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Abstract This study examines common misconceptions and suboptimal use of tabular benchmarks

for neural architecture search (NAS). We address statistical limitations in performance

evaluation, emphasizing adequate sample sizes and proper statistical tests, such as the two-

sample t-test, to ensure reliable results. We propose a new guideline of averaging at least

1000 runs for reliably benchmarking NAS algorithms. Additionally, we explore the impact

of time constraints on algorithm performance, showing that final algorithm performance

highly depends on the time budget. Our findings highlight the need for robust experimental

designs and extended time budgets in NAS research.

1 Introduction

Neural architecture search (NAS) is a technique to optimize neural architectures towards an

objective, such as classification accuracy or model size, and can be performed using a variety of

optimization procedures, among others reinforcement learning (Zoph and Le, 2016) and evolutionary

optimization (Groh and Kist, 2023). Recently, NAS benchmarks were introduced to provide a

standardized framework enhancing reproducibility, accessibility, and comparability of different NAS

methods (Ying et al., 2019). Tabular benchmarks (Klein andHutter, 2019) optimize evaluation time by

leveraging precomputed data, allowing researchers to focus on algorithm development and enabling

statistically significant performance comparisons. However, misconceptions and suboptimal usage,

particularly in statistical analysis and experiment termination, hinder research progress. Proper

statistical testing methods, like the two-sample t-test, are vital for reliable performance evaluations,

while premature experiment termination can obscure valuable algorithm insights. Our study

addresses these challenges and proposes methods to enhance NAS research reproducibility and

evaluation robustness. The code required to reproduce our results and findings is publicly available

at https://github.com/sdnfr/time-bench.

2 Underlying Foundations

We use the terminology of runs and experiments. A given experiment consists of n runs performing

the neural architecture search in the given search space within a given time budget t. While samples

in NAS commonly refer to sampled architectures from the search space, we refer to one entire

NAS run as a sample for statistical analysis of our experiments. Each experiment is associated

with its corresponding sample mean 𝑠 and uncontrolled (biased) sample standard deviation 𝜎𝑛 . The

latter is used to show the variance of each experiment without further interpretations or control of

estimating the underlying population standard deviation 𝑠𝑛 . The notation here distinguishes the

corrected sample standard deviation 𝑠𝑛 from the uncorrected sample standard deviation 𝜎𝑛 . The

former assumes n as a sample of a population by having the (𝑛 − 1) term in the denominator, while

the latter assumes 𝑛 to be the whole population thus dividing by 𝑛. The objective of evaluating

the performance of multiple runs is to gain insights into the "true" performance of the algorithm,

such as the population mean and population standard deviation. Practically, we can only perform a

finite number of runs 𝑛 of the unknown population, thus the evaluation of an experiment becomes

a sampling problem.
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The central limit theorem, for large enough n, states that even if the original distribution of an

experiment is not normally distributed, the sampling distribution of the sample means is normally

distributed (Krzywinski and Altman, 2013). This distribution measures the spread of sample means

𝜎𝑠 , indicating where the sample mean of succeeding experiments will lie.

While there is a fair bit of chance in NAS runs (random unfavorable initial populations (Maara-

nen et al., 2007), stuck in local optima (Barbulescu et al., 2000), randommutation), statistical analysis

for the results becomes crucial to avoid potentially reporting erroneous results. While we do not

assume any intentional falsification of results, we aim to raise awareness for more robust scientific

practices.

3 Mitigating Statistical Misuse

Table 1 shows the p-value of two-sample t-tests
1
as stated in the CIFAR-10 results from the topology

search on the NATS-Bench using 5 runs (Fan et al., 2023). We corrected the standard deviation and

adjusted for equal variances accordingly (Welch, 1947). The data and formula can be found in the

supplied code notebook n1. The depicted top 5 algorithms are ordered by performance and the

table shows that algorithms with similar performance do not show statistically significant results

due to the low number of runs (𝑛=5).

Table 1: P-values of two-sample t-test with top 5 algorithms from Fan et al. (2023). Algorithms ordered

by performance. Significance is indicated with an asterisk (*), significance level is set to 0.05/10

(Bonferroni correction).

LayerNAS RE PPO TE-NAS NASI

LayerNAS - 0.12 0.012 0.17 1.8e-05*

RE 0.12 - 0.4 0.45 0.001*

PPO 0.012 0.4 - 0.68 0.0009*

TE-NAS 0.17 0.45 0.68 - 0.26

NASI 1.8e-05* 0.001* 0.0009* 0.26 -

Publications can go as low as experiments with 5 runs (Fan et al., 2023) or 100 runs (Ying et al.,

2019), even though about 500 runs are recommended in the literature (Ying et al., 2019). Besides the

implied weak statistical significance, this can cause the problem of unintentional cherry-picking

which leads to the common phenomenon of p-hacking (Head et al., 2015), even though we would

like to stress that this might happen fully unintentionally. While rerunning an experiment takes

little time, experimental results are often not carefully saved as compared to when dealing with

computational heavy loads. Hyperparameters can be quickly evaluated, resulting in multiple

experiment repetitions which increases the potential for statistical error.

Assuming the results of a first experiment with 𝑛 samples approximate the true population

mean and standard deviation, the central limit theorem can be applied when running another

independent experiment a second time. Consequently, there is a 50% chance that the new sample

mean will be higher than the previous sample mean, and vice versa, as the new sample mean will

be drawn from the underlying Gaussian distribution with the properties mentioned above. Thus, a

superior result is fairly probable when rerunning an experiment after reverting a hyperparameter.

The reason why this problem does not scale for larger 𝑛 lies in the nature of the central limit

theorem: once the sample size 𝑛 in an experiment is increased, the sampling distribution of sample

1
Two-sample t-tests (with correction) are used to provide a commonly known significance testing method for a

comprehensive comparison. However, some other comparison methods can be considered such Friedman-Nemenyi tests

for comparing multiple algorithms (Gijsbers et al., 2024; Demšar, 2006; Herbold, 2020).
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means from multiple experiments stays normally distributed. However, the standard deviation of

this distribution 𝜎𝑠 is scaled down by the factor of 1/
√
𝑛, making the deviation much smaller.

Figure 1: Example comparison of two experiments with 30 runs and 1000 runs each.

In the panels of Figure 1, the histograms of one experiment with 30 runs (left) using the

regularized evolution as well as one experiment with 1000 runs (right) are shown as a tentative

example of the impact of sample sizes. The Gaussian curves show the application of the central

limit theorem of sampling another sample mean - thus performing another experiment - given the

first experiment. The mean 𝜇𝑠 of this normal distribution equals the sample mean 𝑠 from the first

experiment, while its standard deviation 𝜎𝑠 equals the population standard deviation 𝑠𝑛 divided by√
𝑛. The probability distribution of expected sample means given an experiment with 1000 runs

(right) is much sharper and defined. This can be interpreted with much more certainty to achieve

the sample mean from the first experiment again, or only deviating little. The distribution given 30

runs (left) shows a higher variance. The resulting higher likelihood of deviating from the results

signifies more uncertainty.

Figure 2: Comparison of experiments from Dong et al. (2021) with different n using mean and standard

deviaton from 500 runs on the CIFAR-10 test dataset.
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The application of the central limit theorem provides insights into the validity and statistical

significance of results. Using data from a topology search with 500 runs (Dong et al., 2021) as

the ground truth first experiment, we can simulate probabilities of rerunning experiments with

different run sizes to visually compare how likely the results can be reproduced. Figure 2 shows the

normal distribution of sampling means for experiments with 50, 100, 500, or 1000 runs, assuming the

provided data from 500 runs as the ground truth. Each graph represents one experiment with n given
runs. Although using standard deviations from one sample size to simulate others is technically

incorrect, it illustrates the fuzzy borders of significance and provides a visual understanding of

statistical significance. This also gives some intuition on when to apply the Student’s t-test for

algorithm performance. When comparing two algorithms, a two-sample t-test assesses their

statistical significance. For example, real data (bottom left, Figure 2) show that REA and BOHB

barely overlap, with a p-value of 0.02, indicating significance. In contrast, REINFORCE and BOHB

significantly overlap, with a p-value of 0.22, indicating potential for error, even with 500 runs.

In NAS optimization, we know that multiple algorithms will reach a reasonable neural architec-

ture. Therefore, research tries to uncover strategies to improve certain strategies, hypothesizing

only incremental advantages to cutting-edge applications. In statistics, we would assume a low

Cohen’s d value, ranging between 0.1 and 0.2 indicating only a small effect. Using the concept

of power analysis (Cohen, 1992), we would gain suggested sample sizes between 526 and 1570

(assuming a power of 0.8-0.9 for a significance level of 0.05). The formula for calculating the

suggested sample size (𝑛) is:

𝑛 =
2 · (𝑧𝛼/2 + 𝑧power)2

d
2

Where 𝑧𝛼/2 is the z-score corresponding to the significance level (𝛼) divided by 2 for a two-tailed

test, and 𝑧power is the z-score corresponding to the desired power level. Assuming that the truth is

again somewhere in between, we propose a suggested sample size of 1000 to allow for existing

uncertainty. While more runs are generally better, studies with fewer than 500 samples should be

taken with a grain of salt. Additionally, presenting or visualizing the confidence interval, alongside

the mean and variance, offers valuable insights. While the standard deviation interval indicates the

likelihood of samples falling within the interval, the confidence interval essentially offers a level of

certainty stating that the true mean value lies within the interval.

4 Addressing Time Constraints

A common constraint addressed by various NAS benchmarks was the selection of a maximal time

budget. While there is typically no strict time constraint on executing maximum generations

or cycles during NAS runs, algorithms are sometimes terminated before reaching convergence

(Dong et al., 2021). While this premature termination may be common in real-world scenarios

due to computational limitations, it may not be applicable when using tabular data. The risk of

prematurely halting these algorithms is the potential oversight of insights into their behavior. It

favors especially algorithms with fast initial progress - algorithms with slow initial progress that

eventually converge to superior solutions are put at a disadvantage.

In Figure 3, the run data averaged over 1000 runs for two algorithms is plotted using a time

budget of respectively 2𝑒4 and 2𝑒5 seconds. It demonstrates that the REINFORCE algorithm performs

better after an initial slow warm-up period of 125,000 seconds, a timeframe that exceeds the time

budget of 20,000 seconds utilized in Dong et al. (2021). These findings can be crucial for researchers

when deciding which algorithm to select, making the choice of the REINFORCE algorithm more

appealing when faced with fewer computational limitations. We therefore recommend a best

practice to show the behavior of all algorithms until convergence, especially when evaluating these

on precomputed, tabular benchmarks.
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Figure 3: Comparison between regularized evolution and REINFORCE from Dong et al. (2021) using a

time budget of 2e4 (left) and 2e5 (right) seconds. 1000 runs averaged.

5 Broader Impact Statement

Improving the reliability and robustness of algorithm comparisons in NAS research is crucial for

advancing machine learning effectively. This requires a comprehensive approach that balances

statistical significance testing with practical considerations. While statistical testing is important,

it is essential to avoid overemphasizing p-values, as this can lead to misleading conclusions. In

addition or instead, researchers should incorporate scientific judgment and broader contextual

evidence into their analyses (Nuzzo, 2014).

In NAS evaluations, reaching convergence is important, but it might not always reflect real-

world usability because of computational constraints. Rather than just extending the time budget,

researchers can runmore experiments within the original timeframe and choose the best-performing

architecture. This method often leads to better results, especially when dealing with large search

spaces.

Another concern is the reliance on mean performance as the primary metric for evaluation. In

real-world applications where computational resources are limited, researchers may only be able

to run a single or a few experiments. Relying solely on mean performance may not capture the

full picture of algorithm robustness. Therefore, exploring alternative metrics to assess robustness

becomes crucial for informed decision-making in algorithm selection.

However, regardless of the metric used, ensuring statistical reliability remains paramount.

Adhering to proper statistical practices facilitates meaningful algorithm comparisons, providing

genuine insights into performance. By addressing issues like p-hacking and cherry-picking, NAS

research can produce more trustworthy and reproducible outcomes. This not only enhances

individual studies but also elevates the overall standard of NAS research, fostering a more rigorous

scientific approach.

Moreover, educating researchers on the importance of proper statistical measures contributes to

a more robust scientific process. This, in turn, advances machine learning and promotes responsible

AI innovation. Additionally, by promoting efficient use of precomputed data, NAS research can

have positive environmental impacts, aligning with sustainability efforts.

In conclusion, prioritizing reliability and reproducibility in NAS research is essential for devel-

oping more efficient neural architectures. This approach not only drives progress in various AI

applications but also contributes to broader advancements in the field. By adhering to rigorous

methodologies and standards, researchers can ensure that their work contributes meaningfully to

the advancement of machine learning and the broader goals of scientific inquiry.
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