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Figure 1: We present LucidFlux, a universal image restoration framework built on a large-scale
diffusion transformer that delivers photorealistic restorations of real-world low-quality (LQ) images,
outperforming state-of-the-art (SOTA) diffusion-based models across diverse degradations.

ABSTRACT

Universal image restoration (UIR) aims to recover images degraded by unknown
mixtures while preserving semantics—conditions under which discriminative re-
storers and UNet-based diffusion priors often oversmooth, hallucinate, or drift.
We present LucidFlux, a caption-free UIR framework that adapts a large dif-
fusion transformer (Flux.1) without image captions. Our LucidFlux introduces
a lightweight dual-branch conditioner that injects signals from the degraded in-
put and a lightly restored proxy to respectively anchor geometry and suppress
artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed
to route these cues across the backbone’s hierarchy, in order to yield coarse-to-
fine and context-aware updates that protect the global structure while recover-
ing texture. After that, to avoid the latency and instability of text prompts or
MLLM captions, we enforce caption-free semantic alignment via SigLIP features
extracted from the proxy. A scalable curation pipeline further filters large-scale
data for structure-rich supervision. Across synthetic and in-the-wild benchmarks,
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our LucidFlux consistently outperforms strong open-source and commercial base-
lines, and ablation studies verify the necessity of each component. LucidFlux
shows that, for large DiTs, when, where, and what to condition on—rather than
adding parameters or relying on text prompts—is the governing lever for robust
and caption-free universal image restoration in the wild.

1 INTRODUCTION

Images acquired in the wild exhibit mixed, unknown degradations—sensor noise, motion blur, lens
aberrations, compression artifacts—that erode perceptual fidelity and induce semantic drift in recog-
nition and analysis. Universal image restoration (UIR) seeks to reconstruct images with high per-
ceptual fidelity while preserving semantic consistency under such uncertainty and without access
to degradation labels or side information. Despite steady progress, this combination of unknown
mixtures, realism, and semantic preservation remains stubbornly challenging.

Discriminative restorers based on CNNs and Transformers Dong et al. (2016); Liang et al. (2021);
Zamir et al. (2022) perform well on synthetic distortions but falter on in-the-wild mixtures, often
oversmoothing textures or leaving visible artifacts. This gap has motivated generative approaches
that leverage diffusion-based text-to-image priors to synthesize plausible structure and detail beyond
the reach of purely discriminative models Yu et al. (2024); Ai et al. (2024); Wu et al. (2024b); Wang
et al. (2024a;b); Yue et al. (2023); Wu et al. (2024a); Lin et al. (2025). Yet most such systems rely
on Stable Diffusion (SD) UNet backbones Rombach et al. (2022): their capacity and inductive bias
saturate under complex degradations, making it difficult to recover fine detail while maintaining
global structure—suggesting the need to look beyond UNet-based designs.

Recent advances in diffusion transformers (DiTs) open a promising avenue. In contrast to UNet
architectures, DiTs employ attention-centric backbones that more effectively couple global context
with local detail and carry richer generative priors. For instance, DreamClear Ai et al. (2024) builds
on PixArt-a Chen et al. (2023), a relatively small (0.6B) DiT, illustrating the promise of transformer
backbones for restoration. However, their limited scale constrains robustness to mixed, real-world
degradations and impedes the concurrent recovery of global structure and fine detail. Large-scale
diffusion transformers such as Flux.1 Labs (2024) deliver strong modeling capacity for universal
restoration, yet direct transfer rarely works off-the-shelf. Previous ControlNet-style conditioning
methods Yu et al. (2024); Ai et al. (2024); Zhang et al. disrupt the parameter—structure balance
and underutilize the backbone’s temporal and hierarchical division of labor. Unconstrained injection
of degraded observations amplifies artifacts; relying on VLM-generated captions further increases
latency and risks semantic drift'. Meanwhile, backbones at this scale are decisively data-limited:
gains follow data—compute scaling only when trained on curated, large-scale, high-quality sets.
Public web corpora fall short for UIR—they skew toward aesthetic, compression-heavy images,
contain substantial near-duplicates and low-information frames, and rarely cover the long-tail mix-
tures of real degradations or provide usable pairs. Without rigorous filtering and structure-aware
selection, large DiTs underutilize capacity and overfit spurious artifacts, underscoring the need for
an explicit curation pipeline. Taken together, these tensions point to a more structured path, one that
schedules conditioning across timesteps and layers, couples robust input handling with caption-free
inference, and remains practical to assemble on available datasets.

To operationalize this path, we introduce LucidFlux, a caption-free UIR framework that adapts the
large-scale Flux.1 diffusion transformer to restoration. The core of our LucidFlux is a lightweight
dual-branch conditioner—a two-block transformer module that injects signals from the degraded
input without inflating the parameters. One branch ingests the low-quality image to anchor the
geometry and layout, while the other consumes a lightly restored proxy to suppress hard artifacts;
their outputs are scheduled through a timestep- and layer-adaptive modulation that aligns guidance
with the backbone’s hierarchical roles, yielding coarse-to-fine, context-aware updates that preserve
texture while protecting global structure. To avoid the latency and drift introduced by text prompts,
we enforce semantic consistency via caption-free alignment with SigLIP, extracting semantic cues
directly from the proxy. We pair the model with an automated three-stage curation pipeline—blur

'Appendix Sec. A.l quantifies the prevalence of degradation-related terms in MLLM captions, and Ap-
pendix Fig. 5 demonstrates how such bias can misguide restoration.
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detection, flat-region filtering, and perceptual quality scoring—to assemble diverse training sets at
the billion-parameter scale.

Our contributions are as follows:

* LucidFlux framework. We adapt a large diffusion transformer (Flux.1) to UIR with a
lightweight dual-branch conditioner and timestep- and layer-adaptive modulation, aligning
conditioning with the backbone’s hierarchical roles while keeping less trainable parameters.

* Caption-free semantic alignment. A Sigl.IP-based module preserves semantic consis-
tency without prompts or captions, mitigating latency and semantic drift.

* Scalable data curation pipeline. A reproducible, three-stage filtering pipeline yields di-
verse, structure-rich datasets that scale to billion-parameter training.

 State-of-the-art results. LucidFlux sets new SOTA on a broad suite of benchmarks and
metrics, surpassing competitive open- and closed-source baselines; ablation studies confirm
the necessity of each module.

2 RELATED WORK

Generative Priors for UIR. Large-scale pretrained generative models, particularly text-to-image
diffusion transformers Rombach et al. (2022); Podell et al. (2023), have shown strong capability in
synthesizing high-fidelity textures and structures for image restoration. Existing approaches build
on different backbones, with SUPIR Yu et al. (2024) using SDXL, DreamClear Ai et al. (2024)
relying on PixArt-a Chen et al. (2023), StableSR on SD, SeeSR on SD2, and Resshift Yue et al.
(2023) and SinSR Wang et al. (2024b) trained from scratch. While these methods perform well on
their respective backbones, they struggle to scale as text-to-image models continue to grow in size,
limiting both their performance and expressive capacity. Addressing these challenges, we propose
LucidFlux, a universal image restoration framework built on the large-scale Flux.1 backbone, which
leverages richer generative priors and greater expressive capacity.

Semantic Alignment. Preserving semantic fidelity during image restoration remains a significant
challenge. Existing methods often rely on generating captions from degraded images using vi-
sion—language models at inference time Yu et al. (2024); Ai et al. (2024); Kong et al. (2025), which
introduces additional computational cost and may produce inconsistencies between training and in-
ference. Alternative strategies employ coarse textual cues Wu et al. (2024b;a), but such signals are
generally insufficient to capture fine-grained semantic content. In contrast, LucidFlux leverages a
SigLIP-based semantic alignment module that extracts rich semantic representations directly from
lightly restored images, facilitating caption-free guidance and ensuring that restored outputs main-
tain high semantic consistency without hallucinations.

3 METHODOLOGY

Our framework is built upon a Flux-based DiT backbone, augmented with two parallel ControlNet
branches. The first branch processes the original low-quality image (LQ), while the second branch
takes a lightly restored version of the input (LRP) generated by a lightweight restoration model. Both
streams capture complementary information, which is subsequently modulated through timestep-
and layer-adaptive modules to align with the DiT feature space. Moreover, we incorporate semantic
priors extracted from SigL.IP and enhanced with a connector, which are injected into the DiT layers
to facilitate semantic consistency and fine-grained texture restoration.

Practically, we eschew inference-time captions: Appendix Sec. A.l quantifies that 17-24% of
MLLM captions introduce degradation-related terms, and Appendix Fig. 5 shows such bias mis-
guides restoration, degrading perceptual quality.

3.1 LIGHTWEIGHT DUAL-BRANCH CONDITIONER

Directly conditioning on the low-quality (LQ) image preserves high-frequency details but often
leaks residual artifacts under mixed degradations; conditioning on a lightly restored proxy (LRP)
suppresses artifacts but tends to oversmooth textures. Following the dual-branch paradigm proposed
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Figure 2: Overview of the proposed architecture for universal image restoration. Our method inte-
grates dual condition streams (LQ and LRP) with timestep- and layer-adaptive modulation modules,
and incorporates SigLIP semantic priors through a connector into a Flux-based DiT backbone to
jointly enhance perceptual quality and semantic consistency.

in Ai et al. (2024), we therefore decouple structure anchoring and artifact suppression into two
signals and encode them with a minimal-overhead conditioner that interfaces with the Flux.1 DiT
backbone without duplicating large blocks. As illustrated in the top-right of Fig. 2, only the core
conditioning pathway is shown for clarity, while other components such as timestep embeddings
remain consistent with Flux. Throughout, the Flux.1 backbone and VAE remain frozen for stability
and efficiency. The output feature map I gp of the LRP is computed by:

ILRP = LRP(ILQ) (1)
Both I1 g and I; rp are mapped by the shared Flux.1 VAE encoder E into latents
a X w xd
210 = E(lLo), 2zire = E(Iirp), zeRs™ s ™7, 2

where s is the VAE downsampling factor and d the latent width. The Dual-Branch Conditioner
(DBC) then converts each latent into compact conditioning tokens via a two-block MMDiT applied
at latent resolution,

¢Lq = DBC(2Lq), ¢rre = DBC(z1rp), 3)
where DBC patchifies the VAE latent and projects patches into a 2D-positioned sequence before two
stacked transformer blocks; weights are not shared across branches, as the LQ stream emphasizes
detail-preserving, noise-tolerant cues while the LRP stream favors structure-first, artifact-suppressed
representations. Using separate parameters avoids competing gradients and preserves branch com-
plementarity, while the conditioner remains minimal (two blocks per branch, constant overhead w.r.t.
layer depth and far smaller than ControlNet-style duplication of a large DiT). Intuitively, ¢rq car-
ries detail-preserving yet noisy cues, whereas ¢ gp provides artifact-robust structure; the subsequent
timestep- and layer-adaptive condition modulation (Sec. 3.2) consumes these two complementary
signals for coarse-to-fine, context-aware guidance without increasing the conditioner’s footprint.

3.2 TIMESTEP- AND LAYER-ADAPTIVE CONDITION MODULATION

Diffusion transformers exhibit a temporal-hierarchical division of labor: early timesteps reconstruct
coarse structures while later ones refine high-frequency details; similarly, shallower layers capture
low-level edges and deeper layers process semantics Park et al. (2023); Qian et al. (2024). Applying
identical conditioning across all timesteps and layers risks redundancy or conflict.
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We therefore modulate the outputs of the dual-branch conditioner (DBC) in a way that is adaptive
to both timestep t and layer index | while keeping the heavy Flux.1 backbone frozen. Let ¢1,q and
¢rrp denote the features produced by DBC from the low-quality input (LQ) and the lightly restored
proxy (LRP). A lightweight modulation head takes sinusoidally encoded (t/7’, /L) and predicts
feature-wise (per-channel) scale and bias for each branch independently:

all, Bt = Modulationd(PE(t/T, I/L)), e € {LQ,LRP}, o, gL’ € R%. 4)
These parameters effect an AdaptiveLN-style adjustment,
q}iéz = a}:éz © dLq + ﬁi’é’ P = Ofhp © SLRP + Blips o)
We then fuse the branches without additional normalization via a feature-wise convex mixture:

7" = o(Gate(PE(t/T, I/1))), ~"' € (0,1)%,  Cond"' = 4" 0drq+(1-7"") @ dfpp.
(6)

Predicting a/3 per channel supplies sufficient flexibility to track the backbone’s roles across t
and [ without inflating capacity, and independent modulation for LQ vs. LRP preserves their com-
plementary inductive biases (detail-preserving vs. artifact-robust). Keeping modulation inside the
lightweight conditioner maintains negligible overhead while enabling coarse-to-fine, timestep- and
layer-aware guidance; ablations (Sec. 4.3) show that removing either the temporal or the hierarchical
dependency degrades fidelity under mixed degradations.

3.3 SIGLIP FOR CAPTION-FREE SEMANTIC ALIGNMENT

T2I diffusion models are typically conditioned on text, and many restoration methods adopt captions
as semantic guidance Ai et al. (2024); Yu et al. (2024). During training, such captions are often de-
rived from clean ground truth, yielding idealized supervision. At inference, however, only degraded
inputs are available; captions generated from low-quality images tend to inherit degradation-specific
artifacts and, when produced by large VLMs, add substantial latency and exacerbate a train—test
mismatch Sun et al. (2024).

We replace caption generation with a caption-free semantic pathway. Concretely, we extract image
semantics from the lightly restored proxy I1,gp using a frozen SigL.IP encoder and map them into
the backbone’s textual embedding space via a lightweight Connector:

Zs = Connector(SigLIP(I LRp)) . @)

The projected semantics z, are concatenated with a small set of prompt tokens c (default instruction)
to form the multimodal context fed to the DiT backbone:

Context = Concat(zs, ¢). (8)

Grounding semantics in I1,gp stabilizes content under mixed degradations, while the Connector fur-
nishes a drop-in bridge to the text-conditioning interface, avoiding any duplication of heavy mod-
ules. This design eliminates external captions at both training and inference, reducing latency and
removing a major source of caption-induced semantic variance (e.g., differences across captioners
or paraphrases). Grounding semantics in zs keeps outputs structurally faithful and semantically
aligned to the input.

3.4 SCALING UP REAL-WORLD HIGH-QUALITY DATA FOR UNIVERSAL IMAGE
RESTORATION

Although large-scale text-to-image (T2I) diffusion models are pretrained on hundreds of millions of
image—text pairs, they are not tailored for the universal image restoration task of our work. Training
large diffusion transformers for UIR requires task-aligned data at scale with strong structure and
perceptual quality. However, publicly available restoration corpora remain modest and/or lack re-
producible quality control: DIV2K Agustsson & Timofte (2017a) (800/100), Flickr2K Agustsson &
Timofte (2017b) (2,650), LSDIR Li et al. (2023) (= 85K with manual curation), and SUPIR Yu et al.
(2024) (20M without disclosed filtering criteria), while DreamClear Ai et al. (2024) synthesizes 1M
pairs at substantial computational cost. This leaves a practical gap between what large DiTs need
and what current datasets provide.
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Figure 3: Comparison of dataset attributes. Our dataset exhibits higher CLIP-IQA scores, lower flat-
ness, and more diverse resolutions than Flickr2K Agustsson & Timofte (2017b) and DIV2K Agusts-
son & Timofte (2017a).

To bridge this gap, we introduce, to our knowledge, the first publicly documented and exten-
sively validated UIR-specific data filtering pipeline. 1t is fully automatic (parameters empirically
set, pipeline automatic once fixed) and comprises three stages—blur screening, flat-region suppres-
sion, and perceptual-quality ranking—explicitly designed to retain structure-rich, high-quality im-
ages while discarding unsuitable samples.

Data source. Our initial dataset is collected from two sources. First, we collect 2.3M images
from the Internet. In addition, we incorporate 557K images from the Photo-Concept-Bucket
dataset bghira (2023), yielding a total of 2.9M candidate images. This combined pool serves as
the raw data for subsequent filtering.

Blur detection. Images that are heavily blurred or contain excessive high-frequency noise provide
unreliable structural cues and are thus unsuitable for training. Following LSDIR Li et al. (2023),
we quantify the degree of blur using the variance of the Laplacian Sy, (1) = Var(V2[ ), where [
denotes an input image. Only images with 150 < Sy, (I) < 8000 Li et al. (2023) are retained, ef-
fectively excluding both overly blurred and noisy samples. These bounds are empirically hand-tuned
based on preliminary experiments and careful visual audits on a held-out subset to balance removal
of extreme blur/noise while retaining legitimate shallow-depth-of-field and low-light scenes.

Flat-region detection. Images dominated by textureless regions may bias the model towards
producing over-smoothed outputs. To mitigate this, each image is divided into non-overlapping
240 x 240 patches, and the edge richness of each patch is measured using the Sobel operator with

Sfat = Var( (0:1) + (0,1 )2) Patches with Sp,e < 800 are considered textureless, and im-

ages containing more than 50% such patches are discarded. Both the 800 patch-level threshold and
the 50% image-level ratio are empirically set by manual inspection of edge-statistics distributions
and visual audits; they provide a conservative balance that suppresses large flat backgrounds yet
preserves natural sky/water regions. This ensures that retained images exhibit sufficient edge and
texture diversity, essential for high-fidelity restoration. After applying blur and flat-region filtering,
1.28M candidate images remain.

IQA Filtering for High-quality Data. While LSDIR employs manual curation in its final stage,
such human intervention is impractical for scaling to larger datasets. We apply CLIP-IQA to further
ensure perceptual quality of our training data. The remaining images are ranked by their percep-
tual scores s;, and only the top 20% are retained, i.e., {i | s; > quantile; s({s;})}, resulting in
257K high-quality images. The 20% cutoff is empirically chosen after careful inspection at multiple
percentiles (e.g., 10/20/30%), trading off perceptual quality against semantic/content diversity. By
additionally incorporating 84K high-quality samples from LSDIR Li et al. (2023), the final curated
dataset comprises 342K high-quality images. Once these cutoffs are fixed, the pipeline executes
fully automatically at scale. For generating paired training data, degraded counterparts are synthe-
sized using the Real-ESRGAN degradation pipeline Wang et al. as implemented in Ai et al. (2024),
across 4 epochs, producing a total of 1.36M image pairs. This procedure ensures both diversity and
realism in the low-quality inputs, facilitating effective model training. To assess the effectiveness of
our filtered data, we randomly select 10K samples and compare their attribute distributions with ex-
isting datasets. Figure 3 shows that our dataset achieves higher CLIP-IQA scores, comparable blur
scores, lower flatness values that reflect richer textures, and more diverse resolutions than Flickr2K
and DIV2K. In Appendix 6, we also analyze semantic diversity using t-SNE, and it shows that our
dataset demonstrates substantially broader semantic coverage.
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Table 1: Quantitative comparison across different IQA metrics on RealSR Wu et al. (2024b), Re-
alLQ250 Ai et al. (2024), DIV2K-Val, LSDIR-Val and DRealSR.

Benchmark Metric ResShift StableSR  SinSR SeeSR  DreamClear SUPIR LucidFlux(Ours)
Caption-Free v v v X X X v
CLIP-IQA+ 1 0.4655 0.3732 0.5402  0.6257 0.4461 0.5494 0.6748
Q-Align T 2.6311 2.1245 3.1334  3.2745 2.4213 3.4720 3.6919
MUSIQ 1 409795  29.6691 53.9138 61.3222 35.1911 54.9279 66.6833
DRealSR MANIQA 1 0.2687 0.2402 0.3455  0.4505 0.2675 0.3482 0.4985
NIMA 1 43178 3.9048 4.6226  4.6401 3.9368 4.5063 4.9625
CLIP-IQA 1 0.4964 0.3383 0.6631  0.6760 0.4360 0.5309 0.6879
NIQE | 10.3005 8.6022 6.9800  6.4502 7.0163 5.9091 4.7034
CLIP-IQA+ 1 0.5005 0.4408 0.5416  0.6731 0.5331 0.5640 0.7074
Q-Align T 3.1045 2.5087 33615  3.6073 3.0044 3.4682 3.7555
Real-world MUSIQ 1 49.50 39.98 57.95 67.57 49.48 55.68 70.20
RealSR MANIQA 1 0.2976 0.2356 0.3753  0.5087 0.3092 0.3426 0.5437
NIMA 1 4.7026 4.3639 4.8282  4.8957 4.4948 4.6401 5.1072
CLIP-IQA 1 0.5283 0.3521 0.6601  0.6993 0.5390 0.4857 0.6783
NIQE | 9.0674 6.8733 6.4682  5.4594 5.2873 5.2819 4.2893
CLIP-IQA+7T  0.5529 0.5804 0.6054  0.7034 0.6810 0.6532 0.7406
Q-Align T 3.6318 3.5586 37451  4.1423 4.0640 4.1347 4.3935
MUSIQ 1 59.50 57.25 65.45 70.38 67.08 65.81 73.01
RealLQ250 | MANIQA 1 0.3397 0.2937 0.4230  0.4895 0.4400 0.3826 0.5589
NIMA 1 5.0624 5.0538 52397  5.3146 5.2200 5.0806 5.4836
CLIP-IQA 1 0.6129 0.5160 0.7166  0.7063 0.6950 0.5767 0.7122
NIQE | 6.6326 4.6236 54425  4.4383 3.8700 3.6591 3.6742
CLIP-IQA+ 7T  0.5583 0.5760 0.6128  0.7116 0.6585 0.6719 0.7492
Q-Align 3.5761 3.4226 37336  4.1167 3.9323 4.1659 4.5311
MUSIQ 1 60.5932  57.4246  66.0906 71.4947 65.8187 67.9074 73.9045
MANIQA 1 0.3421 0.2902 0.4341  0.5104 0.4369 0.4148 0.5819
DIV2K-Val NIMA 1 5.0430 5.0341 5.1810  5.2709 5.1663 5.1516 5.4884
CLIP-IQA 1 0.6017 0.5002 0.7166  0.7149 0.6663 0.5848 0.7034
NIQE | 6.1976 4.9810 53679  4.2823 4.1634 3.7701 3.7283
PSNR 1 18.3802  18.3269  18.0956 18.2529 17.5701 17.7567 15.4393
SSIM 0.4394 0.4819 0.4259  0.4684 0.4291 0.4482 0.3837
S . LPIPS | 0.3738 0.3933 03919  0.3497 0.3621 0.3785 0.4312
ynthetic
CLIP-IQA+ T 0.5248 0.5576 0.5582  0.7258 0.6995 0.7126 0.7440
Q-Align T 3.5317 3.4878 37095  4.2997 4.2391 4.3468 4.5959
MUSIQ 1 57.6691 57.0838  63.9586 72.0142 70.7186 70.3340 74.1923
MANIQA 1 0.3408 0.2990 0.4131  0.5529 0.5059 0.4482 0.5979
LSDIR-Val NIMA 1 5.0916 5.0628 53353  5.4245 5.3773 5.3692 5.6221
CLIP-IQA 1 0.5691 0.4991 0.6766  0.7314 0.6941 0.6105 0.6836
NIQE | 6.4447 4.2104 5.1771 3.9402 3.3318 2.9610 3.5571
PSNR 1 17.3040  17.1480 16.8241 17.0782 16.2114 16.1598 14.8688
SSIM 0.3935 0.4026 0.3710  0.4113 0.3823 0.3636 0.3697
LPIPS | 0.4824 0.4655 0.4637  0.3969 0.3720 0.4408 0.4148

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We train a large Flux-based generative model, LucidFlux, while freezing all blocks of the Flux
backbone and training only the task-specific modules introduced by our method. Freezing the back-
bone stabilizes optimization and prevents catastrophic forgetting, while concentrating capacity on
the new modules that realize our objective. Training runs on 8 xNVIDIA A800 GPUs with Deep-
Speed ZeRO-2. We choose ZeRO-2 because it shards optimizer states and gradients—dramatically
reducing memory footprint—without partitioning model parameters, which preserves simple for-
ward passes and yields higher throughput than ZeRO-3 in our setting. This enables larger activation
budgets at 1024 x 1024 resolution and steady scaling with modest communication overhead. We
use Adafactor Shazeer & Stern (2018) with a learning rate of 2x10~° and weight decay 0.01. The
per-GPU batch size is 2 with gradient accumulation of 2 steps, giving an effective batch size of 32
across 8 GPUs. We resume our Siglip connector based on Flex.1-alpha-Redux checkpoint. The
full training completes in approximately 7 GPU-days. Following many existing works, we employ
SwinlR Liang et al. (2021) as a lightweight restore proxy.

4.2 COMPARISON WITH OPEN-SOURCE STATE-OF-THE-ART METHODS

We evaluate our approach against several state-of-the-art diffusion-based methods, including
ResShift(Yue et al. (2023)), StableSR(Wang et al. (2024a)), SinSR(Wang et al. (2024b)), SeeSR(Wu
et al. (2024b)), SUPIR(Yu et al. (2024)), and DreamClear(Ai et al. (2024)). Following many existing
works (Wang et al. (2024a); Wu et al. (2024b); Ai et al. (2024); Yu et al. (2024)), experiments are
conducted on both synthetic and real-world benchmark datasets.
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Figure 4: Qualitative comparisons on RealLQ250. Baseline methods either leave noticeable arti-
facts or yield over-smoothed textures, while our approach restores sharper details. See Figure 8 to

Figure 13 in Appendix for more visual comparisons.

For the synthetic data, we randomly crop 2,124 patches from the validation sets of DIV2K Agusts-
son & Timofte (2017a) and LSDIR Li et al. (2023). For DIV2K, we use the five original degradation
types: bicubic, unknown, mild, difficult, and wild. LSDIR-Val is generated by applying the same
degradation pipeline used during training. For the real-world data, we adopt center-cropped im-
ages from RealSR Cai et al. (2019), DRealSR Wei et al. (2020) as used in Wu et al. (2024b) and
RealLQ250 Ai et al. (2024). All evaluations are performed at a resolution of 1024 x 1024.

Metrics. We evaluate all methods using a set of no-reference image quality assessment metrics,
including CLIP-IQA+ Wang et al. (2023), Q-Align Wu et al. (2023), MUSIQ Ke et al. (2021),
MANIQA Yang et al. (2022), NIMA Talebi & Milanfar (2018), CLIP-IQA Wang et al. (2023), and
NIQE Zhang et al. (2015), as well as reference-based metrics including PSNR, SSIM Wang et al.
(2004), and LPIPS Zhang et al. (2018). Together, these metrics provide a comprehensive assessment
of restoration performance across perceptual quality, semantic alignment, and structural fidelity.

Qualitative Comparisons. Figure 4 presents visual comparisons on representative samples from
RealLQ250. SeeSR and DreamClear reduce some degradations but tend to leave residual artifacts
or produce oversmoothed outputs with limited texture recovery. SUPIR generates cleaner results
yet often loses fine details, leading to overly smooth surfaces. In contrast, our method achieves
clearer edges, richer textures, and better semantic consistency with the degraded inputs, especially
in challenging regions such as hair, text, and high-frequency patterns. These qualitative observations
align with the quantitative results in Table 1, further confirming the effectiveness of our approach.

Quantitative Comparisons. Table 1 reports the IQA metric results on real-world and synthetic
benchmarks. Our method consistently outperforms prior approaches on perceptual and semantic-
oriented metrics, such as CLIP-IQA+, MUSIQ, MANIQA, Q-Align, and NIMA, highlighting its
ability to generate visually faithful and semantically aligned restorations. On real-world datasets
(e.g., DRealSR, RealSR, RealLQ250), LucidFlux achieves clear gains over existing caption- or tag-
based methods. For distortion-focused measures like PSNR and SSIM on synthetic datasets, prior
approaches report slightly higher values, yet these metrics are widely recognized as being less cor-
related with human perceptual quality. In contrast, our method delivers state-of-the-art performance
on modern IQA benchmarks, supporting the view that advanced IR frameworks should be evaluated
with perceptual and semantic quality measures rather than traditional distortion metrics.

Runtime and Model Scale Comparison. We compare LucidFlux with SeeSR, SUPIR, and Dream-
Clear in terms of runtime and model size in Table 3. Despite using a substantially larger backbone
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Table 2: Quantitative comparison across different IQA metrics with commercial models on RealLQ250.

Method CLIP-IQA+] Q-Alignt MUSIQ+ MANIQA{1 NIMA+ CLIPIQA{ NIQE ]

LQ Input 0.6218 2.1693 44.1541 0.3718 3.8664 0.6079 6.0790

Seedream 4.0 0.5002 3.6931 52.3771 0.2794 4.7024 0.4124 4.9393

Gemini-NanoBanana 0.3780 33114 44.6310 0.2548 4.6571 0.4434 6.0865

MeiTu SR 0.6653 4.1464 66.5936 0.4498 5.2103 0.6663 5.4125

LucidFlux (Ours) 0.7406 4.3935 73.01 0.5589 5.4836 0.7122 3.6742

Table 3: Runtime (s) and parameter scale (B). Table 4: Ablation study on RealLQ250. Evaluation
SeeSR SUPIR DreamClear LucidFlux metrics for three main contributions of our method.

Caption (s) 010 59 37 0 Setting | CLIP-IQA  CLIP-IQA+ MUSIQ
Inference (s) 22.38 16.6 28.9 23.6 Dual-Branch Conditioner Only 0.585 0.609 61.582
Total (s) 2248 225 37.6 23.6 + SigLIP Alignment 0.600 0.620 62.000
Backbone (B) 1.29 2.6 0.6 12 +TLCM 0.622 0.635 65.500
Adapter (B, train.) 1.6 13 2.2 1.6 + Large HQ Data (Our method) 0.7122 0.7406 73.0088
Total (B) 2.89 3.9 2.8 13.6

(12B), our LucidFlux achieves a competitive total runtime by eliminating the caption preprocess-
ing. In contrast, SeeSR, SUPIR, and DreamClear require additional preprocessing and rely on
smaller backbones (1.29B, 3.5B, 0.6B), resulting in higher latency relative to their size. For trainable
adapters, LucidFlux maintains a balanced design (1.6B), outperforming SUPIR (1.3B) in represen-
tational capacity while remaining more efficient than DreamClear (2.2B).

4.3 ABLATION STUDY

We ablate our three contributions in testing RealLQ250 and report the quantitative results in Table 4.
Starting from the Dual-Branch Conditioner (DBC) trained on LSDIR, our CLIP-IQA / CLIP-IQA+
/ MUSIQ scores are 0.585/0.609/61.582, and three scores are enlarged after adding caption-free
SigLIP semantic alignment. Our timestep- and layer-adaptive condition modulation (TLCM) fur-
ther improves score performance, and scaling to our curated large-scale high-quality data provides
the largest jump over TLCM on three metrics. The progression indicates that SigLIP alignment
stabilizes semantics; TLCM exploits the DiT hierarchy; and data curation supplies structure-rich
supervision, and thus all three modifications on DBC are required for the final outcome.

4.4 COMPARISON WITH CLOSE-SOURCE COMMERCIAL METHODS

To assess the effectiveness of LucidFlux, we further compare it with several widely used commer-
cial image restoration solutions, including HYPIR-FLUX Group (2025), Seedream 4.0 ByteDance
Seed Vision Team (2025), Topaz Labs (2025), Gemini-NanoBanana DeepMind (2025), and MeiTu
SR MeiTu. All evaluations are conducted under the same experimental settings and the identical
IQA metrics are used in the open-source comparisons. Table 2 reports the quantitative results of dif-
ferent methods. Our LucidFlux achieves the largest scores across all metrics and outperforms other
commercial solutions. MeiTu SR shows the best performance among compared methods, but its
restoration results generally have less details than our LucidFlux. In contrast, our method balances
strong quantitative performance with reliable and consistent restoration, which makes it particularly
suitable for real-world applications. See our Appendix Figure 7 for qualitative comparisons.

5 CONCLUSION

LucidFlux demonstrates that caption-free universal image restoration is best achieved by when,
where, and what to condition a large diffusion transformer, rather than by adding parameters or
prompts. A lightweight dual-branch conditioner—grounded in the degraded input and a lightly
restored proxy—and a timestep- and layer-adaptive modulation schedule recover high-frequency
detail while preserving global structure and suppressing artifacts, all with a frozen Flux.1 back-
bone. SigLIP-based semantics provide training—inference consistency without captions. To make
post-training practical, we introduce, to our knowledge, the first publicly documented and exten-
sively validated UIR data-filtering pipeline. It is fully automatic once hyper-parameters are fixed
and scales to 342K high-quality images and 1.36M paired samples, supplying structure-rich super-
vision at the capacity needed by large DiTs.Across real and synthetic benchmarks, LucidFlux deliv-
ers state-of-the-art perceptual quality and semantic fidelity with competitive runtime and minimal
trainable overhead. We hope the pipeline, data recipe, and design insights provide a reliable founda-
tion for restoration in the wild, and inspire future work on learned data selection, multi-frame/video
extensions, and higher-resolution backbones—all while retaining caption-free inference.
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A APPENDIX

A.1 LIKELIHOOD OF DEGRADATION-RELATED TERMS IN CAPTIONS GENERATED BY
DIFFERENT MULTIMODAL LARGE LANGUAGE MODELS

When using captions from multimodal large language models (MLLMs) as semantic guidance for
restoration tasks, a potential risk is that these models may unintentionally introduce degradation-
related terms (e.g., blur, noise, or low resolution). Such bias can mislead the restoration model
by attributing degradations to input images even when they are not visually apparent. To quantify
this effect, we evaluate the occurrence of degradation-related descriptions in captions generated
by a set of representative MLLMs on ReallLQ250, specifically LLaVA-v1.6-Vicuna-13B Liu et al.
(2024) and Qwen2.5-VL-7B-Instruct Team (2025). Each caption is produced using the same prompt
as DreamClear Ai et al. (2024), i.e., “describe the key subjects and style”, which is designed to
neutrally guide the model toward content description without explicitly emphasizing or suppressing
degradation cues. We then employ Gemini-2.5-Flash-Image as an external evaluator to analyze
whether captions contain degradation-related mentions. Each caption is processed with a structured
instruction to extract and categorize any degradation-related terms.

Prompt A.1 (Identifying Quality Degradations in Image Captions)

You are a professional image quality analysis expert. Carefully analyze the following image de-
scription text and identify any image quality issues that are either explicitly mentioned or implicitly
implied.

Image description text: {caption_content}

Your task is to identify quality issues mentioned in the description. Focus on:

» Sharpness issues such as blur, unclear details, or defocus

* Noise, grain, or artifacts

* Low resolution, compression traces, or general quality problems

* Overexposure, underexposure, or color distortion

* Physical damage such as scratches, stains, or aging

Return results strictly in the following JSON format, without any additional explanation or text:

{

"caption_content": "{caption_content}",
"degradation_keywords": ["Extracted degradation-related terms"]
r
"degradation_categories": {
"Blur-related": ["blur", "unclear", "defocus"],
"Noise-related": ["noise", "grain", "artifacts"],
"Quality-related": ["resolution", "compression"],
"Exposure-related": ["overexposure", "underexposure", "
color issues"],
"Damage-related": ["damage", "stains", "aging"]
Bo
"degradation_score": 0.0,
"severity_level": "None/Minor/Moderate/Severe",
"primary_issues": ["Main issue types"],
"analysis_summary": "Brief analysis summary"

}

Scoring standard:

* degradation_score: 0 means no degradation, < 0.3 minor, 0.3-0.6 moderate, > 0.6 severe
* If no quality issues are mentioned in the text, set all arrays empty, score = 0, severity_level = “None”
Important: Only return pure JSON format results, without markdown code blocks or extra commen-
tary.

If a caption contains terms that explicitly refer to image degradations, such as blur, noise, low resolu-
tion, or compression artifacts, we consider it a degradation-related caption. Table 5 presents the like-
lihood of captions containing such degradation-related terms. We observe that LLaVA-v1.6-vicuna-
13b produces degradation-related captions in 17% of cases, whereas Qwen2.5-VL-7B-Instruct ex-
hibits a higher occurrence of 24%. This indicates that different MLLMs vary in their tendency to
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Table 5: Occurrence rates (%) of degradation-related terms in captions generated by different

MLLMs on RealLQ250.

Model
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‘The image shows a close-up of a label

with text and a symbol. The label
appears to be attached to a surface,
possibly a piece of machinery or
equipment, given the industrial
context. The text on the label is
printed in white, with the numbers
"24L.C515" prominently displayed at
the top. Below this, there is a symbol
that resembles a stylized letter 'C"
with a line through it, followed by the
text "PHR 6 022.7" in a smaller font.
The style of the image is a real-life
photograph with a focus on the label,
‘which suggests it may be used for
identification or documentation
purposes. The background is blurred,

Inference 2

The image shows a close-up of a label
with text and a symbol. The label
appears to be made of a metallic
material, possibly steel or aluminum,
with a dark surface. The text on the
label is printed in white, with the
numbers "24LC515" prominently
displayed at the top. Below this, there
is a symbol that resembles a stylized
"T" or a letter "T" with a line through
it, followed by the numbers "022.7"
in a smaller font size. The style of the
image is a real-life photograph with a
focus on the label, which is slightly
blurred, suggesting it is taken at a
close range or with a shallow depth of
field. The background is out of focus,

Inference 3

‘The image shows a close-up of a label
with text and a symbol. The label
appears to be made of a dark material,
possibly metal or plastic, with a rough
texture. The text on the label is
printed in white, with the numbers
"24LC515" prominently displayed at
the top. Below this, there is a symbol
that resembles a stylized letter 'T' or a
lightning bolt, and the text "PHR 6
022.7" i printed beneath it. The style
of the image is a real-life photograph
with a focus on the label, taken from
a close angle that allows for a detailed
view of the text and symbol. The
background is blurred and indistinct,
which suggests the photograph was
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The image shows a close-up of a label
with text and a symbol. The text on
the label is partially obscured and
appears to be in a combination of
uppercase letters and numbers. The
visible text includes "24LC515,"
"PHR 6," and "0227." The style of the
image is a real-life photograph with a
focus on the label, which is slightly
blurred and appears to be attached to
a surface with screws. The label itself
shows signs of wear and degradation,
with some parts of the text faded or
obscured, and the edges of the label
are slightly damaged. The
background is out of focus,
emphasizing the label as the main
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The image shows a close-up of a label
with text and a symbol. The label
appears to be made of a material that
is slightly reflective, possibly metal or
a metallic-coated paper. The text on
the label is partially obscured by a
white substance, which could be a
form of degradation or a protective
coating. The visible text includes the
numbers "24LC515" and "PHR 6
022.7," which might refer to a model
or serial number of an electronic
component. The symbol next to the
numbers is a stylized letter "C" inside
a circle, which could be a logo or a
certification mark. The style of the
image is a real-life photograph with a

focus on the label, and the quality
suggests it may have been taken with
a camera or a smartphone. The
degradation on the i
white substance cover
text and the label's surface,

emphasizing the label as the main subject.

subject of the image.

emphasizing the label as the main
subject.

taken with a shallow depth of field,
emphasizing the label in the
foreground.

, which
indicates wear or damage to the label.

Figure 5: Impact of captions with and without degradation-related descriptions on restoration results.
The second to fourth columns illustrate that inconsistent captions generated by the same MLLM
across different runs lead to variations in the restoration outcomes. The fifth and sixth columns
show that captions containing explicit degradation descriptions misguide the restoration model and
result in inferior quality compared with captions focusing purely on content and style.

introduce degradation cues into captions, which may potentially bias downstream restoration tasks
if these captions are directly used as supervision.

A.2 IMPACT OF DEGRADATION-RELATED CAPTIONS ON MODEL RESTORATION

To further investigate the influence of degradation-related descriptions in MLLM-generated cap-
tions on restoration performance, we conducted experiments using two types of captions generated
by LLaVA-v1.6-vicuna-13b. The first type uses the prompt ”Describe the key subjects and style” to
generate captions without emphasizing image degradations, while the second type uses the prompt
”Describe the key subjects and style, retain the descriptions of degradations on the image” to pro-
duce captions that explicitly include degradation-related content.

As shown in Figure 5, two patterns emerge from the qualitative results. First, captions generated by
the same MLLM using the neutral prompt exhibit variability across multiple runs, resulting in differ-
ences in the restoration outputs for the same input image. Second, when captions explicitly include
degradation-related descriptions, the model’s restoration performance is adversely affected, produc-
ing outputs of lower perceptual quality compared with captions that focus solely on key subjects
and style. These findings indicate that both the consistency and content of MLLM-generated cap-
tions can significantly influence downstream restoration performance, underscoring the importance
of controlling for degradation-related content when employing such captions as guidance.

These observations further highlight the practical limitations of relying on MLLM-generated cap-
tions during inference. The variability in captions leads to inconsistent restoration results, the pres-
ence of degradation-related descriptions can mislead the model and reduce output quality, and gener-
ating captions introduces additional computational overhead. Together, these factors underscore the
advantages of a caption-free approach, which avoids reliance on potentially inconsistent or mislead-
ing textual guidance while reducing inference cost and maintaining robust restoration performance.
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A.3 ADDITIONAL RELATED WORKS

Large-Scale Image Restoration Datasets. The availability of large, high-quality datasets is critical
for training generative restoration models. Existing datasets exhibit notable limitations: LSDIR Li
et al. (2023) provides 85K images but depends on manual filtering, SUPIR Yu et al. (2024) col-
lects 20M images without disclosing quality control procedures, and DreamClear Ai et al. (2024)
generates 1M images via SDXL fine-tuning at a cost of 1280 V100 GPU days. To overcome these
constraints, LucidFlux employs a fully automated three-stage filtering pipeline integrating blur de-
tection, flat-region detection, and perceptual quality assessment. This approach produces diverse,
structurally rich datasets that are reproducible, scalable, and suitable for training billion-parameter
diffusion backbones efficiently.

Transformer-based T2I models (DiTs). Recent text-to-image systems increasingly adopt
Transformer backbones—either diffusion transformers (DiTs) or rectified-flow transformers
(RFTs)—which scale well and capture long-range dependencies in latent space Peebles & Xie
(2022). Stable Diffusion 3 (SD3) introduces a Multimodal Diffusion Transformer (MMDiT) with
separate weights for image and text tokens and bidirectional information flow; it is trained with
rectified flow and improved noise sampling biased toward perceptually relevant scales, yielding
stronger text comprehension and typography Esser et al. (2024). PixArt-a proposes an efficient
DiT recipe—three-stage training (pixel dependency, text—image alignment, aesthetics), injecting
cross-attention into DiT, and dense pseudo-captioning—achieving 1024px photorealistic quality at
a fraction of typical compute Chen et al. (2023). FLUX Labs (2024) scales a rectified-flow Trans-
former (rather than a diffusion transformer), with open-weight variants (e.g., dev/schnell) built
around cross-attention over text embeddings. Building on this line, LucidFlux leverages a large
MM-DiT backbone (Flux.1) and specializes conditioning for caption-free restoration, improving
detail fidelity while preserving semantics.

A.4 EXTENDED DATASET ANALYSIS

To further examine semantic diversity, we visualize the CLIP image—text embeddings using t-SNE.
We randomly sample 10K images from our filtered data, while using all available images from
Flickr2K and DIV2K. As shown in Figure 6, our dataset spans a substantially broader semantic
range, reflecting richer and more diverse image—text concepts. This confirms the advantage of our
dataset in supporting models that rely on wide semantic generalization.

Ours Flickr2K Div2k Images
R .

Figure 6: t-SNE visualization of CLIP image—text embeddings. Our dataset covers a broader se-
mantic range than Flickr2K and DIV2K, indicating richer image—text diversity.

A.5 EXTENDED VISUAL COMPARISONS

To provide a more comprehensive evaluation, we present extended qualitative results across all
benchmark datasets. Figures 8—13 include representative examples from RealLQ250, DRealSR,
RealSR, DIV2K-Val, and LSDIR-Val. These comparisons consistently demonstrate that our method
produces sharper edges, more faithful textures, and better preservation of semantic structures com-
pared with existing open-source state-of-the-art approaches. The additional results further corrobo-
rate the advantages of our approach observed in the main paper.
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A.6 VISUAL COMPARISON WITH CLOSE-SOURCE COMMERCIAL METHODS

Figure 7 illustrates representative visual results on RealLQ250. HYPIR-FLUX and Seedream 4.0
fail to fully remove degradations, leaving noticeable residual artifacts. Topaz suppresses degra-
dations more effectively but generates flat and over-smoothed textures. Gemini-NanoBanana pro-
vides visually plausible outputs but often struggles to recover high-frequency details. MeiTu SR
shows relatively strong restoration ability, producing sharper and more natural results compared
with most commercial counterparts. Among the evaluated models, LucidFlux consistently delivers
the sharpest structures and most faithful details, particularly in fine-grained regions, while maintain-
ing high structural fidelity and reliability.

A.7 INFERENCE DETAILS

For all experiments, we use the FlowMatch Euler sampling introduced for SD3’s rectified-flow for-
mulation and implemented in Diffusers’ FlowMatchEulerDiscreteScheduler Esser et al. (2024) to
sample FLUX Labs (2024) and inherit the adaptive shift adjustments from the official Flux im-
plementation, ensuring stable sampling dynamics and consistent step-wise updates. All inference is
performed with 28 sampling steps in FP16 precision and utilizes the wavelet color alignment method
from Ai et al. (2024) and the full default instruction is restore this image into high-quality, clean,
high-resolution result.

A.8 LIMITATIONS

While LucidFlux attains strong perceptual quality and semantic fidelity, several practical limitations
remain:

Large model scale. LucidFlux is built on a high-capacity DiT backbone (Flux.1). This provides
rich generative priors but entails substantial parameter count and compute cost. Training generally
requires multi-GPU setups; for inference, high-end GPUs are preferable to maintain reasonable
throughput.

Inference GPU memory. VRAM usage during inference is sizable and grows with input resolution
and batch size. Transformer-based diffusion exhibits quadratic attention complexity with respect to
token count, so higher resolutions can quickly amplify memory pressure. This constrains deploy-
ment on memory-limited devices unless tiling or resolution reductions are used.

Sampling steps vs. quality. High-quality outputs typically require more than “15 denoising steps.
Fewer steps may lead to over-smoothing and loss of fine textures. This introduces a latency—quality
trade-off that can be restrictive for real-time or interactive applications.

Mitigations. Promising directions include model compression (distillation/pruning), low-precision
inference, memory-efficient attention, and step reduction via progressive distillation. These opti-
mizations are orthogonal to our method and could reduce compute and memory while preserving
quality.
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Intended application scope. LucidFlux is designed for benign restoration of non-sensitive, natu-
ral photographic images with mixed, unknown degradations (e.g., sensor noise, motion blur, com-
pression). Appropriate uses include consumer photo enhancement, archival preservation, academic
research, and benchmarking under unknown degradations. The model aims to improve perceptual
quality while preserving semantics, but as a generative diffusion system it may synthesize plausible
details not present in the input.

Out-of-scope scenarios. The method is not intended for domains that require pixel-accurate fi-
delity or expert supervision (e.g., medical imaging, scientific microscopy, satellite/remote sensing,
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or legally binding forensic evidence). It is also not tailored for document restoration or OCR-critical
text recovery.

Prohibited or discouraged uses. LucidFlux should not be used to circumvent privacy, safety, or
consent—such as deblurring or enhancing faces, license plates, or personally identifiable content
for surveillance or re-identification; removing watermarks or intentional obfuscation; fabricating
or altering imagery for deception; or generating identity-sensitive content (e.g., deepfakes). When
restoration might affect downstream decisions about people, human oversight is required.

Operational caveats. Because performance depends on degradation type and sampling steps, out-
puts should be reviewed before downstream use, especially in safety-critical or regulatory contexts.
If exact visual truth is required, classical reconstruction baselines or domain-specific methods with
uncertainty quantification are preferable.

A.10 LLM USAGE

We used large language models solely for editorial assistance—to refine grammar and phrasing,
improve clarity and flow, and condense overly verbose passages. No ideas, methods, code, figures,
citations, or results were generated by an LLM, and no unverifiable content was introduced. All
technical content, study design, experiments, analyses, and conclusions were conceived, executed,
and validated by the authors, who take full responsibility for the manuscript.
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LQ Input HYPIR-FLUX Topaz Seedream 4.0 MeiTu SR Gemini-NanoBanana LucidFlux(Ours)

Figure 7: Qualitative comparison with commercial models on RealLQ250.
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Figure 9: More examples of visual comparison with open-source state-of-the-art methods on Re-
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Figure 10: More examples of visual comparison with open-source state-of-the-art methods on
DRealSR.
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Figure 13: More examples of visual comparison with open-source state-of-the-art methods on
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