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ABSTRACT

In this work, we introduce the Qwen-VL series, a set of large-scale vision-
language models (LVLMs) designed to perceive and understand both texts and
images. Starting from the Qwen-LM as a foundation, we endow it with visual ca-
pacity by the meticulously designed (i) visual receptor, (ii) input-output interface,
(iii) 3-stage training pipeline, and (iv) multilingual multimodal cleaned corpus.
Beyond the conventional image description and question-answering, we imple-
ment the grounding and text-reading ability of Qwen-VLs by aligning image-
caption-box tuples. The resulting models, including Qwen-VL and Qwen-VL-
Chat, set new records for generalist models under similar model scales on a broad
range of visual-centric benchmarks (e.g., image captioning, question answering,
visual grounding) and different settings (e.g., zero-shot, few-shot). Moreover, on
real-world dialog benchmarks, our instruction-tuned Qwen-VL-Chat also demon-
strates superiority compared to existing vision-language chatbots. All models are
public to facilitate future research.

Figure 1: Qwen-VL achieves state-of-the-art performance on a broad range of tasks compared with
other generalist models.
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Figure 2: Some qualitative examples generated by our Qwen-VL-Chat. Qwen-VL-Chat supports
multiple image inputs, multi-round dialogue, multilingual conversation, text-reading, localization,
fine-grained recognition and understanding ability.

1 INTRODUCTION

Recently, Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2023; Anil et al., 2023;
Gao et al., 2023; Qwen, 2023) have attracted wide attention due to their powerful capabilities in
text generation and comprehension. These models can be further aligned with user intent through
fine-tuning instructions, showcasing strong interactive capabilities and the potential to enhance pro-
ductivity as intelligent assistants. However, native large language models only live in the pure-text
world, lacking the ability to handle other common modalities (such as images, speech, and videos),
resulting in great restrictions on their application scope. Motivated by this, a group of Large Vision
Language Models (LVLMs) (Alayrac et al., 2022; Chen et al., 2022; Li et al., 2023c; Dai et al., 2023;
Huang et al., 2023; Peng et al., 2023; Zhu et al., 2023; Liu et al., 2023; Ye et al., 2023b;a; Chen et al.,
2023a; Li et al., 2023a; Zhang et al., 2023; Sun et al., 2023; OpenAI, 2023) have been developed
to enhance large language models with the ability to perceive and understand visual signals. These
large-scale vision-language models demonstrate promising potential in solving real-world vision-
central problems.

Nevertheless, despite that lots of works have been conducted to explore the limitation and potency
of LVLMs, current open-source LVLMs always suffer from inadequate training and optimization,
thus lag far behind the proprietary models (Chen et al., 2022; 2023b; OpenAI, 2023), which hinders
further exploration and application of LVLMs in open-source community. What’s more, as real-
world visual scenarios are quite complicated, fine-grained visual understanding plays a crucial role
for LVLMs to assist people effectively and precisely. But only a few attempts had been made toward
this direction (Peng et al., 2023; Chen et al., 2023a), the majority of open-source LVLMs remain
perceiving the image in a coarse-grained approach and lacking the ability to execute fine-grained
perception such as object grounding or text reading.

In this paper, we explore a way out and present the newest members of the open-sourced Qwen fam-
ilies: Qwen-VL series. Qwen-VLs are a series of highly performant and versatile vision-language
foundation models based on Qwen-7B (Qwen, 2023) language model. We empower the LLM base-
ment with visual capacity by introducing a new visual receptor including a language-aligned visual
encoder and a position-aware adapter. The overall model architecture as well as the input-output

2



Under review as a conference paper at ICLR 2024

interface are quite concise and we elaboratedly design a 3-stage training pipeline to optimize the
whole model upon a vast collection of image-text corpus. Our pre-trained checkpoint, termed Qwen-
VL, is capable of perceiving and understanding visual inputs, generating desired responses accord-
ing to given prompts, and accomplishing various vision-language tasks such as image captioning,
question answering, text-oriented question answering, and visual grounding. Qwen-VL-Chat is the
instruction-tuned vision-language chatbot based on Qwen-VL. As shown in Fig. 2, Qwen-VL-Chat
is able to interact with users and perceive the input images following the intention of users. Specifi-
cally, the features of the Qwen-VL series models include:

• Leading performance: Qwen-VLs achieve top-tier accuracy on a vast of vision-centric un-
derstanding benchmarks compared to counterparts with similar scales. Besides, Qwen-
VL’s stuning performance covers not only the conventional benchmarks e.g., captioning,
question-answering, grounding), but also some recently introduced dialogue benchmarks.

• Multi-lingual: Similar to Qwen-LM, Qwen-VLs are trained upon multilingual image-text
data with a considerable amount of corpus being in English and Chinese. In this way,
Qwen-VLs naturally support English, Chinese, and multilingual instructions.

• Multi-image: In the training phase, we allow arbitrary interleaved image-text data as Qwen-
VL’s inputs. This feature allows our Qwen-Chat-VL to compare, understand, and analyze
the context when multiple images are given.

• Fine-grained visual understanding: Thanks to the higher-resolution input size and fine-
grained corpus we used in training, Qwen-VLs exhibit highly competitive fine-grained vi-
sual understanding ability. Compared to existing vision-language generalists, our Qwen-
VLs possess much better grounding, text-reading, text-oriented question answering, and
fine-grained dialog performance.

2 METHODOLOGY

2.1 MODEL ARCHITECTURE

The overall network architecture of Qwen-VL consists of three components and the details of model
parameters are shown in Table 1:

Large Language Model: Qwen-VL adopts a large language model as its foundation component.
The model is initialized with pre-trained weights from Qwen-7B (Qwen, 2023).

Visual Encoder: The visual encoder of Qwen-VL uses the Vision Transformer (ViT) (Dosovitskiy
et al., 2021) architecture, initialized with pre-trained weights from Openclip’s ViT-bigG (Ilharco
et al., 2021). During both training and inference, input images are resized to a specific resolution.
The visual encoder processes images by splitting them into patches with a stride of 14, generating a
set of image features.

Position-aware Vision-Language Adapter: To alleviate the efficiency issues arising from long
image feature sequences, Qwen-VL introduces a vision-language adapter that compresses the image
features. This adapter comprises a single-layer cross-attention module initialized randomly. The
module uses a group of trainable vectors (Embeddings) as query vectors and the image features from
the visual encoder as keys for cross-attention operations. This mechanism compresses the visual
feature sequence to a fixed length of 256. The ablation about the number of queries is shown in
Appendix E.2. Additionally, considering the significance of positional information for fine-grained
image comprehension, 2D absolute positional encodings are incorporated into the cross-attention
mechanism’s query-key pairs to mitigate the potential loss of positional details during compression.
The compressed image feature sequence of length 256 is subsequently fed into the large language
model.

Table 1: Details of Qwen-VL model parameters.

Vision Encoder VL Adapter LLM Total

1.9B 0.08B 7.7B 9.6B
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Figure 3: The training pipeline of the Qwen-VL series.

2.2 INPUTS AND OUTPUTS

Image Input: Images are processed through the visual encoder and adapter, yielding fixed-length
sequences of image features. To differentiate between image feature input and text feature input, two
special tokens (<img> and </img>) are appended to the beginning and end of the image feature
sequence respectively, signifying the start and end of image content.

Bounding Box Input and Output: To enhance the model’s capacity for fine-grained visual
understanding and grounding, Qwen-VL’s training involves data in the form of region descrip-
tions, questions, and detections. Differing from conventional tasks involving image-text de-
scriptions or questions, this task necessitates the model’s accurate understanding and generation
of region descriptions in a designated format. For any given bounding box, a normalization
process is applied (within the range [0, 1000)) and transformed into a specified string format:
”(Xtopleft, Ytopleft), (Xbottomright, Ybottomright)”. The string is tokenized as text and does not re-
quire an additional positional vocabulary. To distinguish between detection strings and regular text
strings, two special tokens (<box> and </box> are added at the beginning and end of the bound-
ing box string. Additionally, to appropriately associate bounding boxes with their corresponding
descriptive words or sentences, another set of special tokens (<ref> and </ref>) is introduced,
marking the content referred to by the bounding box.

3 TRAINING

As illustrated in Fig. 3, the training process of the Qwen-VL model consists of three stages: two
stages of pre-training and a final stage of instruction fine-tuning training.

3.1 PRE-TRAINING

In the first stage of pre-training, we mainly utilize a large-scale, weakly labeled, web-crawled set
of image-text pairs. Our pre-training dataset is composed of several publicly accessible sources and
some in-house data. We made an effort to clean the dataset of certain patterns. As summarized in
Table 2, the original dataset contains a total of 5 billion image-text pairs, and after cleaning, 1.4
billion data remain, with 77.3% English (text) data and 22.7% Chinese (text) data.

We freeze the large language model and only optimize the vision encoder and VL adapter in this
stage. The input images are resized to 224 × 224. The training objective is to minimize the cross-
entropy of the text tokens. The maximum learning rate is 2e−4 and the training process uses a batch
size of 30720 for the image-text pairs, and the entire first stage of pre-training lasts for 50,000 steps,
consuming approximately 1.5 billion image-text samples. More hyperparameters are detailed in
Appendix C and the convergence curve of this stage is shown in Figure 6.
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Table 2: Details of Qwen-VL pre-training data. LAION-en and LAION-zh are the English and
Chinese language subset of LAION-5B (Schuhmann et al., 2022a). LAION-COCO (Schuhmann
et al., 2022b) is a synthetic dataset generated from LAION-en. DataComp (Gadre et al., 2023) and
Coyo (Byeon et al., 2022) are collections of image-text pairs. CC12M (Changpinyo et al., 2021),
CC3M (Sharma et al., 2018), SBU (Ordonez et al., 2011) and COCO Caption (Chen et al., 2015)
are academic caption datasets.

Language Dataset Original Cleaned Remaining%

English

LAION-en 2B 280M 14%
LAION-COCO 600M 300M 50%
DataComp 1.4B 300M 21%
Coyo 700M 200M 28%
CC12M 12M 8M 66%
CC3M 3M 3M 100%
SBU 1M 0.8M 80%
COCO Caption 0.6M 0.6M 100%

Chinese LAION-zh 108M 105M 97%
In-house Data 220M 220M 100%

Total 5B 1.4B 28%

3.2 MULTI-TASK PRE-TRAINING

In the second stage of multi-task pre-training, we introduce high-quality and fine-grained VL anno-
tation data with a larger input resolution and interleaved image-text data. As summarized in Table 3,
we trained Qwen-VL on 7 tasks simultaneously. For text generation, we use the in-house collected
corpus to maintain the LLM’s ability. Captioning data is the same with Table 2 except for far fewer
samples and excluding LAION-COCO. We use a mixture of publicly available data for the VQA task
which includes GQA (Hudson & Manning, 2019), VGQA (Krishna et al., 2017), VQAv2 (Goyal
et al., 2017), DVQA (Kafle et al., 2018), OCR-VQA (Mishra et al., 2019) and DocVQA (Mathew
et al., 2021). We follow Kosmos-2 to use the GRIT (Peng et al., 2023) dataset for the grounding
task with minor modifications. For the reference grounding and grounded captioning duality tasks,
we construct training samples from GRIT (Peng et al., 2023), Visual Genome (Krishna et al., 2017),
RefCOCO (Kazemzadeh et al., 2014), RefCOCO+, and RefCOCOg (Mao et al., 2016). In order
to improve the text-oriented tasks, we collect pdf and HTML format data from Common Crawl1
and generate synthetic OCR data in English and Chinese language with natural scenery background,
following (Kim et al., 2022). Finally, we simply construct interleaved image-text data by packing
the same task data into sequences of length 2048.

Table 3: Details of Qwen-VL multi-task pre-training data.

Task # Samples Dataset

Captioning 19.7M LAION-en & zh, DataComp, Coyo, CC12M & 3M, SBU,
COCO, In-house Data

VQA 3.6M GQA, VGQA, VQAv2, DVQA, OCR-VQA, DocVQA,
TextVQA, ChartQA, AI2D

Grounding2 3.5M GRIT
Ref Grounding 8.7M GRIT, Visual Genome, RefCOCO, RefCOCO+, RefCOCOg
Grounded Cap. 8.7M GRIT, Visual Genome, RefCOCO, RefCOCO+, RefCOCOg
OCR 24.8M SynthDoG-en & zh, Common Crawl pdf & HTML
Pure-text Autoregression 7.8M In-house Data

We increase the input resolution of the visual encoder from 224 × 224 to 448 × 448, reducing the
information loss caused by image down-sampling. Besides, we ablate the window attention and

1
https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated

2This task is to generate noun/phrase grounded captions (Peng et al., 2023).
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Table 4: Results on Image Captioning and General VQA.

Model Type Model Image Caption General VQA
Nocaps
(0-shot)

Flickr30K
(0-shot) VQAv2 OKVQA GQA

SciQA-Img
(0-shot)

VizWiz
(0-shot)

Generalist
Models

Flamingo-9B - 61.5 51.8 44.7 - - 28.8
Flamingo-80B - 67.2 56.3 50.6 - - 31.6
Unified-IO-XL 100.0 - 77.9 54.0 - - -
Kosmos-1 - 67.1 51.0 - - - 29.2
Kosmos-2 - 80.5 51.1 - - - -
BLIP-2 (Vicuna-13B) 103.9 71.6 65.0 45.9 32.3 61.0 19.6
InstructBLIP (Vicuna-13B) 121.9 82.8 - - 49.5 63.1 33.4
Shikra (Vicuna-13B) - 73.9 77.36 47.16 - - -
Qwen-VL (Qwen-7B) 121.4 85.8 79.5 58.6 59.3 67.1 35.2
Qwen-VL-Chat 120.2 81.0 78.2 56.6 57.5 68.2 38.9

Specialist
SOTAs -

127.0
(PALI-17B)

84.5
(InstructBLIP
-FlanT5-XL)

86.1
(PALI-X

-55B)

66.1
(PALI-X

-55B)

72.1
(CFR)

92.53
(LLaVa+
GPT-4)

70.9
(PALI-X

-55B)

global attention for higher resolutions of the vision transformer in Appendix E.3. We unlocked
the large language model and trained the whole model. The training objective is the same as the
pre-training stage.

3.3 SUPERVISED FINE-TUNING

During this stage, we finetuned the Qwen-VL pre-trained model through instruction fine-tuning
to enhance its instruction following and dialogue capabilities, resulting in the interactive Qwen-
VL-Chat model. The multi-modal instruction tuning data primarily comes from caption data or
dialogue data generated through LLM self-instruction, which often only addresses single-image
dialogue and reasoning and is limited to image content comprehension. We construct an additional
set of dialogue data through manual annotation, model generation, and strategy concatenation to
incorporate localization and multi-image comprehension abilities into the Qwen-VL model. We
confirm that the model effectively transfers these capabilities to a wider range of languages and
question types. Additionally, we mix multi-modal and pure text dialogue data during training to
ensure the model’s universality in dialogue capabilities. The instruction tuning data amounts to
350k. In this stage, we freeze the visual encoder and optimize the language model and adapter
module. We demonstrate the data format of this stage in Appendix B.2.

4 EVALUATION

In this section, we conduct an overall evaluation on various multi-modal tasks to comprehensively
assess our models’ visual understanding ability. In the following, Qwen-VL denotes the model after
the multi-task training, and Qwen-VL-Chat denotes the model after supervised fine-tuning (SFT)
stage. Table 9 provides a detailed summary of the used evaluation benchmarks and corresponding
metrics.

4.1 IMAGE CAPTION AND GENERAL VISUAL QUESTION ANSWERING

Image caption and general visual question answering (VQA) are two conventional tasks for vision-
language models. Specifically, image caption requires the model to generate a description for a
given image and general VQA requires the model to generate an answer for a given image-question
pair.

For the image caption task, we choose Nocaps (Agrawal et al., 2019) and Flickr30K (Young et al.,
2014) as benchmarks and report CIDEr score (Vedantam et al., 2015) as metric. We utilize greedy
search for caption generation with a prompt of ”Descripe the image in English:”.

For general VQA, we utilize five benchmarks including VQAv2 (Goyal et al., 2017),
OKVQA (Marino et al., 2019), GQA (Hudson & Manning, 2019), ScienceQA (Image Set) (Lu
et al., 2022b) and VizWiz VQA (Gurari et al., 2018). For VQAv2, OKVQA, GQA and VizWiz
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Table 5: Results on Text-oriented VQA.

Model type Model TextVQA DocVQA ChartQA AI2D OCR-VQA

Generalist Models

BLIP-2 (Vicuna-13B) 42.4 - - - -
InstructBLIP (Vicuna-13B) 50.7 - - - -
mPLUG-DocOwl (LLaMA-7B) 52.6 62.2 57.4 - -
Pix2Struct-Large (1.3B) - 76.6 58.6 42.1 71.3
Qwen-VL (Qwen-7B) 63.8 65.1 65.7 62.3 75.7
Qwen-VL-Chat 61.5 62.6 66.3 57.7 70.5

Specialist SOTAs PALI-X-55B (Single-task fine-
tuning, without OCR Pipeline) 71.44 80.0 70.0 81.2 75.0

VQA, we employ open-ended answer generation with greedy decoding strategy and a prompt of
”{question} Answer:”, without any constrain on model’s output space. However, for ScienceQA,
we constrain the model’s output to possible options (instead of open-ended), choose the option with
highest confidence as model’s prediction, and report the Top-1 accuracy.

The overall performance on image caption and general VQA tasks are reported in Table 4. As the
results shown, our Qwen-VL and Qwen-VL-Chat both achieve obviously better results compared
to previous generalist models in terms of both two tasks. Specifically, on zero-shot image caption
task, Qwen-VL achieves state-of-the-art performance (i.e., 85.8 CIDEr score) on the Flickr30K
karpathy-test split, even outperforms previous generalist models with much more parameters (e.g.,
Flamingo-80B with 80B parameters).

On general VQA benchmarks, our models also exhibit distinct advantages compared to others. On
VQAv2, OKVQA and GQA benchmarks, Qwen-VL achieves 79.5, 58.6 and 59.3 accuracy respec-
tively, which surpasses recent proposed LVLMs by a large margin. It’s worth noting that Qwen-VL
also shows strong zero-shot performance on ScienceQA and VizWiz datasets.

4.2 TEXT-ORIENTED VISUAL QUESTION ANSWERING

Text-oriented visual understanding has a broad application prospect in real-world scenarios. We
assess our models’ ability toward text-oriented visual question answering on several benchmarks
including TextVQA (Sidorov et al., 2020), DocVQA (Mathew et al., 2021), ChartQA (Masry et al.,
2022), AI2Diagram (Kembhavi et al., 2016), and OCR-VQA (Mishra et al., 2019). Similarly, the
results are shown in Table 5. Compared to previous generalist models and recent LVLMs, our
models show better performance on most benchmarks, frequently by a large margin.

4.3 REFER EXPRESSION COMPREHENSION

We show our models’ fine-grained image understanding and localization ability by evaluating on a
sort of refer expression comprehension benchmarks such as RefCOCO (Kazemzadeh et al., 2014),
RefCOCOg (Mao et al., 2016), RefCOCO+ (Mao et al., 2016) and GRIT (Gupta et al., 2022).
Specifically, the refer expression comprehension task requires the model to localize the target object
under the guidance of a description. The results are shown in Table 6. Compared to previous
generalist models or recent LVLMs, our models obtain top-tier results on all benchmarks.

4.4 FEW-SHOT LEARNING ON VISION-LANGUAGE TASKS

Our model also exhibits satisfactory in-context learning (a.k.a., few-shot learning) ability. As
shown in Figure 4, Qwen-VL achieves better performance through in-context few-shot learning
on OKVQA (Marino et al., 2019), Vizwiz (Gurari et al., 2018), TextVQA (Sidorov et al., 2020),
and Flickr30k (Young et al., 2014) when compared with models with similar number of parame-
ters (Flamingo-9B(Alayrac et al., 2022), OpenFlamingo-9B(Awadalla et al., 2023) and IDEFICS-
9BLaurençon et al. (2023)). Qwen-VL’s performance is even comparable with much larger models
(Flamingo-80B and IDEFICS-80B). Note that we adopt naı̈ve random sample to construct the few-
shot exemplars, sophisticated few-shot exemplar construction methods such as RICES (Yang et al.,
2022b) are not used despite better results would be achieved.
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Table 6: Results on Referring Expression Comprehension task.

Model type Model RefCOCO RefCOCO+ RefCOCOg GRIT
val test-A test-B val test-A test-B val test refexp

Generalist Models

GPV-2 - - - - - - - - 51.50
OFA-L* 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 61.70
Unified-IO - - - - - - - - 78.61
VisionLLM-H 86.70 - - - - - - -
Shikra-7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 69.34
Shikra-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 69.03
Qwen-VL-7B 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48 78.22
Qwen-VL-7B-Chat 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32 -

Specialist SOTAs
G-DINO-L 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02 -
UNINEXT-H 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37 -
ONE-PEACE 92.58 94.18 89.26 88.77 92.21 83.23 89.22 89.27 -

Figure 4: Few-shot learning results of Qwen-VL in comparison with other models.

4.5 INSTRUCTION FOLLOWING IN REAL-WORLD USER BEHAVIOR

In addition to previous conventional vision-language evaluations, to evaluate our Qwen-VL-Chat
model’s capacity under real-world user behavior, we further conduct the evaluations on the Touch-
Stone (Bai et al., 2023), SEED-Bench (Li et al., 2023b), and MME (Fu et al., 2023). TouchStone
is an open-ended vision-language instruction-following benchmark. We compare the instruction-
following ability of Qwen-VL-Chat with other instruction-tuned LVLMs in both English and Chi-
nese on the TouchStone benchmark. SEED-Bench consists of 19K multiple-choice questions with
accurate human annotations for evaluating Multimodal LLMs, covering 12 evaluation dimensions
including both the spatial and temporal understanding. MME measures both perception and cogni-
tion abilities on a total of 14 subtasks.

The results on three benchmarks are shown in Table 7. Qwen-VL-Chat has achieved obvious advan-
tages over other LVLMs on all three datasets, indicating that our model performs better in under-
standing and answering diverse user instructions. In SEED-Bench, we have found that our model’s
visual capabilities can be effectively transferred to video tasks by simply sampling four frames.
In terms of the overall scores presented in TouchStone, our model demonstrates a clear advantage
compared to other LVLMs, especially in terms of its Chinese capabilities. In terms of the broad cat-
egories of abilities, our model exhibits a more pronounced advantage in understanding and recogni-
tion, particularly in areas such as text recognition and chart analysis. For more detailed information,
please refer to the TouchStone dataset.

5 RELATED WORK

In recent years, researchers have shown considerable interest in vision-language learning (Su et al.,
2019; Chen et al., 2020; Li et al., 2020; Zhang et al., 2021; Li et al., 2021b; Lin et al., 2021; Kim
et al., 2021; Dou et al., 2022; Zeng et al., 2021; Li et al., 2021a; 2022), especially in the devel-
opment of multi-task generalist models (Hu & Singh, 2021; Singh et al., 2022; Zhu et al., 2022;
Yu et al., 2022; Wang et al., 2022a; Lu et al., 2022a; Bai et al., 2022). CoCa (Yu et al., 2022)
proposes an encoder-decoder structure to address image-text retrieval and vision-language genera-
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Table 7: Results on Instruction-following benchmarks.

Model TouchStone SEED-Bench MME
En Cn All Img Video Perception Cognition

VisualGLM - 247.1 - - - 705.31 181.79
PandaGPT 488.5 - - - - 642.59 228.57
MiniGPT4 531.7 - 42.8 47.4 29.9 581.67 144.29
InstructBLIP 552.4 - 53.4 58.8 38.1 1212.82 291.79
LLaMA-AdapterV2 590.1 - 32.7 35.2 25.8 972.67 248.93
LLaVA 602.7 - 33.5 37.0 23.8 502.82 214.64
mPLUG-Owl 605.4 - 34.0 37.9 23.0 967.34 276.07

Qwen-VL - - 56.3 62.3 39.1 - -
Qwen-VL-Chat 645.2 401.2 58.2 65.4 37.8 1487.58 360.71

tion tasks simultaneously. OFA (Wang et al., 2022a) transforms specific vision-language tasks into
sequence-to-sequence tasks using customized task instructions. Unified I/O (Lu et al., 2022a) further
introduces more tasks like segmentation and depth estimation into a unified framework. Another cat-
egory of research focuses on building vision-language representation models (Radford et al., 2021;
Jia et al., 2021; Zhai et al., 2022; Yuan et al., 2021; Yang et al., 2022a). CLIP (Radford et al., 2021)
leverages contrastive learning and large amounts of data to align images and language in a seman-
tic space, resulting in strong generalization capabilities across a wide range of downstream tasks.
BEIT-3 (Wang et al., 2022b) employs a mixture-of-experts (MOE) structure and unified masked
token prediction objective, achieving state-of-the-art results on various visual-language tasks. In
addition to vision-language learning, ImageBind (Girdhar et al., 2023) and ONE-PEACE (Wang
et al., 2023) align more modalities such as speech into a unified semantic space, thus creating more
general representation models.

With the rapid development of large language models (LLMs) (Brown et al., 2020; OpenAI, 2023;
Anil et al., 2023; Gao et al., 2023; Qwen, 2023), researchers have started building more powerful
large vision-language models (LVLMs) based on LLMs (Alayrac et al., 2022; Chen et al., 2022; Li
et al., 2023c; Dai et al., 2023; Huang et al., 2023; Peng et al., 2023; Zhu et al., 2023; Liu et al., 2023;
Ye et al., 2023b;a; Chen et al., 2023a; Li et al., 2023a; Zhang et al., 2023; Sun et al., 2023). BLIP-
2 (Li et al., 2023c) proposes Q-Former to align the frozen vision foundation models and LLMs.
Meanwhile, LLAVA (Liu et al., 2023) and Mini-GPT4 (Zhu et al., 2023) introduce visual instruction
tuning to enhance instruction following capabilities in LVLMs. Additionally, mPLUG-DocOwl (Ye
et al., 2023a) incorporates document understanding capabilities into LVLMs by introducing digital
documents data. Kosmos2 (Peng et al., 2023), Shikra (Chen et al., 2023a), and BuboGPT (Zhao
et al., 2023) further enhance LVLMs with visual grounding abilities, enabling region description
and localization. Despite achieving significant progress, previous vision-language models still have
several limitations such as poor robustness in instruction following, limited generalization capabili-
ties in unseen tasks, and a lack of in-context abilities. To further explore the performance extremity
and efficient training strategy in terms of both data organization and model optimization, we train
our LVLMs on a vast of vision-language datasets with kinds of multimodal tasks (e.g., image cap-
tion, visual question answering, document comprehension, and visual grounding.). The resulting
models, Qwen-VL and Qwen-VL-chat, not only exhibit top-tier performance across a wide range
conventional benchmarks, but also outperform previous vision-language models on several recently
proposed instruction following benchmarks.

6 CONCLUSION AND FUTURE WORK

We release the Qwen-VL series, a set of large-scale multilingual vision-language models that aims to
facilitate multimodal research. Qwen-VL outperforms similar models across various benchmarks,
supporting multilingual conversations, multi-image interleaved conversations, grounding in Chi-
nese, and fine-grained recognition. Moving forward, we are dedicated to further enhancing Qwen-
VL’s capabilities in several key dimensions: (i) Integrating Qwen-VL with more modalities, such
as speech and video. (ii) Augmenting Qwen-VL by scaling up the model size, training data and
higher resolution, enabling it to handle more complex and intricate relationships within multimodal
data. (iii) Expanding Qwen-VL’s prowess in multi-modal generation, specifically in generating
high-fidelity images and fluent speech.
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A DATASET DETAILS

A.1 IMAGE-TEXT PAIRS

We use web-crawled image-text pairs dataset for pre-training, which includes LAION-en (Schuh-
mann et al., 2022a), LAION-zh (Schuhmann et al., 2022a), LAION-COCO (Schuhmann et al.,
2022b), DataComp (Gadre et al., 2023) and Coyo (Byeon et al., 2022). We clean these noisy data
by several steps:

1. Removing pairs with too large aspect ratio of the image

2. Removing pairs with too small image

3. Removing pairs with a harsh CLIP score (dataset-specific)

4. Removing pairs with text containing non-English or non-Chinese characters

5. Removing pairs with text containing emoji characters

6. Removing pairs with text length too short or too long

7. Cleaning the text’s HTML-tagged part

8. Cleaning the text with certain unregular patterns

For academic caption datasets, we remove pairs whose text contains the special tags in
CC12M (Changpinyo et al., 2021) and SBU (Ordonez et al., 2011). If there is more than one text
matching the same image, we select the longest one.

A.2 VQA

For the VQAv2 (Goyal et al., 2017) dataset, we select the answer annotation based on the maximum
confidence. For other VQA datasets, we didn’t do anything special.

A.3 GROUNDING

For the GRIT (Peng et al., 2023) dataset, we found that there are many recursive grounding box
labels in one caption. We use the greedy algorithm to clean the caption to make sure each image
contains the most box labels with no recursive box labels. For other grounding datasets, we simply
concatenate the noun/phrase with respective bounding box coordinates.

A.4 OCR

We generated the synthetic OCR dataset using Synthdog (Kim et al., 2022). Specifically, we use the
COCO (Lin et al., 2014) train2017 and unlabeld2017 dataset split as the natural scenery background.
Then we selected 41 English fonts and 11 Chinese fonts to generate text. We use the default hy-
perparameters as in Synthdog. We track the generated text locations in the image and convert them
to quadrilateral coordinates and we also use these coordinates as training labels. The visualization
example is illustrated in the second row of Fig 5.

For all the PDF data we collected, we follow the steps below to pre-process the data using
PyMuPDF (Software, 2015) to get the rendering results of each page in a PDF file as well as all
the text annotations with their bounding boxes.

1. Extracting all texts and their bounding boxes for each page.

2. Rendering each page and save them as an image file.

3. Removing too small image.

4. Removing images with too many or too few characters.

5. Removing images containing Unicode characters in the “Latin Extended-A” and “Latin
Extended-B” blocks.

6. Removing images containing Unicode characters in the “Private Use Area (PUA)” block.
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Figure 5: Visualization of the Grounding and OCR data used for training Qwen-VL

For all HTML web pages we collected, we pre-process them in a similar approach to all the PDF
data we collected, but we use Puppeteer (Google, 2023) instead of PyMuPDF to render these HTML
pages and get the ground truth annotation. We follow the steps below to pre-process the data.

1. Extracting all texts for each webpage.

2. Rendering each page and save them as an image file.
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3. Removing too small image.

4. Removing images with too many or too few characters.

5. Removing images containing Unicode characters in the “Private Use Area (PUA)” block.

B DATA FORMAT DETAILS OF TRAINING

B.1 DATA FORMAT OF MULTI-TASK PRE-TRAINING

We visualize the Multi-Task Pre-training data format in Box B.1. The Box contains all 7 tasks with
the black-colored text as the prefix sequence without loss and blue-colored text as the ground truth
labels with loss.

Image Captioning

<img>cc3m/01581435.jpg</img>Generate the caption in English: the beautiful flowers
for design.<eos>

Vision Question Answering

<img>VG 100K 2/1.jpg</img> Does the bandage have a different color than the wrist
band? Answer: No, both the bandage and the wrist band are white.<eos>

OCR VQA

<img>ocr vqa/1.jpg</img> What is the title of this book? Answer: Asi Se Dice!, Volume
2: Workbook And Audio Activities (Glencoe Spanish) (Spanish Edition)<eos>

Caption with Grounding

<img>coyo700m/1.jpg</img>Generate the caption in English with grounding: Beautiful
shot of <ref>bees</ref><box>(661,612),(833,812)</box><box>(120,555),(265,770)
</box> gathering nectars from <ref>an apricot flower</ref><box>(224,13),(399,313)
</box><eos>

Referring Grounding

<img>VG 100K 2/3.jpg</img><ref>the ear on a giraffe</ref><box>(176,106),(232,160)
</box><eos>

Grounded Captioning

<img>VG 100K 2/4.jpg</img><ref>This</ref><box>(360,542),(476,705)</box> is
Yellow cross country ski racing gloves<eos>

OCR

<img>synthdog/1.jpg</img>OCR with grounding: <ref>It is managed</ref> <quad>
(568,121), (625,131), (624,182), (567,172)</quad>...<eos>

B.2 DATA FORMAT OF SUPERVISED FINE-TUNING

To better accommodate multi-image dialogue and multiple image inputs, we add the string ”Picture
id:” before different images, where the id corresponds to the order of image input dialogue. In terms
of dialogue format, we construct our instruction tuning dataset using the ChatML (Openai) format,
where each interaction’s statement is marked with two special tokens (<im start> and <im end>)
to facilitate dialogue termination.
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The Dataset Format Example of ChatML

<im start>user
Picture 1: <img>vg/VG 100K 2/649.jpg</img>What is the sign in the picture?<im end>
<im start>assistant
The sign is a road closure with an orange rhombus.<im end>
<im start>user
How is the weather in the picture?<im end>
<im start>assistant
The shape of the road closure sign is an orange rhombus.<im end>

During training, we ensure the consistency between prediction and training distributions by only
supervising answers and special tokens (blue in the example), and not supervising role names or
question prompts.

C HYPERPARAMETERS

We report the detailed training hyperparameter settings of Qwen-VL in Table 8.

Table 8: Training hyperparameters of Qwen-VL

Configuration Pre-training Multi-task Pre-training Supervised Fine-tuning

ViT init. Open-CLIP-bigG Qwen-VL 1st-stage Qwen-VL 2nd-stage
LLM init. Qwen-7B Qwen-7B Qwen-VL 2nd-stage
VL Adapter init. random Qwen-VL 1st-stage Qwen-VL 2nd-stage
Image resolution 2242 4482 4482

ViT sequence length 256 1024 1024
LLM sequence length 512 2048 2048
Learnable query numbers 256 256 256
Optimizer AdamW
Optimizer hyperparameter β1 = 0.9, β2 = 0.98, eps = 1e−6

Peak learning rate 2e−4 5e−5 1e−5

Minimum learning rate 1e−6 1e−5 1e−6

ViT learning rate decay 0.95 0.95 0
ViT Drop path rate 0
Learning rate schedule cosine decay
Weight decay 0.05
Gradient clip 1.0
Training steps 50k 19k 8k
Warm-up steps 500 400 3k
Global batch size 30720 4096 128
Gradient Acc. 6 8 8
Numerical precision bfloat16

Optimizer sharding ✓

Activation checkpointing ✗

Model parallelism ✗ 2 2
Pipeline parallelism ✗

In the first pre-training stage, the model is trained using AdamW optimizer with β1 = 0.9, β2 =
0.98, eps = 1e−6. We use the cosine learning rate schedule and set the maximum learning rate of
2e−4 and minimum of 1e−6 with a linear warm-up of 500 steps. We use a weight decay of 5e−2

and a gradient clipping of 1.0. For the ViT image encoder, we apply a layer-wise learning rate decay
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strategy with a decay factor of 0.95. The training process uses a batch size of 30720 for the image-
text pairs, and the entire first stage of pre-training lasts for 50,000 steps, consuming approximately
1.5 billion image-text samples and 500 billion image-text tokens.

In the second multi-task training stage, we increase the input resolution of the visual encoder from
224×224 to 448×448, reducing the information loss caused by image down-sampling. We unlocked
the large language model and trained the whole model. The training objective is the same as the pre-
training stage. We use AdamW optimizer with β1 = 0.9, β2 = 0.98, eps = 1e−6. We trained for
19000 steps with 400 warm-up steps and a cosine learning rate schedule. Specifically, we use the
model parallelism techniques for ViT and LLM.

D SUMMARY OF THE EVALUATION BENCHMARKS

We provide a detailed summary of the used evaluation benchmarks and corresponding metrics in
Table 9.

Table 9: Summary of the evaluation benchmarks.

Task Dataset Description Split Metric

Image Caption Nocaps Captioning of natural images val CIDEr(↑)
Flickr30K Captioning of natural images karpathy-test CIDEr(↑)

General VQA

VQAv2 VQA on natural images test-dev VQA Score(↑)
OKVQA VQA on natural images requiring outside knowledge val VQA Score(↑)
GQA VQA on scene understanding and reasoning test-balanced EM(↑)
ScienceQA-Img Multi-choice VQA on a diverse set of science topics test Accuracy(↑)
VizWiz VQA on photos taken by people who are blind test-dev VQA Score(↑)

Text-oriented VQA

TextVQA VQA on natural images containing text val VQA Score(↑)
DocVQA VQA on images of scanned documents test ANLS(↑)
ChartQA VQA on images of charts test Relaxed EM(↑)
OCRVQA VQA on images of book covers test EM(↑)
AI2Diagram VQA on images of scientific diagrams test EM(↑)

RefCOCO Refer grounding on natural images val & testA & testB Accuracy(↑)
Refer Expression RefCOCO+ Refer grounding on natural images val & testA & testB Accuracy(↑)
Comprehension RefCOCOg Refer grounding on natural images val & test Accuracy(↑)

GRiT Refer grounding on natural images test Accuracy(↑)

Instruction Following
TouchStone Open-ended VL instruction following benchmark English & Chinese GPT-4 Score (↑)
MME Open-ended VL Benchmark by yes/no questions Perception & Cognition Accuracy (↑)
Seed-Bench Open-ended VL Benchmark by Multi-choice VQA Image & Video Accuracy (↑)

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 CONVERGENCE OF THE PRE-TRAINING STAGE

In Figure 6, we show the convergence of the Pre-training Stage (stage one). The whole models are
trained using BFloat16 mixed precision, the batch size is 30720, and the learning rate is 2e−4. All
images are only trained once (one epoch). The training loss decreases steadily with the increase of
the number of training pictures. Note that, the pre-training stage (Stage one) has no VQA data being
added, but the Zero-shot VQA score increases amidst fluctuations.

E.2 NUMBER OF LEARNABLE QUERIES IN THE VISION-LANGUAGE ADAPTER

The vision-language adapter uses cross-attention to compress the visual feature sequence by a set of
learning queries of length. Too few queries can lead to the loss of some visual information, while
too many queries may reduce in greater convergence difficulty and computational cost.

An ablation experiment is conducted on the number of learnable queries in the vision-language
adapter. We used ViT-L/14 as the visual encoder and the 224×224 resolution picture as input, so the
sequence length of ViT’s output is (224/14)2 = 256. As shown in the left part of Figure 7, the fewer
queries used at the beginning of training, the lower the initial loss. However, with convergence, too
many or too few queries will cause convergence to slow down, as shown in the right part of Figure

19



Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
#Images(B)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Lo
ss

a. Pre-training Loss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
#Images(B)

62

64

66

68

70

72

74

76

CI
DE

r

b. Caption (Flickr)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
#Images(B)

48

50

52

54

56

Ac
cu

ra
cy

c. Zero-shot VQA (VQAv2)

Figure 6: Visualization of the Convergence of the Pre-training Stage
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Figure 7: Visualization of the loss in pre-training stage (stage 1) when using different compressed
feature lengths of the vision-language adapter. The left depicts the initial training loss (within 50
steps), and the right depicts the loss in convergence (1k-5k steps). In the legend, L64 denotes that
the adapter uses 64 queries to compress the visual feature sequence to a fixed length of 64, and so
on. The loss curves have been smoothed to avoid shading owing to fluctuations.

7. Considering that the second training stage (Multi-task Pre-train) applies 448*448 resolution,
where the sequence length of ViT’s output is (448/14)2 = 1024. Too few queries can result in
more information being lost. We finally chose to use 256 queries for the vision-language adapter in
Qwen-VL.

E.3 WINDOW ATTENTION VS GLOBAL ATTENTION FOR VISION TRANSFORMER

Using a high-resolution Vision Transformer in the model will significantly increase the computa-
tional cost. One possible solution to reduce the computational cost of the model is to use Window
Attention in the Vision Transformer, i.e., to perform Attention only in a window of 224 × 224 in
most layers of the ViT part of the model, and to perform Attention for the full 448×448 or 896×896
image in a small number of layers (e.g. 1 out of every 4 layers) of the ViT part of the model.

To this end, we conducted ablation experiments to compare the performance of the model when
using Global Attention and Window Attention for ViT. We compare the experimental results for
analysing the trade-off between computational efficiency and convergence of the model.

As shown in Figure 8 and Table 10, the loss of the model is significantly higher when Window
Attention instead of Vanilla Attention is used. And the training speeds for both of them are sim-
ilar. Therefore, we decided to use Vanilla Attention instead of Window Attention for the Vision
Transformer when training Qwen-VL.

The reason we don’t use Window Attention with 896 × 896 resolution is that its training speed is
too slow for us. Although it reaches a loss value similar to model with 448× 448 resolution input at
5000 steps. It takes almost 2.5 times longer to train than the model with 448× 448 resolution input.
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Figure 8: Visualization of the Loss when using Window Attention vs Global Attention

Table 10: Training speed of Window Attention vs Global Attention for different input image resolu-
tions

Model input resolution & Attention type Training speed

448× 448, Global Attention 10s / iter
448× 448, Window Attention 9s / iter
896× 896, Global Attention 60s / iter
896× 896, Window Attention 25s / iter

E.4 PERFORMANCE ON PURE-TEXT TASKS

In order to study the effect of multi-modal training on pure-text ability, we show the performance of
pure-text tasks of Qwen-VL compared to open-source LLM in Table 11.

Qwen-VL uses an intermediate checkpoint of Qwen-7B as the LLM initialization. The reason why
we did not use the final released checkpoint of Qwen-7B is that Qwen-VL and Qwen-7B were
developed at a very similar period. Because Qwen-VL has a good initialization on LLM by Qwen-
7B, it is comparable to many text-only LLMs on pure-text tasks.

Table 11: Performance on Pure-text Benchmarks of Qwen-VL compared to open-source LLM. Due
to the introduction of pure-text data in the multi-task training and SFT stage, Qwen-VL do not
compromise any pure-text ability.

Model MMLU CMMLU C-Eval

LLaMA-7B 35.1 26.8 -
LLaMA2-7B 46.8 31.8 32.5
Baichuan-7B 42.3 44.4 42.8
Baichuan2-7B 54.2 57.1 54.0
ChatGLM2-6B 47.9 48.8 51.7
InternLM-7B 51.0 51.8 52.8
Qwen-7B (final released) 58.2 62.2 63.5

Qwen-7B (intermediate, use as Qwen-VL’s LLM initialization) 49.9 - 48.5
Qwen-VL 50.7 49.5 51.1
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Furthermore, in the multi-task training and SFT stages, Qwen-VL not only utilizes visual and
language-related data but also incorporates pure-text data for training. The purpose of this is to
prevent the catastrophic forgetting of text comprehension by leveraging the information from pure-
text data. The results in Table 11 indicate that the Qwen-VL model does not exhibit any degradation
in terms of its pure text capability and even demonstrates improvement after multi-task training.

COMPARISONS WITH OTHER OPEN-SOURCE LVLMS

In Tab. 12, we compare Qwen-VL with previous open-source large vision-language models
(LVLMs) in terms of their supporting language and capable task. As shown in the table, Qwen-
VL can support both English and Chinese in its application and is capable to finish four kinds of
vision-language tasks within the same model. Moreover, as aforementioned, Qwen-VL also outper-
forms these predecessors across several benchmarks on these four tasks.

Table: 12: Comparisons between Qwen-VL and previous open-source LVLMs in terms of both lan-
guage support and task capacity. For text-oriented VQA, we refer to whether the model is designed
or optimized to tackle this problem explicitly. Grounding indicates visual grounding.

Language Task
Model English Chinese Caption General VQA Text-oriented VQA Grounding

Kosmos ✓ ✓ ✓

BLIP2 ✓ ✓ ✓

LLaVA ✓ ✓ ✓

MiniGPT-4 ✓ ✓ ✓

ChatGLM ✓ ✓ ✓ ✓

mPLUG-Owl ✓ ✓ ✓

InstructBLIP ✓ ✓ ✓ ✓

mPLUG-DocOwl ✓ ✓ ✓ ✓

Kosmos2 ✓ ✓ ✓ ✓

Shikra ✓ ✓ ✓ ✓

Qwen-VL ✓ ✓ ✓ ✓ ✓ ✓

ABLATION ON IMAGE CONTAMINATION

To verify the potential negative impact of image contamination (especially between COCO-based
datasets and benchmarks) on our Qwen-VL’s final performance, we conduct two experiments and
evaluate two models across a wide range of benchmarks. Specifically, we employe a LLM with
1.8B parameters and CLIP-ViT-L/14 as vision encoder, the overall parameters in our model are
about 2B. We train this model on the same dataset composition as we used in our paper, in spite
of much fewer iterations. During the first stage, we tune the model with a batch size of 30720 for
8000 steps. During the second stage, we train both models for 6000 steps with a batch size of 2048.
For the baseline experiment, we use exact the same composition of datasets as in our paper. For
the second experiment, we follow previous work to perform near-deduplication. Specifically, we
deduplicate all coco images used in some coco-based evaluation benchmarks (e.g., VQA, OKVQA,
Refcoco/Refcoco+/Refcocog). The results are shown in Tab. 13.

ABLATION ON THE TRAINING PART IN SECOND STAGE

We conduct additional ablation studies on the training part during the second stage. Specifically, we
employe a LLM with 1.8B parameters and CLIP-ViT-L/14 as vision encoder, the overall parameters
in our model are about 2B. During the first stage, we tune the model with a batch size of 30720 for
8000 steps. During the second stage, in addition to the default setup, we also try to train our model
with either ViT or LLM being frozen. All these three models for the second stage are tuned for 6000
steps with a batch size of 2048.
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Table: 13: We conduct contrast experiments to verify the effect of potential image contamination on
the final results or Qwen-VL. As the results shown, with COCO-based image carefully deduplicated
in both the first and the second training stages, we observe little to no performance perturbation
between two experiments for both coco-based and non coco-based benchmarks.

Benchmark Is COCO-based? Qwen-VL(2B) w/. Image Deduplication

Nocaps(val) 114.7 114.3

VQAv2(val) ✓ 74.6 74.3
OKVQA(val) ✓ 45.7 45.9
VizWiz(val) 29.4 29.8
TextVQA(val) 52.5 52.5

RefCOCO(val) ✓ 79.9 79.6
RefCOCO+(val) ✓ 66.1 66.5
RefCOCOg(val) ✓ 74.2 73.6

As the results in Tab. 14. There are several observations:

• Compared to jointly tuning both ViT and LLM, freeze ViT or freeze LLM both lead to
significant performance decrease.

• On most benchmarks, freeze ViT shows better results than freeze LLM. This observation is
in line with some current vision-language machines who prefer to tune LLM and keep the
ViT frozen (Huang et al., 2023; Chen et al., 2023a).

• However, for text-oriented VQA(i.e., TextVQA), it’s interesting to see that freeze LLM
(tune ViT) shows significant higher accuracy compared to freeze ViT (tune LLM). We
ascribe this phenomenon to text-oriented VQA requires more fine-grained visual perception
capacity which has not been learnt in previous ViT training process(e.g., vision-language
contrastive learning in CLIP, and coarse-grained image captioning in our first stage).

Table: 14: Ablation studies on the training part in second stage.

Benchmark Qwen-VL(2B) Freeze ViT in Stage2 Freeze LLM in Stage2

Nocaps(val) 114.7 109.7 99.3

VQAv2(val) 74.6 68.9 64.4
OKVQA(val) 45.7 43.2 32.7
VizWiz(val) 29.4 22.5 19.3

TextVQA(val) 52.5 27.7 40.1

MODEL FAIRNESS, BIAS, AND OTHER POTENTIAL ISSUES

Following previous vision-language models Chen et al. (2023b), we evaluate the overall level of
toxicity and profanity of Qwen-VL’s generated captions on FairFace dataset Kärkkäinen & Joo
(2019). Specifically, we instruct our model to generate descriptions for each image in FairFace
dataset Kärkkäinen & Joo (2019) val split, then the generated captions are scored by Perspective
API Lees et al. (2022) for their degree of toxicity and profanity. Tables 15- 17 depict the percentage
of varying degree of toxicity or profanity splitted by subgroups related to race, age, and gender,
respectively. Our observations are: (i) Qwen-VL shows a general low degree of toxicity across all
slices, and an extremly low level of profanity (more than 99% captions’ profanity are below 0.2).
(ii) Taking 0.8 as threshold for both toxicity and profanity, Qwen-VL’s outputs are under great satefy
(not a single caption is toxic nor profane). (iii) As shown in Tab. 18, compared to previous method,
i.e., PaLI-X (Chen et al., 2023b), Qwen-VL is much more safe across all slices.
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Table: 15: Toxicity and profanity of Qwen-VL on different subgroups related to race.

Toxicity Profanity
RACE < 0.2 0.2 - 0.8 > 0.8 < 0.2 0.2 - 0.8 > 0.8

Black 84.1% 15.9% 0% 99.7% 0.3% 0%
East Asian 86.2% 13.8% 0% 99.2% 0.8% 0%
Indian 80.5% 19.5% 0% 99.7% 0.3% 0%
Latino Hispanic 86.3% 13.7% 0% 99.3% 0.7% 0%
Middle Eastern 86.4% 13.6% 0% 99.3% 0.7% 0%
Southeast Asian 86.7% 13.3% 0% 99.2% 0.8% 0%
White 84.9% 15.1% 0% 99% 1% 0%

Table: 16: Toxicity and profanity of Qwen-VL on different subgroups related to age.

Toxicity Profanity
AGE < 0.2 0.2 - 0.8 > 0.8 < 0.2 0.2 - 0.8 > 0.8

0-2 68.8% 31.2% 0% 100% 0% 0%
3-9 83.4% 16.6% 0% 99% 1% 0%
10-19 86.4% 13.6% 0% 99.2% 0.8% 0%
20-29 85.9% 14.1% 0% 99.4% 0.6% 0%
30-39 85.5% 14.5% 0% 99.4% 0.6% 0%
40-49 85.7% 14.3% 0% 99.2% 0.8% 0%
50-59 83.4% 16.6% 0% 99.6% 0.4% 0%
60-69 86.6% 13.4% 0% 99.7% 0.3% 0%
>= 70 75.4% 24.6% 0% 99.2% 0.8% 0%

Table: 17: Toxicity and profanity of Qwen-VL on different subgroups related to gender.

Toxicity Profanity
GENDER < 0.2 0.2 - 0.8 > 0.8 < 0.2 0.2 - 0.8 > 0.8

Male 86% 14% 0% 99.6% 0.4% 0%
Female 83.8% 16.2% 0% 99.1% 0.9% 0%

Table: 18: Comparision between Qwen-VL and PaLI-X Chen et al. (2023b).

MODEL Threshold Race (Low/High) (↓) Age (Low/High) (↓) Gender (Low/High) (↓)

PaLI-X Toxicity 0.2 35.8%/40.4% 33.9%/40.0% -
Qwen-VL Toxicity 0.2 13.3%/19.5% 13.4%/31.2% 14.0%/16.2%

PaLI-X Profanity 0.2 5.1%/8.5% 3.5%/10.3% -
Qwen-VL Profanity 0.2 0.3%/1.0% 0.3%/1.0% 0.4%/0.9%
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