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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable success
across diverse vision-language tasks, yet their internal decision-making mecha-
nisms remain insufficiently understood. Existing interpretability research has pri-
marily focused on cross-modal attribution, identifying which image regions the
model attends to during output generation. However, these approaches often over-
look intra-modal dependencies. In the visual modality, attributing importance to
isolated image patches ignores spatial context due to limited receptive fields, re-
sulting in fragmented and noisy explanations. In the textual modality, reliance on
preceding tokens introduces spurious activations. Failing to effectively mitigate
these interference compromises attribution fidelity. To address these limitations,
we propose enhancing interpretability by leveraging intra-modal interaction. For
the visual branch, we introduce Multi-Scale Explanation Aggregation (MSEA),
which aggregates attributions over multi-scale inputs to dynamically adjust re-
ceptive fields, producing more holistic and spatially coherent visual explanations.
For the textual branch, we propose Activation Ranking Correlation (ARC), which
measures the relevance of contextual tokens to the current token via alignment of
their top-k prediction rankings. ARC leverages this relevance to suppress spurious
activations from irrelevant contexts while preserving semantically coherent ones.
Extensive experiments across state-of-the-art MLLMs and benchmark datasets
demonstrate that our approach consistently outperforms existing interpretability
methods, yielding more faithful and fine-grained explanations of model behavior.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) Wang et al. (2024); Chen et al. (2024) have demon-
strated remarkable performance on a wide range of vision-language tasks, from visual question an-
swering Antol et al. (2015) to image captioning Chen et al. (2015). Despite this progress, the internal
reasoning of these models remains a black box. We can easily observe their outputs, but we lack a
clear understanding of how or why they arrive at specific conclusions. The lack of transparency not
only hinders their deployment in high-stakes applications requiring trust and accountability, but also
limits our ability to diagnose errors and systematically improve model design.

To bridge this gap, prior studies on MLLM interpretability Zhang et al. (2025); Ben Melech Stan
et al. (2024) have primarily concentrated on cross-modal attribution, aiming to identify the im-
age regions that drive the generation of specific textual responses. Early works adapt conven-
tional gradient-based methods, such as Grad-CAM Selvaraju et al. (2017), or attention-based tech-
niques Lapuschkin et al. (2019), to MLLMs for attribution. More recent approaches Li et al. (2025a);
Jiang et al. (2024) leverage the logit lens nostalgebraist (2020), which provides token-level visual
attribution by decoding hidden states of visual tokens through the final unembedding layers. This
process yields token-generation probabilities, from which attribution maps are derived. While these
methods effectively capture inter-modal interactions, they place less emphasis on intra-modal dy-
namics. For instance, the joint influence of spatially adjacent image patches on visual attribution has
not been explicitly modeled. Furthermore, although prior work has highlighted contextual interfer-
ence introduced by preceding text tokens Li et al. (2025a), strategies for effectively mitigating such
effects need further exploration.
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(a) Attribution varies with context window. (b) Attributions on non-content tokens exhibit higher noise.

Figure 1: Motivation of our proposed MSEA (a) and SAC (b).

We argue that incorporating intra-modal interactions is essential for faithful visual attribution. First,
a single visual token corresponds to only a small patch of the input image and thus carries limited
contextual information. Decoding the hidden state of such a patch may map to irrelevant words
rather than the expect one, leading to misleading attribution. Second, prior studies Li et al. (2025a)
suggest that the generation of each token depends on preceding tokens, which results in the activa-
tions of current tokens carrying irrelevant information from earlier tokens. If this interference from
previous tokens is not properly mitigated, the resulting attribution may be contaminated by noise.

To address these limitations, we propose a new interpretability framework that strengthens intra-
modal interactions to produce more faithful and holistic explanations. Our approach comprises
two complementary components. For vision, we introduce Multi-Scale Explanation Aggregation
(MSEA), which computes and integrates attributions across input contexts of different scales. We
feed the model with images at multiple resolutions, where each visual token corresponds to a dif-
ferent receptive field. The visual activations are then decoded using the logit lens nostalgebraist
(2020), and the resulting attribution maps are rescaled and fused to form a comprehensive explana-
tion map that aggregates contextual information across scales, thereby improving attribution fidelity.
For language, we propose Activation Ranking Correlation (ARC), a method designed to identify and
suppress the influence of irrelevant preceding tokens. Specifically, ARC quantifies the relevance of
each contextual token to the current decoding step by comparing the ranking order of their top-k
predicted tokens with that of the current token. Tokens whose top-k rankings consistently align
with the current token are considered semantically coherent and are down-weighted in the mitiga-
tion process. In contrast, tokens that induce divergent rankings are regarded as spurious, and their
activations are explicitly subtracted from the current token’s activation to reduce interference.

We evaluate our framework on several SoTA MLLMs, including LLaVA-1.5 Liu et al. (2024),
Qwen2-VL Wang et al. (2024), and InternVL2.5 Chen et al. (2024), using diverse datasets such as
COCO Caption Chen et al. (2015), OpenPSG Zhou et al. (2024), and GranDf Rasheed et al. (2024)
dataset. To assess scalability, we further test models of varying sizes, ranging from 2B to 13B param-
eters. Our approach consistently outperforms existing attribution methods, yielding improvements
of 3.69%–6.37% on the Qwen2-VL-2B model across different datasets, and 4.98%–14.52% across
models of different architectures and scales on the COCO Caption dataset.

Our contributions can be summarized as follows:

• We focus on overlooked intra-modal interactions in MLLM explanations. Specifically, we
identify neglected spatial dependencies among visual token attributions and insufficient
mitigation of semantic interference among preceding textual tokens, which often lead to
unfaithful or noisy explanations.

• We propose a new method to enhance intra-modal attribution fidelity by introducing
MSEA, which integrates attributions across multiple image scales to capture spatial con-
text among visual tokens, and ARC, which identifies irrelevant preceding tokens through
token-prediction ranking alignment and subtracts their influence to mitigate noise.

• We conduct comprehensive empirical validation on multiple MLLMs (e.g., LLaVA-1.5,
Qwen2-VL) across diverse benchmarks and model scales, consistently outperforming exist-
ing explainability methods with quantitative improvements ranging from 3.69% to 14.52%.
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2 RELATED WORK

Multimodal Large Language Models. The rapid advancement of computational infrastructure and
the availability of large-scale multimodal data have spurred the development of Multimodal Large
Language Models (MLLMs), which are capable of perceiving, reasoning over, and generating re-
sponses grounded in heterogeneous inputs such as images and text. MLLMs typically leverage
pretrained autoregressive language models (Together.xyz, 2023; MosaicML, 2023) as decoders, en-
abling rapid adaptation to a wide range of vision-language tasks (Antol et al., 2015; Hossain et al.,
2019). A common design principle involves introducing a trainable connector module to bridge a
pretrained visual encoder with a language model. For example, LLaVA Liu et al. (2024) uses a sim-
ple linear projection to map visual features into the LLM’s embedding space; Flamingo (Alayrac
et al., 2022) employs gated cross-attention to dynamically integrate visual tokens into the language
stream. More recent models further enhance alignment: Qwen2-VL Wang et al. (2024) adopts
position-aware, dynamic-resolution visual connectors, while InternVL Chen et al. (2024) employs
lightweight yet effective MLP-based modules. Despite their impressive performance and emergent
reasoning capabilities, the internal decision-making processes of these models remain opaque, high-
lighting the need for faithful interpretability techniques.

Visual Attribution for MLLMs. Visual attribution in Multimodal Large Language Models
(MLLMs) has recently drawn increasing attention as a means to interpret how image regions in-
fluence textual outputs. Early efforts largely adapt explanation techniques developed for unimodal
vision models to the MLLM setting. Representative approaches include gradient-based methods
such as CAM Zhou et al. (2016), Grad-CAM Selvaraju et al. (2017), and Grad-CAM++ Chattopad-
hay et al. (2018), as well as attention-based techniques like LRP Lapuschkin et al. (2019) and Roll-
out Abnar & Zuidema (2020). These methods typically treat the visual encoder as a standalone
module and apply gradient- or attention-based attribution to identify image regions associated with
the final prediction. However, such adaptations overlook the autoregressive nature of MLLM gen-
eration, where each output token is conditioned on both visual inputs and previously generated text.
More recent works address this by enabling token-level visual attribution. For instance, LLaVA-
CAM Zhang et al. (2025) and LVLM-Interpret Ben Melech Stan et al. (2024) leverage attention
flows or LRP to link image regions to specific output tokens. PROJECTAWAY Jiang et al. (2024)
and TAM Li et al. (2025a) adopt the logit lens nostalgebraist (2020) framework to decode visual
token activations into word probabilities for attribution. Notably, TAM Li et al. (2025a) first ob-
serves that earlier context tokens can introduce redundant visual activations that interfere with later
token predictions, and proposes an interference mitigation strategy. Despite these advances, exist-
ing methods predominantly focus on inter-modal interactions, while largely neglecting intra-modal
dynamics. Specifically, they fail to model spatial context among neighboring visual tokens and lack
effective methods to suppress semantic interference from preceding textual tokens. Both limitations
can significantly distort attribution fidelity, a gap our work aims to address these issues.

3 METHOD

3.1 PRELIMINARY

Multimodal Large Language Models (MLLMs) Wang et al. (2024); Chen et al. (2024) integrate
visual and textual inputs to generate coherent language outputs. Given an image I and a sequence
of proceeding text tokens T<t = {T1, . . . , Tt−1}, an MLLM predicts the next token Tt by jointly
modeling both modalities through a stack of L transformer layers. The image is first tokenized
into visual tokens V = {v1, . . . , vN}, which are embedded as visual embeddings Ev , while textual
tokens are mapped to text embeddings Et. These embeddings are concatenated and fed into the
multimodal transformer to produce contextualized hidden states. To distinguish modalities, the
hidden state of a visual token vi at the lth layer is denoted by zli, whereas the hidden state of a
text token Tt is denoted by hl

t. At the final layer, the hidden state of the current text token hL
t is

projected onto the vocabulary space through the unembedding matrix WU , yielding the logits. The
next-token probability distribution is then given by

P (Tt | T<t, I) = softmax(WUh
L
t ), (1)

where hL
t denotes the hidden state of the t-th text tokens at the Lth layer.
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Figure 2: Overview of our proposed framework.

Logit lens nostalgebraist (2020) provides a mechanism to interpret how hidden states of visual
tokens implicitly contribute to text generation. Logit lens directly projects the hidden states of
visual tokens onto the vocabulary space, revealing their latent alignment with textual outputs. Let
V denote the model vocabulary, and consider a generated text token Tt to be explained. For each
visual token vi with hidden state zli at the lth layer (l ≤ L), we compute its contribution to the target
text token Tt corresponding to vocabulary index k (i.e., V[k] = Tt) as the logit score:

ali(k) =
[
WUz

l
i

]
k
, (2)

where [·]k denotes selecting the k-th element of the logits vector. This score directly quantifies the
influence of the visual token vi on generating the specific textual token Tt. By aggregating the scores
ali(k) across all visual tokens, we construct a visual attribution map that highlights the image regions
most responsible for the generation of Tt. This formulation provides a direct and interpretable way
to attribute textual outputs to specific visual inputs.

3.2 MULTI-SCALE EXPLANATION AGGREGATION (MSEA)

Existing logit-lens attribution methods operate at the token level, projecting isolated tokens into the
vocabulary space. However, each visual token typically corresponds to only a small region of the
image, often covering just part of an object, and therefore carries limited contextual information.
As demonstrated in Figure 1a, decoding such hidden states may yield low activation on explain
token that do not faithfully reflect the underlying visual evidence. A natural question is whether
we can directly incorporate the hidden states of adjacent visual tokens to capture richer context.
However, due to the black-box nature of MLLMs, manipulating internal feature interactions is highly
challenging, and it is difficult to validate whether such manipulations are semantically faithful.

We propose a simple and effective strategy that operates at the input–output level: aggregating visual
attribution outputs across inputs of multiple scales. By feeding images of different resolutions into
the model, the receptive fields of visual tokens are varied. This allows us to examine whether new
hidden states project onto logits with high scores for the target semantic token (indicating additional
semantic content) or remain inactive (indicating no relevant content). This motivates our method,
Multi-Scale Explanation Aggregation (MSEA), which integrates multi-scale visual attributions to
produce more faithful explanations with richer spatial context.

Formally, given an input image I , we construct a set of rescaled versions {I(0), I(1), . . . , I(S)},
where I(0) is the original resolution. The preprocessing depends on the model’s input requirements:

I(s) =

{
Resize(I, αs), if the model accepts raw input sizes,
Pad(Resize(I, αs), H,W ) , if the model requires fixed input size (H ×W ),

(3)
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where αs is the scale factor and Pad(·, H,W ) denotes pasting the resized image onto a blank back-
ground of size H × W to preserve positional consistency. For each token v

(s)
i , its hidden state at

the lth layer is zl,(s)i , which is projected into the vocabulary space via WU . To explain a target text
token Tt, we extract the corresponding logit score al,(s)i (k) using equation 2. The attribution map at
scale s is then obtained by aggregating the token-level contributions:

A(s) = {al,(s)1 (k), a
l,(s)
2 (k), . . . , a

l,(s)
Ns

(k)}, (4)

where each entry corresponds to the contribution of a visual token to the target text token Tt. Finally,
to form a holistic explanation, all attribution maps {A(1), . . . , A(S)} are rescaled to the original
image size and fused:

At =
1

S

S∑
s=1

Resize
(
A(s), 1/αs

)
, (5)

The aggregated map At captures multi-scale contextual information in order to generate explanation
for text token Tt with enhanced attribution fidelity.

3.3 ACTIVATION RANKING CORRELATION (ARC)

Although logit lens nostalgebraist (2020) provides meaningful visual attribution, the generated maps
can be noisy. Previous studies Li et al. (2025a) have shown that this is often caused by interference
from residual activations of preceding text tokens. Due to the auto-regressive nature of MLLMs,
the prediction of the next token depends on previously generated tokens. Consequently, the hidden
state hL

t not only encodes information relevant to the current token Tt but also inherits activations
from preceding tokens. As demonstrated in Figure 1b, we observe that this effect is particularly
pronounced when explaining non-semantic tokens, such as punctuation. For such tokens, decoding
visual representations via logit lens yields similar logit scores across many visual patches, resulting
in diffuse and noisy attribution maps. In contrast, semantic tokens typically produce high activation
only in the relevant visual regions. Motivated by this observation, we propose a method to identify
irrelevant preceding tokens and mitigate their impact on the current token’s activation.

We introduce Activation Ranking Correlation (ARC), a method designed to identify and suppress
spurious contextual token activations based on the alignment of top-k predicted token rankings.
Unlike prior works Li et al. (2025a) that rely solely on raw logit scores to measure token relevance,
ARC evaluates the consistency of the ranking order among top-k predictions. For example, in a
driving scenario, the tokens ”traffic” and ”light” are highly related. When generating ”traffic,” the
logit score for ”light” may be low, which could be misinterpreted as low relevance. However, ”light”
may still appear in the top-k candidates. Using ranking alignment addresses such bias caused by
score magnitude.

Formally, for the target text token Tt and its preceding tokens T<t (including prompt and previously
generated tokens), we compute the output logits for each token using Equation 1:

yL
j = softmax(WUh

L
j ), j ≤ t. (6)

We then extract the indices of the top-k predicted tokens to obtain rankk(y
L
j ). The semantic rel-

evance of a preceding token Tj to Tt is quantified using the Rank-Biased Overlap (RBO) Webber
et al. (2010) metric ρ(·, ·) between their top-k rankings:

rj = ρ
(
rankk(y

L
j ), rankk(yL

t )
)
. (7)

Tokens with high rj values are considered semantically coherent with Tt, while those with low
or negative rj are treated as irrelevant. To suppress interference, visual attribution maps Aj for
each preceding token are computed using Equation 5. We then compute the aggregated irrelevant
attribution for Tt as follows:

Ât =
1∑

j<t(1− rj)

∑
j<t

(1− rj)Aj , (8)

where (1−rj) assigns higher weights to spurious tokens. To unify this computation, we additionally
define a base attribution A0, derived as the raw attribution (Equation 4) for the text token with
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Method Type COCO Caption GranDf OpenPSG
Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU

Grad-CAM 2017

Gradient

21.23 51.93 30.14 17.85 62.15 27.74 22.93 48.57 31.15
Grad-CAM++ 2018 19.52 62.83 29.78 17.30 73.42 28.01 22.21 59.95 32.41
Grad-Rollout 2020 1.27 99.51 2.51 1.40 99.61 2.77 1.57 99.58 13.08
Layer-CAM 2021 11.43 84.88 20.15 13.11 82.09 22.62 14.12 85.29 24.22

Attention
Attention

8.20 92.87 15.07 9.60 93.56 17.42 10.58 94.28 19.03
Attention-Rollout 2020 5.74 96.50 10.83 7.21 96.65 13.42 7.94 97.04 14.68

CP-LRP 2022
Combination

9.90 53.97 16.73 12.61 53.24 20.39 13.30 53.36 21.30
Attn-LRP 2024 9.92 52.41 16.69 12.15 52.19 19.72 12.78 52.26 20.54

CAM 2016

Logit

21.23 51.93 30.14 17.85 62.15 27.74 22.93 48.57 31.15
Archi.-Surgery 2025b 15.69 63.82 25.19 16.59 62.28 26.20 19.83 58.77 29.65
TAM Li et al. (2025a) 27.37 68.44 39.10 18.65 88.97 30.83 26.26 92.99 40.95

Ours 29.35 91.57 44.45 23.32 91.85 37.20 29.20 94.69 44.64

Table 1: Comparison with state-of-the-art methods using Qwen2-VL-2B across diverse datasets.
Our method consistently yields superior visual explanations, as evidenced by the highest F1-IoU
scores across all evaluated datasets.

minimal visual activation, i.e., the token with index k = argmink
∑Ns

1 al1. The refined attribution
for Tt is then obtained by subtracting the scaled irrelevant attribution:

Ãt = G(⌊At − βÂt⌋+), β = argmin
β

||At − βÂt||22, (9)

where ⌊·⌋+ retains only positive activations. Following prior work Li et al. (2025a), we use an adap-
tive scaling factor β to control the suppression strength to avoid over-mitigation and a Rank Gaussian
Filter G as post-processing to further reduce noise. The resulting refined attribution Ãt effectively
diminishes contamination from irrelevant contexts and enhances the fidelity of explanations.

Together, MSEA and ARC provide complementary benefits: MSEA improves visual attribution by
incorporating multi-scale spatial context, while ARC mitigates noisy activations from preceding
tokens, jointly producing more faithful explanations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate our approach on three representative multimodal large language
models (MLLMs) with distinct architectures: LLaVA-1.5 Liu et al. (2024), Qwen2-VL Wang et al.
(2024), and InternVL2.5 Chen et al. (2024). To assess scalability, we further experiment with model
variants spanning 2B to 13B parameters (see Table 2). Our evaluation relies on datasets that provide
both textual descriptions and pixel-level segmentation masks. The primary benchmark is the COCO
Caption dataset Chen et al. (2015), which uses images and annotations from COCO 2014 Lin et al.
(2014). Since our method is purely post-hoc and requires no training, we evaluate exclusively on
the standard 5K-image minival split. We additionally include GranDf Rasheed et al. (2024) (1K
images) and the validation set of OpenPSG Zhou et al. (2024) (3,176 images). Ground-truth masks
in COCO Caption dataset and GranDf dataset are human-annotated, whereas those in OpenPSG are
derived from the integrated annotations provided by Rasheed et al. Rasheed et al. (2024).

Implementation Details. For hyperparameters, the default scale factors in Equation 3 are set to
[0.5, 0.75, 1.0], with additional configurations evaluated as shown in Figure 3. Logit lens nostal-
gebraist (2020) is applied on the hidden states from the last transformer layer (Equation 4). For
ranking-based correlation, we set k = 50 to select the top-k logits indices (Equation 7). For eval-
uation, we adopt three metrics following prior work: Obj-IoU, Func-IoU, and F1-IoU. Obj-IoU
measures the intersection-over-union between generated attribution maps and ground-truth masks.
Func-IoU quantifies activations on non-semantic tokens (e.g., punctuation), where higher values in-
dicate fewer false positives. To jointly account for both Obj-IoU and Func-IoU, F1-IoU is reported
as the primary metric, defined as follows:

F1-IoU =
2 · Obj-IoU · Func-IoU
Obj-IoU + Func-IoU

. (10)
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Method MLLM COCO Caption GranDf OpenPSG
Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU

CAM
LLaVA1.5-7B

23.17 43.16 30.16 20.07 47.48 28.21 25.11 51.55 33.77
TAM 27.65 61.43 38.13 20.71 59.15 30.68 28.57 61.06 38.93
Ours 30.62 87.32 45.34 24.79 85.18 38.40 32.03 86.80 46.79

CAM
LLaVA1.5-13B

24.82 51.18 33.43 21.34 43.99 28.74 26.65 48.45 34.39
TAM 29.12 58.50 38.88 22.10 51.02 30.84 30.88 59.96 40.76
Ours 31.76 97.18 47.87 26.08 95.58 40.98 32.57 97.32 48.80

CAM
InternVL2.5-2B

15.94 45.62 23.63 18.28 37.64 24.61 19.76 46.42 27.72
TAM 21.38 65.10 32.19 20.48 85.93 33.08 23.00 86.86 36.36
Ours 30.61 76.48 43.72 24.54 88.93 38.47 31.50 91.03 46.81

CAM
InternVL2.5-4B

18.23 40.95 25.23 20.91 44.52 28.46 21.28 34.70 26.38
TAM 21.76 63.12 32.36 22.53 89.71 36.02 23.49 89.75 37.23
Ours 31.80 82.73 45.94 27.73 94.34 42.86 33.52 94.09 49.43

CAM
InternVL2.5-8B

14.59 64.41 23.80 18.04 57.42 27.45 18.46 62.21 28.47
TAM 19.98 66.53 30.73 21.56 85.95 34.47 21.73 88.74 34.91
Ours 32.16 73.20 45.25 27.00 86.72 41.18 33.97 91.11 49.49

CAM
Qwen2-VL-2B

21.23 51.93 30.14 17.85 62.15 27.74 22.93 48.50 31.15
TAM 27.37 68.44 39.10 18.65 88.97 30.83 26.26 92.99 40.95
Ours 29.35 91.57 44.45 23.32 91.85 37.20 29.20 94.69 44.64

CAM
Qwen2-VL-7B

22.51 42.44 29.42 18.60 68.03 29.21 23.41 42.94 30.30
TAM 28.13 71.85 40.43 19.88 90.57 32.61 26.94 89.88 41.45
Ours 29.86 94.77 45.41 23.53 90.59 37.35 29.01 94.33 44.37

Table 2: Comparison with state-of-the-art methods across MLLMs of diverse architectures and
parameter scales. Our approach demonstrates consistently better performance, highlighting its broad
compatibility with different model architectures and robust scalability across varying model sizes.

4.2 QUANTITATIVE RESULTS

Comparison with SoTA Methods. We evaluate our method against a comprehensive suite of
state-of-the-art visual explanation approaches, including gradient-based, attention-based, hybrid
(gradient-attention), and logit-based methods, across three benchmark datasets: COCO Caption
dataset Chen et al. (2015), GranDf dataset Rasheed et al. (2024), and OpenPSG dataset Zhou et al.
(2024). As shown in Table 1, our approach consistently achieves the highest Obj-IoU and overall
F1-IoU scores across all datasets and across all categories of explanation methods, indicating more
precise and faithful visual attributions. Compared to the current state-of-the-art method, TAM, our
method yields absolute improvements of 5.35%, 6.37%, and 3.69% in F1-IoU on COCO Caption,
GranDf, and OpenPSG dataset, respectively. Notably, on COCO Caption dataset, this gain is primar-
ily driven by a 23.13% improvement in Func-IoU, reflecting a substantial reduction in false positives
and a stronger ability to suppress interference from activations of preceding tokens.

Generalization across MLLM Architectures and Scales. To evaluate the generalizability of
our approach, we conduct an extensive comparison across seven multimodal large language mod-
els (MLLMs), spanning three representative architectures—LLaVA-1.5, InternVL2.5, and Qwen2-
VL—and parameter scales from 2B to 13B. As shown in Table 2, our method consistently outper-
forms state-of-the-art baselines (CAM Zhou et al. (2016) and TAM Li et al. (2025a)) across all mod-
els and datasets. On the COCO Caption dataset, we observe particularly strong gains: our approach
surpasses TAM by 8.99% F1-IoU on LLaVA-1.5-13B and by 13.58% on InternVL2.5-8B. No-
tably, within the InternVL2.5 family, performance improvements grow with model scale—yielding
11.53%, 13.58%, and 14.52% absolute gains in F1-IoU for the 2B, 4B, and 8B variants, respectively.
This positive scaling trend suggests that our method not only generalizes across diverse architectures
but also benefits from increased model capacity, underscoring its better scalability.

Ablation Study. We conduct ablation studies on the COCO Caption dataset to evaluate the effec-
tiveness of our proposed components: Multi-Scale Explanation Aggregation (MSEA) and Activa-
tion Ranking Correlation (ARC). For ARC, we also compare with another interference mitigation
strategy TAM. The results are summarized in Table 3. First, the introduction of ARC leads to a
substantial improvement in Func-IoU, indicating a significant reduction in false positives. Specif-
ically, on Qwen2-VL-2B, adding ARC yields a 48.09% absolute gain in Func-IoU. Even when
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MSEA Interference Mitigation Qwen2-VL-2B LLaVA1.5-7B
Mean Max ARC TAM Mean Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU

24.82 43.34 31.57 25.41 39.74 31.00
✔ 27.84 49.85 35.72 27.65 61.43 38.13

✔ 27.37 68.44 39.10 27.81 66.22 39.17
✔ 27.07 91.43 41.78+10.21 28.04 85.15 42.19+11.19

✔ 24.32 63.77 35.21 27.49 52.53 36.09
✔ 25.81 63.21 36.65+5.08 27.59 48.88 35.27+4.27

✔ ✔ 27.77 91.64 42.63 30.12 85.32 44.52
✔ ✔ 29.35 91.57 44.45+12.88 30.62 87.32 45.34+14.34

Table 3: Ablation study on the COCO Caption dataset Chen et al. (2015) dataset using Qwen2-
VL-2B Wang et al. (2024). ECI denotes Estimated Causal Inference. “RelSort” and “Mean” are
components within ECI, and “TAM” is our proposed module. The combination of modules is mutu-
ally beneficial — the gain exceeds the sum of individual improvements. Metrics are IoU for object
words, IoU for function words, and their F1-score-like combination, respectively.

(a) Scale Count (Qwen) (b) Scale Count (LLaVA) (c) Scale Ranges (Qwen) (d) Scale Ranges (LLaVA)

Figure 3: Performance sensitivity to the number and range of scaling factors across datasets and
model architectures. Subfigures (a) and (b) show the impact of varying the number of scaling factors,
while subfigures (c) and (d) illustrate the effect of different ranges of scaling factors.

compared against the strong baseline TAM, our method still achieves a 22.99% improvement. Simi-
lar trends are observed on LLaVA-1.5-7B, confirming ARC’s consistent ability to suppress spurious
influences from irrelevant preceding tokens. For MSEA, both mean and max aggregation strate-
gies improve F1-IoU over the baseline, demonstrating the benefit of incorporating multi-scale visual
context. More importantly, MSEA and ARC exhibit strong complementary effects: when combined,
they further boost attribution performance beyond what either component achieves alone. Specifi-
cally, the joint use of MSEA and ARC improves F1-IoU by 2.67% on Qwen2-VL-2B and 3.15% on
LLaVA-1.5-7B compared to using ARC alone, validating that modeling intra-modal interactions in
both vision and language is essential for faithful multimodal explanations.

Sensitivity Analysis on Scale Factors. Figure 3 investigates the sensitivity of our MSEA module
to the number and range of scaling factors used during multi-scale attribution computation, evalu-
ated across two model architectures (Qwen2-VL and LLaVA-1.5) and three datasets (COCO2014,
GranDf, and OpenPSG). Subfigures (a) and (b) reveal a consistent trend: increasing the number of
scales from 1 to 4 significantly improves attribution performance, suggesting that richer spatial con-
text enhances explanation fidelity. Notably, using four scales, e.g., [0.5, 0.75, 1.0, 1.25], yields peak
performance across both models, underscoring the importance of multi-scale aggregation in visual
attribution. Subfigures (c) and (d) further analyze the impact of different scale ranges. We observe
that moderate ranges, such as [0.5, 0.75, 1] or [0.75, 1.0, 1.25], consistently outperform both overly
narrow (e.g., [0.25, 0.5, 1.0]) and excessively large ranges (e.g.,[1.0, 1.25, 1.5]). This indicates that
carefully selected rescaled resolutions better capture contextual cues critical for faithful attribution.
Moreover, LLaVA-1.5 exhibits lower sensitivity to scale range compared to Qwen2-VL. We attribute
this difference to their distinct image preprocessing strategies: Qwen2-VL accepts raw image sizes
and is thus more affected by rescaling, whereas LLaVA-1.5 uses fixed-resolution inputs.

4.3 VISUALIZATION

We visualize the attribution maps generated by the Qwen2-VL-2B model (Figure 4) and the LLaVA-
1.5-7B model (Figure 5) on the COCO Caption dataset. The results show that our method produces
more holistic and faithful attributions compared to the state-of-the-art TAM method. Specifically,
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Figure 4: Visualization of attribution maps generated using the Qwen2-VL-2B model.

Figure 5: Visualization of attribution maps generated using the LLaVA-1.5-7B model.

our attributions exhibit stronger alignment with the target objects and significantly less noise in
semantically irrelevant regions.

5 CONCLUSION

In this work, we addressed the critical challenge of enhancing the interpretability of Multimodal
Large Language Models (MLLMs) by tackling a key limitation in existing methods: their neglect
of intra-modal interactions. We argued that a holistic understanding of MLLM reasoning requires
more than just cross-modal attribution. To this end, we introduced a new explanation method featur-
ing two complementary components: Multi-Scale Explanation Aggregation (MSEA) and Activation
Ranking Correlation (ARC). Our research demonstrates that by integrating intra-modal interactions,
we can produce significantly more faithful and robust explanations. MSEA leverages information
from multiple image scales to capture crucial spatial context among visual tokens, while ARC ef-
fectively mitigates noise by identifying and suppressing the influence of irrelevant preceding text
tokens. Our comprehensive empirical evaluations on a variety of state-of-the-art MLLMs, including
LLaVA-1.5, Qwen2-VL, and InternVL2.5, and across diverse benchmarks, consistently showed that
our approach outperforms existing explainability methods. We achieved quantitative improvements
ranging from 3.69 to 14.52% across different models and tasks, validating the effectiveness and
generalizability of our framework.
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A APPENDIX

A.1 USE OF LLM

Declaration: The use of Qwen in the preparation of this manuscript was strictly limited to grammat-
ical correction and text polishing.
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