Iterative LLM Augmentation through Criteria-Based Feedback

Anonymous ACL submission

Abstract

Large Language Model (LLM) self-reflection
involves an LLM reviewing its past outputs
to enhance future responses without relying
on external data. This concept has been ex-
plored in frameworks like those by Shinn(Shinn
et al., 2024)and Madaan(Madaan et al., 2024).
However, challenges remain, as Huang(Huang
et al., 2023).point out the risk of performance
degradation due to overly generic reflective
prompts. To address these issues, we intro-
duce a vector-based retrieval framework. Our
approach demonstrates significant improve-
ments in decision-making, reasoning, and math-
ematics tasks, surpassing baseline models like
Llama3.2-3b and the SELF-REFINE frame-
work. These results emphasize the potential
of targeted self-reflection to improve LLM per-
formance while mitigating common drawbacks.
Meanwhile,beyond this method, we also ex-
plored the possibility of using a multi-agent
approach with auxiliary models to assist in re-
flection. We trained a model to replace the base
model in generating criteria and systematically
evaluated the impact of the auxiliary model
on the output capability of the self-reflection
framework.

1 Introduction

1.1 LLM Self-reflection

Large language model (LLM) self-reflection refers
to the process by which an LLM has the ability
to review its past output based on prompts within
those outputs and produce improved and more op-
timized outputs as a result. This process does not
rely on direct external data, but rather identifies
issues in its previous responses to enhance future
performance.

1.2 Research Direction of This Paper

We believe that whether the reflection prompt is
appropriately designed is a key factor affecting
the effectiveness of model reflection and the final

Input ——— — Initial Output
Review Review your
l Model «— answer and find
the problem...
Revise your

answer according —

to the review... — Output

Figure 1: Overview of the reflection process.

output performance. At present, existing studies
use simple, fixed prompts to guide model reflection
and have not yet fully developed the potential of
reflection technology. We decided to start from this
aspect, optimizing reflection prompts to improve
the final output performance of the self-reflection
model.

2 Related Work

2.1 Reflexion

As the first framework to systematically apply "self-
reflection” in practice, Reflexion(Shinn et al., 2024)
uses linguistic reinforcement to help agents learn
from past failures. Reflexion converts binary or
scalar feedback from the environment into textual
feedback. This feedback is provided in the form
of text summaries and then offered as additional
context to LLM agents in the next round. This
self-reflective feedback acts as a "semantic" gradi-
ent signal, helping the agent learn from previous
mistakes by providing concrete directions for im-
provement, thus performing better in tasks.

2.2 SELF-REFINE

Madaan(Madaan et al., 2024) demonstrated that
LLMs could perform iterative self-improvement
without requiring additional training, resulting
in higher-quality outputs across various tasks.
Madaan proposed SELF-REFINE: an iterative self-
improvement algorithm that alternates between two
generation stpng—Feedback and Refine.

Another groundbreaking aspect of the self-refine
design is the use of manually crafted evaluation
metrics to standardize the model’s performance on
specific tasks. For constrained generation tasks,
Madaan designed multi-dimensional evaluation
metrics tailored to these tasks, enabling the model
to reflect more precisely and efficiently.

2.3 Skepticism About Reflection

Contrary to the optimistic attitudes surrounding
self-correction(Madaan et al., 2024)(Kim et al.,
2023)(Shinn et al., 2024)(Pan et al., 2023), etc.),
Huang(Huang et al., 2023)’s findings here suggest
that LLMs find it challenging to self-correct their
reasoning in this environment. In most cases, per-
formance deteriorates after self-correction. This
observation contrasts with previous studies (e.g.,
Kim(Kim et al., 2023); Shinn(Shinn et al., 2024)).

The authors also found other issues in the litera-
ture regarding the measurement of improvements
achieved by self-correction. First, the authors noted
that self-correction designs used multiple LLM
responses, so comparing a baseline with equiva-
lent reasoning costs is crucial. From this perspec-
tive, the authors examined multi-agent debate (Du
et al., 2023)(Liang et al., 2023) as a method for im-
proving reasoning, where multiple LLM instances
(which can be multiple copies of the same LLM)
critique each other’s responses. However, the re-
sults show that when considering an equivalent
number of responses, its effect is no better than
self-consistency (Wang et al., 2022), highlighting
the limitations of this approach.

Given these findings, Huang(Huang et al., 2023)
provide insights into the nuances of LLMs’ self-
correction abilities and initiate discussions encour-
aging future research to focus on exploring meth-
ods that can truly enhance reasoning.

2.4 Prefix-Tuning

Our research examines the specific impact of intro-
ducing auxiliary models on the effectiveness of re-
flection within a multi-agent architecture. The aux-
iliary model is responsible for constructing prompts
and generating evaluations. During the training of
the auxiliary model, our goal was to achieve bet-
ter performance on the aforementioned tasks by
fine-tuning as few parameters as possible using a
small-scale dataset.

Optimizing Continuous Prompts for Generation
by Li(Li and Liang, 2021) presents an innovative
approach for fine-tuning large-scale pretrained lan-

guage models (PLMs) that balances task adaptation
effectiveness and computational efficiency. Tradi-
tional methods of fine-tuning require updating all
model parameters, which can be infeasible for very
large PLMs due to storage and computational con-
straints. In contrast, Prefix-Tuning introduces a
lightweight method that optimizes a small set of
continuous task-specific parameters, referred to as
"prefixes," while keeping the original model param-
eters frozen.

3 Criteria-Based Feedback

We speculate that the non-specific reflective
prompts and the standardized reflection process
are the main reasons for the performance decline.
Based on this hypothesis, we designed the follow-
ing optimization process.

3.1 Reflection Prompt Optimization
3.1.1 Ciriteria: Reflective Prompting

This framework employs a set of optimized crite-
ria as prompts to assist the LLM in its reflection
process. The criteria set is divided into two cate-
gories: hard criteria and soft criteria. These criteria
are used as reflection prompts after the target LLM
generates an output, prompting it to produce a new
round of output. This design combines human-
created criteria with model-generated criteria to
customize unique reflective evaluation prompts for
all inputs, requiring them to implement precise
reflection on key points of the problem, thereby
improving the quality of the output.

3.1.2 Manual Database: Error Correction
and Detoxify

Hard criteria are manually written, and recalled
through vector matching based on both the input
and output to select the most relevant and effective
criteria for each problem. These criteria usually
consist of simple judgment-based questions and
are carefully designed, including pre-defined evalu-
ation criteria spanning multiple domains. The pur-
pose of hard criteria is to correct severe errors and
fundamental misunderstandings produced by the
LLM and to check for harmful outputs and other
ethical issues. The LLM retrieves these criteria
both when receiving input and generating output,
matching a certain number of hard criteria based
on preset parameters, and is required to reflect ac-
cording to these criteria before re-outputting.

Table 1: An example of hard criteria sets with index.

Index Criteria

Does the answer contain
necessary background info-
rmation and explanation?
Have all data types in the
question been confirmed?
Does the answer contain any
content of racial discri-
mination or prejudice?
Does the tone and wording
of this expression match
the given context?

Does the answer contain a
logical circular argument?
Has the answer taken into
account the abilities and
needs of the participants or
implementers?

Considering the latest deve-
lopments, does this inform-
ation still have timeliness?

Universal

Mathematical

Ethical

Linguistic/Text

Logistical

Decision Making

Fact Verify

3.1.3 Automatic Prompt: Detail Optimization

Soft criteria are generated by the model, creating
criteria through direct generation methods and pro-
viding them to the prompts. These criteria allow
for more detailed evaluation of each input and are
generally more complex, diverse questions. These
questions are usually highly relevant to the content
of the original output and do not significantly alter
the model’s output but help the model optimize its
output details.

Figure 2: An example of a model generating soft crite-
ria.

3.2 Vector Database Retrieval
3.2.1 Vector Matching and Criteria Grouping

The generation of criteria is jointly determined by
the input to the model. To match hard criteria with
the model input, we store these criteria in a vector
database. The database is queried using both the
vector corresponding to the model’s input and the
vector corresponding to the model’s output.

When vectors are embedded into the database,
they undergo clustering and are grouped under dif-
ferent indices. This approach improves the effi-
ciency of vector retrieval and prevents the recall of
vectors from being misled by less important words
in the input.

3.2.2 Performance Balance

After obtaining the Criteria matched from both the
input and output, the two sets of matched vectors
are merged into a unified query Criteria set. Gen-
erally, when the number of Criteria matched from
the input is approximately twice that of the output
(i.e., two out of every three Criteria come from
input matching, and one comes from output match-
ing), the evaluation criteria can effectively balance
output efficiency and accuracy.

3.3 Iterative Optimization

The framework enables the model to reflect and
generate new answers based on prior outputs. Tests
show that after five iterations, the model produces
a "confident" answer. After this point, further re-
flection with the same criteria yields no significant
content changes.

For iterative reflection from the second round,
vector retrieval logic needs adjustment. Reusing
vectors from the first round can limit reflection
scope, while excluding them may reduce out-
put relevance. To resolve this, we implement a
probability-based selection mechanism to priori-
tize critical criteria while maintaining diversity in
selected vectors.

The process iterates between feedback and re-
finement until the preset number of iterations is
reached.

K ={z; € A|i€ argsort, ¢4 [z; — vinl[2[: K]}
ey
Where:

* vy, is the input vector, A is the vector database,
and ||z; — vin||2 represents the Euclidean dis-
tance between x; and viy;

* argsort, . 4 returns indices sorted by ascend-
ing distance, and [: k] selects the top & indices.

To avoid over-reliance on frequently used cri-
teria, we introduce a weight-based selection for
vectors. The weight is determined by the Euclidean
distance, adjusted by a deduplication factor to re-
duce repeated selection:

1
(di +€) - (Cdi) + 1)
Where C(d;) is the frequency of selection, and

a controls deduplication strength. These weights
are normalized to form a probability distribution:

w'(d;) = 2

w'(d;)
pldi) = =— o~ 3)
' > _pep W' (D)
Sampling is then performed according to these
probabilities to maintain diversity and emphasize

critical criteria.

3.4 Iterative Criteria-Based Feedback

The model generates an initial output based on in-
put, uses feedback to refine this output, and repeats
the process until the iteration limit is reached. The
full optimization process is illustrated in Figure 3
and Algorithm 1.

Input —— Criteia — Criteria Criteria
! ' ' '
Criteria Criteria Criteria
‘ ‘v v
Model Model Model v Model
‘ ‘ V
Reflection Reflection Reflection
' | y i
Output Gen.1 Qutput Gen.2 Output Gen.3 Output Gen.N

Figure 3: The complete process of Criteria-Based Feed-
back work.

4 Auxiliary Model

A mainstream view argues that large models can
reasonably evaluate their own outputs, and main-
taining a single model for the entire process
enhances efficiency and simplicity—this is the
"Single-Agent" approach.

However, another perspective questions a
model’s ability to recognize its own errors.
Huang(Huang et al., 2023) noted that if a model
initially produces an incorrect response, it may
indicate a lack of understanding. Repeated self-
evaluation could reinforce errors or lead to halluci-
nations. Proponents of this approach also highlight

Algorithm 1: The iterative reflection algo-
rithm
Input: Input z, model M, prompts P with
probabilities P, (generate criteria)
and P, (revise), criteria set { Phard }-
Output: Final output y;_ .
Initialize yo < M (x);
Define function GenC (y;):;
Compute hard constraints: H <
retrieve (|| Phara) + retrieve(yo|| Phard);
Compute soft constraints:
S M(P.|z) + M(Pdllyo);
return H + S;
fort =0tot. — 1do
L Update: y;1+1 < M (GenC(y)||z, y¢);

return y;_;

computational cost. If a single model handles the
full reasoning-reflection-evaluation-modification
cycle, it significantly increases computational load.
The "Multi-Agent" approach proposes introducing
an auxiliary model to mitigate these risks and im-
prove reflection quality.

To address these concerns, we investigated
whether introducing an additional model could re-
duce repetitive errors and hallucinations while im-
proving performance. Reducing inference costs
was also a key goal. Thus, we designed, fine-tuned,
and integrated an auxiliary model into our Criteria-
Based Feedback (CBF) framework.

4.1 Multi-Agent CBF

The purpose of the auxiliary model is to replace
the original model in generating soft criteria and
evaluations during the overall process, thereby opti-
mizing the reflection performance. To this end, we
prepared two different auxiliary models to handle
these two tasks separately. The criteria generate
model and the evaluate model both receive inputs
from the original model and outputs from each gen-
eration. The former generates the corresponding
soft criteria, while the latter provides feedback. We
refer to the Criteria-Based Feedback framework in-
corporating auxiliary models as Multi-Agent CBF.

4.2 Fine-Tuning Dataset

The datasets used for fine-tuning were indepen-
dently collected by us. We trained the two models
using input-soft criteria pairs and output-evaluation
pairs as datasets. These datasets were derived from

data generated during the early debugging stages
of the Criteria-Based Feedback framework on test
sets. Specifically, we employed several general
question-answering benchmark datasets and ran
our Criteria-Based Feedback framework on them.
These frameworks were instructed to output and re-
tain intermediate results during runtime, including
soft criteria and evaluations.

After obtaining the experimental results, we col-
lected the intermediate outputs corresponding to
the final outputs labeled as "correct” and, after sim-
ple manual filtering, formed our training datasets.
In the following, we present the sources and de-

Training Dataset
Benchmark datasets Group A

Flitered

Flitered
o Evalu-
Criteria .
ations
Basic CBF . :
T Criteria .
Soft Criteria o Evaluate Basic
Model CBF
Model

Filter based on Multi-Agent CBF

¥

Correct Outputs
Benchmark datasets Group B

Flitered Criteria

{

Test Results

Manual
screening
and
sorting

Flitered Evaluations

=
=3

o

D

o

o

c

D

o

<

Figure 4: The process of collecting training datasets and
fine-tuning the model.

tailed construction methods of our datasets.

o IFEVAL (Zhou et al., 2023)

e MATH (Hendrycks et al., 2021b)

o ARC Challenge (Clark et al., 2018)

e HotpotQA (Yang et al., 2018) We ensured
that the datasets we used for training were not re-
lated to the test sets used in the final experimental
phase.

4.3 Prefix Fine-Tuning

To address the limited scale of our manually col-
lected dataset while minimizing training resource
usage, we chose Prefix-Tuning, which optimizes
only a minimal set of parameters.

Following the approach of Li(Li and Liang,
2021), we guide the language model’s behavior
by introducing context prefixes without modifying
its core parameters. This additional context affects
both the encoding process and the output token

generation. In autoregressive models, the input is
extended as:

z = [PREFIX; z; 9] %)

In encoder-decoder models, the prefixes are
added to both the encoder and decoder:

z = [PREFIX; z; PREFIX'; /] 5)

Unlike traditional fine-tuning, which updates the
entire model, Prefix-Tuning only optimizes the pre-
fix parameters. The model computes the activations
as:

Pyli, : if i € Pigx,
hz’ _ 9[27] 17 7.)(1 (6)
LMy (2, h<;) otherwise.

Here, 0 represents the trainable prefix parame-
ters, and ¢ denotes the fixed language model param-
eters. The objective function remains to maximize
the log-likelihood, but only the prefix parameters
are updated during training.

4.4 Fine-Tuning Configuration

For the Criteria generation and evaluation tasks,
we used the Llama3.2-1b! to examine the feasibil-
ity of reducing parameter size and thus lowering
inference costs, and Llama3.2-3b? model to exam-
ine the performance improvement while remaining
consistent with our reference base model.

Our implementation is based on Hugging Face’s
Transformers library(Wolf, 2019). During train-
ing, we used the AdamW optimizer (Loshchilov,
2017) and the linear learning rate scheduler recom-
mended in Hugging Face’s default settings. The
hyper-parameters we adjusted included the num-
ber of epochs, batch size, learning rate, and prefix
length. Detailed information about the hyperparam-
eters is provided in the appendix.

Under the default settings, training included: 5
epochs, a batch size of 16, a learning rate of 5- 1074,
and a prefix length of 10.

Using these parameters, we obtained two aux-
iliary models: the Criteria Generate Model and
the Evaluate Model. The specific impact of these
models on performance and inference efficiency
will be discussed in the experimental section.

1https: //huggingface.co/meta-1lama/Llama-3.
2-1B

2https: //huggingface.co/meta-1lama/Llama-3.
2-3B

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B

S Experiments

The experimental section evaluates our results in
two parts. First, we demonstrate the improved
scores of the CBF standard framework on different
test sets, as well as its results in preference testing,
to validate the achievements of this research. Sec-
ond, we evaluate the impact of auxiliary models
on the framework through various results, includ-
ing scores, inference time, and preference perfor-
mance.

5.1 Experimental Setup
5.1.1 Benchmark Tests

The datasets we used for benchmark tests include:
¢ GSMSK (Cobbe et al., 2021)
e TriviaQA (Joshi et al., 2017)
¢ GPQA(Rein et al., 2023)
¢ MMLU (Hendrycks et al., 2021a)
o HellaSwag (Zellers et al., 2019)
e IFEval(Levesque et al., 2012)

5.1.2 Preference Tests

In addition to the standard test sets and benchmarks
mentioned above, we also set up preference evalu-
ation metrics (Human-Pref & GPT Pref) to assess
the model’s capabilities in the following aspects:
e Constrained Generation (Lin et al.,
2020)
e Dialogue Response (Mehri and Eskenazi,
2020)

These preference tests measure whether there
is a significant improvement in the model’s ca-
pabilities in a specific area compared to before
self-reflection, based on collected human and GPT
preferences.

5.1.3 Test Model and Parameters

We used LLaMA3.2-3b as the primary model and
for the generation of criteria. GPT-4 was used
as the preference model, handling the task of
test set preference testing. For the main model,
LLaMA3.2-3b, we performed experiments with T
=0.7.

We instantiated this framework as described in
Section 3 with a dataset of 1,500 hard criteria. In
this experiment, iterations will continue until five
iterations are completed. Our primary objective
is to evaluate whether using this framework can
enhance the reflexive capabilities of any power-
ful foundation model. Therefore, we compare the
output of this framework with the same founda-
tion model after one round of the SELF-REFINE

process (Madaan et al., 2024). The amount of re-
flections(criteria) is set as 20, which consists of 15
hard criteria and 5 soft criteria, determined through
our preliminary experiments.
We report three types of metrics:

o Task-Specific Metrics

e Human Preference (Human-Pref)

o GPT-4 Preference (GPT-4-pref)(Fu et al.,
2023)(Sun et al., 2023)

5.2 Results
5.2.1 Criteria-Based Feedback
Table 2: Criteria-Based Feedback results on various

tasks using Llama-3.2-3b as base LLM and SELF-
REFINE as control model.

SELF-

Method Base model REFINE CBF
GSMS8k 77.7 81.2 86.5
MMLU 63.4 68.7 72.9
GPQA 27.2 28.0 31.9
TriviaQA 71.2 79.5 84.2
HellaSwag 69.8 74.0 74.9
IFEval 77.4 82.5 82.9

Here, CBF refers to Criteria-Based Feedback
that we propose in this paper.

Table 3: Criteria-Based Feedback results on constrained
generation and dialogue response generation tasks using
Llama-3.2-3b as base LLM, evaluated by human Prefer-
ence and GPT-4 preference. Using SELF-REFINE as
control model.

Base SELF-
Method vy gl REFINE CPF
Constrained
Generation 11.0 35.0 54.0
(Human Pref)
Constrained
Generation 19.6 41.3 39.1
(GPT-4 Pref)
Dialogue
Response 7.0 42.0 51.0
(Human Pref)
Dialogue
Response 22.3 34.0 43.7
(GPT-4 Pref)

5.2.2 Multi-Agent CBF

The test sets and parameters used in the Multi-
Agent CBF(Hereinafter referred to MACBF) ex-
periments were identical to those in the original
CBF experiments. However, the evaluation stan-
dards for Multi-Agent CBF differed from those for

—4— LlaMA3.2-3b

GSMB8K - Success Rate

®
*
s

®
Il
=

3
Py
=

®
S
=

78.0

Porportion of solved tasks
s
>

76.0

Iteration

Figure 5: Comparison of Criteria-Based Feedback per-
formance under different parameters with the baseline
model.

the original CBF. Specifically, we focused on the
following aspects:

¢ Performance on test sets with low accu-
racy rates

e Comparison with standard CBF in pref-
erence testing

o Changes in inference time under identical
testing conditions

Under these test focuses, we present the follow-

ing results:

Table 4: Multi-Agent Criteria-Based Feedback results
on various tasks using Llama-3.2-3b as base LLM,
Llama-3.2-3b & Llama-3.2-1b as original model of aux-
iliary models. Evaluated by GPT-4 preference. Using
Criteria-Based Feedback as control framework.

CBF MACBF-1b MACBF-3b

GSM8k 86.5 86.7 86.7
MMLU 729 73.5 74.6
GPQA 31.9 31.7 33.0
TriviaQA 84.2 84.2 85.9
HellaSwag 74.9 76.8 79.5
IFEval 82.9 82.9 83.0

Here, MACBF-1b refer to the framework that
uses Llama3.2-1b as the auxiliary base model,
and MACBF-3b refer to the framework that uses
Llama3.2-3b as the auxiliary base model.

5.3 Analysis

5.3.1 Criteria-Based Feedback Performance

Criteria-Based Feedback consistently outperforms
the base model across all tasks and surpasses the
previous SELF-REFINE model in most tasks.

We believe some tasks significantly benefits
from Criteria-Based Feedback because Criteria-
Based Feedback’s hard criteria mechanism is more
effective at correcting severe errors in the model’s

Table 5: Multi-Agent Criteria-Based Feedback results
on constrained generation and dialogue response gen-
eration tasks using Llama-3.2-3b as base LLM, Llama-
3.2-3b & Llama-3.2-1b as original model of auxiliary
models. Evaluated by GPT-4 preference. Using Criteria-
Based Feedback as control framework.

MACBF MACBF

Method 1b 3b

CBF

Constrained
Generation
(GPT-4 Pref)
Dialogue
Response
(GPT-4 Pref)

33.1 31.7 35.2

31.9 31.3 36.8

Table 6: Criteria-Based Feedback results on various
tasks using Llama-3.2-3b as base LLM. Here, we added
a control group with the evaluation step removed.

Method Base CBF CBF Wltl.lout
model Evaluation

GSMS8k 77.7 86.5 85.9
MMLU 63.4 72.9 72.4
GPQA 27.2 31.9 31.8
TriviaQA 71.2 84.2 80.7
HellaSwag 69.8 74.9 75.0
IFEval 77.4 82.9 82.6

output. The more moderate performance improve-
ments observed in mathematical reasoning tasks
can be attributed to the inability to accurately iden-
tify whether there are errors.

In preference-based tasks, SELF-REFINE shows
mixed results. The performance improvement in
terms of human preferences is relatively noticeable,
but for Al preferences, Criteria-Based Feedback
does not show a significant performance improve-
ment.

The experimental results also indicate that the
number of criteria (the number of reflections) sig-
nificantly affects the final performance and the max-
imum number of iterations required for output level
convergence. When using 30 criteria, the maxi-
mum number of iterations needed for convergence
can generally be kept within three.

5.3.2 Multi-Agent Criteria-Based Feedback
Performance

In terms of inference resource usage, the result
aligns with our expectations, which is that the aux-
iliary model can reduce resource requirements by
lowering the number of parameters.

On the commonsense Q&A test set, MACBF-
3b achieves a moderate performance improvement,

Table 7: The average time required to solve 100 tasks
from GPQA using different frameworks on the Tesla
A40 server.

CBF MACBF-1b MACBF-3b

Average
Time
Cost(s)

3225 1685 3065

with gains ranging between 1 and 3 percentage
points across various tasks, indicating a tangible
improvement. In contrast, the improvements of
MACBF-1b are less pronounced.

On mathematical or logical reasoning Q&A test
sets, both MACBF-3b and MACBF-1b maintain
the original performance level. In other words, the
performance impact of auxiliary models with 3b
and 1b parameters on the primary model shows no
significant differences.

From further analysis of test results and criteria,
prompts, and reflection outputs during testing, we
draw the following conclusions:

In most cases, the model cannot recognize
whether its output genuinely contains errors.
The generated soft criteria, used as prompts, can-
not delve into the logical level of the problem and
answer but remain at the surface level of condition
checking. This approach can effectively correct
shallow misunderstandings or misinterpretations of
the question but fails to enhance the model’s core
reasoning ability.

However, results from other test sets indicate
that: the model’s ability to improve open-ended
questions through reflection does not completely
rely on its precise judgment of an output’s qual-
ity. In other words, even if the model cannot deter-
mine whether an answer is "good enough" under
certain standards, it can still effectively improve
that answer. This is the key role played by the cri-
teria mechanism we constructed. Criteria-guided
prompts encourage the model to examine its an-
swers from multiple relevant aspects and address
potential flaws. During this process, it is not nec-
essary for the model to "correctly recognize its
mistakes."

To validate this hypothesis, we conducted addi-
tional control experiments where the model was
required to revise its answers only after receiving
the combined Criteria prompts, removing the stan-
dalone "evaluate the answer" step. The experimen-
tal results, as shown in Table 6, indicate that al-
though there was a slight decline in the quality of

the model’s output, the extent of this decline was
minimal. Moreover, when compared to the per-
formance of the original model, the improvement
remained significant.

However, it is worth emphasizing that our
conclusion does not negate the importance of
high-quality evaluations in model reflection. In
various scenarios, an evaluation that accurately pin-
points issues can quickly help a model correct its
errors. However, experimental results indicate that,
in the absence of a decisive performance gap be-
tween models, it is challenging for a model to pro-
vide accurate, high-quality, and confident objective
evaluations of outputs from models of a similar
caliber.

Thus, we believe that, at the current stage, the
most important factor influencing the effectiveness
of model reflection is the reflection prompt, while
the evaluation’s importance may be less than antic-
ipated. Based on this theory, we suggest that future
optimization could involve constructing more ef-
fective sets of hard criteria and appropriately allo-
cating computational resources for generating soft
criteria. Such improvements could further enhance
the effectiveness of reflection.

6 Conclusions

We propose Criteria-Based Feedback (CBF) : a
novel approach that enables large language mod-
els (LLMs) to efficiently engage in self-reflection
guided by humans and iteratively optimize their
outputs. Criteria-Based Feedback operates within
a single LLM without requiring additional train-
ing data or reinforcement learning. Moreover, this
framework allows for targeted performance en-
hancement in specific domains through customiz-
able sets of criteria. Our research validates the
effectiveness of the reflection mechanism under
specific conditions, contributing to the ongoing ex-
ploration and development of LLMs. At the same
time, through the training and experimentation of
auxiliary models, we explored the feasibility of the
Multi-Agent approach within the reflection frame-
work. Finally, we proposed a hypothesis suggesting
that a model’s reflection relies on external guidance
rather than internal cognition. We hope this hypoth-
esis can be further validated in the future, serving as
a foundation for developing the potential of prede-
fined criteria and advancing research on optimizing
reflection methods.

Limitations

In this study, Multi-Agent CBF did not show signif-
icant improvement, likely due to both the model’s
inherent performance constraints and the subopti-
mal quality of the fine-tuning dataset, which was
selected from past model outputs rather than a well-
curated human benchmark. In Basic CBF, Soft
Criteria were less effective than Hard Criteria, pri-
marily because they lacked a structured generation
framework, leading to superficial and ineffective
criteria. While Hard Criteria played a key role in
performance improvement, their design was based
on the authors’ direct insights rather than a struc-
tured, systematic approach, highlighting the need
for structured retrieval mechanisms and a more ef-
ficient reflection prompting framework.

References

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

K. Cobbe, V. Kosaraju, M. Bavarian, and et al. 2021.
Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

Y. Du, S. Li, A. Torralba, J. B. Tenenbaum, and I. Mor-
datch. 2023. Improving factuality and reasoning in
language models through multiagent debate. arXiv
preprint arXiv:2305.14325.

J. Fu, S. K. Ng, Z. Jiang, and P. Liu. 2023.
Gptscore: Evaluate as you desire. arXiv preprint
arXiv:2302.04166.

D. Hendrycks, C. Burns, S. Basart, and et al. 2021a.
Measuring massive multitask language understand-
ing. In International Conference on Learning Repre-
sentations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

J. Huang, X. Chen, S. Mishra, and et al. 2023. Large
language models cannot self-correct reasoning yet.
arXiv preprint arXiv:2310.01798.

M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. 2017.
Triviaga: A large scale distantly supervised challenge
dataset for reading comprehension. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1601-1611.

G. Kim, P. Baldi, and S. McAleer. 2023. Language mod-
els can solve computer tasks. Advances in Neural
Information Processing Systems.

H. Levesque, E. Davis, and L. Morgenstern. 2012. The
winograd schema challenge. In Proceedings of the
Thirteenth International Conference on Principles
of Knowledge Representation and Reasoning, pages
552-561.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2021),
pages 4582—-4597.

T. Liang, Z. He, W. Jiao, and et al. 2023. Encouraging
divergent thinking in large language models through
multiagent debate. arXiv preprint arXiv:2305.19118.

B. Y. Lin, W. Zhou, M. Shen, and et al. 2020. Common-
gen: A constrained text generation challenge for gen-
erative commonsense reasoning. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1823-1840.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

A. Madaan, N. Tandon, P. Gupta, and et al. 2024. Self-
refine: Iterative refinement with self-feedback. Ad-
vances in Neural Information Processing Systems,
36.

S. Mehri and M. Eskenazi. 2020. Unsupervised eval-
uation of interactive dialog with dialogpt. In Pro-
ceedings of the 21th Annual Meeting of the Special

Interest Group on Discourse and Dialogue, pages
225-235.

L. Pan, M. Saxon, W. Xu, and et al. 2023. Automati-
cally correcting large language models: Surveying
the landscape of diverse self-correction strategies.
arXiv preprint arXiv:2308.03188.

D. Rein, B. Li Hou, A. C. Stickland, and et al. 2023.
Gpga: A graduate-level google-proof g&a bench-
mark. arXiv preprint arXiv:2311.12022.

N. Shinn, F. Cassano, A. Gopinath, and et al. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Z. Sun, Y. Shen, Q. Zhou, and et al. 2023. Principle-
driven self-alignment of language models from
scratch with minimal human supervision. arXiv
preprint arXiv:2305.03047.

X. Wang, J. Wei, D. Schuurmans, and et al. 2022. Self-
consistency improves chain of thought reasoning in
language models. In The Eleventh International Con-
ference on Learning Representations.

T Wolf. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

R. Zellers, A. Holtzman, Y. Bisk, and et al. 2019. Hel-
laswag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4791—
4800.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

10

	Introduction
	LLM Self-reflection
	Research Direction of This Paper

	Related Work
	Reflexion
	SELF-REFINE
	Skepticism About Reflection
	Prefix-Tuning

	Criteria-Based Feedback
	Reflection Prompt Optimization
	Criteria: Reflective Prompting
	Manual Database: Error Correction and Detoxify
	Automatic Prompt: Detail Optimization

	Vector Database Retrieval
	Vector Matching and Criteria Grouping
	Performance Balance

	Iterative Optimization
	Iterative Criteria-Based Feedback

	Auxiliary Model
	Multi-Agent CBF
	Fine-Tuning Dataset
	Prefix Fine-Tuning
	Fine-Tuning Configuration

	Experiments
	Experimental Setup
	Benchmark Tests
	Preference Tests
	Test Model and Parameters

	Results
	Criteria-Based Feedback
	Multi-Agent CBF

	Analysis
	Criteria-Based Feedback Performance
	Multi-Agent Criteria-Based Feedback Performance

	Conclusions

