natural language processing (NLP) problems, but also a broad range of decision-
making tasks, such as time series prediction [1, 2], medical diagnostics [3, 4], and computational
optimization [5, 6]. As LLMs are increasingly recognized as general-purpose assistants for decision-
making, there is growing interest in their potential to tackle NP-hard combinatorial optimization
(CO) problems, which are central to many common real-world application scenarios. Specifically,
CO arises in various domains such as transportation [7], manufacturing [8], and healthcare [9], often

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025)

requiring the design of complex heuristics to balance optimality and computational efficiency. LLMs
facilitate CO by automating the problem-solving process, thereby reducing reliance on domain-
specific modeling experts [5]. Ideally, an LLM can interpret user requests and generate corresponding
solutions entirely through natural language. Thus, it reduces or eliminates the need for coding or
formal modeling and making CO accessible to scenarios involving non-experts.

Existing research primarily leverages LLMs to solve CO problems by generating executable code
to discover heuristics [6, 10, 11] or by interacting with optimization solvers [12, 13]. However,
these methods still require substantial domain-specific expertise, as users must define problem-
specific algorithmic templates (to evolve and discover heuristics) or proficiently use the existing
optimizers (to execute the generated solver-calling programs). In contrast, end-to-end solvers model
CO using natural language and offer a more appealing alternative by directly generating solutions,
thus mitigating reliance on domain knowledge and offering a unified solving process [14].

While LLMs can reason out simple mathematical problems [15, 16], their end-to-end capability for
CO remains highly limited [17, 18]. NP-hard CO problems often involve multiple constraints, making
it challenging for LLMs to reason and identify even feasible solutions—let alone generate optimal
ones. For example, GPT-3.5-turbo achieves an average optimality gap of 133% on the traveling
salesman problem (TSP) with 50 nodes [19]. Even state-of-the-art models, such as GPT-4o and
Claude-3.5-Sonnet, achieve only around a 50% feasibility rate on CO problems with fewer than
30 nodes—a limitation that persists even with the application of instruction tuning [20]. These
persistent shortcomings in both optimality and feasibility have raised significant concerns regarding
the potential of LLMs for solving CO problems [21]. Thus, it remains an open question on how to
enable LLMs to effectively map natural language-described CO problems to high-quality solutions.

In this paper, we aim to empower LLMs to serve as end-to-end solvers for general CO problems
via a two-stage fine-tuning approach. In the first stage, we use the supervised fine-tuning (SFT)
paradigm to teach LLMs solution generation patterns by learning from domain-specific CO solvers.
Our empirical results reveal that SFT alone leads to over-greedy behavior for some problems, where
LLMs violate constraints in pursuit of improved objectives. To address this issue, we propose
a feasibility-and-optimality-aware reinforcement learning (FOARL) method in the second stage,
explicitly mitigating constraint violations while promoting better optimization outcomes. By training
only lightweight Low-Rank Adaptation (LoRA) modules, our approach enables a 7B-parameter LLM
to not only outperform the most advanced reasoning models, such as Deepseek-R1 [22] and OpenAI
GPT-o1, but also surpass commonly used heuristics across seven CO problems.

Our contributions are outlined as follows. 1) Unlike recent approaches that rely on intermediate
steps such as heuristic guidance or solver invocation, we model CO as a language generation task
and develop an SFT strategy that fine-tunes LLMs to function as end-to-end solvers. This reduces
dependence on domain-specific knowledge and simplifies the problem-solving pipeline. 2) Given that
the SFT alone leads to over-greedy policies that violate problem-specific constraints, we introduce
the FOARL algorithm, which refines the LLM policy using reinforcement learning (RL) to improve
solution quality. 3) We evaluate the effectiveness of our method on seven different problems without
manual architectural customization for the policy model, making a significant step towards creating a
unified solver for CO based on language generation. Experimental results show that our fine-tuned
7B-parameter LLM can outperform various larger LLMs and problem-specific algorithms.

2 Related Work

Combinatorial Optimization. CO problems represent an important branch of optimization prob-
lems that aims to find the optimal solution from a finite set of candidates. Due to the NP-hard
nature, exact solutions to CO are often computationally intractable, prompting the development of
approximation and heuristic algorithms [23]. Given varying characteristics (e.g., objectives and
constraints) of different CO problems, heuristic designs are typically problem-specific, such as the
insertion algorithm for the TSP [24] and the savings algorithm for the vehicle routing problem (VRP)
[25]. However, the design of these algorithms is typically a labor-intensive process that requires
deep domain expertise [26]. Thus, there has been growing interest in automating the heuristic de-
sign process to reduce dependence on domain-specific knowledge. Recent advances have explored
leveraging neural networks for CO, known as neural combinatorial optimization (NCO), which
has shown promising performance on various problems [27–31]. In contrast, LLMs offer a more

2

user-friendly, natural language-based approach to interactive problem-solving, benefiting from the
extensive knowledge learned during pre-training, thus opening up new opportunities for CO [14].

LLMs for Optimization. LLMs can function as either program generators or end-to-end optimizers
for CO. Recent advances demonstrate that LLMs are capable of generating Python programs to
iteratively discover heuristics or refine metaheuristics through evolutionary operations [6, 10, 32]. In
addition, the LLM-based model-then-solve methods produce executable code that interfaces with CO
solvers, such as Gurobi and OR-Tools, to solve problems described in natural language [5, 12, 33].
However, these approaches typically depend on complex prompt engineering and require users to be
proficient in running and debugging the generated code. In contrast, treating LLMs as end-to-end
optimization solvers offers a more automated and user-friendly alternative, which aims to directly
map language-based inputs to solutions by: 1) zero-shot or few-shot generation [18, 20], 2) iterative
refinement of initial solutions [19, 34], or 3) step-by-step solution construction [35]. Nonetheless,
these methods are generally limited to small-scale CO problems (e.g., TSP with fewer than 30 nodes)
and suffer from significant performance degradation as problem size increases [19]. Moreover, their
target CO problems often lack complex constraints, such as the capacity constraint in VRP, which
LLMs can easily violate due to hallucination. These limitations highlight the challenges in scaling
end-to-end LLM solvers to more realistic and constrained optimization settings.

LLMs for Mathematical Reasoning. More generally, mathematical problems (e.g., those in
algebra and optimization tasks) are essential benchmarks for evaluating LLMs’ reasoning capabilities
[36]. LLMs have been evaluated on math-related tasks, ranging from middle school-level arithmetic
[37], Olympiad-level problems [38], and mathematical proofs [39], to combinatorial and graph
optimization challenges [20, 35, 40]. Recent advances in LLM-based mathematical reasoning have
been driven by structured prompting techniques, such as chain of thought (CoT) [41], tree of thought
[42], and graph of thought [43]. These methods emphasize stepwise reasoning, in which natural
language and logical operations are intertwined to explicitly generate interpretable chains of thought
[16]. However, step-by-step reasoning becomes impractical for CO problems, particularly large-scale
ones. Due to their NP-hard nature, maintaining feasible and high-quality solutions throughout a long
reasoning trajectory is extremely challenging, resulting in substantial complexity and inefficiency
when scaling to larger instances. In this paper, we propose an alternative paradigm that enables LLMs
to directly learn end-to-end solution generation by imitating domain-specific solvers. Additionally,
we incorporate heuristic information into the prompt to facilitate latent solution-space exploration,
allowing LLMs to generate effective solutions without relying on explicit and verbose reasoning.

3 Problem Statement

We investigate how to apply LLMs to solve CO problems without relying on traditional algorithm
design. Let P represent a specific CO problem (e.g., the TSP), with each instance p ∈ P defined as a
tuple (Xp, fp, Cp), where Xp is the set of all possible solutions (i.e., solution space); fp : Xp → R
denotes the objective function to be minimized (or maximized); Cp = {cp,1, cp,2, . . . , cp,mp

} is a set
of constraints, and each cp,i : Xp → {0, 1} indicates whether a solution satisfies the corresponding
constraint or not. A feasible solution to a CO problem must satisfy all the involved constraints. For a
given instance p, the goal is to find a solution x∗p ∈ Xp such that 1) x∗p satisfies all constraints in Cp,
i.e., ∀cp,i ∈ Cp, cp,i(x

∗
p) = 1, 2) for minimization problems, fp(x∗p) ≤ fp(x) holds for all x ∈ XCp

,
where XCp

= {x ∈ Xp|∀cp,i ∈ Cp, cp,i(x) = 1} is the set of all feasible solutions.

Let πθ : T → T be an LLM, where T is the space of text sequences. We define two mapping functions:
ϕ : P → T , which maps a CO problem instance to its textual description, and ψp : T → Xp, which
maps text to a solution in the original solution space for p (In practice, ψp can be implemented
using regular expressions or other parsing methods to extract solutions from the generated text). The
end-to-end solution for a natural language-described CO problem is formulated as:

x̂p = ψp(πθ(ϕ(p))), (1)

where x̂p is the LLM-generated solution to problem instance p. We evaluate the effectiveness
of the end-to-end solution generation on a set of instances Ps using the average optimality gap
Mo(Ps) =

1
|Ps|

∑
p∈Ps

fp(x̂p)−fp(x
∗
p)

|fp(x∗
p)|

and feasibility rate Mf (Ps) =
|{p∈Ps|∀cp,i∈Cp,cp,i(x̂p)=1}|

|Ps| .

3

Figure 1: The framework of the proposed method.

In this paper, we consider CO problems, including TSP, orienteering problem (OP), capacitated VRP
(CVRP), maximal independent set (MIS), minimum vertex cover (MVC), permutation flow shop
scheduling problem (PFSP), and job-shop scheduling problem (JSSP). Notably, unlike traditional
algorithm designs, which typically require customization in problem-specific heuristics or neural
network architectures [44], our approach is generalizable and capable of solving other arbitrary
(natural language-described) CO problems without extensive manual crafting or customization.

4 Methodology

4.1 Data Generation

The framework of the proposed method is illustrated in Figure 1. LLMs need to learn solution
generation patterns from problem solutions, so the first step is generating high-quality data, i.e.,
problem-solution pairs. To this end, the solutions to different CO problems are produced by special-
ized solvers, e.g., the Lin-Kernighan-Helsgaun (LKH) solver [45] for TSP and the Q-learning-based
iterated greedy (QIG) method [46] for PFSP—each incorporating distinct internal programmatic logic.
Since it is intractable to unify the heterogeneous solving processes of these solvers by learning their
byzantine internal logic, we use the solvers to generate (near)optimal solutions and train the LLM to
directly learn from the solution representations, bypassing the need to replicate solver internals.

We generate numerical instances and solve them using domain-specific CO solvers. Each numerical
instance is then transformed into natural language by a mapping function ϕ, which is adapted
from the text-attributed instance (TAI) framework in [14]. A TAI consists of two components: (1)
Instruction: a problem description that outlines the optimization objective and relevant constraints,
and (2) Input: instance-specific details that describe the attributes of individual nodes, for example,
the city coordinates in a TSP instance. The outputs generated by the solvers, which are taken as the
labels for SFT, are also converted into natural language by listing the solution and its corresponding
objective. For example, the textual solution for a TSP instance is formatted as: "Routes: [0, 3, 5,
4, 1, 2, 6, 0], Objective: 5797.33". Instead of explicitly specifying the solution exploration through
CoT, we facilitate latent solution-space exploration by providing the general heuristic features in the
input prompt, which biases the model toward more promising regions of CO problems. Taking TSP
as an example, this includes the top-k (k = 2) neighbors for each node along with their respective
distances. During training, the LLMs can learn to explore the latent space through informative and
low-cost guidance of the heuristic features. Specifically, the problem definition, instance generation,
utilized solver, and the example of TAI for the studied problems are provided in Appendix A.

4.2 Supervised Fine-tuning

In most NLP domains, fine-tuning LLMs relies on human-annotated data or detailed CoT reasoning
trajectories, which are often costly and difficult to obtain [47]. Our SFT process for CO benefits from
a more convenient data generation pipeline by leveraging existing specialized solvers. In this regard,
we collect the datasets of problem-solution pairs without much manual effort, while enabling LLMs
to effectively learn high-quality solution generation. We adopt the instruction tuning paradigm, which

4

0 5 10
Distance Limit Violation of OP (%)

0%

12%

24% Mean: 2.80%

0 10 20
Capacity Violation of CVRP (%)

0%

13%

25%

38% Mean: 5.15%

2 4 6
Number of Violating Edges of MIS

0%

17%

34%
Mean: 2.64 edges

Pr
op

or
tio

n

Figure 2: The extent of constraint violation of the SFT policy for different problems.

has proven effective in the optimization domain [13, 48], to equip LLMs with the ability to follow
problem instructions and generate natural language descriptions of solutions provided by solvers.

Specifically, we formulate CO as a next-token prediction task, treating it as a language generation
problem where the LLM learns to map textual problem descriptions to textual solution representations.
For each CO problem instance p, we input the prompt ϕ(p) (i.e., the TAI described in Section 4.1).
The target output is the natural language description of the solution ψ−1

p (x∗p), where x∗p is the high-
quality solution generated by a solver. Let θ be the trainable parameters of the LLM policy, and we
minimize the standard language modelling loss during training:

LSFT(θ) = −
n∑

i=1

log Prθ(yi|ϕ(p), y<i), (2)

where yi is the i-th token in the textual solution, and y<i denotes all previous tokens of the solution.

Our training data encompasses a range of problem sizes and distribution settings, promoting general-
ization across diverse CO problem instances. To ensure computational efficiency while preserving
model performance, we employ LoRA [49], which introduces trainable matrices into the LLM while
keeping most of the pre-trained weights frozen. The details of LoRA are provided in Appendix B.

However, SFT alone sometimes leads to over-greedy behavior, where the LLM learns toward
marginally violating specific constraints in pursuit of improved objective values. We collect infeasible
solutions resulting from constraint violations across 300 instances of OP, CVRP, and MIS, which
are representative CO problems to illustrate this issue. As shown in Figure 2, a comparison between
LLM-generated infeasible solutions and optimal ones reveals that most violations stem from slight
oversteps of constraints, for example, traveling marginally farther in OP or serving slightly more
customer demand in CVRP. These constraint violations are a primary cause of solution infeasibility
in practice. This limitation motivates our subsequent reinforcement learning approach in Section 4.3.

4.3 Feasibility-and-optimality-aware Reinforcement Learning

Since LLMs trained via SFT primarily learn to generate natural language descriptions of solutions
without explicit information about problem constraints, they often lack a comprehensive under-
standing of solution feasibility. Thus, the outputs may be infeasible or suboptimal, particularly in
constrained CO tasks. To address this issue, we propose the FOARL algorithm to mitigate the greedy
bias introduced by SFT. It enhances the LLM’s reliability as the end-to-end CO solver by fostering
feasibility awareness and correcting infeasible behaviors through the exploratory "trial-and-error"
nature of RL. More precisely, the state of the RL corresponds to ϕ(p) for each instance p, while the
action is the token predictions during generation. We define a feasibility-aware reward RP

f based on
the constraint set Cp = {cp,1, cp,2, . . . , cp,mp}, encouraging the model to recognize and satisfy all
mp problem-specific constraints. To ensure that the model also maintains optimality, we introduce an
optimality-aware reward RP

o . These two rewards are jointly used to balance feasibility and optimality.

Specifically, we define the feasibility-aware reward function for any LLM-generated solution x̂p as:

RP
f (x̂p) =

{
ω0ζ +

∑mp

i=1 ωicp,i(x̂p) if ζ ̸= 0

0 if ζ = 0
,∀p ∈ P (3)

5

where ζ is a binary variable that indicates if the generated text follows the output format in TAI;
ω0, ..., ωmp are weighting parameters, which assign different levels of importance to the constraints.

In addition, the optimality-aware reward function is defined as:

RP
o (x̂p) =

{
α 1

1+Mo(x̂p)
if ζ ̸= 0

0 if ζ = 0
,∀p ∈ P (4)

where α is a parameter that controls the relative importance between optimality and feasibility. We use
the linear combination of RP

f and RP
o as the reward for reinforcement learning: RP = RP

f +RP
o . The

training process of FOARL is built upon group relative policy optimization (GRPO), which addresses
inefficiencies of actor-critic methods [22]. Unlike the approaches that require a separate critic
model, which often has a comparable size to the policy model, GRPO estimates the baseline directly
from group-level rewards, significantly reducing the computational overhead while maintaining
stable learning dynamics. More precisely, given a TAI ϕ(p), the algorithm samples S solutions
X̂p = {x̂p,1, x̂p,2, . . . , x̂p,S} using the old LLM policy model πθ,old, and update the current model
πθ (i.e., update the LoRA modules of the LLM) by maximizing the following objective function:

LFOARL(θ) =Eϕ(p)∼DP ,{x̂p,i}S
i=1∼πθ,old(X̂p|ϕ(p))[

1

S

S∑
i=1

(
min

(
rratio
i Ai, clip

(
rratio
i , 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ∥πref)

)]
, (5)

where DP is the training dataset for conducting reinforcement learning; rratio
i =

πθ(x̂p,i|ϕ(p))
πθ,old(x̂p,i|ϕ(p))

measures how much the current policy differs from the old policy; ϵ and β are hyperparameters;
DKL(πθ∥πref) is the Kullback–Leibler (KL) divergence between the current policy and the reference

policy; Ai =
RP

i −mean(RP
group)

std(RP
group)

denotes the advantage of solution x̂p,i, computed using a group of

rewards RP
group = {RP

1 ,RP
2 , . . . ,RP

S } corresponding to the sampled solutions within each group.

4.4 Best-of-N Inference

While SFT and FOARL provide LLMs with the capability to learn solution generation patterns, the
autoregressive nature of these models inherently limits their ability to maintain globally optimal
solutions throughout the generation process. Unlike traditional CO solvers that can explore multiple
branches or backtrack upon reaching dead ends [50–52], autoregressive models commit to each
decision and cannot easily revise earlier choices and evaluate constraint satisfaction, leading to
suboptimal outcomes. To address this limitation, we employ Best-of-N (BoN) sampling during
inference for test-time solution exploration. BoN sampling involves generating N distinct solution
candidates from the fine-tuned LLM and selecting the highest-quality feasible solution. Formally,
given an instance p, we generate N candidate solutions {x̂p,1, x̂p,2, . . . , x̂p,N} and select:

x̂∗p = argmin{fp(x̂p,i) | x̂p,i ∈ XCp
, i ∈ {1, 2, . . . , N}} (6)

5 Experiments

We fine-tune Qwen2.5-7B [53] to serve as our dedicated end-to-end CO solvers. For SFT, we generate
500,000 instances per CO problem, and an additional set with at most 3,200 instances is used for
FOARL. To improve training efficiency, we adopt the Unsloth framework [54] and apply LoRA for
parameter-efficient fine-tuning. During inference, we set the temperature of the LLM to 0 for a single
generation and use top-p sampling (p = 0.7) for BoN inference (N = 8 solutions are generated by
default). The optimality gaps are calculated using the domain-specific solvers of each problem, which
are specified in Appendix A. The detailed experiment settings are provided in Appendix C.

5.1 Baselines

General-purpose LLMs. We first compare our method with general-purpose LLMs, including
both closed-source and open-source models, all of which have significantly more parameters than our

6

Table 1: Evaluation of feasibility (fea.), optimality (opt.), and average time (Avg. Time) for different
methods on the 7 studied CO problems. The best results are in bold.
Method TSP OP CVRP MIS MVC PFSP JSSP Avg.

fea. opt. fea. opt. fea. opt. fea. opt. fea. opt. fea. opt. fea. opt. Time
General-purpose Language Models
GPT-4o 39% 33.79%±16.6 59% 55.19%±15.7 15% 76.62%±7.9 8% 11.70%±11.8 6% 16.67%±7.0 88% 20.57%±9.2 7% 97.85%±23.7 5.3s
GPT-4o-mini 28% 53.38%±21.5 80% 70.70%±10.3 3% 68.10%±10.5 1% 0.00%±0 3% 29.52%±9.7 78% 21.47%±10.0 8% 212%±121 4.5s
Claude-Sonnet 66% 24.53%±10.7 49% 34.62%±14.1 30% 38.34%±15.9 13% 12.51%±12.5 2% 6.25%±6.3 100% 18.42%±8.9 10% 90.00%±21.6 5.4s
Claude-Haiku 45% 38.60%±16.9 26% 51.26%±14.9 4% 61.48%±12.1 2% 23.33%±6.7 6% 43.01%±23.3 73% 20.58%±7.6 9% 95.51%±22.2 5.1s
DeepSeek-V3 73% 35.75%±15.4 50% 46.10%±13.4 21% 58.22%±26.8 5% 12.05%±12.9 15% 37.15%±24.8 58% 20.81%±9.4 52% 103.19%±26.9 26.4s
Llama3.3-70B 50% 69.08%±31.4 27% 48.98%±14.6 31% 97.31%±69.3 8% 37.12%±29.5 20% 22.86%±13.6 98% 21.97%±8.4 29% 105.01%±24.5 2.1s
Qwen2.5-72B 20% 36.89%±34.6 32% 49.36%±16.6 61% 180.91%±105 14% 29.56%±16.2 5% 63.20%±30.4 98% 21.13%±8.2 53% 103.90%±61.7 12.5s

Reasoning Models
GPT-o3-mini 91% 306%±258 8% 43.93%±11.5 50% 139%±39.7 66% 9.23%±8.4 33% 2.98%±5.5 98% 16.97%±9.8 20% 77.86%±37.8 1.4m
GPT-o1 54% 276%±242 31% 40.90%±16.3 24% 154%±117 82% 8.03%±12.9 47% 3.58%±5.9 89% 14.86%±10.5 29% 81.90%±29.6 3.2m
DeepSeek-R1 48% 70.99%±23.1 60% 40.54%±13.7 26% 30.46%±18.1 41% 1.60%±3.6 38% 4.17%±6.3 100% 16.65%±8.1 5% 26.29%±8.5 6.5m

Prompt Strategies
OPRO 83% 35.98%±3.6 85% 53.96%±14.3 21% 37.03%±18.3 7% 5.95%±7.3 9% 41.67%±16.9 99% 18.40%±8.4 65% 83.35%±25.5 2.1m
LMEA 77% 265%±131 48% 66.18%±10.5 24% 61.24%±19.0 5% 25.0%±14.2 13% 34.22%±16.3 98% 14.31%±7.1 44% 83.19%±23.9 5.3m
PHP 84% 33.84%±14.6 43% 36.08%±15.1 33% 58.11%±26.4 5% 11.67%±9.1 13% 19.84%±10.01 92% 17.23%±8.1 56% 104.04%±29.2 1.6m
SGE 98% 29.66%±43.3 93% 24.49%±38.4 84% 36.14%±59.2 92% 3.62%±7.6 94% 3.83%±7.4 95% 4.48%±7.4 87% 38.58%±49.2 3.6m

Ours
SFT 89% 2.30%±1.9 54% 2.32%±2.6 59% 6.02%±3.9 80% 1.71%±3.9 98% 2.41%±3.3 100% 2.22%±1.9 100% 11.01%±7.9 5.6s
SFT+RL 91% 2.32%±2.2 92% 4.25%±2.9 80% 8.27%±5.6 83% 1.34%±3.3 98% 2.39%±3.2 100% 2.12%±1.8 100% 10.94%±7.3 5.6s
SFT+RL+BoN 100% 1.07%±0.9 100% 1.85%±1.7 100% 4.53%±3.5 94% 1.04%±3.4 100% 1.29%±2.2 100% 1.03%±1.1 100% 8.20%±6.3 9.8s

fine-tuned model. The used models include OpenAI GPT-4o, GPT-4o-mini, Anthropic Claude-3.7-
Sonnet-20250219, Claude-3.5-Haiku, DeepSeek-V3-671B, LLaMA-3.3-70B, and Qwen2.5-72B.

Reasoning LLMs. With the rapid development of reasoning models, many previously challenging
mathematical tasks have become tractable. Therefore, we also include state-of-the-art reasoning
models for comparison, such as OpenAI GPT-o3-mini, GPT-o1, and DeepSeek-R1.

Prompt Strategies. We consider representative LLM-based optimization methods for comparison.
These include Optimization by PROmpting (OPRO) [19], which steers solution generation using ver-
bal gradients; LMEA (LLM-driven Evolutionary Algorithm) [34], which treats LLMs as evolutionary
optimizers by selecting parent solutions from the current population and applying crossover and
mutation to produce offspring; and progressive-hint prompting (PHP) [55], which scales test-time
performance by incorporating previous outputs as hints to guide subsequent reasoning. We also
evaluate the methods that leverage LLMs for program generation, such as self-guiding exploration
(SGE) [56]. All prompt-based baselines are implemented using DeepSeek-V3-671B for consistency.

Domain-specific methods. We employ OR-Tools [57], a heuristic solver that can solve TSP and
CVRP. We also use ant colony optimization (ACO) [58], serving as the metaheuristic to solve the
routing problems. Some heuristics are also introduced, such as the nearest neighbor (NN) and farthest
insertion (FI) for TSP, the greedy method, greedy insertion, and Tsili algorithm [59] for OP, the
sweeping and parallel savings (PS) algorithm for CVRP, the greedy minimum degree (Greedy) and
degree-based add (Degree) heuristic for MIS, the Approx method [60], greedy maximum degree
(Greedy) and degree-based removal (Degree) heuristic for MVC, the Plamer’s [61] and Nawaz,
Enscore, and Ham (NEH) heuristic [62] for PFSP, and commonly used dispatching rules for JSSP,
such as shortest processing time (SPT), first in first out (FIFO), and apparent tardiness cost (ATC).

More details of the baselines are elaborated in Appendix D. Our code and data are publicly available
at https://github.com/Summer142857/LLMCoSolver.

5.2 Main Results

First, we compare our method against a wide range of advanced LLMs and LLM-based optimization
baselines, with the results summarized in Table 1, while the solving times of each problem are
provided in Appendix E.1. It is observed that general-purpose LLMs generally fail to produce
feasible solutions for most CO tasks. An exception is the PFSP task, where models only need to
generate a permutation of a few job indices, which is relatively simpler compared to other problems.

Although some general-purpose LLMs and advanced reasoning models can occasionally generate
feasible solutions for certain tasks (e.g., GPT-o3-mini for TSP and Claude-3.7-Sonnet for PFSP), they
exhibit substantial gaps in solution optimality. Moreover, the inference time of reasoning models is

7

https://github.com/Summer142857/LLMCoSolver

Table 2: Performance comparison on CO problems with different scales of graphs.

TS
P

Method Small graphs Medium graphs Large graphs
Gap Gap@1 Gap@5 Gap@10 Gap Gap@1 Gap@5 Gap@10 Gap Gap@1 Gap@5 Gap@10

OR-Tools 0.82% 76% 96% 99% 2.59% 28% 86% 99% 3.59% 12% 80% 99%
NN 19.36% 3% 5% 19% 24.13% 0% 0% 1% 26.19% 0% 0% 2%
FI 2.27% 51% 82% 96% 4.41% 8% 64% 95% 4.86% 2% 53% 99%
ACO 1.98% 48% 88% 100% 17.98% 0% 1% 6% 36.69% 0% 0% 0%
Ours 0.14% 96% 100% 100% 0.70% 74% 100% 100% 1.34% 44% 100% 100%

O
P

Greedy 16.06% 4% 8% 25% 18.91% 0% 0% 5% 20.30% 0% 0% 3%
GI 9.07% 20% 37% 63% 11.91% 0% 12% 51% 13.63% 0% 7% 32%
Tsili 3.85% 21% 68% 96% 9.54% 0% 2% 55% 13.80% 0% 0% 8%
ACO 3.49% 30% 76% 94% 6.24% 1% 35% 89% 7.95% 0% 15% 74%
Ours 1.47% 54% 95% 99% 2.04% 26% 96% 100% 2.10% 27% 96% 99%

C
V

R
P

OR-Tools 3.60% 45% 69% 93% 7.87% 3% 24% 72% 8.84% 0% 15% 71%
Sweep 18.36% 8% 18% 32% 20.59% 0% 1% 8% 22.07% 0% 0% 3%
PS 3.95% 24% 72% 93% 5.67% 2% 50% 89% 6.12% 0% 41% 89%
ACO 2.52% 44% 81% 96% 17.07% 0% 2% 14% 29.49% 0% 0% 0%
Ours 1.70% 52% 90% 97% 4.57% 8% 59% 98% 7.24% 1% 19% 84%

M
IS

Degree 5.89% 57% 57% 67% 7.52% 32% 42% 64% 9.61% 20% 33% 59%
Greedy 2.56% 84% 84% 86% 2.79% 67% 71% 90% 3.36% 53% 60% 83%
Ours 0.38% 97% 98% 98% 1.05% 86% 87% 94% 2.29% 47% 57% 65%

M
V

C

Approx 49.79% 0% 0% 0% 39.21% 0% 0% 0% 35.35% 0% 0% 0%
Greedy 2.80% 71% 72% 89% 2.62% 44% 79% 99% 2.21% 33% 89% 100%
Degree 3.53% 63% 63% 86% 2.78% 44% 78% 98% 2.63% 26% 83% 99%
Ours 0.48% 93% 93% 100% 1.25% 66% 94% 100% 2.35% 38% 87% 100%

P
F

SP

Palmer’s 30.52% 0% 0% 1% 30.41% 0% 0% 0% 30.68% 0% 0% 0%
NEH 1.33% 53% 97% 99% 2.78% 11% 90% 100% 3.56% 0% 88% 100%
Ours 0.25% 85% 100% 100% 1.16% 40% 100% 100% 2.62% 6% 99% 100%

JS
SP

SPT 19.58% 2% 4% 17% 25.32% 0% 0% 1% 27.35% 0% 0% 0%
FIFO 24.38% 2% 4% 12% 32.97% 0% 0% 1% 39.00% 0% 0% 0%
ATC 20.71% 0% 12% 15% 24.30% 0% 0% 1% 27.99% 0% 0% 0%
Ours 2.86% 32% 79% 98% 9.56% 0% 8% 60% 16.25% 0% 0% 4%

significantly longer, as they attempt to solve CO problems through extended step-by-step thinking.
While such approaches may work for very small-scale instances (e.g., fewer than 10 nodes), it
becomes impractical to reason clearly and effectively as instance size grows. For example, we present
the CoT of DeepSeek-R1 for a TSP instance in Appendix E.2, where we find that the CoT is lengthy
and ineffective. This causes the LLM to get stuck multiple times and cannot find a good solution.

Although iterative prompting strategies (e.g., OPRO and PHP) can moderately improve performance,
they still struggle to produce competitive results and remain far from practical deployment. Leveraging
LLMs to generate code for (meta)heuristic algorithms, as done in SGE, enables feasible solutions
for most instances. However, their solution quality remains limited, mainly because the generated
algorithms are highly sensitive to hyperparameter tuning—a process that requires significant human
expertise and cannot be reliably automated by LLMs alone. Meanwhile, these prompting strategies
rely on iterative reasoning or code execution, leading to long solving time compared to our method.

In contrast, our proposed SFT approach enables the LLM to generate mostly feasible solutions with
a relatively small optimality gap. By further combining SFT with FOARL and BoN inference, our
method achieves a 100% feasibility rate across the test sets of TSP, OP, CVRP, MVC, PFSP, and JSSP.
Both feasibility and optimality performance significantly surpass all other baselines, including those
based on much larger models than our fine-tuned 7B model. Additionally, as shown in Appendix E.3,
our models also outperform a recent language-based CO solver proposed in [14], which integrates
the LLMs with an NCO model, across most of the evaluated tasks, demonstrating its effectiveness.

We also compare against the LLM-based model-then-solve approaches. As demonstrated in Appendix
E.4, our method can outperform these approaches, particularly when dealing with large instances.

5.3 Comparison with Domain-specific Methods

A variety of domain-specific algorithms have been developed for individual CO problems, typically
based on (meta)heuristic strategies, and often characterized by distinct algorithmic structures. We
compare our LLM-based approach (i.e., the model trained by SFT+RL and with a BoN sampling) to
these methods, with results summarized in Table 2. The evaluation is conducted across multiple prob-
lem scales, with 100 instances used for each. Specifically, small, medium, and large graph instances
are defined as follows: for scheduling problems, 5×5–10×10, 10×10–15×15, and 15×15–20×20;

8

for other problems, 10–30, 40–60, and 70–100 nodes, respectively. We also introduce Gap@K, the
percentage of instances solved with an optimality gap below K%. As shown in the table, our model
can outperform the simple domain-specific algorithms, especially on smaller graphs, indicating its
strong potential for solving CO problems described by language.

Meanwhile, we also provide the comparative results between our method and the state-of-the-art
heuristic solvers and classical exact solvers (i.e., Gurobi), which are provided in Appendix E.5. It is
shown that our method can achieve better performance on routing tasks than Gurobi under the same
solving time budget. We also discuss the advantages of our method (i.e., ease of use, language-driven
interaction, and generalizability) compared to these classical solvers in Appendix E.5.

Moreover, as it is possible to further enhance the performance of the LLM solver through scaling
test-time exploration, we increase N for BoN sampling and report the results in Appendix E.6, where
we find that the instances with large graphs can be better solved with a higher N . We also examine
the impact of heuristic features in the TAI through an ablation study, as presented in Appendix E.7.

5.4 Role of Reinforcement Learning

Gap@1 Gap@5 Gap@100

20

40

60

80

100

Va
lu

e
(%

)

OP-SFT
OP-RL
CVRP-SFT
CVRP-RL

(a)

SFT
(Avg: 31.7)

RL
(Avg: 194.7)

OP

−250

0

250

500

C
on

st
ra

in
t M

ar
gi

n

SFT
(Avg: 7.5)

RL
(Avg: 8.3)

CVRP

0

50

100

(b)

0

1

O
P

R
ew

ar
d

FOARL
SFT

1 2 3 4 5 6 7 80

1

C
V

R
P

R
ew

ar
d

FOARL
SFT

N (Sample Size)

(c)

Figure 3: The role of FOARL. (a) RL does not necessarily cause a performance drop in Gap@K; (b)
Distribution of constraint margins before and after applying FOARL. Positive values indicate feasible
solutions, while negative values reflect infeasibility due to violations of inequality constraints; (c)
The reward comparison between policies with different N for BoN sampling.

According to Table 1, FOARL significantly improves feasibility in tasks such as OP and CVRP, while
incurring minor losses in optimality. This is primarily because FOARL enables the LLM to generate
feasible solutions for more instances, rather than degrading the quality of solutions on previously
solved ones. As illustrated in Figure 3 (a), The Gap@K metric does not exhibit a noteworthy decrease
after applying RL. Furthermore, we observe slight improvements in optimality for tasks where the
SFT model already exhibits high feasibility. To better understand the contribution of RL, we analyze
its dual role using two representative tasks (i.e., OP and CVRP) as case studies, as detailed below.

Constraint relaxation operator. FOARL helps enforce feasibility by mitigating violations of
inequality constraints, which are common in problems like OP and CVRP. We define the constraint
margin as: 1) the difference between actual travel distance and the distance limit in OP, 2) the
difference between served demand and vehicle capacity in CVRP, and visualize them for solutions
generated by both SFT and RL in Figure 3 (b). The increase in constraint margins of RL-trained
policies indicates improved feasibility and correction of the over-greedy behavior introduced by SFT.

Sampling efficiency improver. More generally, the RL process improves sampling efficiency dur-
ing inference. While it is possible to enhance the SFT policy through increased test-time exploration,
such as scaling BoN sampling, RL allows for achieving better performance with fewer samples,
thereby improving efficiency and reducing test-time computational cost. Specifically, we vary the
scale of BoN sampling for both SFT policy and RL policy, evaluating them on instances with the
large graphs. The change of reward RP

o (defined by Equation 4), which can indicate both feasibility
(e.g., RP

o = 0 if a solution is infeasible) and optimality, is illustrated in Figure 3 (c). We observe
that models trained with RL require smaller N to reach comparable performance levels as their
SFT-only counterparts with larger N . This also aligns with the conclusion of a recent work [63].
Since computational efficiency is critical in some real-time or resource-constrained decision-making
scenarios, incorporating RL to improve inference efficiency is a valuable and practical enhancement.

9

Table 3: Comparison study across TA instances. *: Results are drawn from the original literature.
TA 15x15 TA 20x15 TA 20x20

obj.↓ opt.↓ obj.↓ opt.↓ obj.↓ opt.↓
Best-known solution 1228.9 - 1364.9 - 1617.3 -
SPT 1546.1 25.81% 1813.5 32.87% 2067.2 27.81%
FIFO 1657.4 34.87% 2008.4 47.15% 2297.1 42.03%
ATC 1586.8 29.12% 1794.3 31.46% 2114.1 30.72%
GA∗ 100x100 1583.8 28.88% 1847.1 35.23% 2304.2 42.47%
L2D greedy 1522.3 23.88% 1813.4 32.86% 2130.2 31.21%
L2D sample 1543.8 25.62% 1779.7 30.39% 2134.2 31.96%
StarJob∗ - 19.68% - 26.91% - 33.12%
Ours (N = 8) 1403.6 14.22% 1653.7 21.16% 1994.2 23.30%
Ours (N = 64) 1368.2 11.34% 1600.5 17.26% 1940.9 20.01%

5.5 Unified CO solver

Recent research progress in neural network-based solvers is being made towards the establishment
of a unified model, which can solve various CO problems. The existing unified models usually use
task-specific encoders and decoders [44] or problem reduction [64], limiting their extensibility. By
comparison, our method provides a more general approach using natural language as the interface.
We fine-tune the LLM by learning to solve the seven CO problems together, and present the results in
Appendix E.8, where we observe that a single LLM solver can also solve various CO problems.

5.6 Versatility and Generalizability

To show the versatility of our method, we additionally evaluate it using different LLMs (i.e., Llama-
3.1-8B and Gemma-2-9B), as detailed in Appendix E.9. We evaluate the out-of-distribution (OOD)
performance of the trained LLMs for routing problems, as presented in Appendix E.10. There, we
demonstrate that the LLM solvers can also generalize to instances with OOD distributions.

5.7 Benchmarking Performance

To further demonstrate the generalizability, we evaluate the fine-tuned JSSP solver on Taillard (TA)
benchmark [65]. We test on the instances with 15 jobs and 15 machines (15× 15), 20 jobs and 15
machines (20×15), and 20 jobs and 20 machines (20×20). In addition to the dispatching rules, such
as SPT, FIFO, and ATC, we also compare with the genetic algorithm (GA) (with a population size of
100 and 100 generations) [66], the L2D method [67], and StarJob [48], which solves JSSP using an
LLM fine-tuned through SFT. The results are compared in Table 3. When all solutions are feasible,
our model (SFT+RL) outperforms all heuristic and learning-based baselines, with performance further
improved by increasing N to 64 to enhance test-time exploration. Meanwhile, we also compare our
method with other LLM-based methods on TSPLib, and the result is presented in Appendix E.11.

6 Conclusion

The paper investigates how LLMs can be fine-tuned to serve as end-to-end CO solvers, filling the gap
in the literature on this topic. Taking CO problem solving as a language generation task, we propose
a two-stage fine-tuning framework, incorporating both SFT and FOARL, to enable the LLMs to
solve CO problems in an end-to-end manner. The tuned LLM solver achieves the average optimality
gaps of 1.03–8.20% for different problems. Following the traditional heuristic solvers and NCO
solvers, our method, mediated by language, promises to be a new paradigm for CO, which provides a
more general end-to-end approach and reduces human expertise reliance. One major limitation of
our approach, shared by most LLM-based methods, is that its solving efficiency is not yet on par
with traditional lightweight heuristics. Future directions include: 1) introducing efficient fine-tuning
and inference strategies to solve larger-scale CO problems; 2) exploring more efficient and effective
textual input representation, i.e., TAIs, to enhance learning performance; 3) integrating the LLM
solver with heuristics to further address infeasibility and improve optimality.

10

Acknowledgments and Disclosure of Funding

This research is supported by the National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG3-RP-2022-031). This work has also made use of resources
and expertise provided by SURF Experimental Technologies Platform, which is part of the SURF
cooperative in the Netherlands (No.EINF-13168).

References
[1] Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-

shot time series forecasters. In Thirty-seventh Conference on Neural Information Processing
Systems, volume 36, pages 19622–19635, 2023.

[2] Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes:
Autoregressive time series forecasters via large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, volume 37, pages 122154–122184,
2024.

[3] Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure
Leskovec, Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical
artificial intelligence. Nature, 616(7956):259–265, 2023.

[4] Xiaohong Liu, Hao Liu, Guoxing Yang, Zeyu Jiang, Shuguang Cui, Zhaoze Zhang, Huan Wang,
Liyuan Tao, Yongchang Sun, Zhu Song, et al. A generalist medical language model for disease
diagnosis assistance. Nature Medicine, pages 1–11, 2025.

[5] Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han,
Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When
LLMs meet complex operations research problems. In The Twelfth International Conference on
Learning Representations, 2024.

[6] Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective
evolution. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[7] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L. Medaglia. A review of
dynamic vehicle routing problems. European Journal of Operational Research, 225(1):1–11,
2013.

[8] Ege Duran, Cemalettin Ozturk, and M Arslan Ornek. Combinatorial optimization methods for
yarn dyeing planning. Flexible Services and Manufacturing Journal, pages 1–38, 2024.

[9] Shuwan Zhu, Wenjuan Fan, Shanlin Yang, Jun Pei, and Panos M Pardalos. Operating room
planning and surgical case scheduling: a review of literature. Journal of Combinatorial
Optimization, 37:757–805, 2019.

[10] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Evolution of heuristics: towards efficient automatic algorithm design using large
language model. In Proceedings of the 41st International Conference on Machine Learning,
2024.

[11] Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. Hsevo: Elevating automatic
heuristic design with diversity-driven harmony search and genetic algorithm using llms. In The
39th Annual AAAI Conference on Artificial Intelligence, 2025.

[12] Xia Jiang, Yaoxin Wu, Chenhao Zhang, and Yingqian Zhang. DRoC: Elevating large language
models for complex vehicle routing via decomposed retrieval of constraints. In The Thirteenth
International Conference on Learning Representations, 2025.

[13] Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu.
LLMOPT: Learning to define and solve general optimization problems from scratch. In The
Thirteenth International Conference on Learning Representations, 2025.

11

[14] Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Bridging large language models
and optimization: A unified framework for text-attributed combinatorial optimization. arXiv
preprint arXiv:2408.12214, 2024.

[15] Eldar Kurtic, Amir Moeini, and Dan Alistarh. Mathador-lm: A dynamic benchmark for
mathematical reasoning on large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pages 17020–17027, 2024.

[16] Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large
language models for mathematical reasoning: Progresses and challenges. arXiv preprint
arXiv:2402.00157, 2024.

[17] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Thirty-seventh Conference on
Neural Information Processing Systems, 36:30840–30861, 2023.

[18] Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval:
Dynamic benchmark on reasoning ability of large language models via complexity classes.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4092–4114, August 2024.

[19] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on
Learning Representations, 2024.

[20] Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating
and exploring large language models on graph computation. In The Thirteenth International
Conference on Learning Representations, 2025.

[21] Alex Duchnowski, Ellie Pavlick, and Alexander Koller. EHOP: A dataset of everyday NP-hard
optimization problems. arXiv preprint arXiv:2502.13776, 2025.

[22] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[23] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann.
Complexity and Approximation: Combinatorial Optimization Problems and Their Approxima-
bility Properties. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1999. ISBN 3540654313.

[24] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several
heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.

[25] Kemal Altinkemer and Bezalel Gavish. Parallel savings based heuristics for the delivery problem.
Operations research, 39(3):456–469, 1991.

[26] Fei Liu, Rui Zhang, Zhuoliang Xie, Rui Sun, Kai Li, Xi Lin, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Llm4ad: A platform for algorithm design with large language model. arXiv
preprint arXiv:2412.17287, 2024.

[27] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[28] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[29] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34:5138–5149, 2021.

[30] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu,
Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. Rl4co: an extensive reinforcement
learning for combinatorial optimization benchmark. arXiv preprint arXiv:2306.17100, 2023.

12

[31] Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn
a universal neural solver! IEEE Transactions on Pattern Analysis and Machine Intelligence, 46
(6):4102–4114, 2024.

[32] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

[33] Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, and Wotao Yin.
Solving general natural-language-description optimization problems with large language models.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 483–490, June 2024.

[34] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language
models as evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation,
pages 1–8, 2024.

[35] Zixiao Huang, Lifeng Guo, Junjie Sheng, Haosheng Chen, Wenhao Li, Bo Jin, Changhong
Lu, and Xiangfeng Wang. Graphthought: Graph combinatorial optimization with thought
generation. arXiv preprint arXiv:2502.11607, 2025.

[36] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems, 2021.

[37] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[38] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022.

[39] Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. In Advances in Neural
Information Processing Systems, volume 35, pages 4913–4927, 2022.

[40] Shuo Jiang, Min Xie, and Jianxi Luo. Large language models for combinatorial optimization of
design structure matrix. arXiv preprint arXiv:2411.12571, 2024.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[42] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

[43] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph
of thoughts: Solving elaborate problems with large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 17682–17690, 2024.

[44] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A generalist combinatorial opti-
mization agent learner. In The Thirteenth International Conference on Learning Representations,
2025.

[45] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

[46] Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Bastien Pasdeloup, and Patrick Meyer.
Learning to select operators in meta-heuristics: An integration of q-learning into the iterated
greedy algorithm for the permutation flowshop scheduling problem. European Journal of
Operational Research, 304(3):1296–1330, 2023.

13

[47] Jing Zhou, Chenglin Jiang, Wei Shen, Xiao Zhou, and Xiaonan He. Leveraging web-crawled
data for high-quality fine-tuning. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pages 11297–11312, November 2024.

[48] Henrik Abgaryan, Ararat Harutyunyan, and Tristan Cazenave. STARJOB: Dataset for
LLM-driven job shop scheduling. 2024. URL https://openreview.net/forum?id=
z4Ho599uOL.

[49] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[50] John D. C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel. An algorithm for the
traveling salesman problem. Operations Research, 11(6):972–989, 1963.

[51] Ilyess Bachiri, Jonathan Gaudreault, Claude-Guy Quimper, and Brahim Chaib-draa. RLBS: An
adaptive backtracking strategy based on reinforcement learning for combinatorial optimization.
In 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, pages 936–942,
2015.

[52] Congsong Zhang, Yong Gao, and James Nastos. A graph-neural-network-powered solver
framework for graph optimization problems. IEEE Transactions on Neural Networks and
Learning Systems, 35(9):11746–11760, 2024.

[53] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[54] Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

[55] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompt-
ing improves reasoning in large language models. In AI for Math Workshop@ ICML 2024.

[56] Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takáč. Self-guiding exploration for
combinatorial problems. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[57] Vincent Furnon and Laurent Perron. Or-tools routing library, 2024. URL https://
developers.google.com/optimization/routing/.

[58] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE Computa-
tional Intelligence Magazine, 1(4):28–39, 2006.

[59] Theodore Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational
Research Society, 35(9):797–809, 1984.

[60] Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. In North-Holland Mathematics Studies, volume 109, pages 27–45.
Elsevier, 1985.

[61] Douglas S Palmer. Sequencing jobs through a multi-stage process in the minimum total time—a
quick method of obtaining a near optimum. Journal of the Operational Research Society, 16(1):
101–107, 1965.

[62] Pawel Jan Kalczynski and Jerzy Kamburowski. On the NEH heuristic for minimizing the
makespan in permutation flow shops. Omega, 35(1):53–60, 2007.

[63] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model? arXiv preprint arXiv:2504.13837, 2025.

[64] Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On
unified combinatorial optimization via problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning Representations, 2025.

14

https://openreview.net/forum?id=z4Ho599uOL
https://openreview.net/forum?id=z4Ho599uOL
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

[65] Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

[66] Robbert Reijnen, Kjell van Straaten, Zaharah Bukhsh, and Yingqian Zhang. Job shop scheduling
benchmark: Environments and instances for learning and non-learning methods. arXiv preprint
arXiv:2308.12794, 2023.

[67] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning
to dispatch for job shop scheduling via deep reinforcement learning. In Advances in Neural
Information Processing Systems, volume 33, pages 1621–1632, 2020.

[68] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
2023.

[69] Gorka Kobeaga, María Merino, and Jose A. Lozano. An efficient evolutionary algorithm for the
orienteering problem. Computers & Operations Research, 90:42–59, 2018.

[70] Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced
ant systems for combinatorial optimization. In Advances in Neural Information Processing
Systems, 2023.

[71] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural
information processing systems, 28, 2015.

[72] Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, Benyou
Wang, and Zizhuo Wang. ORLM: A customizable framework in training large models for
automated optimization modeling. Operations Research, 2025.

[73] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems, 2021.

[74] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

[75] Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large
language model. arXiv preprint arXiv:2311.15249, 2023.

[76] Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for
comprehensive exploration in llm-based automatic heuristic design. In Proceedings of the 42nd
International Conference on Machine Learning, 2025.

15

Large Language Models as End-to-end Combinatorial
Optimization Solvers

(Appendices)

A Specification of the Studied Problems

This section provides detailed definitions of the seven combinatorial optimization problems studied in
this paper, which also includes their instance generation procedures, textual instance representations
(i.e., TAIs), and the FOARL reward settings tailored to each task.

Note that we incorporate problem-specific heuristic features in the TAIs in order to facilitate effective
learning while preserving the generality and efficiency of our language-based approach. These
heuristic features are based on classical greedy principles, and are tailored to each CO problem but
follow a consistent philosophy: they should be 1) computationally inexpensive, 2) representative of
well-known heuristic behavior, and 3) easily expressible in natural language. For example, in routing
problems like TSP and CVRP, we include the top-k nearest neighbors for each node along with their
distances, inspired by nearest-neighbor heuristics. In scheduling problems like PFSP, we select the
top-k jobs with the shortest processing times, aligning with the common dispatching rules such as
Shortest Processing Time. Importantly, because they can be concisely described in text, they are
naturally suited to the language input format required by LLMs. This contrasts with more complex or
learned heuristics, which often require code-level specifications or internal neural representations that
are difficult to translate into promptable natural language. By embedding these features into the input,
we provide informative, domain-aligned cues that help the LLM better solve different CO problems.

A.1 Traveling Salesman Problem (TSP)

A.1.1 Problem Definition

The TSP involves finding the shortest possible route that visits each city exactly once and returns
to the origin. Formally, given a set of nodes V = {0, 1, 2, . . . , n − 1} and a distance matrix d
where dij represents the distance between nodes i and j, we introduce binary decision variables xij
where xij = 1 if the tour includes a direct trip from node i to node j, and xij = 0 otherwise. The
mathematical model of TSP is as:

minimize
n−1∑
i=0

n−1∑
j=0,j ̸=i

dijxij (7)

subject to
n−1∑

j=0,j ̸=i

xij = 1 ∀i ∈ V (8)

n−1∑
i=0,i̸=j

xij = 1 ∀j ∈ V (9)

∑
i,j∈S,i ̸=j

xij ≤ |S| − 1 ∀S ⊂ V, 2 ≤ |S| ≤ n− 1 (10)

xij ∈ {0, 1} ∀i, j ∈ V, i ̸= j (11)

where S represents any proper subset of nodes. Constraints 1 and 2 ensure that each node is visited
exactly once, while constraint 3 (subtour elimination constraints) ensures the solution forms a single
tour covering all nodes rather than multiple disconnected subtours.

A.1.2 Instance Generation

We generate cross-size and cross-distribution instances for the TSP by randomly sampling node
numbers from [10, 100]∩Z and node coordinate distributions from [1, 1000]∩Z, following a uniform
distribution and two Gaussian mixture (GM) distributions. The GM distribution is parameterized

16

by cluster c and scale l, and we use c = 2, l = 5 and c = 3, l = 10 respectively. The overall
generation process follows the existing work [68]. We also calculate the top-2 nearest neighbors
while transforming the numerical instances to TAIs using KD-Tree. The solutions (labels) of the
generated instances are obtained by the LKH-3 solver, which can produce optimal solutions for TSP
with node number from 10 to 100. An example TAI used for SFT is shown below:

Example TAI of TSP

Instruction: Solve the Traveling Salesman Problem (TSP) for the given list of 81 cities.
Each city is represented as a node with coordinates (x, y). Identify the shortest route that visits
every city exactly once and returns to the starting city. The input includes city coordinates,
the 2 nearest neighbors for each city, and their respective distances. Provide the solution in
the following format: 1. Route: List the nodes in the order they are visited. 2. Objective: The
objective value (total travel distance).
Input: Node 0, coordinates: [374, 950], neighbors: [69: 23.7, 12: 184.3]; Node 1,
coordinates: [731, 598], neighbors: [43: 39.1, 46: 47.0]; Node 2, coordinates: [156, 155],
neighbors: [7: 37.5, 28: 78.9]; Node 3, coordinates: [58, 866], neighbors: [21: 49.2, 36:
73.6]; Node 4, coordinates: [601, 708], neighbors: [68: 83.2, 78: 88.6]; Node 5, coordinates:
[20, 969], neighbors: [16: 49.7, 34: 56.6]...
Output: Route: [0, 27, 57, 60, 63, 26, 56, 17, 25, 40, 59, 44, 31, 67, 77, 70, 52, 75, 6, 58,
35, 38, 14, 10, 15, 24, 65, 39, 61, 18, 41, 72, 54, 55, 7, 2, 49, 28, 74, 29, 66, 62, 11, 42, 30, 9,
71, 48, 73, 19, 47, 46, 1, 43, 37, 78, 4, 68, 12, 53, 79, 22, 80, 51, 23, 8, 32, 13, 76, 20, 64, 50,
45, 33, 36, 3, 21, 5, 16, 34, 69, 0], Objective: 6833.347

A.1.3 Reward Function

We use rule-based rewards to represent constraint satisfaction for all the CO problems. According
to the definition of the TSP, we define the feasibility reward as Rf = ω0ζ + ω1c1 + ω2c2, where
ω0 = 0.2, ω1 = 0.5, and ω2 = 0.3. Here, c1 = 1 if all nodes are visited exactly once (otherwise
0), and c2 = 1 if the route returns to the starting point (otherwise 0). ζ represents whether the route
can be extracted using the specific format (which is shown in the example TAI) from the generated
textual output. For simplicity, we omit the notation of the problem class P and the instance p.

A.2 Orienteering Problem (OP)

A.2.1 Problem Definition

The OP involves finding a path from a starting point, visiting a subset of nodes to maximize the total
collected prize while keeping the total distance within a given limit. Formally, given a set of nodes
V = {0, 1, 2, . . . , n − 1} with prizes si for each node i, a distance matrix d where dij represents
the distance between nodes i and j, and a distance limit B, we introduce binary decision variables
xi where xi = 1 if node i is visited, and xi = 0 otherwise, and binary decision variables yij where
yij = 1 if the path includes a direct trip from node i to node j. The mathematical model of OP is as:

17

maximize
n−2∑
i=1

sixi (12)

subject to
n−1∑
j=1

y0j = 1 (13)

n−1∑
j=0,j ̸=i

yij = xi ∀i ∈ V \ {n− 1} (14)

n−1∑
i=0,i̸=j

yij = xj ∀j ∈ V \ {0} (15)

n−1∑
i=0

n−1∑
j=0,j ̸=i

dijyij ≤ B (16)

∑
i,j∈S,i ̸=j

yij ≤
∑
i∈S

xi − xk ∀S ⊂ V, k ∈ S, 2 ≤ |S| ≤ n− 1 (17)

Constraint 1 ensures that the path starts at node 0. Constraints 2 and 3 ensure flow conservation
at each visited node. Constraint 4 ensures the total distance does not exceed the distance limit B.
Constraint 5 (subtour elimination constraint) ensures the solution forms a single path rather than
disconnected subtours. The final two constraints define the binary decision variables.

A.2.2 Instance Generation

The size and node distributions of the generated instances are the same as TSP. The prize of each node
is randomly sampled from [1, 10]∩Z. As for the route limit, we firstly use a simple heuristic, i.e., the
nearest neighbor method, to obtain the approximated route length LT for the TSP that corresponds to
the OP instance, and randomly sample a float number from [0.5LT , 0.7LT] as the value of B. For
simplicity, we specify that the route does not have to return to the depot. The optimal solutions are
obtained by a recent state-of-the-art solver for the OP based on a genetic algorithm [69]. Below is an
example TAI for the OP task:

Example TAI of OP

Instruction: Solve the Orienteering Problem with 23 nodes. Each node has (x, y)
coordinates and a prize for visiting it. You must plan a route that starts at depot 0, collecting
the maximum total prize possible, subject to a maximum route length T = 2682.5. You may
visit a subset of nodes, but the total distance traveled must not exceed T. The input includes
city coordinates, the 2 nearest neighbors for each city, and their respective distances. Provide
the solution in the following format: 1. Route: The ordered list of visited nodes. 2. Objective:
The objective value (summation of the collecting prizes).
Input: Node 0, coordinates: [0, 871], prize: 0, neighbors: [2: 84.6, 5: 142.2]; Node 1,
coordinates: [208, 957], prize: 5, neighbors: [4: 81.0, 3: 82.2]; Node 2, coordinates: [46,
800], prize: 5, neighbors: [0: 84.6, 5: 150.9]; Node 3, coordinates: [138, 1000], prize: 2,
neighbors: [4: 44.4, 5: 76.2]; Node 4, coordinates: [127, 957], prize: 10, neighbors: [5: 33.4,
3: 44.4]; Node 5, coordinates: [132, 924], prize: 6, neighbors: [4: 33.4, 3: 76.2]...
Output: Route: [0, 2, 6, 8, 11, 19, 22, 18, 16, 14, 10, 13, 12, 9, 1, 5], Objective: 98.00

A.2.3 Reward Function

The feasibility reward of the orienteering problem is defined as Rf = ω0ζ + ω1c1 + ω2c2 + ω3c3,
where ω0 = 0.2, ω1 = 0.1, ω1 = 0.2, and ω3 = 0.5. Specifically, c1 = 1 if the route starts from the
depot (otherwise 0); c2 = 1 if each node is visited at most once (otherwise 0); c3 = 1 if the total
travel distance is within the distance limit B (otherwise 0). The LLM can easily violate the distance

18

limit constraint, so we assign a higher weight to it during reinforcement learning. The optimality
reward of OP is RP

o (x̂p) =
x̂p

x∗
p

because we try to maximize the collected prizes.

A.3 Capacitated Vehicle Routing Problem (CVRP)

A.3.1 Problem Definition

The CVRP involves finding optimal routes for a fleet of vehicles to deliver goods from a depot to
customers, where each vehicle has a limited capacity (we use homogeneous capacity for all the
vehicles for simplicity). Formally, given a set of nodes V = {0, 1, 2, . . . , n} where node 0 represents
the depot, a distance matrix d where dij represents the distance between nodes i and j, customer
demands qi for each node i ∈ V \ {0}, a fleet of K identical vehicles each with capacity Q, we
introduce binary decision variables xijk where xijk = 1 if vehicle k travels directly from node i to
node j, and xijk = 0 otherwise. The mathematical model of CVRP is as:

minimize
K∑

k=1

n∑
i=0

n∑
j=0,j ̸=i

dijxijk (18)

subject to
K∑

k=1

n∑
j=1

xijk = 1 ∀i ∈ V \ {0} (19)

n∑
j=1

x0jk = 1 ∀k ∈ {1, . . . ,K} (20)

n∑
i=0

xihk =

n∑
j=0

xhjk ∀h ∈ V,∀k ∈ {1, . . . ,K} (21)

n∑
i=0

xi0k = 1 ∀k ∈ {1, . . . ,K} (22)∑
i∈V \{0}

∑
j∈V

qixijk ≤ Q ∀k ∈ {1, . . . ,K} (23)

∑
i,j∈S,i ̸=j

xijk ≤ |S| − 1 ∀S ⊂ V \ {0}, |S| ≥ 2,∀k ∈ {1, . . . ,K} (24)

xijk ∈ {0, 1} ∀i, j ∈ V, i ̸= j,∀k ∈ {1, . . . ,K} (25)

Constraint 1 ensures that each customer is visited exactly once by exactly one vehicle. Constraints 2
and 4 ensure that each vehicle starts and ends at the depot. Constraint 3 ensures flow conservation at
each node (a vehicle that enters a node must also leave it). Constraint 5 ensures that the total demand
served by each vehicle does not exceed its capacity Q. Constraint 6 (subtour elimination constraints)
ensures that each vehicle’s route forms a single tour connected to the depot rather than disconnected
subtours. The final constraint defines the binary decision variables.

A.3.2 Instance Generation

The size and node distributions of the generated instances are also the same as TSP (10-100 nodes
with 3 different distributions). The values of customer demands qi are randomly sampled from
[1, 10] ∩ Z, and the capacity of each vehicle is set to the average value among all the demands. The
near-optimal solutions used for fine-tuning are also produced by the LKH-3 solver. Below is an
example TAI for the CVRP:

19

Example TAI of CVRP

Instruction: Solve the Capacitated Vehicle Routing Problem (CVRP) with 45 customers
and 1 depot (node 0). Each customer node has a demand. All vehicles have the same capacity
of 111. You must assign each customer to exactly one route and ensure that the sum of
demands on each route does not exceed the vehicle capacity. Minimize the total distance
traveled. The input includes city coordinates, the 2 nearest neighbors for each city, and their
respective distances. Provide the solution in the following format: 1. Route: A list of routes,
each route as an ordered list of visited nodes (start/end at the depot). 2. Objective: The total
distance of all routes.
Input: Node 0, coordinates: [428, 688], demand: 0, neighbors: [6: 42.6, 14: 53.1]; Node
1, coordinates: [58, 915], demand: 9, neighbors: [15: 35.4, 17: 46.6]; Node 2, coordinates:
[442, 239], demand: 3, neighbors: [44: 159.4, 27: 170.8]; Node 3, coordinates: [93, 182],
demand: 9, neighbors: [8: 89.8, 10: 129.0]; Node 4, coordinates: [934, 638], demand: 7,
neighbors: [21: 67.0, 40: 102.1]; Node 5, coordinates: [516, 657], demand: 4, neighbors:
[14: 52.6, 0: 93.3]...
Output: Routes: [[0, 6, 35, 1, 15, 17, 12, 7, 10, 3, 8, 27, 45, 9, 28, 23, 2, 32, 39, 41, 0], [0,
5, 37, 19, 22, 21, 40, 4, 20, 24, 25, 0], [0, 43, 44, 29, 26, 42, 38, 34, 11, 16, 13, 33, 31, 30, 36,
18, 14, 0]], Objective: 6643.76

A.3.3 Reward Function

The feasibility reward of the CVRP is similar to OP, which is defined as Rf = ω0ζ + ω1c1 + ω2c2 +
ω3c3, where ω0 = 0.2, ω1 = 0.1, ω1 = 0.1, and ω3 = 0.6. Specifically, c1 = 1 if the route starts
from the depot (otherwise 0); c2 = 1 if all customer nodes are visited exactly once; c3 = 1 if the
capacity constraint is satisfied (the total demand served by each vehicle does not exceedQ) (otherwise
0).

A.4 Maximal Independent Set (MIS)

A.4.1 Problem Definition

The MIS problem involves finding the largest subset of vertices in a graph such that no two vertices in
the subset are adjacent. Formally, given an undirected graph G = (V,E) where V = {1, 2, . . . , n} is
the set of vertices and E is the set of edges, we introduce binary decision variables xi where xi = 1
if vertex i is included in the independent set, and xi = 0 otherwise. The mathematical model is as:

maximize
n∑

i=1

xi (26)

subject to xi + xj ≤ 1 ∀(i, j) ∈ E (27)
xi ∈ {0, 1} ∀i ∈ V (28)

The first constraint ensures that no two adjacent vertices are both included in the independent set (if
(i, j) is an edge, then at most one of the vertices i and j can be in the independent set). The second
constraint defines the binary decision variables.

A.4.2 Instance Generation

For the instances of MIS, we need to generate the graphs using Python networkx package. We
randomly choose the graph type from two options: Erdős–Rényi graph (ER) or Barabási–Albert (BA)
graph. If ER graph is chosen, the edge probability is sampled from [0.1, 0.4]; if EA graph is chosen,
the number of edges each new node attaches to is randomly sampled from [1, 4] ∩ Z. The number
of nodes of an MIS instance is also sampled from [10, 100] ∩ Z. The optimal solution of the MIS is
obtained by Gurobi. An example of TAI for MIS is as:

20

Example TAI of MIS

Instruction: Given an undirected graph with 10 nodes (0..9) and edges specified below.
For each node, we also provide up to 2 neighbors connected to it. Find a maximum indepen-
dent set: the largest set of vertices where no two vertices share an edge. The input includes
the edges of the graph and the top-2 neighbors for each node in the format N[a,b,#c,#d],
where a and b are the top-2 neighbors, #c is the degree of a, and #d is the degree of b. Output
format: 1. Set: The list of vertices in the maximum independent set. 2. Objective: The size
of that set.
Input: Edges: [(0,9),(1,2),(1,3),(1,6),(1,9),(2,6),(3,4),(4,5),(5,9),(6,9)]
N0:[9,#4]; N1:[9,6,#4,#3]; N2:[1,6,#4,#3]; N3:[1,4,#4,#2]; N4:[3,5,#2,#2]; N5:[9,4,#4,#2];
N6:[1,9,#4,#4]; N7:[]; N8:[]; N9:[1,6,#4,#3]
Output: Set: [0, 2, 3, 5, 7, 8], Objective: 6

A.4.3 Reward Function

There is only one constraint for the MIS problem, which is specified in Equation 27. Therefore, the
feasibility reward is Rf = ω0ζ + ω1c1, where ω0 = 0.2 and ω1 = 0.8. The value of c1 is 1 if there
are no adjacent vertices in the set, otherwise 0. Notably, the optimality reward of MIS is defined as
RP

o (x̂p) =
x̂p

x∗
p

because the goal of the problem is to maximize the objective instead of minimizing it.

A.5 Minimum Vertex Cover (MVC)

A.5.1 Problem Definition

The MVC problem aims at finding the smallest subset of vertices in a graph such that every edge
has at least one endpoint in the subset. Formally, given an undirected graph G = (V,E) where
V = {1, 2, . . . , n} is the set of vertices and E is the set of edges, we introduce binary decision
variables xi where xi = 1 if vertex i is included in the vertex cover, and xi = 0 otherwise. The
mathematical model of MVC problem is as:

minimize
n∑

i=1

xi (29)

subject to xi + xj ≥ 1 ∀(i, j) ∈ E (30)
xi ∈ {0, 1} ∀i ∈ V (31)

The first constraint ensures that for every edge in the graph, at least one of its endpoints is included in
the vertex cover. The second constraint defines the binary decision variables.

A.5.2 Instance Generation

We follow the same graph generation process as MIS for generating MVC instances, and the optimal
solution is also produced by Gurobi. Below is an example TAI of MVC:

21

Example TAI of MVC

Instruction: Given an undirected graph with 11 nodes (0..10) and edges specified below.
For each node, we also provide up to 2 neighbors with the largest degrees. Find a minimum
vertex cover: a smallest set of vertices such that every edge has at least one endpoint in this
set. The input includes the edges of the graph and the top-2 neighbors for each node in the
format N[a,b,#c,#d], where a and b are the top-2 neighbors, #c is the degree of a, and #d is
the degree of b. Output format: 1. Set: The list of vertices in the minimum vertex cover. 2.
Objective: The size of that set.
Input:
Edges: [(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,10),(1,3),(1,4),(2,7),(3,5),(3,8),(3,9),
(4,6),(5,7),(5,10)]
N0:[3,5,#5,#4]; N1:[0,3,#9,#5]; N2:[0,7,#9,#2]; N3:[0,5,#9,#4]; N4:[0,1,#9,#3];
N5:[0,3,#9,#5]; N6:[0,4,#9,#3]; N7:[5,2,#4,#2]; N8:[0,3,#9,#5]; N9:[0,3,#9,#5];
N10:[0,5,#9,#4]
Output: Set: [0, 3, 4, 5, 7], Objective: 5

A.5.3 Reward Function

The feasibility reward of MVC is Rf = ω0ζ + ω1c1, where ω0 = 0.2 and ω1 = 0.8. The value of c1
is 1 if all edges are covered by the solution, otherwise 0.

A.6 Permutation Flow Shop Scheduling Problem (PFSP)

A.6.1 Problem Definition

The goal of the PFSP is to find the optimal sequence of jobs to be processed on a set of machines,
where each job must be processed on all machines in the same order. Formally, given a set of jobs
J = {1, 2, . . . , n} and a set of machines M = {1, 2, . . . ,m}, where pij is the processing time of job
j on machine i, we introduce binary decision variables xjk where xjk = 1 if job j is assigned to
position k in the sequence, and xjk = 0 otherwise. Additionally, let Cik represent the completion
time of the job in position k on machine i. The mathematical model of PFSP is as:

minimize Cmk (32)

subject to
n∑

j=1

xjk = 1 ∀k ∈ {1, . . . , n} (33)

n∑
k=1

xjk = 1 ∀j ∈ {1, . . . , n} (34)

C1k = C1,k−1 +

n∑
j=1

p1jxjk ∀k ∈ {1, . . . , n} (35)

Ci1 = Ci−1,1 +

n∑
j=1

pijxj1 ∀i ∈ {2, . . . ,m} (36)

Cik ≥ Ci,k−1 +

n∑
j=1

pijxjk ∀i ∈ {2, . . . ,m},∀k ∈ {2, . . . , n} (37)

Cik ≥ Ci−1,k +

n∑
j=1

pijxjk ∀i ∈ {2, . . . ,m},∀k ∈ {2, . . . , n} (38)

C10 = 0 (39)
Ci0 = 0 ∀i ∈ {1, . . . ,m} (40)
C0k = 0 ∀k ∈ {1, . . . , n} (41)
xjk ∈ {0, 1} ∀j, k ∈ {1, . . . , n} (42)

22

Constraints 1 and 2 ensure that each position in the sequence is assigned exactly one job and each job
is assigned to exactly one position. Constraint 3 computes the completion time of jobs on the first
machine. Constraint 4 computes the completion time of the first job on each machine. Constraints 5
and 6 ensure that a job cannot start on a machine until it has completed processing on the previous
machine and the previous job has completed processing on the current machine. Constraints 7, 8, and
9 set the initial conditions. The final constraint defines the binary decision variables.

A.6.2 Instance Generation

The instance of PFSP is a matrix with J rows and M columns, with each element representing the
processing time for a job on a machine. We randomly sample J and M from [5, 20], and sample the
processing time from [1, 100] ∩ Z. The near-optimal solutions for the instances are obtained by the
Q-learning-based iterated greedy (QIG) method [46]. Below is an example TAI of PFSP:

Example TAI of PFSP

Instruction: Solve the Permutation Flowshop Scheduling Problem (PFSP) with 6 jobs and
5 machines. Each machine can process only one job at a time, and each job can be processed
by only one machine at a time. Jobs must be processed on each machine in the same order.
Identify the job order that minimizes the maximum completing time. The input includes the
processing times of each machine on every job, the jobs with the lowest processing time for
each machine, and their respective processing times. Provide the solution in the following
format: 1. Order: List the order that jobs are processed on each machine. 2. Objective: The
objective value (maximum completing time).
Input: Machine 0, processing times: [32, 22, 26, 49, 44, 14], jobs with lowest processing
time: [5: 14, 1: 22]; Machine 1, processing times: [49, 87, 91, 98, 13, 3], jobs with lowest
processing time: [5: 3, 4: 13]; Machine 2, processing times: [56, 46, 96, 10, 46, 23], jobs
with lowest processing time: [3: 10, 5: 23]; Machine 3, processing times: [99, 21, 6, 65, 4,
76], jobs with lowest processing time: [4: 4, 2: 6]; Machine 4, processing times: [56, 27, 59,
9, 70, 64], jobs with lowest processing time: [3: 9, 1: 27].
Output: Order: [6, 1, 2, 5, 3, 4], Objective: 471

A.6.3 Reward Function

The solution of the PFSP is feasible if it covers all the jobs exactly once, which naturally satisfies all
the constraints. As a result, the feasibility reward of PFSP is Rf = ω0ζ + ω1c1, where ω0 = 0.2 and
ω1 = 0.8, and c1 = 1 if the solution sequence contains each job exactly once (otherwise 0).

A.7 Job Shop Scheduling Problem (JSSP)

A.7.1 Problem Definition

The JSSP involves scheduling a set of jobs on a set of machines, where each job consists of a
sequence of operations that must be processed in a specific order. Formally, given a set of jobs
J = {1, 2, . . . , n} and a set of machinesM = {1, 2, . . . ,m}, where each job j consists of a sequence
of operations Oj1, Oj2, . . . , Ojnj

, and each operation Oji must be processed on machine µji for
duration pji, we introduce variables sji to represent the start time of operation Oji and binary
decision variables xji,hk for operations that share the same machine. Let E = {(j, i, h, k) | µji =
µhk, (j, i) ̸= (h, k)} be the set of all pairs of operations that use the same machine.

minimize Cmax (43)
subject to sji + pji ≤ sj,i+1 ∀j ∈ J, i = 1, . . . , nj − 1 (44)

sji + pji ≤ shk +M(1− xji,hk) ∀(j, i, h, k) ∈ E (45)
shk + phk ≤ sji +Mxji,hk ∀(j, i, h, k) ∈ E (46)
sji + pji ≤ Cmax ∀j ∈ J, i = 1, . . . , nj (47)
sji ≥ 0 ∀j ∈ J, i = 1, . . . , nj (48)
xji,hk ∈ {0, 1} ∀(j, i, h, k) ∈ E (49)

23

Constraint 1 ensures operation precedence within each job. Constraints 2 and 3 prevent machine
conflicts by ensuring that operations sharing the same machine are processed sequentially. Constraint
4 defines the makespan as the maximum completion time. Constraint 5 ensures non-negative start
times. The final constraint defines the binary decision variables. M is a sufficiently large constant.

A.7.2 Instance Generation

The generation of processing time is the same as PFSP, as they have the same structure. Moreover,
each job is randomly assigned to a machine. The near-optimal solution is calculated based on the
CP-SAT solver of OR tools with a time limit of 300s. Below is an example of JSSP TAI:

Example TAI of JSSP

Instruction: Solve the Job Shop Scheduling Problem (JSSP) with 6 jobs and 6 machines.
Each job consists of 6 operations which need to be sequentially processed on specific
machines. Each machine can process only one job at a time, and each job can be processed by
only one machine at a time. Identify the schedule that minimizes the maximum completion
time (makespan). The input includes the information of operations for each job, including
their specific machine and processing time, as well as the operators with the lowest processing
time and their respective machines and processing times. Provide the solution in the following
format: 1. Schedule: List the order that jobs are processed on each machine. 2. Objective:
The makespan of the schedule.
Input: Job 0, machines and processing times for operations: [(2, 73), (4, 84), (0, 70),
(3, 7), (1, 62), (5, 30)], operators with lowest processing time: [3: (3, 7), 5: (5, 30)]; Job
1, machines and processing times for operations: [(3, 4), (4, 90), (1, 12), (2, 92), (0, 21),
(5, 66)], operators with lowest processing time: [0: (3, 4), 2: (1, 12)]; Job 2, machines and
processing times for operations: [(3, 4), (1, 37), (2, 24), (5, 20), (0, 80), (4, 92)], operators
with lowest processing time: [0: (3, 4), 3: (5, 20)]...
Output: Schedule: [[2, 0, 5, 1, 3, 4], [2, 4, 1, 3, 0, 5], [0, 2, 3, 1, 4, 5], [1, 2, 5, 0, 4, 3], [1,
0, 5, 3, 4, 2], [5, 2, 4, 3, 1, 0]], Objective: 466

A.7.3 Reward Function

The feasibility reward of JSSP is Rf = ω0ζ + ω1c1 + ω2c2 + ω3c3, where ω0 = 0.2, ω1 = 0.2,
ω2 = 0.2 and ω1 = 0.4. The value of c1 is 1 if all jobs are scheduled (otherwise 0), c2 = 1 if there
are no machine conflicts (otherwise 0), and c3 = 1 if the precedence constraint is satisfied (otherwise
0). The optimality reward of JSSP still follows Equation 4.

B Low-Rank Adaptation

Training LLMs from scratch or through full-parameter fine-tuning requires significant computational
resources and storage, especially with billions of parameters. To enable efficient adaptation of LLMs
to CO tasks, we employ Low-Rank Adaptation (LoRA) [49] for all SFT and RL experiments in our
framework. Specifically, LoRA is a parameter-efficient fine-tuning technique for large pre-trained
models that injects small, trainable, low-rank matrices into selected layers while keeping the original
model weights (backbone) frozen. In effect, LoRA optimizes a significantly smaller proportion of
parameters (only 2.08% in our implementation) compared to full fine-tuning.

Concretely, let W0 ∈ Rd×k denote a weight matrix from a pre-trained LLM, such as those found in
the linear projection layers of the self-attention mechanism or in the feed-forward sublayers within
each transformer block. During standard full-model fine-tuning, each element of W0 would be
updated, which becomes computationally and memory-intensive for large d and k. LoRA addresses
this by introducing a low-rank decomposition for the weight update. Specifically, instead of updating
W0 directly, the adaptation is parameterized as:

W =W0 +∆W,

where the trainable update ∆W is represented as a product of two low-rank matrices:

∆W = BA,

24

with A ∈ Rr×k and B ∈ Rd×r, where r is a tunable rank parameter and r ≪ min(d, k). Here, A
projects the input from dimension k down to a small intermediate rank r, and B projects it back up to
dimension d. Both A and B are randomly initialized and are the only trainable parameters during
fine-tuning, while W0 remains frozen. At inference time, the low-rank adaptation can be merged into
W0 so that the model incurs no additional computational cost compared to the original LLM.

Additionally, because our fine-tuning strategy guides the LLMs to better follow instructions specific
to CO problem solving, restricting training to only the LoRA modules—while keeping the backbone
frozen—preserves the general-purpose capabilities of the original LLM.

LoRA typically targets specific layers in the transformer. In this paper, the trainable components
include the query, key, value, and output projections in the attention layers, as well as the gate, up,
and down projections in the feed-forward layers.

C Experiment settings

The LLMs are fine-tuned with a context length of 20,000 tokens. Both the LoRA rank and scaling
factor are set to 64 for parameter-efficient fine-tuning. For the SFT process, we use a batch size of
4, with a gradient accumulation step of 4, resulting in an effective batch size of 16. Optimization is
performed using the AdamW optimizer, with a learning rate of 2×10−4, and a linear decay scheduler
with a decay rate of 0.01. For the FOARL process, we set the hyperparameters ϵ = 0.1 and β = 0.05.
The batch size is set to 8, while S = 8 generations are produced for each instance to calculate the
group advantage Ai. We set the weighting parameter α = 1 to balance the optimality and feasibility
of the generated solutions. The learning rate for reinforcement learning is set to 1× 10−6, and the
rest of the parameters are the same as the SFT process. We use an Alpaca-style prompt template
for model fine-tuning, and the template is as below, and the fields with "{}" (Instruction, Input, and
Response) are filled with the TAIs during training.

Prompt Template for fine-tuning

Below is an instruction describing a combinatorial optimization problem. It is paired with an
input that provides the data of the instance. Your task is to produce a feasible solution that
optimizes (minimizes or maximizes) the given objective.
Instruction:{}
Input:{}
Response:{}

During evaluation, we use 100 randomly generated instances (following the instance generation pro-
cess specified in Appendix A) for each COP. For baseline comparisons involving OpenAI, Anthropic,
and DeepSeek models, we utilize their official APIs. The API calls of Llama and Qwen are provided
by Groq and Siliconflow, respectively. The experiments related to LLMs are conducted 3 times
independently, and the best result is reported. All experiments are conducted on a server equipped
with an AMD EPYC 7F72 CPU (3.2 GHz) and an NVIDIA H100 GPU. As a reference, the SFT
process for the JSSP task requires approximately 65 hours of training time and consumes around 28
GB of graphic memory.

D Baseline Details

General-purpose LLMs and Reasoning models. We prompt the LLMs by inserting a random
feasible solution after the TAI of the instance. Specifically, the prompt skeleton is as "Below is an
example of a feasible solution for the problem. [RANDOM SOLUTION]. Please directly give me
the (near)optimal solution that strictly follows the format as the solution above". By doing so, the
LLMs can follow the output format and get hints from the example solution. The reasoning models
can construct the CoT for the solution improvement process by taking the random solution as the
starting point. Generally, the generation of the LLMs will benefit from the given random solution,
and the performance can be even worse without it.

Optimization by PROmpting (OPRO) [19]. We generate 5 feasible random solutions and ask the
LLM to give a better solution than the random solutions. The prompt is organized as follows: "Below

25

are some previous solutions and their costs. The solutions are arranged in descending order based on
their costs, where lower values are better: [RANDOM SOLUTIONS]. Give me a new solution that is
different from all solutions above, and has a cost lower than any of the above. Please directly give me
the answer strictly following the format as the solutions above." The process repeats 4 iterations, and
the best solution during the iterations is preserved.

LLM-driven Evolutionary Algorithm (LMEA) [34]. Inspired by the LMEA method [34], which
is originally designed for TSP, we develop an extension that takes LLMs as evolutionary algorithmic
operators to evolve initial solutions. We first generate a population of feasible solutions using random
sampling. For each iteration, the LLM is prompted to evolve the population by selecting two parent
solutions and applying evolutionary operators to produce new offspring. The prompt explicitly
describes different crossover and mutation strategies depending on the problem type. The LLM is
guided to perform several evolutionary steps in each outer iteration, and the top solutions are retained
for the next generation. More specifically, we design various prompts for crossover and mutation
strategies tailored to different types of CO problems. For routing problems, the crossover operators
are as: " 1) Order Crossover (OX): - Description: OX randomly selects a segment from parent 1,
copies it to the offspring, and fills in the remaining positions with the missing elements in the order in
which they appear in parent 2. 2) Partially Mapped Crossover (PMX): - Description: PMX randomly
selects a segment from parent 1, copies it to the offspring, and maps the remaining positions based
on parent 2. - Creates a mapping between conflicting elements and resolves them systematically",
and the mutation operators are: " 1) Swap Mutation: Randomly selects two positions and swaps
the elements at those positions. 2) Insert Mutation: Randomly selects one element and moves it
to another random position. 3) Inversion Mutation: Randomly selects two positions and reverses
the order of elements between them". For graph CO problems, the crossover operators are as: "1)
Uniform Crossover: For each position, randomly choose the bit from either parent 1 or parent 2.
2) Single-point Crossover: Choose a random crossover point, take the first part from parent 1 and
second part from parent 2", while the mutation operators are "1) Bit-flip Mutation: Randomly flip
some bits in the solution (0->1 or 1->0). 2) Neighborhood Mutation: Focus mutations on vertices
that are neighbors in the graph". For scheduling problems, the crossover operators are: "1) Job Order
Crossover (JOX): Preserve relative job order from parents while creating valid schedules. 2) Linear
Order Crossover (LOX): Select a subset of jobs from parent 1 and fill remaining positions with parent
2’s order", and the mutation operators are as: "1) Job Swap Mutation: Swap the positions of two
randomly selected jobs. 2) Job Insert Mutation: Remove a job and insert it at a different position. 3)
Job Inversion Mutation: Reverse the order of jobs in a randomly selected subsequence". We use a
population size of 3 and 3 evolutionary iterations to balance solution quality and efficiency.

Progressive-hint prompting (PHP) [55]. The PHP process starts with a randomly generated
solution and 4 progressive iterations. If the generation is infeasible, we call the LLM using the
prompt: "The solution is not feasible. Please make sure to follow all problem constraints and the
output format". If the new generation is better than the previous one and achieves an optimality
gap lower than 5%, we call the LLM by the prompt: "The solution is feasible with objective value
{obj_value}. This is very close to optimal". If the new generation is better than the previous one and
achieves an optimality gap larger than 5%, we call the LLM by the prompt: "The solution is feasible
with objective value {obj_value} and gap gap. This is an improvement over previous solutions, but
please try to optimize it further". If the new generation is worse than the previous one, we call the
LLM based on the prompt "The solution is feasible but suboptimal with objective value {obj_value}
and gap {gap}. This is {obj_diff} worse than the best solution found so far ({best_obj_value}).
Please try to minimize the objective further".

Self-guiding exploration (SGE) [56]. The SGE method invokes the LLM to generate the programs
of multiple heuristics or metaheuristics and solves the CO problems in parallel. We implement the
SGE by calling the LLM to produce the name for 3 different methods simultaneously, and then
generating the code for each method. If there is any error during the generation of method names, we
set the default method set to be the genetic algorithm, simulated annealing, and greedy algorithm,
which are general approaches for the CO problems. The solution is regarded as infeasible if all the
generated programs cannot be executed successfully.

Ant colony optimization (ACO) [70]. We use the ACO algorithm, a general metaheuristic, to
solve different CO problems. The implementation is based on [70]. In order to maintain a similar

26

Table 4: Detailed solving time for different methods on various CO problems.

Method Solving Time

TSP OP CVRP MIS MVC PFSP JSSP

General-purpose Language Models
GPT-4o 7.5s 4.8s 6.8s 3.7s 3.9s 4.3s 5.8s
GPT-4o-mini 5.1s 2.4s 5.5s 3.2s 3.2s 3.1s 9.0s
Claude-3.7-Sonnet 6.7s 4.4s 6.7s 3.6s 3.9s 3.6s 9.2s
Claude-3.5-Haiku 5.0s 4.3s 3.5s 4.9s 4.3s 4.8s 9.0s
DeepSeek-V3-671B 33.0s 22.8s 36.3s 20.3s 20.0s 26.1s 26.2s
Llama3.3-70B 2.6s 1.8s 2.2s 1.8s 1.7s 1.5s 3.1s
Qwen2.5-72B 13.5s 13.3s 13.6s 6.9s 11.0s 6.9s 22.1s

Reasoning Models

GPT-o3-mini 57.2s 109.8s 60.5s 109.4s 90.4s 108.6s 45.9s
GPT-o1 118.7s 120.7s 72.1s 293.5s 264.3s 380.3s 98.2s
DeepSeek-R1 240.0s 521.3s 360.5s 402.9s 420.4s 437.2s 364.8s

Prompt Strategies

ORPO 150.2s 123.7s 121.6s 103.1s 110.5s 96.3s 191.2s
LMEA 418.8s 276.7s 415.2s 241.9s 248.5s 202.8s 432.0s
PHP 96.1s 95.9s 104.2s 85.3s 98.1s 79.3s 125.2s
SGE 166.9s 234.3s 308.8s 163.7s 168.0s 201.4s 260.5s

Ours

SFT 7.0s 4.6s 6.9s 3.2s 4.8s 1.8s 10.7s
SFT+RL 7.0s 4.6s 6.9s 3.2s 4.8s 1.8s 10.7s
SFT+RL+BoN 11.7s 10.8s 11.3s 4.0s 7.1s 3.1s 20.7s

computational time, we use 100 ants and 500 iterations for all the TSP instances, and 50 ants and 100
iterations for both OP and CVRP.

Other heuristics. The heuristics of TSP, including both NN and FI, are based on the implementation
of the pyCombinatorial package2. It incorporates a local search process in FI for better performance.
Moreover, we use a sampling size of 1280 for the Tsili method [59] for solving the OP, which shows
much better performance than the greedy one.

E Additional Experiment Results

E.1 Detailed Solving Time

The solving times for various baselines across CO tasks are presented in Table 4. These results
show that our 7B-parameter LLM solver is substantially more efficient than reasoning-based models,
while also achieving superior solution quality. Notably, despite Llama3.3-70B and Qwen2.5-72B
having similar parameter sizes, Llama3.3-70B demonstrates significantly faster solving times. This
discrepancy arises from differences in implementation details and the hardware environments of the
respective APIs, which are factors beyond our control.

E.2 Example Thinking Process

Taking DeepSeek-R1 and a TSP instance with 48 nodes as an example, when we prompt the LLM
to generate the answer, it produces a CoT with more than 10000 tokens. In order to briefly show
the content, we present the main thinking content below, where we use ellipses (i.e., ...) to indicate
omitted content, while preserving the rambling and ineffective style of the LLM’s reasoning. We can
find that the LLM gets stuck multiple times while processing the instance and tries to switch between
different strategies. Finally, it just produces a random answer, which is far from the optimal solution.

2https://github.com/Valdecy/pyCombinatorial

27

DeepSeek CoT for a TSP Instance

Okay, I need to solve the TSP for 48 cities using coordinates and two nearest neighbors per
city. TSP is NP-hard, so I’ll try a heuristic. Maybe nearest neighbor? But that might cause
loops...
Alternatively, maybe I can start building the route by choosing a starting city and then always
moving to the nearest unvisited neighbor...
Alternatively, I could use some kind of greedy heuristic that selects the globally shortest
available edge that doesn’t create a cycle...
Alternatively, perhaps I can use the given neighbor data to form a minimum spanning tree...
Alternatively, maybe I can look at the set of neighbors and try to trace a Hamiltonian cycle
manually...
Hmm... Christofides algorithm? No, we lack full distance matrix...
Alternatively, maybe I can use the neighbor data to identify subtours and then link them...
Wait, I’m stuck at Node 16. Maybe start over...
Looks like two clusters based on Y-coordinates. Let’s try connecting them. From Node 29 to
Node 40 seems shortest (≈363 units)...
Alternatively, maybe I can build a tour per cluster and then stitch them...
Wait, how to close the cycle?
Still missing cities...
Maybe patch cycles? Or build a spanning tree? Eulerian? No, degrees don’t match...
Let’s just assume we can approximate the route, sum known neighbor distances, and plug in
inter-cluster links. Total distance? No idea. Maybe 5000? Actually, forget it — too complex
manually.
Alternatively, the problem may have a specific structure where the route can be determined
by connecting each node...
But as before, this gets stuck. Given the time I’ve spent and recognizing that a precise
manual solution isn’t feasible, I’ll provide the route as per the nearest neighbor heuristic,
acknowledging that it may not visit all nodes but following the given instructions as best as
possible.
Final Answer 1. Route: [0, 30, 33, 34, 27, 22, 26, 6, 21, 3, 12, 9, 8, 7, 13, 16, 14, 1, 2,
10, 4, 5, 17, 18, 19, 24, 32, 25, 15, 31, 20, 28, 23, 29, 40, 35, 41, 37, 39, 42, 47, 43, 36, 46,
38, 45, 44, 35, 40, 29, 23, 28, 20, 31, 15, 25, 21, 3, 12, 9, 8, 7, 13, 16, 14, 1, 2, 10, 4, 5, 17,
18, 19, 24, 32, 22, 27, 34, 33, 30, 0]
2. Objective: The total travel distance is the sum of all the provided neighbor distances plus
the inter-cluster connections. However, due to the complexity and lack of exact distance
calculations for all segments, the precise objective value cannot be determined manually
within the given constraints. For the purposes of this problem, the objective value would be
calculated by summing the distances of each consecutive node pair in the route using their
coordinates and Euclidean distance.

E.3 Comparative Evaluations

Table 5: Comparative evaluations of average objective (obj.), feasibility rate (fea.), and optimality
gap (opt.) between language-based CO solvers.

Method TSP CVRP MIS MVC
obj.↓ fea.↑ opt.↓ obj.↓ fea.↑ opt.↓ obj.↑ fea.↑ opt.↓ obj.↓ fea.↑ opt.↓

LNCS 5.79 - 1.64% 10.74 - 3.62% 23.82 - 13.03% 32.101 - 11.42%
Ours 5.73 100% 0.67% 10.81 100% 4.32% 21.07 100% 0.40% 29.05 100% 0.83%

This section compares the proposed method with Language-based Neural COP Solver (LNCS) [14],
a recent study that also takes as input the textual description for CO problem solving. Different
from our method, LNCS utilizes the LLM as the encoder and inserts a Transformer-like NCO model
after the LLM to decode solutions, following a similar solution generation process to the Pointer
network [71]. This method ensures the feasibility of all the generated solutions by masking all
nodes that cause infeasibility during decoding. However, LNCS is not as universal as our method
because of the limitation of the specialized decoder: it requires the update of the numerical constraints

28

Table 6: Comparison with model-then-solve approaches across different routing problems and scales.

Method TSP-small TSP-medium TSP-large
fea.↑ opt.↓ fea.↑ opt.↓ fea.↑ opt.↓

LLMOPT 100% 0.00% 100% 1.00% 100% 7.39%
DRoC 100% 0.00% 100% 0.00% 100% 2.48%
ORLM 100% 0.18% 100% 18.43% 73% 301.00%
Ours 100% 0.14% 100% 0.70% 100% 1.34%

OP-small OP-medium OP-large
fea.↑ opt.↓ fea.↑ opt.↓ fea.↑ opt.↓

LLMOPT 100% 0.74% 100% 13.91% 100% 66.00%
DRoC 100% 1.04% 100% 9.73% 100% 42.93%
ORLM 100% 2.97% 100% 21.68% 100% 56.16%
Ours 100% 1.47% 100% 2.04% 100% 2.10%

CVRP-small CVRP-medium CVRP-large
fea.↑ opt.↓ fea.↑ opt.↓ fea.↑ opt.↓

LLMOPT 100% 2.59% 63% 35.25% 5% 68.98%
DRoC 100% 7.96% 78% 48.45% 9% 96.51%
ORLM 100% 13.83% 97% 163.00% 90% 192.00%
Ours 100% 1.70% 100% 4.57% 100% 7.24%

vector (to record the constraint satisfaction situations), which is used as part of the decoding context,
making the input composed of language-based features and number-based features. Meanwhile, the
structure of LNCS determines that it cannot process some tasks very well, as it delivers unsatisfactory
performance on graph CO problems such as MIS and MVC.

We compare our approach against LNCS on four representative CO tasks—TSP, CVRP, MIS, and
MVC, which are also evaluated in the paper of LNCS. Both methods utilize LLMs with 7B parameters
to ensure a fair comparison. The test dataset consists of 1,000 instances, each with 50 nodes, following
the instance distribution specified in [14]. As reported in Table 5, our method achieves performance
on par with LNCS for the routing problems (TSP and CVRP), while demonstrating a significant
advantage on the graph-based problems (MIS and MVC). These results indicate that our method is
more generalizable to different types of text-attributed CO problems.

E.4 Comparison with Model-then-solve Methods

We also compare our method against three recent state-of-the-art model-then-solve baselines: LL-
MOPT [13], DRoC [12], and ORLM [72]. These approaches follow the "model-then-solve" pipeline
by generating structured problem formulations and invoking specific solvers such as CPLEX (for
LLMOPT), Gurobi (for DRoC), or COPT (for ORLM). For fairness, we restrict all methods to a
similar runtime budget (as defined in Table 4), and use the solver-calling programs generated by these
approaches to solve the instances of the studied routing problems. The solving process is considered
failed if no feasible solution is found within the given time budget. Additionally, for ORLM, we
consider solutions with objective values exceeding 1e6 to be infeasible. Below, we report the average
feasibility rate and optimality gap on the same benchmark instances used in Table 6.

According to the table, we can find that our method maintains 100% feasibility across all problem
types and scales, while feasibility rates for LLMOPT and DRoC degrade sharply—especially on large-
scale CVRP (down to 5–9%). In terms of solution quality, our optimality gaps remain consistently
low, particularly in medium and large instances, where model-then-solve pipelines struggle due to
code solver integration issues and inefficient formulations.

E.5 Comparison with Classical Solvers

We also compare our method with classical exact and heuristic solvers. We evaluate LKH for TSP,
HGS (Hybrid Genetic Search) for CVRP, EA4OP for OP [69], and QIG for PFSP. We also use
Gurobi as the exact solver to solve all the problems with a roughly similar time budget as our method

29

Table 7: Performance comparison across different optimization problems
Method TSP CVRP OP MIS MVC PFSP JSSP

Heuristic solver 0.00% -0.19% 1.60% - - 0.00% -
Exact solver 1.82% 35.09% 21.96% 0.00% 0.00% 0.46% 2.45%
Ours 1.07% 4.53% 1.85% 1.04% 1.29% 1.03% 8.20%

Table 8: Evaluation of LLM solver performance with different values of N for BoN sampling.

Value TSP OP CVRP MIS MVC PFSP JSSP
fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓

N = 1 82% 3.41% 77% 4.40% 72% 11.80% 52% 1.34% 92% 3.69% 100% 4.48% 99% 23.37%
N = 2 97% 2.47% 91% 2.31% 91% 10.51% 57% 1.76% 99% 3.34% 100% 3.61% 100% 20.17%
N = 4 100% 1.98% 98% 2.86% 97% 8.84% 68% 2.70% 100% 2.69% 100% 3.03% 100% 18.52%
N = 8 100% 1.34% 100% 2.15% 100% 7.24% 75% 2.29% 100% 2.35% 100% 2.62% 100% 16.25%
N = 16 100% 1.08% 100% 1.70% 100% 6.04% 76% 2.28% 100% 1.90% 100% 1.98% 100% 14.45%
N = 32 100% 0.90% 100% 1.31% 100% 4.76% 85% 2.61% 100% 1.52% 100% 1.85% 100% 13.54%
N = 64 100% 0.73% 100% 0.98% 100% 4.30% 92% 2.23% 100% 1.22% 100% 1.54% 100% 11.63%

(i.e.,11s). For CVRP, we use the classical three-index vehicle formulation model by Gurobi. Table 7
shows the average optimality gap over the evaluation dataset. It can be found that the performance
of our method is close to the heuristic solvers, which are actually used to generate high-quality
supervision data for training. Meanwhile, Gurobi performs very well on certain problems, particularly
MIS and MVC, where the MIP formulations are tight and effective. However, on more complex or
heavily constrained problems like routing problems, our method significantly outperforms Gurobi
under similar time budgets. Notably, our model achieves nearly 8× smaller optimality gaps than
Gurobi on CVRP (4.53% vs. 35.09%) and solves OP with far better quality.

Despite the better performance of the classical solvers on certain tasks, our method offers several
practical advantages: 1) Ease of use: there is no need for formal modeling, solver licenses, or
programming interfaces. 2) Language-driven interaction: users can specify problems in natural
language, making it more accessible for non-experts. 3) Generalizability: a single model architecture
handles diverse CO problems without customization or manual solver integration. While exact solvers
remain preferred in applications demanding guaranteed optimality with long runtime, our method
offers a compelling alternative when flexibility, usability, or rapid prototyping is prioritized.

E.6 Scaling Test-time Exploration

Since Best-of-N (BoN) sampling enhances test-time exploration by generating multiple solution
trajectories, increasing the value of N can further improve the performance of the LLM-based CO
solver. To evaluate the impact of N of BoN sampling, we conduct a sensitivity analysis on it based
on the instances with large graphs, which can be more challenging due to the larger problem scale.
Specifically, we vary N across {1, 2, 4, 8, 16, 32, 64} and compare the model performance in terms
of both feasibility and optimality. As shown in Table 8, performance improves consistently with
larger values of N . These results highlight that the scale of test-time exploration is a critical factor in
achieving a balance between solution quality and computational efficiency, which is an important
consideration for practical deployment in real-world decision-making scenarios.

E.7 Latent Solution-space Exploration

Table 9: The results of the ablation study on heuristic features.

Problem TSP OP CVRP
fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓

Ours (Full) 100% 1.07% 100% 1.85% 100% 4.53%
w/o features 100% 1.17% 100% 2.47% 97% 4.72%

30

(a) (b) (c)

Figure 4: The training curves of the routing problems with and without heuristic features. A running
average with a smoothing window of 25 is applied. (a) TSP training curves; (b) OP training curves;
(c) CVRP training curves.

We incorporate general heuristic features, such as the top-k nearest neighbors, into the input prompt
to facilitate latent solution-space exploration. These features serve a role similar to feature engineer-
ing, providing useful features that help the LLM learn more effective solution generation patterns.
Specifically, the features can bias the model toward a more promising region in the solution space
(e.g., generating the next token that represents the node with the lowest distance). To assess the
contribution of this component, we conduct an ablation study for the routing problems in which
the model is fine-tuned without the inclusion of heuristic features. Table 9 shows that there is a
performance drop without the inclusion of the heuristic features, and this finding also aligns with
the previous study [14]. We also visualize the comparison of training curves of routing problems in
Figure 4, where we find that incorporating the features consistently leads to lower loss during the
whole training process. These findings indicate that the LLM can utilize the heuristic features during
both training and inference stage to explore more effective solutions.

E.8 Unified CO Solver

Table 10: The performance of the unified LLM CO solver.
TSP OP CVRP MIS MVC PFSP JSSP

fea. ↑ 100% 96% 93% 84% 93% 100% 100%
opt. ↓ 0.86% 1.15% 4.50% 1.89% 2.47% 1.31% 8.25%

To demonstrate the potential of our approach in enabling a unified CO solver, we fine-tune a single
Qwen2.5-7B model using the combined training datasets from all studied CO problems via SFT. The
performance of this unified CO solver, which is evaluated with N = 8 BoN sampling, is reported in
Table 10, showing strong results in both feasibility and optimality for various CO problems.

These results suggest that training across multiple problem types does not significantly compromise
performance. With further scaling in model size, diversity of CO tasks, and prompt design, LLMs
hold significant promise as foundation models for combinatorial optimization.

E.9 Versatility Study

To further demonstrate the versatility of our proposed framework, we fine-tune another two widely
adopted open-source LLMs, Llama-3.1-8B and Gemma-2-9B, as the end-to-end CO solvers. The
fine-tuning configurations are the same as the Qwen-2.5-7B model. The results for the models trained
with supervised fine-tuning alone (denoted Llama-SFT and Gemma-SFT) and the complete pipeline
incorporating reinforcement learning and Best-of-N inference with N = 8 (denoted Llama-Full and
Gemma-Full) are presented in Table 11. While the performance of Llama-3.1-8B is slightly inferior
to that of the Qwen model used in our primary experiments, our method still effectively enables the
LLM to produce feasible solutions in most cases and yields good results with low optimality gaps.
Despite the different implementations in model architectures and training schemes of different LLMs,
the proposed method consistently maintains its effectiveness across all CO tasks.

31

Table 11: Comparison between Qwen-2.5-7B and Llama-3.1-8B on the studied CO problems.

Problem Qwen-SFT Qwen-Full Llama-SFT Llama-Full Gemma-SFT Gemma-Full
fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓ fea. ↑ opt. ↓

TSP 89% 2.30%±1.9 100% 1.07%±0.9 71% 1.83%±1.5 94% 1.17%±1.0 81% 1.91%±1.7 100% 1.03%±1.1

OP 54% 2.32%±2.6 100% 1.85%±1.7 51% 2.28%±2.2 100% 2.13%±2.0 56% 2.35%±2.6 100% 1.81%±1.7

CVRP 59% 6.02%±3.9 100% 4.53%±3.5 35% 7.71%±6.6 80% 5.15%±4.0 62% 6.68%±5.62 100% 4.56%±3.4

MIS 80% 1.71%±3.9 94% 1.34%±3.3 84% 2.03%±4.4 91% 0.82%±2.4 84% 2.01%±4.2 85% 1.48%±2.8

MVC 98% 2.41%±3.3 100% 1.29%±2.2 95% 2.61%±3.7 100% 1.24%±2.1 96% 2.43%±3.4 100% 1.22%±2.1

PFSP 100% 2.22%±1.9 100% 1.03%±1.1 100% 3.11%±2.1 100% 1.49%±1.5 100% 2.94%±2.4 100% 1.50%±1.7

JSSP 100% 11.01%±7.9 100% 8.20%±6.3 69% 8.34%±6.8 80% 7.15%±7.7 99% 10.00%±7.2 100% 8.07%±6.3

E.10 Out-of-distribution Performance

Table 12: Comparative evaluations of feasibility rate (fea.) and optimality gap (opt.) between
in-distribution (InD) and out-of-distribution (OOD) data.

Method TSP OP CVRP
fea.↑ opt.↓ fea.↑ opt.↓ fea.↑ opt.↓

InD 100% 1.07% 100% 1.85% 100% 4.53%
OOD (clustered) 100% 1.41% 100% 1.89% 100% 5.12%
OOD (mixed) 100% 1.23% 100% 2.30% 100% 5.04%

To evaluate the out-of-distribution (OOD) performance of the trained models, we adopt two OOD
distributions, i.e., clustered and mixed, commonly used as benchmarks for routing problems in prior
work [73]. The clustered distribution generates city nodes by first sampling 7 centroids uniformly at
random, followed by sampling node locations from a normal distribution centered at each centroid
with a standard deviation of 0.1. The mixed distribution combines both uniform and clustered
characteristics by sampling half of the city nodes uniformly and the other half from the clustered
distribution. The evaluation results on TSP, OP, and CVRP are shown in Table 12. According to the
table, we can find that there is a slight performance drop when evaluating on the OOD datasets. Since
the drop is not significant, the cross-distribution generalizability of our models is proven.

E.11 Benchmarking Performance of TSP

Table 13: Optimality gap comparison of LLM-based methods on TSPLIB instances.
Instance AEL ReEvo MCTS-AHD Ours

eil51.tsp 10.84% 6.50% 15.98% 2.02%
berlin52.tsp 12.91% 17.99% 7.08% 4.54%
st70.tsp 4.10% 6.42% 15.45% 0.00%
eil76.tsp 10.26% 7.34% 12.46% 2.91%
pr76.tsp 9.06% 12.17% 10.41% 3.87%

Average Gap 9.43% 10.08% 12.28% 2.69%

To further demonstrate the generalizability of our method, we evaluate the TSP model on a benchmark
dataset. Specifically, we use representative instances with fewer than 100 nodes from TSPLIB
[74], which are derived from real-world routing scenarios, and compare our results with those of
other LLM-based methods. Since existing end-to-end LLM-based solvers (e.g., OPRO) struggle to
effectively solve CO problems, we instead compare our approach with heuristic-discovery methods,
including AEL [75], ReEvo [6], and MCTS-AHD [76]. These approaches aim to reduce reliance on
domain expertise by automating the design of algorithms leveraging LLMs. We use the best-reported
constructive heuristics generated by these methods for comparison, and the optimality gaps are
presented in Table 13. We also find that our method outperforms other baselines, which indicates it
can generalize to the benchmark instances that represent real-world scenarios.

32

F Broader Impacts

Solving CO problems with LLMs has the potential to lower the technical barrier for users tackling
decision-making and optimization tasks commonly encountered in real-world applications. By en-
suring that the LLM-generated solutions are largely feasible and near-optimal, our method offers a
user-friendly yet powerful tool for practical optimization. This approach holds promise for impactful
deployment in sectors such as transportation, logistics, and manufacturing. However, this capability
comes at a cost: the training procedure required to fine-tune LLMs introduces significant compu-
tational demands, which can lead to increased financial costs and raise sustainability concerns due
to the associated carbon emissions. Future work should explore more efficient training methods or
model distillation techniques to mitigate these drawbacks.

G Licenses

The licenses and resources of the code and software used in this paper are listed in Table 14.

Table 14: List of licenses for the codes used in this work
Resource Type Link License
OR-Tools Code https://github.com/google/or-tools Apache-2.0 Li-

cense
LKH-3 Code http://webhotel4.ruc.dk/~keld/research/

LKH-3/
Available for
academic
research use

Gurobi Software https://www.gurobi.com/ Academic Li-
cense

PyCombinatorial Code https://github.com/Valdecy/
pyCombinatorial

GNU General
Public License

Compass Code https://github.com/gkobeaga/op-solver Apache-2.0
Unsloth Code https://github.com/unslothai/unsloth Apache-2.0
DeepACO [70] Code https://github.com/henry-yeh/DeepACO MIT License
OPRO [19] Code https://github.com/google-deepmind/opro Apache-2.0
SGE [56] Code https://github.com/Zangir/LLM-for-CP Available for

academic use
ReEvo [6] Code https://github.com/ai4co/reevo MIT License
MCTS-AHD
[76]

Code https://github.com/zz1358m/
MCTS-AHD-master

MIT License

TSPLIB [74] Dataset http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95

Available
for any non-
commercial
use

Taillard [65] Dataset http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement.dir/
ordonnancement.html

Available for
academic use

33

https://github.com/google/or-tools
http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://www.gurobi.com/
https://github.com/Valdecy/pyCombinatorial
https://github.com/Valdecy/pyCombinatorial
https://github.com/gkobeaga/op-solver
https://github.com/unslothai/unsloth
https://github.com/henry-yeh/DeepACO
https://github.com/google-deepmind/opro
https://github.com/Zangir/LLM-for-CP
https://github.com/ai4co/reevo
https://github.com/zz1358m/MCTS-AHD-master
https://github.com/zz1358m/MCTS-AHD-master
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

	Introduction
	Related Work
	Problem Statement
	Methodology
	Data Generation
	Supervised Fine-tuning
	Feasibility-and-optimality-aware Reinforcement Learning
	Best-of-N Inference

	Experiments
	Baselines
	Main Results
	Comparison with Domain-specific Methods
	Role of Reinforcement Learning
	Unified CO solver
	Versatility and Generalizability
	Benchmarking Performance

	Conclusion
	Specification of the Studied Problems
	Traveling Salesman Problem (TSP)
	Problem Definition
	Instance Generation
	Reward Function

	Orienteering Problem (OP)
	Problem Definition
	Instance Generation
	Reward Function

	Capacitated Vehicle Routing Problem (CVRP)
	Problem Definition
	Instance Generation
	Reward Function

	Maximal Independent Set (MIS)
	Problem Definition
	Instance Generation
	Reward Function

	Minimum Vertex Cover (MVC)
	Problem Definition
	Instance Generation
	Reward Function

	Permutation Flow Shop Scheduling Problem (PFSP)
	Problem Definition
	Instance Generation
	Reward Function

	Job Shop Scheduling Problem (JSSP)
	Problem Definition
	Instance Generation
	Reward Function

	Low-Rank Adaptation
	Experiment settings
	Baseline Details
	Additional Experiment Results
	Detailed Solving Time
	Example Thinking Process
	Comparative Evaluations
	Comparison with Model-then-solve Methods
	Comparison with Classical Solvers
	Scaling Test-time Exploration
	Latent Solution-space Exploration
	Unified CO Solver
	Versatility Study
	Out-of-distribution Performance
	Benchmarking Performance of TSP

	Broader Impacts
	Licenses

