

---

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHAT IS IMPORTANT? INTERNAL INTERPRETABILITY OF MODELS PROCESSING DATA WITH INHERENT STRUCTURE

Anonymous authors

Paper under double-blind review

## ABSTRACT

This paper introduces a methodology for constructing interpretable neural networks that quantify the importance of structured input components directly within their internal mechanisms, thereby eliminating the need for traditional explanation methods that rely on post-hoc saliency map generation. Our approach features a two-stage training procedure. First, component specific representations and importance scores are discovered using appropriately designed convolutional neural networks, which are trained jointly. Second, an architecture with relaxed structural constraints, leveraging the previously acquired knowledge, is fine-tuned to capture spatial dependencies among components and to integrate global context. We systematically evaluate our method on Oxford Pets, Stanford Cars, CUB-200, Imagenette, and ImageNet, measuring interpretability-performance trade-offs with metrics for semanticity, sparsity, reproducibility, and, when required, causality (via insertion/deletion-inspired scores). Our architecture achieves improved semantic alignment with ground-truth segmentation annotations compared to post-hoc saliency maps, which, when available, serve as surrogates for expected saliency maps. At the same time, it maintains low variance in importance scores across runs, demonstrating strong reproducibility. Crucially, our architecture provides interpretability gains without sacrificing accuracy. In fact, both with non-pretrained and pretrained backbones, it frequently achieves higher predictive performance than parameter-matched baselines. Overall, compared to both conventional models and post-hoc interpretability techniques under matched computational budgets, our framework produces models that are accurate, stable, and that deliver causally grounded explanations.

## 1 INTRODUCTION

Artificial intelligence is now being deployed across nearly all domains of human activity. Machine learning models are increasingly utilized in decision-making processes that carry critical implications for individuals. However, despite rigorous efforts by model developers to mitigate issues such as overfitting and underfitting, there remains a non-negligible risk that models may exhibit undesirable behavior in real-world deployment. Such behavior may arise due to distribution shifts that are difficult to anticipate, or from latent biases in the training data that lead to the learning of unintended correlations. Consequently, there is an increasing demand for methodologies that enhance the trustworthiness and reliability of machine learning systems. While post-hoc interpretability methods remain popular for analyzing trained models, there is a growing emphasis on designing inherently interpretable architectures - models whose behavior is easier to understand and justify by design (the rationale behind this paradigm shift is elaborated in Appendix A).

In this work, we introduce a methodology that reveals the significance of individual components of a given structure (illustrated with image regions but directly applicable to other modalities such as sequence tokens or graph nodes) within the predictive process. Instead of first modeling complex interactions and then attempting to disentangle them through explanation, our approach begins with a stage dedicated to quantifying component importance in isolation. This design allows each component to be evaluated independently, ensuring that attributions are grounded in the model's internal mechanisms rather than inferred afterward. In a second stage, structural constraints are re-

---

054 laxed and models learn spatial and contextual dependencies, while preserving the earlier discovered  
055 importance assignments as anchors for interpretability.  
056  
057

058 **2 RELATED WORKS**  
059  
060

061 The method discussed in this work assigns attribution scores to elements of the analyzed struc-  
062 ture, making it a local explanation technique. In the case of images, this allows for the generation  
063 of attribution maps, commonly referred to as saliency maps. The literature offers a wide array of  
064 methods for generating such maps. Some techniques, such as LIME Ribeiro et al. (2016), SHAP  
065 Lundberg & Lee (2017), and RISE Petsiuk et al. (2018), are perturbation-based and model-agnostic,  
066 meaning they can be applied to any model, including black-box ones. In contrast, model-specific  
067 approaches leverage the internal characteristics of the analyzed models. Methods like *vanilla gra-*  
068 *dients*, *guided backprop* Springenberg et al. (2015), *integrated gradients* Sundararajan et al. (2017),  
069 and IxG Adebayo et al. (2018) exploit the differentiability of most neural networks. Similarly, LRP  
070 Bach et al. (2015) uses gradients to calculate relevance scores. Other methods, such as CAM Zhou  
071 et al. (2016), rely on semantic features extracted by CNNs and their specific architecture, while *at-*  
072 *tention rollout* Abnar & Zuidema (2020) computes the cumulative attention across layers in ViTs.  
073 These techniques are often combined, resulting in hybrid methods like GradCAM Selvaraju et al.  
074 (2019), GradCAM++ Chattopadhyay et al. (2018) and Chefer et al. (2021). From an operational per-  
075 spective, all of these approaches can be categorized into two groups. Some methods identify which  
076 input components influenced the decision, whereas others assess how changes to these components  
077 would affect the outcome or compare the current input with a reference to evaluate the impact of  
078 their differences. However, despite the large number of attribution methods, concerns remain regard-  
079 ing their reliability. Different techniques may yield conflicting explanations for the same input and  
080 model due to varying assumptions. Importantly, all these methods are post-hoc techniques, applied  
081 after training. In contrast, our method enforces saliency map generation during inference, allowing  
082 the model to use attribution signals directly in its decision-making.

083 Of course, our method is not the only one aiming to adapt machine learning techniques to facilitate  
084 more interpretable behavior. There exists a substantial body of approaches that leverage the high  
085 capacity of neural networks, which enables them to solve the same problem in a variety of different  
086 ways. This allows for the introduction of additional regularization components into the learning  
087 objective, enabling the selection of processing pathways that exhibit desired properties. Some of  
088 these approaches are model-agnostic. For example, in Wu et al. (2018), the model is encouraged  
089 to mimic the reasoning patterns of a simple decision tree. Other works integrate interpretability  
090 constraints directly into the training process, requiring that the explanations derived from the model  
091 possess specific qualities, such as fidelity and stability in ExpO Plumb et al. (2020), or adherence to  
092 pre-defined priors as in Weinberger et al. (2020). Certain methods exploit structural characteristics of  
093 specific models, for instance, Zhang et al. (2018) promotes representations in which the final layers  
094 of a convolutional neural network correspond to disentangled, human-understandable concepts. The  
095 solution proposed in this work does not require any such complex modifications to the loss function.

096 Another class of approaches advocates the development of new or modified model architectures. For  
097 example, in Böhle et al. (2024), the authors introduce the *B-cos transform* as a substitute for tradi-  
098 tional linear transformations. After appropriate training, these transforms become interpretable and  
099 align with task-relevant features. A significant subset of these methods involves prototype-based  
100 models, inspired by case-based reasoning. In Li et al. (2018), prototype vectors are trained such  
101 that object classification can be performed based on distances between the hidden representations  
102 of inputs and these prototypes. Additional regularization ensures that the prototypes are meaningful  
103 for the task at hand. Since the representations are learned in the latent space of an autoencoder, it  
104 is possible, via the decoder, to obtain a semantic interpretation of the learned prototypes. This idea  
105 has been further developed in works such as ProtoPNet Chen et al. (2019), PIP-Net Nauta et al.  
106 (2023) and ProtoTree Nauta et al. (2021), where convolutional neural networks (CNNs) replace  
107 the autoencoder, and prototypes correspond to specific image regions. Similar approaches aiming  
108 at the automatic discovery of certain concepts and reasoning based on them can also be found in  
109 works using vision transformers (ViTs), where cross-attention is employed for this purpose. Con-  
110 cept Transformer Rigotti et al. (2022) associates inputs with predefined concepts derived from the  
111 training data, while INTR Paul et al. (2024) generates concepts across attention heads. In all of these

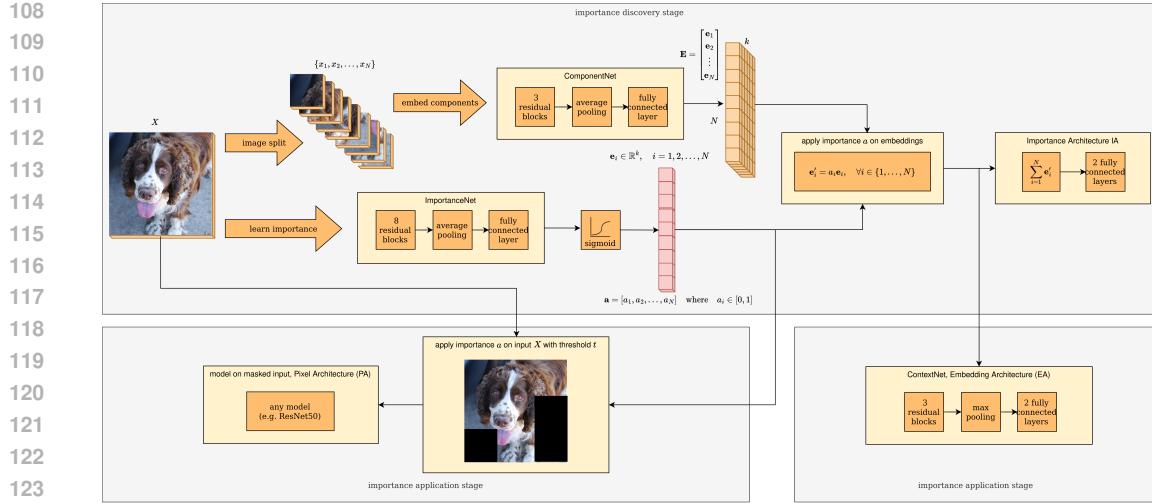


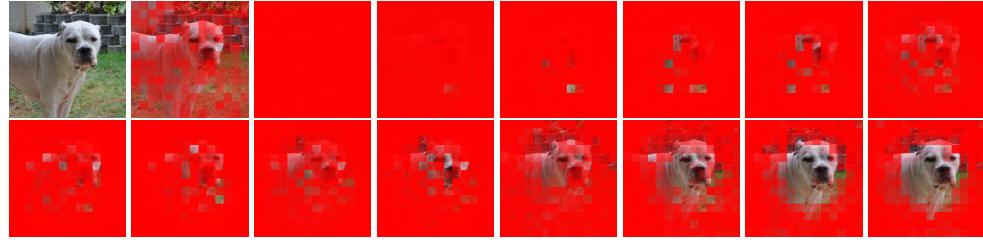
Figure 1: Overview of the proposed method. The input image is processed in parallel to compute patch embeddings and importance scores. The Importance Architecture (IA) identifies informative patches and their relevance. Using these attributions, the Embedding Architecture (EA) applies importance scores to patch embeddings, while the Pixel Architecture (PA) filters the image at the pixel level for improved classification. All three architectures demonstrate how interpretability guides the model to focus on relevant regions.

cases, however, even if image patches are processed as in our method, component representations are computed taking the full image into account, which distinguishes them from our approach.

A conceptually similar approach to the one presented in our paper can be found in several works. Some of these are related to natural language processing. In Hewitt et al. (2023), a language model is built in which each next word is predicted as a weighted sum of multiple embeddings and importance scores computed for every token, reflecting the domain-specific need to capture different token meanings. It employs, however, attention modules, computing token embeddings with access to the entire structure to incorporate inter-token relationships. In Lei et al. (2016), the model identifies text fragments that most strongly support its sentiment analysis decisions. Nevertheless, using a transformer encoder, it again computes component embeddings based on the full sequence context. Additionally, training the importance generator requires extra regularization to enforce sparsity and continuity of the selected fragments. Regarding image processing, two similar approaches can be highlighted. In Wojtas & Chen (2020), the use of dual networks is proposed. The first network (the *operator*) solves the primary task based on masks generated by the second network (the *selector*). Both networks are trained jointly, with the *selector* learning to predict the *operator*'s average output given the masks. However, this setup involves a relatively complex training and inference procedure. In You et al. (2025), importance scores are assigned to automatically discovered groups of patches using attention mechanisms. Both group discovery (the *group generator*) and importance estimation (the *group selector*) rely on attention, with group encodings derived from models accessing entire patch groups - capturing spatial dependencies that we aim to avoid. Moreover, embedding computation and importance estimation are intertwined. Compared to the latter two approaches, our method appears considerably simpler.

In summary, what distinguishes our approach from the related works discussed is that it integrates the problem of learning importance masks directly into the standard training of a single network with a suitably designed architecture. This architectural constraint alone proves sufficient to produce high-quality saliency maps without requiring additional regularization components, which are often essential in many of the methods described. Finally, unlike approaches that first encode complex interactions between components and then attempt to disentangle them through explanation, our method begins with a dedicated stage for independently assessing component-level importance.

162  
163  
164  
165  
166  
167  
168  
169



170  
171  
172  
173

Figure 2: Original image from Oxford Pets dataset and visualization of learning importance vector  $a$  over epochs of IA(16,128). The not important patches are masked out with red color, the more intense the red color, the less important the patch is.

174  
175  
176

### 3 METHODS

177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192

We propose a methodology for constructing an interpretable neural network that classifies images while explicitly quantifying the contribution of individual input components (image patches). The design separates attribution discovery from contextual modeling. In the first stage, **Importance Architecture (IA)** is employed to address the given classification task. The input image is decomposed into patches, which serve as semantically meaningful units. Each patch is independently processed by a convolutional module to obtain localized embeddings. In parallel, an importance scoring network assigns weights to the patches, quantifying their relative contributions. These two signals are then combined and passed to the classifier. Due to architectural constraints, the classification results at this stage are usually not fully satisfactory. However, in the process of attempting to solve the task as effectively as possible, the model learns to distinguish between information that is useful (important) and information that is irrelevant for task execution. This knowledge can be externally validated to ensure its reliability, and subsequently leveraged in the second stage during the construction of the target model. Free from the aforementioned constraints, most notably by having full access to the spatial relationships between components, the model is capable of achieving state-of-the-art performance while relying solely on the image information previously identified as relevant. In this work, we propose two approaches to constructing such models:

193  
194  
195  
196  
197  
198  
199  
200  
201

- **Embedding Architecture (EA)** – importance scores are applied directly to the patch embeddings discovered by IA. In this approach, patches are still initially processed independently, which may, in future, enable the discovery of the importance of spatial dependencies among them.
- **Pixel Architecture (PA)** – importance scores discovered by IA are used to filter information directly at the pixel level of the image. This design allows the use of arbitrary, including pretrained, backbones for image analysis, thereby substantially improving classification performance.

202  
203  
204  
205  
206  
207

Both these architectures also serve to demonstrate that the attribution maps discovered by IA indeed allow for a meaningful distinction between informative and non-informative image regions. All three architectures are illustrated in Figure 1.

208

#### 3.1 IMPORTANCE ARCHITECTURE

209  
210  
211  
212  
213  
214  
215

The importance architecture (IA) is designed to identify the importance of individual components within an input image, providing an interpretable mechanism for highlighting their relevance to the model’s prediction. The input image  $\mathbf{X}$  is first divided into  $N$  non-overlapping patches, each of size  $p \times p$  pixels. These patches are denoted as  $\{x_1, x_2, \dots, x_N\}$ , where each patch  $x_i$  captures a localized region of the image. Each patch  $x_i$  is processed independently by a ComponentNet, consisting of three residual blocks followed by average pooling and a fully connected layer. This maps each patch to a  $k$ -dimensional embedding vector  $\mathbf{e}_i \in \mathbb{R}^k$ . The embeddings from all patches are stacked into a matrix  $\mathbf{E} \in \mathbb{R}^{N \times k}$ , where each row corresponds to the embedding of a specific patch.

---

216 To assess the relevance of each patch, the full image  $\mathbf{X}$  is also passed through an ImportanceNet,  
217 which comprises eight residual blocks, followed by average pooling and a fully connected layer.  
218 This produces an importance vector  $\mathbf{a} \in \mathbb{R}^N$ , which is passed through a sigmoid activation to  
219 constrain each value. Consequently,  $a_i \in [0, 1]$ . These normalized scores are learned during training  
220 and represent the relative importance of each patch.

221 The importance vector  $\mathbf{a}$  is applied to the embedding matrix  $\mathbf{E}$  through row-wise multiplication,  
222 resulting in a weighted embedding matrix  $\mathbf{E}' \in \mathbb{R}^{N \times k}$ . The rows of  $\mathbf{E}'$  are then summed across  
223 all patches to produce a single aggregated representation. This summation step is crucial, as it  
224 encourages the model to learn semantically meaningful embeddings while focusing on the most  
225 relevant patches - effectively masking information that could hinder classification. The aggregated  
226 embedding  $\mathbf{E}'$  is subsequently passed through two fully connected layers to generate the model's  
227 final output. Importantly, these fully connected layers are configured to match the embedding di-  
228 mensionality, thereby creating a bottleneck that compels ImportanceNet to mask information that  
229 is semantically irrelevant and detrimental to the classification process. This approach allows the  
230 model, further referred to as  $IA(p,k)$ , to learn and highlight the most informative parts of the input  
231 image, as visualized in Figure 2.

232

### 233 3.2 EMBEDDING ARCHITECTURE

234

235 While the IA in ImportanceNet effectively captures the relevance of local patches, it lacks the repre-  
236 sentational capacity to model complex spatial dependencies among them. To address this limitation,  
237 we propose an enhanced variant,  $EA(p,k)$ , which integrates global contextual information and sub-  
238 stantially improves overall model performance. In this architecture, the original summation-based  
239 aggregation followed by two fully connected layers is replaced by a dedicated ContextNet module.  
240 This module processes the weighted patch embeddings  $\mathbf{E}'$  using a convolutional neural network  
241 composed of three residual blocks, followed by max pooling and two fully connected layers. Im-  
242 portantly, the patch importance weights used to compute  $\mathbf{E}'$  are directly inherited from the trained  
243 in IA ImportanceNet and are kept frozen during subsequent training. Since ContextNet is relatively  
244 lightweight, to further increase the model's representational flexibility, we allow for fine-tuning of  
245 ComponentNet. All of that enables the model to better capture intricate visual structures and long-  
246 range dependencies across the input image. Moreover, this design choice ensures, an effect that will  
247 be demonstrated empirically, that the interpretability afforded by the learned importance scores is  
248 preserved.

249

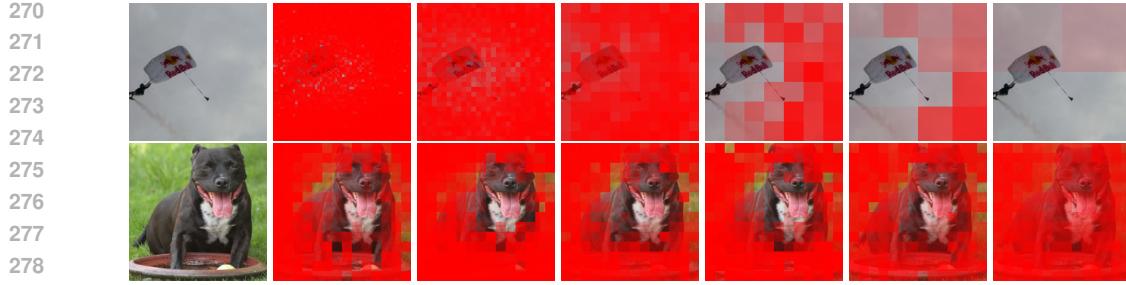
### 250 3.3 PIXEL ARCHITECTURE

251 The pixel architecture PA is designed to explore the interpretability-performance trade-off and to  
252 assess the semantic consistency of importance scores by applying them directly to the input images.  
253 It uses ImportanceNet with frozen weights from a previously trained IA model to compute the im-  
254 portance scores  $\mathbf{a}$ , which are then thresholded to retain only the most relevant patches. Specifically,  
255 patches with importance values below a predefined threshold  $t \in [0, 1]$  are masked out, resulting  
256 in a modified (masked) version of the original input. This type of model is denoted as  $PA(p,t)$ .  
257 Note that  $PA(p,0.0)$  corresponds to processing the original, unaltered images (baseline model). The  
258 masked input is subsequently processed by a standard backbone architecture, which is trained to  
259 make predictions based exclusively on the selected salient regions. By masking the image directly,  
260 this approach enforces reliance on the most critical regions, potentially enhancing robustness by  
261 filtering out irrelevant visual noise.

262

### 263 3.4 TRAINING PROCEDURE

264 All three architectures were trained using consistent and reproducible configurations. It is important  
265 to note that for both EA and PA, the training followed a two-stage procedure, as it was necessary to  
266 first train the IA model. Specifically, both IA and EA were trained using the AdamW optimizer with  
267 a learning rate of 0.001, a batch size of 128,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ , and a weight decay of 0.01.  
268 Models were trained for 100 epochs on a single NVIDIA RTX 4090 GPU, and the version with  
269 the highest validation accuracy was selected for evaluation. Standard data augmentation techniques,  
such as random resized cropping, horizontal flipping, and normalization, were applied consistently



270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323

Figure 3: Original images with importance scores obtained using  $IA(p, k)$ . The first row shows an example from the Imagenette dataset with a fixed embedding size  $k = 128$ , and varying patch sizes  $p \in \{4, 8, 16, 32, 56, 112\}$ . The second row shows an example from the Oxford Pets dataset with a fixed patch size  $p = 16$ , and varying embedding sizes  $k \in \{16, 32, 64, 128, 256, 512\}$ .

across all training runs. It should be emphasized that, to ensure a fair comparison, the same basic training scheme was employed across all experiments.

## 4 EXPERIMENTS

In our experiments, we aimed to evaluate several key aspects of the proposed approach. First, we assessed semanticity, that is, the extent to which the identified important components align with semantically meaningful content. Second, we introduced a metric to evaluate sparsity, defined as the model’s ability to focus exclusively on the truly essential components (the fewer image regions marked as important without degrading classification performance, the better). Third, we examined the reproducibility of the identified important patches across multiple training runs of the same architecture initialized with different random seeds. The results on sparsity and reproducibility are presented in Appendix D and Appendix E, respectively. Moreover, in the case of the EA architecture, we also examined causality (via insertion/deletion-inspired scores), namely whether the employed importance masks indeed influence the model’s decisions. This result is included in Appendix F. Finally, we evaluated how restricting predictions to only the most relevant components impacts classification accuracy.

To ensure fair and consistent evaluation, we selected four standard image classification benchmarks. Imagenette Howard (2019) (10 classes) offers easily distinguishable categories for initial validation under low-complexity conditions, with 8500 training, 969 validation, and 3925 test samples. Oxford Pets Parkhi et al. (2012) (37 classes), with well-defined object boundaries, is suitable for assessing semantic structure, and contains 2944 training, 736 validation, and 3669 test images. Stanford Cars Krause et al. (2013) (196 classes) poses a challenge due to high intra-class similarity and subtle inter-class differences, with 7329 training, 815 validation, and 8041 test samples. CUB-200 Wah et al. (2022) (200 classes) is a fine-grained dataset with high intra-class variability, consisting of 4795 training, 1199 validation, and 5794 test images. All the results presented further were obtained for test sets. To systematically explore the influence of architectural scale, we varied the patch size ( $p \in \{4, 8, 16, 32, 56, 112\}$ ) and the embedding dimension ( $k \in \{16, 32, 64, 128, 256, 512\}$ ), and measured their impact across all evaluation metrics and datasets. In addition, we conducted supplementary experiments on the ImageNet Russakovsky et al. (2015) dataset to further assess the scalability of our method. However, due to limited computational resources, the scope of these experiments was restricted. These results are provided in Appendix C. Sample saliency maps for Imagenette are presented in Figure 3. Examples of extracted component importances for all datasets are included in Appendix B.

### 4.1 SEMANTICITY

To evaluate saliency maps, the IoU is commonly used in the literature. It allows for the assessment of the alignment between two binary segmentation masks. However, this metric performs poorly on highly imbalanced images, where background regions dominate. Therefore, we use its macro-averaged version here. Moreover, to further assess the alignment between component importance a

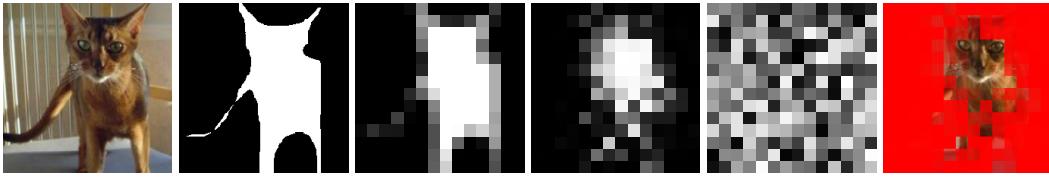


Figure 4: Examples showing: original image, binarized segmentation, averaged patches, learned importance ( $d = 0.1127$ ), random importance ( $d = 0.4646$ ), image with learned mask.

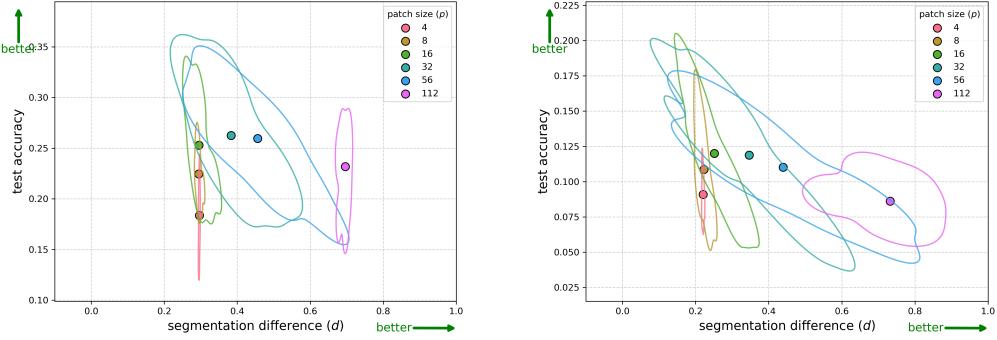


Figure 5: Kernel density estimate plots of accuracy versus segmentation difference for Oxford Pets (left) and CUB-200 (right) from multiple IA experiment runs. Color indicates patch size.

and semantically meaningful regions, we introduce an additional metric, referred to as the segmentation difference  $d$ :

$$d = \frac{\sum_{j=1}^T \sum_{i=1}^N |m_i^j - a_i^j|}{T \cdot N} \quad (1)$$

where  $m_i \in [0, 1]$  denotes the patch-wise semantic reference, and  $T$  represents the number of samples in the test set. Lower values of the metric indicate a stronger correspondence between the model’s importance map and the annotated object boundaries. The variability of this metric across runs and its relationship to predictive accuracy are illustrated in Figure 5.

Among the considered datasets, only the Oxford Pets and CUB-200 datasets provide pixel-level segmentation masks. To compute  $m_i$ , if necessary, we binarize them by assigning a value of 1 to foreground objects and 0 to background pixels, and then average the resulting binary values within each patch. For IoU we binarize the predicted importance scores using a threshold of 0.5. The procedure used to compute those metric  $d$  is illustrated in Figure 4. For methods returning pixel-level saliency maps, we first converted them to patch-level by averaging over  $p \times p$  pixel regions, followed by normalization by the maximum value of each map. This ensures consistent scaling across all methods before computing patch-level metrics. In the case of B-cos, we specifically use the alpha channel of the saliency map for this process.

As shown in Table 1, our method achieves the best overall performance. On Oxford Pets, it outperforms all baselines across both metrics, yielding both the lowest segmentation difference  $d$  and the highest semantic overlap IoU. On CUB-200, although GradCAM achieves a slightly lower  $d$ , our method clearly surpasses all others in IoU, indicating a stronger alignment with ground-truth regions. Example visualizations in Appendix B further illustrate these improvements, showing that our learned patch importance produces sharper and more class-relevant explanations compared to classic gradient- or perturbation-based methods.

Table 1: Comparison of learned importance scores across datasets.

401 Additionally, for all datasets, semanticity can be assessed indirectly by analyzing the classification  
 402 results of the EA and PA models, in which irrelevant components of the image are masked either at  
 403 the level of embeddings or directly on the image, respectively (section 4.2). The results obtained in  
 404 these settings demonstrate that these models achieve performance that is comparable to, and some-  
 405 times better than, the reference model  $PA(p,0)$ , which processes the entire image. This indicates  
 406 that the truly relevant parts of the image are indeed identified by ImportanceNet and encoded in the  
 407 form of importance scores  $\mathbf{a}$ .

## 4.2 ACCURACY

415 To evaluate the effectiveness of the proposed architectures, we assessed model accuracy across mul-  
 416 tiple runs. In the case of  $PA(p,t)$ , this also involved examining how the model performs under  
 417 different threshold values  $t$ , which occlude a portion of irrelevant pixels (original, insertion-inspired  
 418 PA). The best results are reported in Table 2. These findings confirm that our interpretable archi-  
 419 tectures not only preserve but, in several cases, improve predictive accuracy across all evaluated  
 420 datasets. Example masked images for the PA model under varying threshold values  $t$  are presented  
 421 in Figure 6.

422 Furthermore, we investigated how classification accuracy changes with increasing levels of image  
 423 occlusion (i.e., larger threshold values  $t$ ). The results, shown in Figure 7, further substantiate the con-  
 424 clusion that our interpretable architecture consistently maintains, and in some instances enhances,  
 425 predictive accuracy. This also suggests that restricting the model’s input to the most salient patches,  
 426 as determined by the importance scores  $\mathbf{a}$ , effectively suppresses noise and mitigates the influence  
 427 of irrelevant information. For completeness, we also conducted a complementary experiment to  
 428 confirm that meaningful information is concentrated in patches identified as important, while such  
 429 information is absent from those deemed unimportant. Specifically, for a given threshold  $t$ , we oc-  
 430 cluded patches whose importance scores exceeded this threshold (modified, deletion-inspired PA).  
 431 The corresponding results are presented in Figure 8 and Figure 9. Information regarding the por-  
 432 tion of the image that is masked at different thresholds  $t$  can also be found in Tables 4 and 5 in  
 433 Appendix F.

| Dataset     | Method               | PA(16,0,0)<br>pretrained ResNet50 |               | PA(16,0,0)<br>non-pretrained ResNet50 |               |
|-------------|----------------------|-----------------------------------|---------------|---------------------------------------|---------------|
|             |                      | d                                 | IoU           | d                                     | IoU           |
| Oxford Pets | GradCAM              | 0.3216                            | 0.3819        | 0.3873                                | 0.4299        |
|             | GradCAM++            | 0.3134                            | 0.4227        | 0.3696                                | <b>0.4710</b> |
|             | Vanilla gradients    | 0.3300                            | 0.3626        | 0.3848                                | 0.4334        |
|             | SHAP                 | 0.3636                            | 0.3071        | 0.4077                                | 0.3725        |
|             | Occlusion            | 0.3789                            | 0.2722        | 0.4134                                | 0.2720        |
|             | Integrated gradients | 0.3523                            | 0.3107        | 0.4006                                | 0.3780        |
|             | Guided backprop      | 0.3859                            | 0.2636        | 0.4363                                | 0.2555        |
|             | RISE                 | 0.3659                            | 0.3988        | 0.4032                                | 0.4097        |
|             | B-cos                | 0.3362                            | 0.3289        | 0.4234                                | 0.3657        |
|             | Ours                 | <b>0.3065</b>                     | <b>0.4387</b> | <b>0.3065</b>                         | 0.4387        |
| CUB-200     | GradCAM              | 0.1902                            | 0.4979        | 0.3905                                | 0.4678        |
|             | GradCAM++            | <b>0.1849</b>                     | 0.5221        | 0.3819                                | 0.4928        |
|             | Vanilla gradients    | 0.2213                            | 0.4656        | 0.3403                                | 0.5173        |
|             | SHAP                 | 0.2304                            | 0.4176        | 0.3308                                | 0.4803        |
|             | Occlusion            | 0.2284                            | 0.3648        | 0.2999                                | 0.3991        |
|             | Integrated gradients | 0.2180                            | 0.4107        | 0.3183                                | 0.4568        |
|             | Guided backprop      | 0.2036                            | 0.3869        | 0.2529                                | 0.3712        |
|             | RISE                 | 0.2879                            | 0.4856        | 0.3582                                | 0.4554        |
|             | B-cos                | 0.2047                            | 0.4068        | 0.2997                                | 0.4016        |
|             | Ours                 | 0.2280                            | <b>0.5260</b> | <b>0.2280</b>                         | <b>0.5260</b> |

432  
433

Table 2: Accuracy comparison of architectures across datasets.

| Dataset       | IA( $p, k$ )                                 | EA( $p, k$ )                                                  | PA(16,0.0)<br><i>non-pretrained ResNet50</i>  | PA(16, $t$ )                                           |
|---------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|
| Oxford Pets   | $31.64 \pm 0.43\%$<br>( $p = 32, k = 32$ )   | $48.32\% \pm 1.78\%$<br>( $p = 32, k = 32$ )                  | $48.30\% \pm 1.82\%$<br>( $p = 32, k = 32$ )  | <b>49.86% <math>\pm 0.28\%</math></b><br>( $t = 0.2$ ) |
| Stanford Cars | $11.50\% \pm 1.10\%$<br>( $p = 32, k = 64$ ) | $57.35\% \pm 1.29\%$<br>( $p = 16, k = 32$ )                  | $62.90\% \pm 1.28\%$<br>( $p = 16, k = 32$ )  | <b>65.25% <math>\pm 1.60\%</math></b><br>( $t = 0.1$ ) |
| Imagenette    | $80.14\% \pm 0.09\%$<br>( $p = 56, k = 64$ ) | <b>90.02% <math>\pm 0.20\%</math></b><br>( $p = 56, k = 64$ ) | $88.67\% \pm 0.31\%$<br>( $p = 56, k = 64$ )  | $88.09\% \pm 0.94\%$<br>( $t = 0.1$ )                  |
| CUB-200       | $16.08\% \pm 1.20\%$<br>( $p = 16, k = 32$ ) | $40.39\% \pm 0.51\%$<br>( $p = 16, k = 128$ )                 | $34.69\% \pm 0.77\%$<br>( $p = 16, k = 128$ ) | <b>44.06% <math>\pm 1.04\%</math></b><br>( $t = 0.1$ ) |

442  
443  
444

445 The presented results deviate from state-of-the-art performance, as the models were relatively simple  
446 and trained from scratch. Since, in the case of PA, it is possible to employ any backbone, experiments  
447 with this architecture were conducted using two pre-trained models: ResNet50 and EfficientNetB4.  
448 The results obtained in this setting are, naturally, significantly better, and they are reported in Table 3.  
449 In this case, we restricted the evaluation to a single threshold  $t$ , while also providing information on  
450 the amount of occluded, non-essential image area. As can be observed, the results remain highly  
451 comparable even when a substantial portion of the image is masked (for  $t = 0.0$ , the model processes  
452 the entire image).

453  
454  
455  
456

Table 3: Accuracy of PA architecture for pretrained backbones across datasets.

| Dataset       | Mask   | PA(16,0.0)<br><i>pretrained ResNet50</i> | PA(16, $t$ )<br><i>pretrained ResNet50</i> | PA(16,0.0)<br><i>pretrained EfficientNetB4</i> | PA(16, $t$ )<br><i>pretrained EfficientNetB4</i> |
|---------------|--------|------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Oxford Pets   | 31.53% | $92.15\% \pm 0.25\%$<br>( $t = 0.1$ )    | $91.61\% \pm 0.40\%$<br>( $t = 0.1$ )      | $92.90\% \pm 0.25\%$<br>( $t = 0.1$ )          | $92.86\% \pm 0.22\%$<br>( $t = 0.1$ )            |
| Stanford Cars | 43.37% | $87.38\% \pm 0.12\%$<br>( $t = 0.1$ )    | $85.64\% \pm 0.43\%$<br>( $t = 0.1$ )      | $87.45\% \pm 0.11\%$<br>( $t = 0.1$ )          | $86.12\% \pm 0.08\%$<br>( $t = 0.1$ )            |
| Imagenette    | 44.92% | $97.93\% \pm 0.13\%$<br>( $t = 0.3$ )    | $92.92\% \pm 0.04\%$<br>( $t = 0.3$ )      | $99.62\% \pm 0.08\%$<br>( $t = 0.3$ )          | $96.61\% \pm 0.21\%$<br>( $t = 0.3$ )            |
| CUB-200       | 58.63% | $77.40\% \pm 0.86\%$<br>( $t = 0.1$ )    | $74.13\% \pm 0.36\%$<br>( $t = 0.1$ )      | $79.93\% \pm 0.20\%$<br>( $t = 0.1$ )          | $77.18\% \pm 0.25\%$<br>( $t = 0.1$ )            |

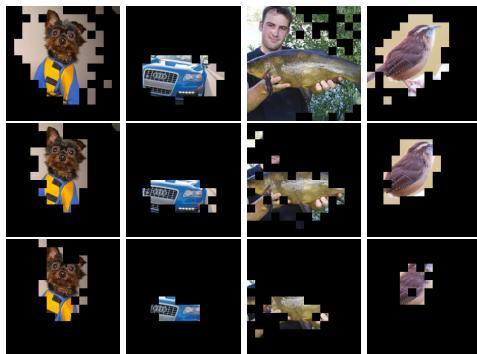


Figure 6: Example masked inputs for each dataset with 0.1, 0.5, 0.9 thresholds for original PA(16, $t$ ).

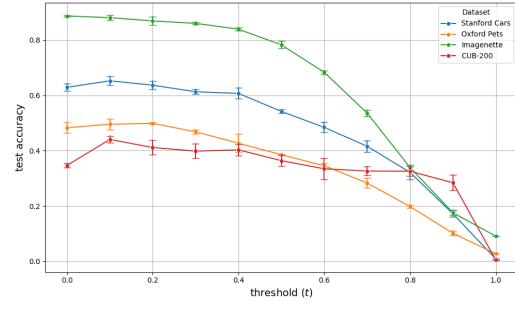
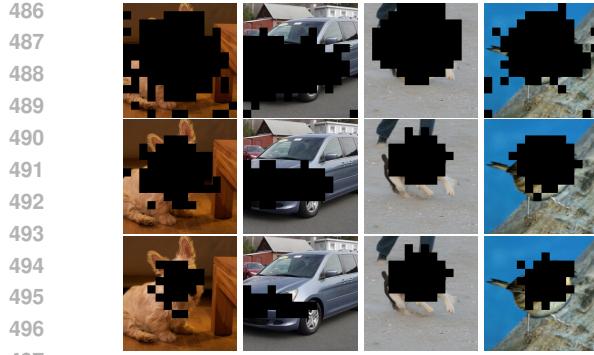
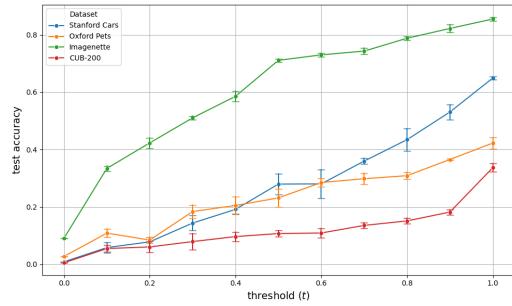


Figure 7: Accuracy at different thresholds for non-pretrained ResNet50 in original PA(16, $t$ ).



486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500

Figure 8: Example masked inputs for each dataset with 0.1, 0.5, 0.9 thresholds for modified PA(16,  $t$ ).



501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

Figure 9: Accuracy at different thresholds for non-pretrained ResNet50 in modified PA(16,  $t$ ).

## 5 CONCLUSION

We introduced a novel interpretable neural architecture that quantifies component importance intrinsically, eliminating the need for traditional post-hoc saliency map generation. Our method employs a two-stage training approach: first learning component-level relevance, then incorporating global context for better prediction. This design results in models that are both highly interpretable and effective, enabling faithful, stable, and semantically meaningful attribution. Experimental results across five benchmark datasets - Oxford Pets, Stanford Cars, Imagenette, CUB-200, and ImageNet demonstrate that our approach achieves strong performance across multiple axes. On Oxford Pets and CUB-200, it achieves the lowest segmentation difference ( $d = 0.3065$ ) and highest semantic alignment (0.4387 and 0.5260, respectively), outperforming standard saliency methods. Visualizations show sharper, class-relevant explanations, while classification accuracy remains high even with masked inputs. These results demonstrate that our model focuses on the most informative regions without sacrificing performance, offering a robust, transparent, and trustworthy framework for interpretable learning.

## REPRODUCIBILITY

To ensure the reproducibility of our results, we provide the complete source code and model weights at the following anonymous link: <https://drive.proton.me/urls/Z09Q9H3K74#UMceSW3CPGnP>. All experiments can be reproduced using these resources, including data pre-processing, training, and evaluation scripts.

## REFERENCES

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetraault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 4190–4197, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.385. URL <https://aclanthology.org/2020.acl-main.385/>.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity checks for saliency maps. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL [https://proceedings.neurips.cc/paper\\_files/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf).

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PLoS ONE*, 10, 2015. URL <https://api.semanticscholar.org/CorpusID:9327892>.

---

540 Moritz Böhle, Navdeepal Singh, Mario Fritz, and Bernt Schiele. B-cos alignment for inherently  
541 interpretable cnns and vision transformers. *IEEE Transactions on Pattern Analysis and Machine*  
542 *Intelligence*, 46(6):4504–4518, 2024. doi: 10.1109/TPAMI.2024.3355155.

543

544 Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-  
545 cam++: Generalized gradient-based visual explanations for deep convolutional networks. In *2018*  
546 *IEEE Winter Conference on Applications of Computer Vision (WACV)*, pp. 839–847, 2018. doi:  
547 10.1109/WACV.2018.00097.

548 Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In  
549 *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 782–791,  
550 2021. doi: 10.1109/CVPR46437.2021.00084.

551

552 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.  
553 This looks like that: Deep learning for interpretable image recognition. In H. Wal-  
554 lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*  
555 *vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,  
556 2019. URL [https://proceedings.neurips.cc/paper\\_files/paper/2019/file/adf7ee2dcf142b0e11888e72b43fc75-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/adf7ee2dcf142b0e11888e72b43fc75-Paper.pdf).

557

558 Ian C. Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: a unified framework for  
559 model explanation. *J. Mach. Learn. Res.*, 22(1), January 2021. ISSN 1532-4435.

560

561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-  
563 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at  
564 scale. *CoRR*, abs/2010.11929, 2020. URL <https://arxiv.org/abs/2010.11929>.

565

566 John Hewitt, John Thickstun, Christopher D. Manning, and Percy Liang. Backpack language mod-  
567 els. In *Proceedings of the Association for Computational Linguistics*. Association for Compu-  
568 tational Linguistics, 2023.

569

570 Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March  
571 2019. URL <https://github.com/fastai/imagenette>.

572

573 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained  
574 categorization. In *4th International IEEE Workshop on 3D Representation and Recognition*  
(3dRR-13), Sydney, Australia, 2013.

575

576 Himabindu Lakkaraju and Osbert Bastani. "how do i fool you?": Manipulating user trust via mis-  
577 leading black box explanations. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and*  
578 *Society*, AIES '20, pp. 79–85, New York, NY, USA, 2020. Association for Computing Machinery.  
ISBN 9781450371100. doi: 10.1145/3375627.3375833. URL <https://doi.org/10.1145/3375627.3375833>.

579

580 Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki.  
581 The dangers of post-hoc interpretability: Unjustified counterfactual explanations. In *Proceed-  
582 ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp.  
583 2801–2807. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:  
10.24963/ijcai.2019/388. URL <https://doi.org/10.24963/ijcai.2019/388>.

584

585 Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. In Jian Su, Kevin  
586 Duh, and Xavier Carreras (eds.), *Proceedings of the 2016 Conference on Empirical Methods*  
587 *in Natural Language Processing*, pp. 107–117, Austin, Texas, November 2016. Association for  
588 Computational Linguistics. doi: 10.18653/v1/D16-1011. URL <https://aclanthology.org/D16-1011/>.

589

590 Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning  
591 through prototypes: a neural network that explains its predictions. In *Proceedings of the Thirty-*  
592 *Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Arti-*  
593 *ficial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial*  
*Intelligence*, AAAI'18/IAAI'18/EAAI'18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

---

594 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.  
595 In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and  
596 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran  
597 Associates, Inc., 2017. URL [https://proceedings.neurips.cc/paper\\_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf).  
598

599 Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-  
600 grained image recognition. In *Proceedings of the IEEE/CVF conference on computer vision and*  
601 *pattern recognition*, pp. 14933–14943, 2021.  
602

603 Meike Nauta, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. PIP-Net: Patch-based in-  
604 tuitive prototypes for interpretable image classification. In *2023 IEEE/CVF Conference on Com-*  
605 *puter Vision and Pattern Recognition (CVPR)*, pp. 2744–2753, 2023. doi: 10.1109/CVPR52729.  
606 2023.00269.  
607

608 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE*  
609 *Conference on Computer Vision and Pattern Recognition*, 2012.  
610

611 Dipanjyoti Paul, Arpita Chowdhury, Xinqi Xiong, Feng-Ju Chang, David Edward Carlyn, Samuel  
612 Stevens, Kaiya L Provost, Anuj Karpatne, Bryan Carstens, Daniel Rubenstein, Charles Stewart,  
613 Tanya Berger-Wolf, Yu Su, and Wei-Lun Chao. A simple interpretable transformer for fine-  
614 grained image classification and analysis. In *The Twelfth International Conference on Learning*  
615 *Representations*, 2024. URL <https://openreview.net/forum?id=bkdWThqE6q>.  
616

617 Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of  
618 black-box models. *ArXiv*, abs/1806.07421, 2018. URL <https://api.semanticscholar.org/CorpusID:49324724>.  
619

620 Gregory Plumb, Maruan Al-Shedivat, Ángel Alexander Cabrera, Adam Perer, Eric Xing,  
621 and Ameet Talwalkar. Regularizing black-box models for improved interpretability. In  
622 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*  
623 *ral Information Processing Systems*, volume 33, pp. 10526–10536. Curran Associates, Inc.,  
624 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/770f8e448d07586afbf77bb59f698587-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/770f8e448d07586afbf77bb59f698587-Paper.pdf).  
625

626 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i trust you?": Explaining the  
627 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference*  
628 *on Knowledge Discovery and Data Mining*, KDD '16, pp. 1135–1144, New York, NY, USA,  
629 2016. Association for Computing Machinery. ISBN 9781450342322. URL <https://doi.org/10.1145/2939672.2939778>.  
630

631 Mattia Rigotti, Christoph Miksotic, Ioana Giurgiu, Thomas Gschwind, and Paolo Scot-  
632 ton. Attention-based interpretability with concept transformers. In *International Confer-*  
633 *ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=kAa9eDS0Rd0>.  
634

635 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions  
636 and use interpretable models instead. *Nat. Mach. Intell.*, 1(5):206–215, 2019. doi: 10.1038/  
637 S42256-019-0048-X. URL <https://doi.org/10.1038/s42256-019-0048-x>.  
638

639 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng  
640 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-  
641 Fei. Imagenet large scale visual recognition challenge, 2015. URL <https://arxiv.org/abs/1409.0575>.  
642

643 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,  
644 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-  
645 calization. *International Journal of Computer Vision*, 128(2):336–359, October 2019. ISSN  
646 1573-1405. doi: 10.1007/s11263-019-01228-7. URL <http://dx.doi.org/10.1007/s11263-019-01228-7>.  
647

---

648 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving  
649 for simplicity: The all convolutional net. In Yoshua Bengio and Yann LeCun (eds.), *3rd Inter-*  
650 *national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,*  
651 *2015, Workshop Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6806>.

652 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In  
653 *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, ICML'17,  
654 pp. 3319–3328. JMLR.org, 2017.

655 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. Cub-200-2011,  
656 Apr 2022.

657 Ethan Weinberger, Joseph Janizek, and Su-In Lee. Learning deep attribution priors based on  
658 prior knowledge. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural*  
659 *Information Processing Systems*, volume 33, pp. 14034–14045. Curran  
660 Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/a19883fca95d0e5ec7ee6c94c6c32028-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/a19883fca95d0e5ec7ee6c94c6c32028-Paper.pdf).

661 Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep learning. In  
662 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*  
663 *ral Information Processing Systems*, volume 33, pp. 5105–5114. Curran Associates, Inc.,  
664 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf).

665 Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi-  
666 Velez. Beyond sparsity: tree regularization of deep models for interpretability. In *Proceedings of*  
667 *the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applica-*  
668 *tions of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances*  
669 *in Artificial Intelligence*, AAAI'18/IAAI'18/EAAI'18. AAAI Press, 2018. ISBN 978-1-57735-  
670 800-8.

671 Weiqiu You, Helen Qu, Marco Gatti, Bhuvnesh Jain, and Eric Wong. Sum-of-parts: Self-attributing  
672 neural networks with end-to-end learning of feature groups. In *Forty-second International*  
673 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=r6y9TEdLMh>.

674 Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.  
675 In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8827–8836,  
676 2018. doi: 10.1109/CVPR.2018.00920.

677 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning Deep  
678 Features for Discriminative Localization . In *2016 IEEE Conference on Computer Vision and Pat-*  
679 *tern Recognition (CVPR)*, pp. 2921–2929, Los Alamitos, CA, USA, June 2016. IEEE Computer  
680 Society. doi: 10.1109/CVPR.2016.319. URL <https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.319>.

681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

---

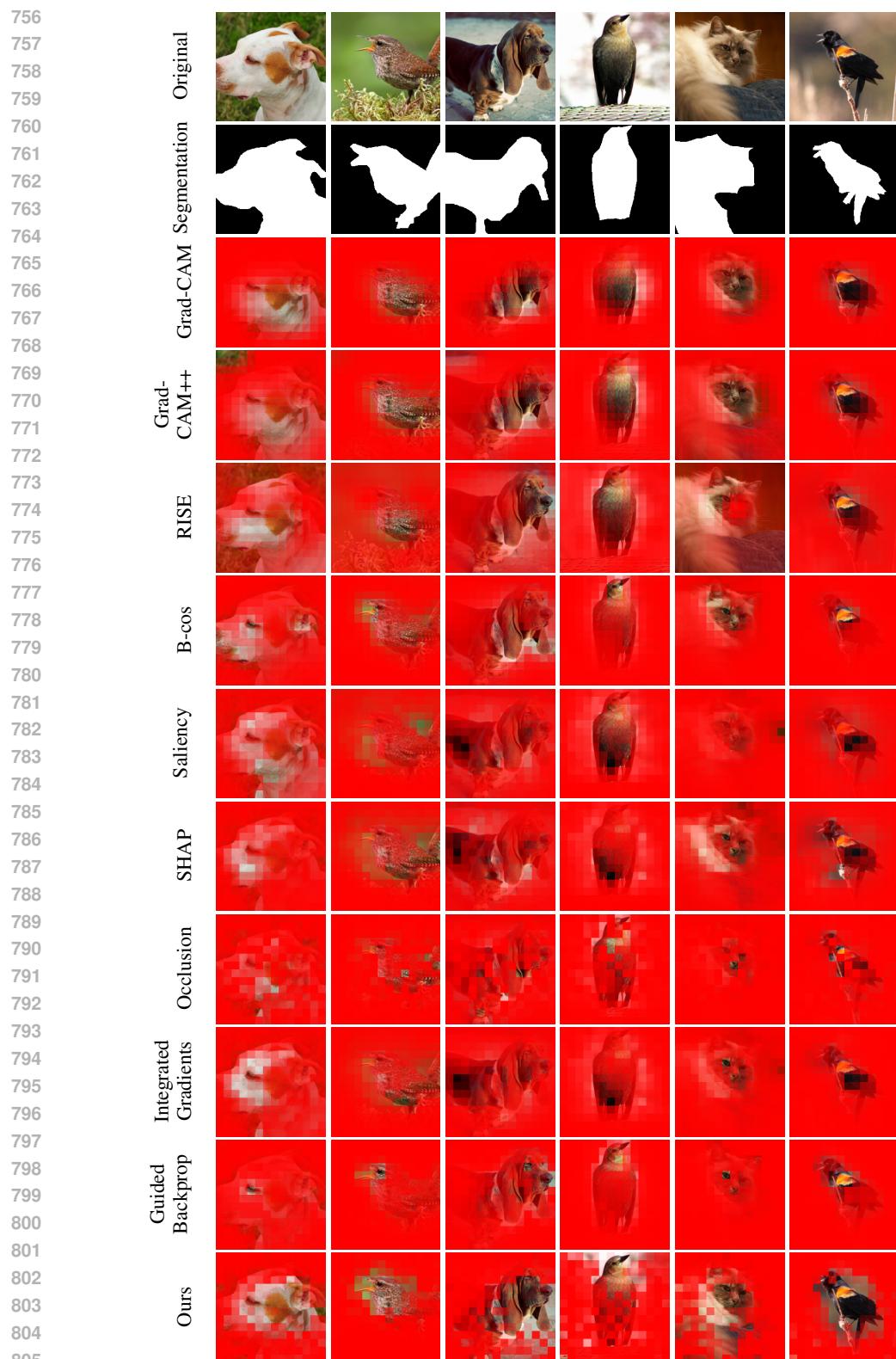
702     **A RATIONALE**  
703  
704

705 Explainable Artificial Intelligence (XAI) aims to address this challenge by providing insights into  
706 model behavior tailored to the needs of specific target audiences. Due to the diversity of applica-  
707 tion domains, model architectures, types of interpretability, and audience requirements, XAI has  
708 become a broad and heterogeneous research field encompassing numerous techniques that are diffi-  
709 cult to categorize in a unified framework. Nevertheless, it is relatively straightforward to distinguish  
710 between two extremes: fully interpretable models and black-box models. The former assume full  
711 transparency regarding model internals, with inherent simplicity that allows human users to under-  
712 stand the decision-making process. Examples include various forms of linear models, case-based  
713 inference and decision trees or rule-based systems. Given their transparent structure, it is gener-  
714 ally feasible to trace the reasoning process and identify which input features are most influential in  
715 determining the output. The main limitation in such cases arises when the input space is too high-  
716 dimensional or semantically complex for humans to interpret individual features meaningfully. In  
717 contrast, black-box models either offer no access to their internal mechanisms or are so complex  
718 that their internal logic is deemed intractable, even if technically accessible. For these models, two  
719 primary forms of post-hoc explanations are typically employed: local explanations, which aim to  
720 interpret individual model predictions, and global explanations, which attempt to characterize the  
721 model's overall behavior. Both approaches frequently rely on perturbation-based techniques, which  
722 analyze the model's output under systematically varied inputs. Alternatively, surrogate models, i.e.  
723 simple interpretable models trained to approximate the behavior of the original model, may be used.  
724 However, surrogate-based explanations tend to be reliable only in local regions of the input space,  
725 and even then, the surrogate's reasoning process may diverge significantly from that of the origi-  
726 nal model, potentially leading to misleading interpretations. As a result, the most commonly used  
727 strategies for establishing trust in black-box models are attribution methods (discussed in Section 2)  
728 and counterfactual explanations. Attribution methods estimate the contribution of individual input  
729 features to a specific prediction, while counterfactuals identify minimally modified inputs that would  
730 result in different model outputs. These explanation outputs are evaluated by the intended users and  
731 compared against domain knowledge or expectations to assess the model's validity. Naturally, the  
732 effectiveness of both approaches is also constrained by the complexity of the input space, which  
733 may limit interpretability.

732 Fully interpretable models are typically relatively simple and tend to underperform on complex  
733 tasks. Moreover, there is growing criticism in the literature concerning the validity of explanations  
734 for black-box models, including a lack of trust in the resulting attributions Rudin (2019); Lakkaraju  
735 & Bastani (2020); Laugel et al. (2019). Fortunately, between the two extremes outlined above, there  
736 exists a broad spectrum of intermediate approaches. These approaches, which have at least partial  
737 access to model internals, can offer additional cues that facilitate the explanation process. Such cues  
738 may arise naturally from built-in mechanisms inherent to the model architecture. For instance, con-  
739 volutional neural networks (CNNs) were originally designed to emulate certain functional principles  
740 of the human visual system and are thus capable of progressively extracting semantic features across  
741 layers. When appropriately disentangled, these intermediate representations can be used to derive  
742 pixel-level attributions. Similarly, in vision transformers (ViTs), attention coefficients are explic-  
743 itely designed to capture the relative importance of different input components and can be leveraged  
744 for interpretability purposes in an analogous way. However, those cues may be also deliberately  
745 incorporated by model designers (as discussed in Section 2), which is done in this work.  
746

747     **B EXAMPLES**  
748  
749

750 This section presents qualitative examples illustrating the behavior of our attribution methods and  
751 the masks generated from the learned importance maps. We first compare attribution maps produced  
752 by various interpretability techniques on both pretrained and non-pretrained models (Figures 10 and  
753 11). We then show original images alongside their masked counterparts across multiple datasets -  
754 Stanford Cars, Oxford Pets, Imagenette, CUB-200, and ImageNet (Figures 12–16). These examples  
755 demonstrate how our IA models highlight informative regions and how the resulting masks vary  
across datasets and model configurations.



806  
 807  
 808  
 809

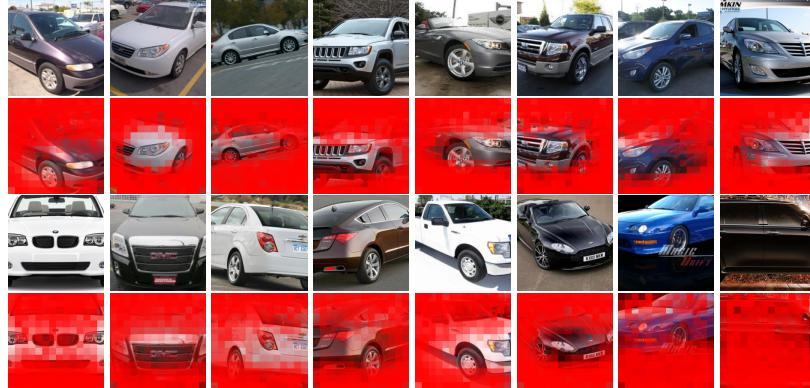
Figure 10: Visualizations of attribution maps for different methods on Oxford Pets and CUB-200 (pretrained model).



Figure 11: Visualizations of attribution maps for different methods on Oxford Pets and CUB-200 (non-pretrained model).



877 Figure 12: Original and masked images from Oxford Pets dataset. The first row shows the original  
878 images, while the second row displays the corresponding masked images. The masks are generated  
879 using the importance maps obtained from our IA(16,128) model.



896 Figure 13: Original and masked images from Stanford Cars dataset. The first row shows the original  
897 images, while the second row displays the corresponding masked images. The masks are generated  
898 using the importance maps obtained from our IA(16,128) model.



916 Figure 14: Original and masked images from Imagenette dataset. The first row shows the original  
917 images, while the second row displays the corresponding masked images. The masks are generated  
918 using the importance maps obtained from our IA(16,128) model.



918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Figure 15: Original and masked images from CUB-200 dataset. The first row shows the original images, while the second row displays the corresponding masked images. The masks are generated using the importance maps obtained from our IA(32,32) model.



950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Figure 16: Original and masked images from ImageNet dataset. The first row shows the original images, while the second row displays the corresponding masked images. The masks are generated using the importance maps obtained from our IA(16,128) model.

## C SCALABILITY

957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
To assess the scalability of our method, we conducted experiments on the challenging ImageNet dataset, using a model configuration with  $p = 16$  and  $k = 128$ , chosen to balance computational feasibility with representational capacity. The results, shown in Figure 17, reveal that our learned importance maps consistently focus on semantically meaningful regions. These masks concentrate on primary objects suppressing irrelevant background details. This behavior demonstrates that the model effectively acquires a notion of visual importance aligned with human perception.



Figure 17: Original and masked images from ImageNet dataset for IA(16,128)

972 To evaluate how much input information can be removed without harming performance, we in-  
973 troduced sparsity by thresholding the importance values. A threshold of  $t = 0.01$  was selected,  
974 which on average masks 17% of each image in the ImageNet test set. As illustrated in Figure 18,  
975 the thresholded images retain their structural and semantic clarity, suggesting that a small subset of  
976 highly informative pixels is sufficient to preserve task-relevant content.



977  
978  
979 Figure 18: Images from ImageNet dataset for PA(16,0.01).  
980  
981  
982

983 Performance results further highlight the significance of architectural choices. The IA(16,128)  
984 model, which learns solely from feature of local components without access to any global con-  
985 text, achieved accuracy of 37.35%. This result demonstrates that while localized importance cues  
986 are informative, they are insufficient on their own for high-level visual understanding. To address  
987 this limitation, we trained EA(16,128), which augments the model with a global information. This  
988 version markedly improves performance, reaching accuracy of 55.78%, confirming that even lim-  
989 ited contextual modeling enhances the system’s ability to interpret images more holistically. It is  
990 worth noting that the EA model remains shallow and compact, and its performance could be further  
991 boosted by increasing its depth or employing more sophisticated architectural components.  
992  
993

994 The most compelling outcome comes from the PA models, which incorporates both global context  
995 and refined attention, operating on the thresholded input at  $t = 0.01$ . Despite discarding a substantial  
996 portion of each image, this configuration achieves accuracy of 75.42%, matching that of a standard  
997 ResNet50 baseline equivalent with PA(16,0.0) and coming close to the ViT-B/16 Dosovitskiy et al.  
998 (2020), which achieved 77.91% with a higher image resolution and more than 3 times the number of  
999 parameters. This outcome is particularly noteworthy because it confirms that the PA model not only  
1000 captures the essential semantic content of the images, but does so efficiently and sparsely, without  
1001 relying on the full input signal. The PA results thus serve as strong evidence that the importance  
1002 maps generated by our method are both meaningful and actionable even for large scale datasets.  
1003  
1004  
1005

## 1006 D SPARSITY 1007

1008  
1009 Sparsity quantifies how selectively the model utilizes image patches, directly influencing inter-  
1010 pretability. A lower sparsity score indicates that the model focuses on fewer, more relevant patches,  
1011 which is desirable for interpretability. We define the sparsity metric as the average importance scores  
1012 across all patches and images:

$$1013 \\ 1014 s = \frac{\sum_{j=1}^T \sum_{i=1}^N a_i^j}{T \cdot N} \quad (2)$$

1015  
1016  
1017  
1018

1019 Figure 19 illustrates how sparsity varies across datasets and patch sizes, revealing a clear inverse re-  
1020 lationship: as patch size increases, sparsity decreases. Smaller patches tend to yield higher sparsity  
1021 scores, suggesting that the model is more selective and focuses on finer image details. In con-  
1022 trast, larger patches result in lower sparsity because the model distributes importance across fewer,  
1023 broader regions, reducing the need for selective focus. Additionally, this metric is valuable because  
1024 lower sparsity values show that the model uses only a few important features, making it easier to  
1025 distinguish between relevant and irrelevant regions. This focused attention improves interpretability  
and helps the model generalize better.

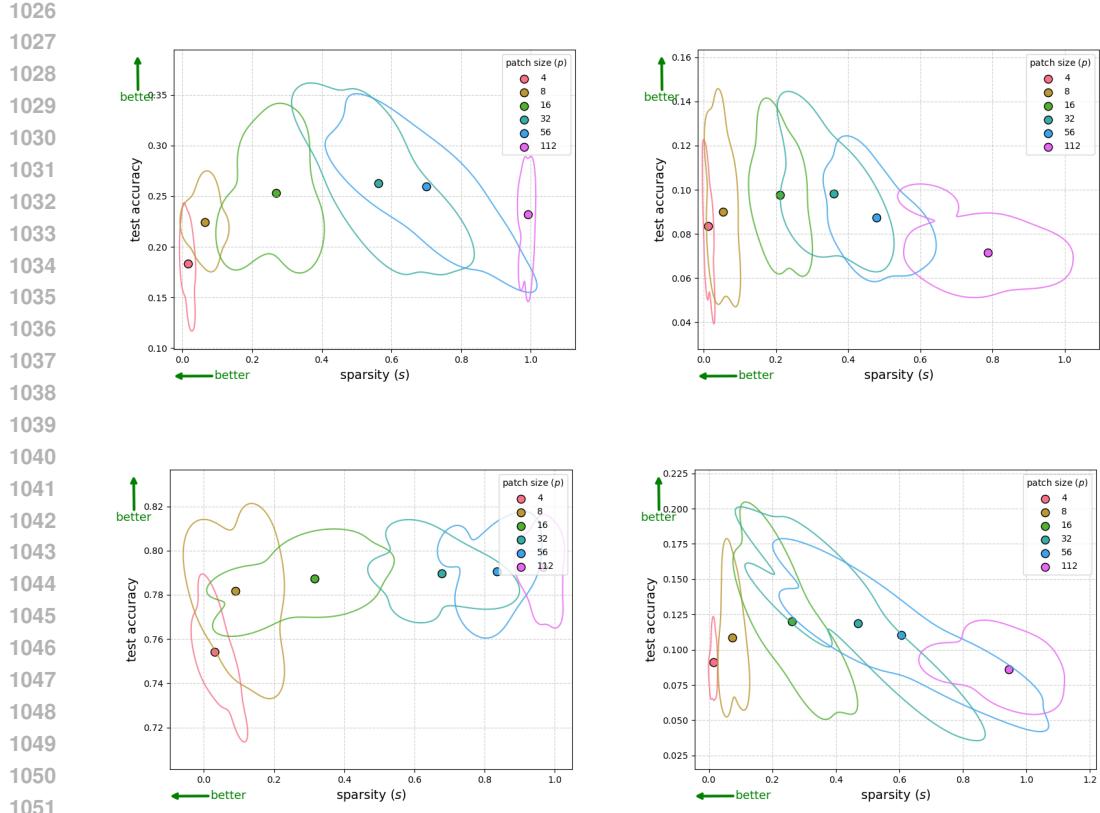


Figure 19: Kernel density estimate plots of accuracy versus sparsity for Oxford Pets, Stanford Cars, Imagenette and CUB-200 datasets from multiple IA experiment runs with color indicating patch size.

## E REPRODUCIBILITY

Reproducibility quantifies model stability across random initializations by measuring standard deviation of importance scores. For each test sample  $j$  and patch  $i$ , we compute the standard deviation  $SD$  of its importance scores  $a_i^j$  and define reproducibility metric as:

$$r = \frac{\sum_{j=1}^T \sum_{i=1}^N SD(a_i^j)}{T \cdot N} \quad (3)$$

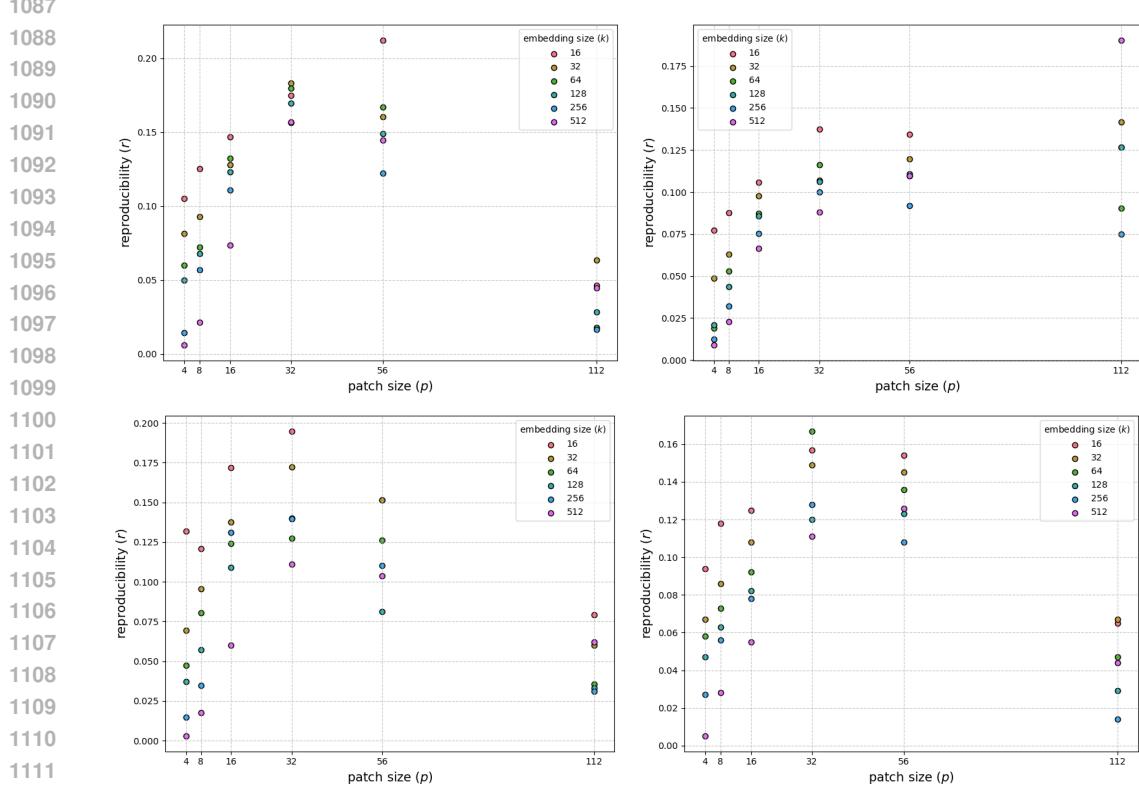
Lower values indicate higher reproducibility - model importance maps remain stable despite random initialization changes. This metric reveals whether learned explanations reflect consistent patterns versus seed-dependent artifacts. The example values of reproducibility are shown in Figure 20 and Figure 21.



Figure 20: Example of reproducibility from Oxford Pets IA(32,128) with standard deviation  $r = 0.06$

Figure 21: Example of reproducibility from Stanford Cars IA(16,128) with standard deviation  $r = 0.02$

1080 Results presented on Figure 22 across different embedding sizes and patch sizes demonstrate low  
 1081 standard deviation, which suggest that the model is able to learn stable importance maps. We see  
 1082 a particularly low standard deviation (under 0.1) for small patch sizes, suggesting that the model’s  
 1083 reproducibility is more stable and consistent when finer-grained spatial information is preserved, in  
 1084 the case of larger patches, the deviation is higher due to the many elements contained in one patch.  
 1085 It is also worth noting that larger embedding sizes (e.g., 512) tend to result in a smaller standard  
 1086 deviation, suggesting a more stable training process.



1100  
 1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114 Figure 22: Reproducibility of importance scores across different patch sizes and embedding sizes  
 1115 for Oxford Pets, Stanford Cars, Imagenette and CUB-200 datasets.

## 1116 F CAUSALITY

1119 In the case of the EA architecture, there exists a possibility that the network might ignore the patch-  
 1120 importance information and, by appropriately adjusting the weights of ComponentNet and Con-  
 1121 textNet, recover the masked content. To test whether this model genuinely relies on the importance  
 1122 scores produced by the IA, we conducted insertion/deletion-style experiments. While there are sev-  
 1123 eral differences between the proposed approach and the original definition of the insertion/deletion  
 1124 metrics introduced in Petsiuk et al. (2018) and further generalized in Covert et al. (2021), the overall  
 1125 idea and the ability to assess the causality of the evaluated importance masks are preserved. These  
 1126 differences include:

- 1127 • Instead of zeroing out pixel values, we remove (zero) the embeddings. However, since the  
 1128 same ComponentNet module processes all patches, zeroing pixels would effectively also  
 1129 erase the information contained in the corresponding embeddings.
- 1130 • For the insertion score, the standard procedure adds regions starting from the most impor-  
 1131 tant. We simply reverse the order and remove regions beginning with the least important.  
 1132 Similarly, for the deletion score, rather than removing regions from the most important, we  
 1133 reveal the least important ones. This modification only alters the order of value computation  
 without changing the underlying metric.

- In the original method, a region of fixed size is added or removed at each step, which can influence the amount of information revealed or hidden depending on object sizes. To mitigate this, we reveal or hide patches whose importance scores exceed successive thresholds  $t$  at each step.
- To allow comparison across individual images and entire datasets, the original approach condensed the step-wise model performance into a single number via AUC computation. We retain the raw values instead, analyzing them directly.
- In the original work, model performance was measured either by the probability of either predicted or expected label. To avoid this choice and provide a holistic assessment of the model’s response, we simply measure whether each prediction is correct. Averaging these values over the dataset corresponds to computing step-wise accuracy.

In summary, for each patch  $i$ , the learned importance score  $a_i$  was compared against a threshold  $t$ . In the insertion setting, all patches with  $a_i < t$  were zeroed, ensuring that the EA operated without receiving semantic information from patches deemed irrelevant by the IA. In the deletion setting, all patches were initially removed and then progressively restored in order of increasing importance. Consequently, all patches with  $a_i > t$  were zeroed, and the model operated solely on patches considered irrelevant.

Table 4: Effect of removing low-importance patches on accuracy (insertion-inspired evaluation) for EA(16,128).

| $t$ | Imagenette |          | Oxford Pets |          | Stanford Cars |          | CUB-200 |          |
|-----|------------|----------|-------------|----------|---------------|----------|---------|----------|
|     | Acc (%)    | Mask (%) | Acc (%)     | Mask (%) | Acc (%)       | Mask (%) | Acc (%) | Mask (%) |
| 0.0 | 88.38      | 0.00     | 49.99       | 0.00     | 55.91         | 0.00     | 39.92   | 0.00     |
| 0.1 | 88.38      | 4.87     | 49.88       | 31.53    | 54.94         | 43.37    | 39.02   | 58.63    |
| 0.2 | 87.92      | 21.12    | 49.33       | 46.31    | 53.08         | 58.28    | 37.76   | 71.53    |
| 0.3 | 85.61      | 44.92    | 48.32       | 56.90    | 50.14         | 68.03    | 35.88   | 78.73    |
| 0.4 | 80.33      | 67.34    | 47.40       | 65.52    | 46.05         | 75.13    | 33.21   | 83.59    |
| 0.5 | 69.25      | 82.74    | 45.27       | 72.86    | 40.82         | 80.73    | 30.14   | 87.28    |
| 0.6 | 51.49      | 91.83    | 41.84       | 79.46    | 34.68         | 85.39    | 27.13   | 90.27    |
| 0.7 | 34.01      | 96.66    | 37.48       | 85.23    | 27.27         | 89.50    | 23.54   | 92.82    |
| 0.8 | 20.15      | 98.98    | 29.98       | 90.55    | 19.04         | 93.30    | 18.05   | 95.14    |
| 0.9 | 11.75      | 99.86    | 19.43       | 95.59    | 9.05          | 96.97    | 11.87   | 97.44    |
| 1.0 | 9.94       | 100.00   | 2.73        | 100.00   | 0.52          | 100.00   | 0.50    | 100.00   |

Table 5: Effect of adding low-importance patches on accuracy (deletion-inspired evaluation) EA(16,128).

| $t$ | Imagenette |          | Oxford Pets |          | Stanford Cars |          | CUB-200 |          |
|-----|------------|----------|-------------|----------|---------------|----------|---------|----------|
|     | Acc (%)    | Mask (%) | Acc (%)     | Mask (%) | Acc (%)       | Mask (%) | Acc (%) | Mask (%) |
| 0.0 | 9.94       | 100.00   | 2.73        | 100.00   | 0.52          | 100.00   | 0.50    | 100.00   |
| 0.1 | 13.17      | 95.13    | 6.56        | 68.47    | 2.50          | 56.63    | 4.40    | 41.37    |
| 0.2 | 36.51      | 78.88    | 12.79       | 53.69    | 6.37          | 41.72    | 7.66    | 28.47    |
| 0.3 | 64.74      | 55.08    | 17.90       | 43.10    | 10.08         | 31.97    | 10.98   | 21.27    |
| 0.4 | 78.24      | 32.66    | 22.30       | 34.48    | 15.73         | 24.87    | 14.52   | 16.41    |
| 0.5 | 83.34      | 17.26    | 26.13       | 27.14    | 20.95         | 19.27    | 17.38   | 12.72    |
| 0.6 | 86.19      | 8.17     | 30.25       | 20.54    | 26.44         | 14.61    | 20.59   | 9.73     |
| 0.7 | 86.98      | 3.34     | 33.87       | 14.77    | 33.38         | 10.50    | 24.11   | 7.18     |
| 0.8 | 87.52      | 1.02     | 37.57       | 9.45     | 42.04         | 6.70     | 28.24   | 4.86     |
| 0.9 | 88.35      | 0.14     | 43.39       | 4.41     | 52.63         | 3.03     | 32.55   | 2.56     |
| 1.0 | 88.38      | 0.00     | 49.99       | 0.00     | 55.91         | 0.00     | 39.92   | 0.00     |

The results are summarized in Tables 4 and 5. Insertion-inspired experiments show that removing low importance patches leads to only slight drops in accuracy until a large fraction of patches is discarded (e.g., Imagenette remains at 87.9% accuracy even when 21% of patches are masked). Deletion-inspired experiments, in contrast, start from an empty image and gradually recover performance as patches are reintroduced in order of increasing importance. Adding the least important patches produces little to no accuracy gain (e.g., Imagenette remains below 20% even after 30% of patches are restored), while accuracy only rises sharply once the most important patches are included. For Imagenette, performance eventually reaches 88.35% when less than 1% of patches remain masked, essentially matching the baseline. Similar recovery dynamics are observed across Oxford Pets, Stanford Cars, and CUB-200. These findings confirm that the importance masks are

---

1188 causally linked to decision-making: irrelevant patches can be discarded with minimal cost, while  
1189 accurate predictions emerge only when the patches identified as important by IA are restored.  
1190

1191 **G LIMITATIONS**  
1192

1193 Our experiments on Oxford Pets, Stanford Cars, Imagenette, CUB-200 and ImageNet show that the  
1194 proposed architecture achieves strong interpretability, semantic alignment, and predictive perfor-  
1195 mance. The learned importance maps are reproducible, semantically meaningful, and often improve  
1196 classification. However, certain design aspects suggest opportunities for refinement. In binary clas-  
1197 sification tasks, ImportanceNet can produce overly polarized maps, with values clustered near 0.0  
1198 or 1.0 reflecting confident attribution but potentially limiting interpretability by obscuring intra-  
1199 class variation. This is more evident in low-complexity tasks, where the model’s capacity may  
1200 be excessive. More compact ImportanceNet variants could address this by preserving finer-grained  
1201 attributions without sacrificing performance. Additionally, our second-stage module, ContextNet,  
1202 effectively captures global context but is limited in flexibility. Replacing it with transformer-based  
1203 attention or graph neural networks may improve modeling of long-range dependencies and relational  
1204 structure, enhancing both accuracy and interpretability - especially in tasks involving hierarchical  
1205 or topological relationships. Finally, when adopting approaches that leverage knowledge derived  
1206 from IA, such as the multiplication by importance scores used in EA, it is important to note that the  
1207 unfrozen parts of the model may circumvent the reliance on importance masks. This is possible,  
1208 for instance, because the sigmoid function never attains a value of 0.0, and thus multiplication does  
1209 not completely eliminate information associated with irrelevant image regions. In such cases, the  
1210 application of these masks should be validated using causality metrics in a manner similar to that  
1211 described in Appendix F.  
1212

1212 **H FUTURE WORK**  
1213

1214 The proposed method, in its first stage, focuses on the independent evaluation of all components in  
1215 order to eliminate the influence of mutual spatial relationships on the computed patch embeddings.  
1216 This is a deliberate design choice, intended to enable future independent assessment of which re-  
1217 lationships between components are taken into account (i.e., deemed relevant) during the model’s  
1218 operation. Such an approach will allow for uncovering which component structures carry signifi-  
1219 cance and provides a stronger foundation for validating the credibility of the model’s decisions.  
1220

1221 Additionally, while this work focuses on image data, the framework itself is modality-agnostic and  
1222 generalizes to structured inputs such as sequences or graphs. In particular, less regular image repre-  
1223 sentations than a grid of patches may be considered. Adaptation to other domains primarily requires  
1224 the selection of appropriate architectures for processing components (ComponentNet) and global  
1225 structure (ImportanceNet, ContextNet), such as the graph- and transformer-based neural networks,  
1226 recurrent neural networks, or standard multi-layer perceptrons, depending on the characteristics of  
1227 the input representation. Future work will investigate these extensions to further validate the frame-  
1228 work’s general-purpose applicability to interpretable learning on data with inherent structure.  
1229

1229 **I USE OF LLMs**  
1230

1231 We used a large language model solely for text polishing and improving clarity in the manuscript.  
1232 No LLM outputs were used in any experiments, model training, or evaluation, ensuring that all  
1233 results are independent of LLM assistance.  
1234

1235 **J LICENSES**  
1236

1237 Oxford Pets Parkhi et al. (2012) - Creative Commons Attribution-ShareAlike 4.0 International Li-  
1238 cense; Stanford Cars Krause et al. (2013) - Apache License, Version 2.0; Imagenette Howard (2019)  
1239 - Apache License, Version 2.0; CUB-200 Wah et al. (2022) - Apache License, Version 2.0; ImageNet  
1240 Russakovsky et al. (2015) - Custom non-commercial license.  
1241