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Abstract

Large Language Model (LLM) self-reflection001
involves an LLM reviewing its past outputs002
to enhance future responses without relying003
on external data. This concept has been ex-004
plored in frameworks like those by Shinn(Shinn005
et al., 2024)and Madaan(Madaan et al., 2024).006
However, challenges remain, as Huang(Huang007
et al., 2023).point out the risk of performance008
degradation due to overly generic reflective009
prompts. To address these issues, we intro-010
duce a vector-based retrieval framework. Our011
approach demonstrates significant improve-012
ments in decision-making, reasoning, and math-013
ematics tasks, surpassing baseline models like014
Llama3.2-3b and the SELF-REFINE frame-015
work. These results emphasize the potential016
of targeted self-reflection to improve LLM per-017
formance while mitigating common drawbacks.018
Meanwhile,beyond this method, we also ex-019
plored the possibility of using a multi-agent020
approach with auxiliary models to assist in re-021
flection. We trained a model to replace the base022
model in generating criteria and systematically023
evaluated the impact of the auxiliary model024
on the output capability of the self-reflection025
framework.026

1 Introduction027

1.1 LLM Self-reflection028

Large language model (LLM) self-reflection refers029

to the process by which an LLM has the ability030

to review its past output based on prompts within031

those outputs and produce improved and more op-032

timized outputs as a result. This process does not033

rely on direct external data, but rather identifies034

issues in its previous responses to enhance future035

performance.036

1.2 Research Direction of This Paper037

We believe that whether the reflection prompt is038

appropriately designed is a key factor affecting039

the effectiveness of model reflection and the final040

Figure 1: Overview of the reflection process.

output performance. At present, existing studies 041

use simple, fixed prompts to guide model reflection 042

and have not yet fully developed the potential of 043

reflection technology. We decided to start from this 044

aspect, optimizing reflection prompts to improve 045

the final output performance of the self-reflection 046

model. 047

2 Related Work 048

2.1 Reflexion 049

As the first framework to systematically apply "self- 050

reflection" in practice, Reflexion(Shinn et al., 2024) 051

uses linguistic reinforcement to help agents learn 052

from past failures. Reflexion converts binary or 053

scalar feedback from the environment into textual 054

feedback. This feedback is provided in the form 055

of text summaries and then offered as additional 056

context to LLM agents in the next round. This 057

self-reflective feedback acts as a "semantic" gradi- 058

ent signal, helping the agent learn from previous 059

mistakes by providing concrete directions for im- 060

provement, thus performing better in tasks. 061

2.2 SELF-REFINE 062

Madaan(Madaan et al., 2024) demonstrated that 063

LLMs could perform iterative self-improvement 064

without requiring additional training, resulting 065

in higher-quality outputs across various tasks. 066

Madaan proposed SELF-REFINE: an iterative self- 067

improvement algorithm that alternates between two 068

generation stpng—Feedback and Refine. 069
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Another groundbreaking aspect of the self-refine070

design is the use of manually crafted evaluation071

metrics to standardize the model’s performance on072

specific tasks. For constrained generation tasks,073

Madaan designed multi-dimensional evaluation074

metrics tailored to these tasks, enabling the model075

to reflect more precisely and efficiently.076

2.3 Skepticism About Reflection077

Contrary to the optimistic attitudes surrounding078

self-correction(Madaan et al., 2024)(Kim et al.,079

2023)(Shinn et al., 2024)(Pan et al., 2023), etc.),080

Huang(Huang et al., 2023)’s findings here suggest081

that LLMs find it challenging to self-correct their082

reasoning in this environment. In most cases, per-083

formance deteriorates after self-correction. This084

observation contrasts with previous studies (e.g.,085

Kim(Kim et al., 2023); Shinn(Shinn et al., 2024)).086

The authors also found other issues in the litera-087

ture regarding the measurement of improvements088

achieved by self-correction. First, the authors noted089

that self-correction designs used multiple LLM090

responses, so comparing a baseline with equiva-091

lent reasoning costs is crucial. From this perspec-092

tive, the authors examined multi-agent debate (Du093

et al., 2023)(Liang et al., 2023) as a method for im-094

proving reasoning, where multiple LLM instances095

(which can be multiple copies of the same LLM)096

critique each other’s responses. However, the re-097

sults show that when considering an equivalent098

number of responses, its effect is no better than099

self-consistency (Wang et al., 2022), highlighting100

the limitations of this approach.101

Given these findings, Huang(Huang et al., 2023)102

provide insights into the nuances of LLMs’ self-103

correction abilities and initiate discussions encour-104

aging future research to focus on exploring meth-105

ods that can truly enhance reasoning.106

2.4 Prefix-Tuning107

Our research examines the specific impact of intro-108

ducing auxiliary models on the effectiveness of re-109

flection within a multi-agent architecture. The aux-110

iliary model is responsible for constructing prompts111

and generating evaluations. During the training of112

the auxiliary model, our goal was to achieve bet-113

ter performance on the aforementioned tasks by114

fine-tuning as few parameters as possible using a115

small-scale dataset.116

Optimizing Continuous Prompts for Generation117

by Li(Li and Liang, 2021) presents an innovative118

approach for fine-tuning large-scale pretrained lan-119

guage models (PLMs) that balances task adaptation 120

effectiveness and computational efficiency. Tradi- 121

tional methods of fine-tuning require updating all 122

model parameters, which can be infeasible for very 123

large PLMs due to storage and computational con- 124

straints. In contrast, Prefix-Tuning introduces a 125

lightweight method that optimizes a small set of 126

continuous task-specific parameters, referred to as 127

"prefixes," while keeping the original model param- 128

eters frozen. 129

3 Criteria-Based Feedback 130

We speculate that the non-specific reflective 131

prompts and the standardized reflection process 132

are the main reasons for the performance decline. 133

Based on this hypothesis, we designed the follow- 134

ing optimization process. 135

3.1 Reflection Prompt Optimization 136

3.1.1 Criteria: Reflective Prompting 137

This framework employs a set of optimized crite- 138

ria as prompts to assist the LLM in its reflection 139

process. The criteria set is divided into two cate- 140

gories: hard criteria and soft criteria. These criteria 141

are used as reflection prompts after the target LLM 142

generates an output, prompting it to produce a new 143

round of output. This design combines human- 144

created criteria with model-generated criteria to 145

customize unique reflective evaluation prompts for 146

all inputs, requiring them to implement precise 147

reflection on key points of the problem, thereby 148

improving the quality of the output. 149

3.1.2 Manual Database: Error Correction 150

and Detoxify 151

Hard criteria are manually written, and recalled 152

through vector matching based on both the input 153

and output to select the most relevant and effective 154

criteria for each problem. These criteria usually 155

consist of simple judgment-based questions and 156

are carefully designed, including pre-defined evalu- 157

ation criteria spanning multiple domains. The pur- 158

pose of hard criteria is to correct severe errors and 159

fundamental misunderstandings produced by the 160

LLM and to check for harmful outputs and other 161

ethical issues. The LLM retrieves these criteria 162

both when receiving input and generating output, 163

matching a certain number of hard criteria based 164

on preset parameters, and is required to reflect ac- 165

cording to these criteria before re-outputting. 166
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Table 1: An example of hard criteria sets with index.

Index Criteria

Universal
Does the answer contain
necessary background info-
rmation and explanation?

Mathematical
Have all data types in the
question been confirmed?

Ethical
Does the answer contain any
content of racial discri-
mination or prejudice?

Linguistic/Text
Does the tone and wording
of this expression match
the given context?

Logistical
Does the answer contain a
logical circular argument?

Decision Making

Has the answer taken into
account the abilities and
needs of the participants or
implementers?

Fact Verify
Considering the latest deve-
lopments, does this inform-
ation still have timeliness?

3.1.3 Automatic Prompt: Detail Optimization167

Soft criteria are generated by the model, creating168

criteria through direct generation methods and pro-169

viding them to the prompts. These criteria allow170

for more detailed evaluation of each input and are171

generally more complex, diverse questions. These172

questions are usually highly relevant to the content173

of the original output and do not significantly alter174

the model’s output but help the model optimize its175

output details.

Figure 2: An example of a model generating soft crite-
ria.

176

3.2 Vector Database Retrieval 177

3.2.1 Vector Matching and Criteria Grouping 178

The generation of criteria is jointly determined by 179

the input to the model. To match hard criteria with 180

the model input, we store these criteria in a vector 181

database. The database is queried using both the 182

vector corresponding to the model’s input and the 183

vector corresponding to the model’s output. 184

When vectors are embedded into the database, 185

they undergo clustering and are grouped under dif- 186

ferent indices. This approach improves the effi- 187

ciency of vector retrieval and prevents the recall of 188

vectors from being misled by less important words 189

in the input. 190

3.2.2 Performance Balance 191

After obtaining the Criteria matched from both the 192

input and output, the two sets of matched vectors 193

are merged into a unified query Criteria set. Gen- 194

erally, when the number of Criteria matched from 195

the input is approximately twice that of the output 196

(i.e., two out of every three Criteria come from 197

input matching, and one comes from output match- 198

ing), the evaluation criteria can effectively balance 199

output efficiency and accuracy. 200

3.3 Iterative Optimization 201

The framework enables the model to reflect and 202

generate new answers based on prior outputs. Tests 203

show that after five iterations, the model produces 204

a "confident" answer. After this point, further re- 205

flection with the same criteria yields no significant 206

content changes. 207

For iterative reflection from the second round, 208

vector retrieval logic needs adjustment. Reusing 209

vectors from the first round can limit reflection 210

scope, while excluding them may reduce out- 211

put relevance. To resolve this, we implement a 212

probability-based selection mechanism to priori- 213

tize critical criteria while maintaining diversity in 214

selected vectors. 215

The process iterates between feedback and re- 216

finement until the preset number of iterations is 217

reached. 218

K = {xi ∈ A | i ∈ argsortxj∈A ∥xj − vin∥2[: k]}
(1) 219

Where: 220

• vin is the input vector, A is the vector database, 221

and ∥xj − vin∥2 represents the Euclidean dis- 222

tance between xj and vin; 223
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• argsortxj∈A returns indices sorted by ascend-224

ing distance, and [: k] selects the top k indices.225

To avoid over-reliance on frequently used cri-226

teria, we introduce a weight-based selection for227

vectors. The weight is determined by the Euclidean228

distance, adjusted by a deduplication factor to re-229

duce repeated selection:230

w′(di) =
1

(di + ϵ) · (C(di) + 1)α
(2)231

Where C(di) is the frequency of selection, and232

α controls deduplication strength. These weights233

are normalized to form a probability distribution:234

p(di) =
w′(di)∑
b∈D w′(b)

(3)235

Sampling is then performed according to these236

probabilities to maintain diversity and emphasize237

critical criteria.238

3.4 Iterative Criteria-Based Feedback239

The model generates an initial output based on in-240

put, uses feedback to refine this output, and repeats241

the process until the iteration limit is reached. The242

full optimization process is illustrated in Figure 3243

and Algorithm 1.244

Figure 3: The complete process of Criteria-Based Feed-
back work.

4 Auxiliary Model245

A mainstream view argues that large models can246

reasonably evaluate their own outputs, and main-247

taining a single model for the entire process248

enhances efficiency and simplicity—this is the249

"Single-Agent" approach.250

However, another perspective questions a251

model’s ability to recognize its own errors.252

Huang(Huang et al., 2023) noted that if a model253

initially produces an incorrect response, it may254

indicate a lack of understanding. Repeated self-255

evaluation could reinforce errors or lead to halluci-256

nations. Proponents of this approach also highlight257

Algorithm 1: The iterative reflection algo-
rithm
Input: Input x, model M , prompts P with

probabilities Pc (generate criteria)
and Pr (revise), criteria set {Phard}.

Output: Final output yte .
Initialize y0 ←M(x);
Define function GenC(yt):;

Compute hard constraints: H ←
retrieve(x∥Phard) + retrieve(y0∥Phard);

Compute soft constraints:
S ←M(Pc∥x) +M(Pc∥y0);

return H + S;
for t = 0 to te − 1 do

Update: yt+1 ←M(GenC(yt)∥x, yt);
return yte ;

computational cost. If a single model handles the 258

full reasoning-reflection-evaluation-modification 259

cycle, it significantly increases computational load. 260

The "Multi-Agent" approach proposes introducing 261

an auxiliary model to mitigate these risks and im- 262

prove reflection quality. 263

To address these concerns, we investigated 264

whether introducing an additional model could re- 265

duce repetitive errors and hallucinations while im- 266

proving performance. Reducing inference costs 267

was also a key goal. Thus, we designed, fine-tuned, 268

and integrated an auxiliary model into our Criteria- 269

Based Feedback (CBF) framework. 270

4.1 Multi-Agent CBF 271

The purpose of the auxiliary model is to replace 272

the original model in generating soft criteria and 273

evaluations during the overall process, thereby opti- 274

mizing the reflection performance. To this end, we 275

prepared two different auxiliary models to handle 276

these two tasks separately. The criteria generate 277

model and the evaluate model both receive inputs 278

from the original model and outputs from each gen- 279

eration. The former generates the corresponding 280

soft criteria, while the latter provides feedback. We 281

refer to the Criteria-Based Feedback framework in- 282

corporating auxiliary models as Multi-Agent CBF. 283

4.2 Fine-Tuning Dataset 284

The datasets used for fine-tuning were indepen- 285

dently collected by us. We trained the two models 286

using input-soft criteria pairs and output-evaluation 287

pairs as datasets. These datasets were derived from 288
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data generated during the early debugging stages289

of the Criteria-Based Feedback framework on test290

sets. Specifically, we employed several general291

question-answering benchmark datasets and ran292

our Criteria-Based Feedback framework on them.293

These frameworks were instructed to output and re-294

tain intermediate results during runtime, including295

soft criteria and evaluations.296

After obtaining the experimental results, we col-297

lected the intermediate outputs corresponding to298

the final outputs labeled as "correct" and, after sim-299

ple manual filtering, formed our training datasets.300

In the following, we present the sources and de-

Figure 4: The process of collecting training datasets and
fine-tuning the model.

301
tailed construction methods of our datasets.302

• IFEVAL (Zhou et al., 2023)303

•MATH (Hendrycks et al., 2021b)304

• ARC Challenge (Clark et al., 2018)305

• HotpotQA (Yang et al., 2018) We ensured306

that the datasets we used for training were not re-307

lated to the test sets used in the final experimental308

phase.309

4.3 Prefix Fine-Tuning310

To address the limited scale of our manually col-311

lected dataset while minimizing training resource312

usage, we chose Prefix-Tuning, which optimizes313

only a minimal set of parameters.314

Following the approach of Li(Li and Liang,315

2021), we guide the language model’s behavior316

by introducing context prefixes without modifying317

its core parameters. This additional context affects318

both the encoding process and the output token319

generation. In autoregressive models, the input is 320

extended as: 321

z = [PREFIX;x; y] (4) 322

In encoder-decoder models, the prefixes are 323

added to both the encoder and decoder: 324

z = [PREFIX;x;PREFIX′; y] (5) 325

Unlike traditional fine-tuning, which updates the 326

entire model, Prefix-Tuning only optimizes the pre- 327

fix parameters. The model computes the activations 328

as: 329

hi =

{
Pθ[i, :] if i ∈ Pidx,

LMϕ(zi, h<i) otherwise.
(6) 330

Here, θ represents the trainable prefix parame- 331

ters, and ϕ denotes the fixed language model param- 332

eters. The objective function remains to maximize 333

the log-likelihood, but only the prefix parameters 334

are updated during training. 335

4.4 Fine-Tuning Configuration 336

For the Criteria generation and evaluation tasks, 337

we used the Llama3.2-1b1 to examine the feasibil- 338

ity of reducing parameter size and thus lowering 339

inference costs, and Llama3.2-3b2 model to exam- 340

ine the performance improvement while remaining 341

consistent with our reference base model. 342

Our implementation is based on Hugging Face’s 343

Transformers library(Wolf, 2019). During train- 344

ing, we used the AdamW optimizer (Loshchilov, 345

2017) and the linear learning rate scheduler recom- 346

mended in Hugging Face’s default settings. The 347

hyper-parameters we adjusted included the num- 348

ber of epochs, batch size, learning rate, and prefix 349

length. Detailed information about the hyperparam- 350

eters is provided in the appendix. 351

Under the default settings, training included: 5 352

epochs, a batch size of 16, a learning rate of 5·10−4, 353

and a prefix length of 10. 354

Using these parameters, we obtained two aux- 355

iliary models: the Criteria Generate Model and 356

the Evaluate Model. The specific impact of these 357

models on performance and inference efficiency 358

will be discussed in the experimental section. 359

1https://huggingface.co/meta-llama/Llama-3.
2-1B

2https://huggingface.co/meta-llama/Llama-3.
2-3B
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5 Experiments360

The experimental section evaluates our results in361

two parts. First, we demonstrate the improved362

scores of the CBF standard framework on different363

test sets, as well as its results in preference testing,364

to validate the achievements of this research. Sec-365

ond, we evaluate the impact of auxiliary models366

on the framework through various results, includ-367

ing scores, inference time, and preference perfor-368

mance.369

5.1 Experimental Setup370

5.1.1 Benchmark Tests371

The datasets we used for benchmark tests include:372

• GSM8K (Cobbe et al., 2021)373

• TriviaQA (Joshi et al., 2017)374

• GPQA(Rein et al., 2023)375

•MMLU (Hendrycks et al., 2021a)376

• HellaSwag (Zellers et al., 2019)377

• IFEval(Levesque et al., 2012)378

5.1.2 Preference Tests379

In addition to the standard test sets and benchmarks380

mentioned above, we also set up preference evalu-381

ation metrics (Human-Pref & GPT Pref) to assess382

the model’s capabilities in the following aspects:383

• Constrained Generation (Lin et al.,384

2020)385

• Dialogue Response (Mehri and Eskenazi,386

2020)387

These preference tests measure whether there388

is a significant improvement in the model’s ca-389

pabilities in a specific area compared to before390

self-reflection, based on collected human and GPT391

preferences.392

5.1.3 Test Model and Parameters393

We used LLaMA3.2-3b as the primary model and394

for the generation of criteria. GPT-4 was used395

as the preference model, handling the task of396

test set preference testing. For the main model,397

LLaMA3.2-3b, we performed experiments with T398

= 0.7.399

We instantiated this framework as described in400

Section 3 with a dataset of 1,500 hard criteria. In401

this experiment, iterations will continue until five402

iterations are completed. Our primary objective403

is to evaluate whether using this framework can404

enhance the reflexive capabilities of any power-405

ful foundation model. Therefore, we compare the406

output of this framework with the same founda-407

tion model after one round of the SELF-REFINE408

process (Madaan et al., 2024). The amount of re- 409

flections(criteria) is set as 20, which consists of 15 410

hard criteria and 5 soft criteria, determined through 411

our preliminary experiments. 412

We report three types of metrics: 413

• Task-Specific Metrics 414

• Human Preference (Human-Pref) 415

• GPT-4 Preference (GPT-4-pref)(Fu et al., 416

2023)(Sun et al., 2023) 417

5.2 Results 418

5.2.1 Criteria-Based Feedback 419

Table 2: Criteria-Based Feedback results on various
tasks using Llama-3.2-3b as base LLM and SELF-
REFINE as control model.

Method Base model SELF-
REFINE CBF

GSM8k 77.7 81.2 86.5
MMLU 63.4 68.7 72.9
GPQA 27.2 28.0 31.9

TriviaQA 71.2 79.5 84.2
HellaSwag 69.8 74.0 74.9

IFEval 77.4 82.5 82.9

Here, CBF refers to Criteria-Based Feedback 420

that we propose in this paper. 421

Table 3: Criteria-Based Feedback results on constrained
generation and dialogue response generation tasks using
Llama-3.2-3b as base LLM, evaluated by human Prefer-
ence and GPT-4 preference. Using SELF-REFINE as
control model.

Method Base
Model

SELF-
REFINE CBF

Constrained
Generation 11.0 35.0 54.0

(Human Pref)
Constrained
Generation 19.6 41.3 39.1

(GPT-4 Pref)
Dialogue
Response 7.0 42.0 51.0

(Human Pref)
Dialogue
Response 22.3 34.0 43.7

(GPT-4 Pref)

5.2.2 Multi-Agent CBF 422

The test sets and parameters used in the Multi- 423

Agent CBF(Hereinafter referred to MACBF) ex- 424

periments were identical to those in the original 425

CBF experiments. However, the evaluation stan- 426

dards for Multi-Agent CBF differed from those for 427
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Figure 5: Comparison of Criteria-Based Feedback per-
formance under different parameters with the baseline
model.

the original CBF. Specifically, we focused on the428

following aspects:429

• Performance on test sets with low accu-430

racy rates431

• Comparison with standard CBF in pref-432

erence testing433

•Changes in inference time under identical434

testing conditions435

Under these test focuses, we present the follow-436

ing results:437

Table 4: Multi-Agent Criteria-Based Feedback results
on various tasks using Llama-3.2-3b as base LLM,
Llama-3.2-3b & Llama-3.2-1b as original model of aux-
iliary models. Evaluated by GPT-4 preference. Using
Criteria-Based Feedback as control framework.

CBF MACBF-1b MACBF-3b
GSM8k 86.5 86.7 86.7
MMLU 72.9 73.5 74.6
GPQA 31.9 31.7 33.0

TriviaQA 84.2 84.2 85.9
HellaSwag 74.9 76.8 79.5

IFEval 82.9 82.9 83.0

Here, MACBF-1b refer to the framework that438

uses Llama3.2-1b as the auxiliary base model,439

and MACBF-3b refer to the framework that uses440

Llama3.2-3b as the auxiliary base model.441

5.3 Analysis442

5.3.1 Criteria-Based Feedback Performance443

Criteria-Based Feedback consistently outperforms444

the base model across all tasks and surpasses the445

previous SELF-REFINE model in most tasks.446

We believe some tasks significantly benefits447

from Criteria-Based Feedback because Criteria-448

Based Feedback’s hard criteria mechanism is more449

effective at correcting severe errors in the model’s450

Table 5: Multi-Agent Criteria-Based Feedback results
on constrained generation and dialogue response gen-
eration tasks using Llama-3.2-3b as base LLM, Llama-
3.2-3b & Llama-3.2-1b as original model of auxiliary
models. Evaluated by GPT-4 preference. Using Criteria-
Based Feedback as control framework.

Method CBF MACBF
-1b

MACBF
-3b

Constrained
Generation 33.1 31.7 35.2

(GPT-4 Pref)
Dialogue
Response 31.9 31.3 36.8

(GPT-4 Pref)

Table 6: Criteria-Based Feedback results on various
tasks using Llama-3.2-3b as base LLM. Here, we added
a control group with the evaluation step removed.

Method Base
model CBF CBF without

Evaluation
GSM8k 77.7 86.5 85.9
MMLU 63.4 72.9 72.4
GPQA 27.2 31.9 31.8

TriviaQA 71.2 84.2 80.7
HellaSwag 69.8 74.9 75.0

IFEval 77.4 82.9 82.6

output. The more moderate performance improve- 451

ments observed in mathematical reasoning tasks 452

can be attributed to the inability to accurately iden- 453

tify whether there are errors. 454

In preference-based tasks, SELF-REFINE shows 455

mixed results. The performance improvement in 456

terms of human preferences is relatively noticeable, 457

but for AI preferences, Criteria-Based Feedback 458

does not show a significant performance improve- 459

ment. 460

The experimental results also indicate that the 461

number of criteria (the number of reflections) sig- 462

nificantly affects the final performance and the max- 463

imum number of iterations required for output level 464

convergence. When using 30 criteria, the maxi- 465

mum number of iterations needed for convergence 466

can generally be kept within three. 467

5.3.2 Multi-Agent Criteria-Based Feedback 468

Performance 469

In terms of inference resource usage, the result 470

aligns with our expectations, which is that the aux- 471

iliary model can reduce resource requirements by 472

lowering the number of parameters. 473

On the commonsense Q&A test set, MACBF- 474

3b achieves a moderate performance improvement, 475
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Table 7: The average time required to solve 100 tasks
from GPQA using different frameworks on the Tesla
A40 server.

CBF MACBF-1b MACBF-3b
Average

Time 3225 1685 3065
Cost(s)

with gains ranging between 1 and 3 percentage476

points across various tasks, indicating a tangible477

improvement. In contrast, the improvements of478

MACBF-1b are less pronounced.479

On mathematical or logical reasoning Q&A test480

sets, both MACBF-3b and MACBF-1b maintain481

the original performance level. In other words, the482

performance impact of auxiliary models with 3b483

and 1b parameters on the primary model shows no484

significant differences.485

From further analysis of test results and criteria,486

prompts, and reflection outputs during testing, we487

draw the following conclusions:488

In most cases, the model cannot recognize489

whether its output genuinely contains errors.490

The generated soft criteria, used as prompts, can-491

not delve into the logical level of the problem and492

answer but remain at the surface level of condition493

checking. This approach can effectively correct494

shallow misunderstandings or misinterpretations of495

the question but fails to enhance the model’s core496

reasoning ability.497

However, results from other test sets indicate498

that: the model’s ability to improve open-ended499

questions through reflection does not completely500

rely on its precise judgment of an output’s qual-501

ity. In other words, even if the model cannot deter-502

mine whether an answer is "good enough" under503

certain standards, it can still effectively improve504

that answer. This is the key role played by the cri-505

teria mechanism we constructed. Criteria-guided506

prompts encourage the model to examine its an-507

swers from multiple relevant aspects and address508

potential flaws. During this process, it is not nec-509

essary for the model to "correctly recognize its510

mistakes."511

To validate this hypothesis, we conducted addi-512

tional control experiments where the model was513

required to revise its answers only after receiving514

the combined Criteria prompts, removing the stan-515

dalone "evaluate the answer" step. The experimen-516

tal results, as shown in Table 6, indicate that al-517

though there was a slight decline in the quality of518

the model’s output, the extent of this decline was 519

minimal. Moreover, when compared to the per- 520

formance of the original model, the improvement 521

remained significant. 522

However, it is worth emphasizing that our 523

conclusion does not negate the importance of 524

high-quality evaluations in model reflection. In 525

various scenarios, an evaluation that accurately pin- 526

points issues can quickly help a model correct its 527

errors. However, experimental results indicate that, 528

in the absence of a decisive performance gap be- 529

tween models, it is challenging for a model to pro- 530

vide accurate, high-quality, and confident objective 531

evaluations of outputs from models of a similar 532

caliber. 533

Thus, we believe that, at the current stage, the 534

most important factor influencing the effectiveness 535

of model reflection is the reflection prompt, while 536

the evaluation’s importance may be less than antic- 537

ipated. Based on this theory, we suggest that future 538

optimization could involve constructing more ef- 539

fective sets of hard criteria and appropriately allo- 540

cating computational resources for generating soft 541

criteria. Such improvements could further enhance 542

the effectiveness of reflection. 543

6 Conclusions 544

We propose Criteria-Based Feedback (CBF) : a 545

novel approach that enables large language mod- 546

els (LLMs) to efficiently engage in self-reflection 547

guided by humans and iteratively optimize their 548

outputs. Criteria-Based Feedback operates within 549

a single LLM without requiring additional train- 550

ing data or reinforcement learning. Moreover, this 551

framework allows for targeted performance en- 552

hancement in specific domains through customiz- 553

able sets of criteria. Our research validates the 554

effectiveness of the reflection mechanism under 555

specific conditions, contributing to the ongoing ex- 556

ploration and development of LLMs. At the same 557

time, through the training and experimentation of 558

auxiliary models, we explored the feasibility of the 559

Multi-Agent approach within the reflection frame- 560

work. Finally, we proposed a hypothesis suggesting 561

that a model’s reflection relies on external guidance 562

rather than internal cognition. We hope this hypoth- 563

esis can be further validated in the future, serving as 564

a foundation for developing the potential of prede- 565

fined criteria and advancing research on optimizing 566

reflection methods. 567
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Limitations568

In this study, Multi-Agent CBF did not show signif-569

icant improvement, likely due to both the model’s570

inherent performance constraints and the subopti-571

mal quality of the fine-tuning dataset, which was572

selected from past model outputs rather than a well-573

curated human benchmark. In Basic CBF, Soft574

Criteria were less effective than Hard Criteria, pri-575

marily because they lacked a structured generation576

framework, leading to superficial and ineffective577

criteria. While Hard Criteria played a key role in578

performance improvement, their design was based579

on the authors’ direct insights rather than a struc-580

tured, systematic approach, highlighting the need581

for structured retrieval mechanisms and a more ef-582

ficient reflection prompting framework.583
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