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ABSTRACT

Multi model inference, where multiple task-specialized models collaborate to
solve complex real-world problems, has recently emerged as a prominent
paradigm, particularly in the development of agentic AI systems. However, in
such scenarios, each model must maintain its own Key-Value (KV) cache for
the identical prompt, leading to substantial memory consumption. This explo-
sive growth of KV caches forces LLM serving systems to evict previously stored
caches, which in turn introduces significant recomputation overhead whenever the
evicted caches are required again. Moreover, prefix caching is inherently infea-
sible across different models, forcing each model to recompute KV cache for the
identical prompt, which leads to signficant overhead. To alleviate these issues,
we propose Identical Cache Reuse (ICaRus), a novel architecture that allows
multiple models to share identical KV caches across all layers. ICaRus is based
on the key observation that a decoder-only Transformer can be conceptually de-
composed into a logical encoder, which generates KV caches, and a logical de-
coder, which predicts output tokens from the KV caches. ICaRus fine-tunes only
the logical decoder while freezing the logical encoder, enabling multiple mod-
els to share an identical KV cache. This eliminates cache memory explosion
and unexpected evictions while also allowing cross-model reuse of KV caches
for new input tokens, thereby removing redundant recomputation in multi model
inference achieving both efficiency and scalability. Moreover, by incorporating
lightweight adapters such as LoRA, ICaRus parallelizes KV cache generation and
next-token prediction during decoding. ICaRus achieves comparable accuracy to
task-specific fine-tuned model across a diverse set of tasks, while allowing mul-
tiple specialized models to fully share KV caches. ICaRus achieves up to 11.1×
lower P95 latency and 3.8× higher throughput in agentic workflow with 8 differ-
ent models, compared to conventional multi model system.

1 INTRODUCTION

Large Language Models (LLMs) have shown strong performance across domains (Zhao et al., 2024;
Dubey et al., 2024; Comanici et al., 2025; Yang et al., 2025); however, a single model struggles with
complex tasks that demand multi step reasoning and domain-specific expertise (Tang et al., 2020;
Yao et al., 2023; Sun et al., 2024). Recently, the emerging paradigm of multi model inference
addresses this limitation by orchestrating task-specialized models, achieving higher accuracy and
problem-solving ability than a general-purpose model (Fu et al., 2023; Du et al., 2024; Shen et al.,
2024; Subramaniam et al., 2025). However, this paradigm introduces severe challenges in managing
the Key-Value (KV) cache: each model maintains its own cache even for identical prefixes, causing
memory consumption to grow rapidly with the number of models. Once GPU memory is saturated
by KV cache, serving systems (Kwon et al., 2023; Zheng et al., 2024) must evict caches, which
triggers redundant recomputation and significantly degrades throughput. Furthermore, because KV
caches are model-specific, prefix caching (Kwon et al., 2023; Zheng et al., 2024) cannot be applied
across different models, which forces identical prompts to rebuild KV caches independently and
thereby increases latency.

Previous KV cache optimization techniques, such as pruning (Zhang et al., 2023), quantization
(Hooper et al., 2024; Yang et al., 2024), and inter-layer sharing (Qiao et al., 2024), reduce cache
size while minimizing accuracy degradation. Unlike traditional LRU-based prefix caching, KVFlow
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Figure 1: Comparison of KV cache management strategies and effectiveness in multi model scenar-
ios between conventional approaches and ICaRus.

(Pan et al., 2025) schedules KV cache eviction and prefetching based on anticipated agent work-
flow, reducing recomputation overhead. However, these methods focus only on single model cache
management, leaving unresolved the challenges of cache explosion and the lack of KV cache shar-
ing of prefix in multi model settings. DroidSpeak (Liu et al., 2024b) addressed multi model KV
cache management by sharing non-sensitive layer caches between a base model and its fine-tuned
variants, thereby reducing recomputation cost. However, this approach has inherent limitations, as
caches from sensitive layers remain unshared and must still be recomputed.

To address these issues, we propose Identical Cache Reuse (ICaRus), a novel architecture that en-
ables multiple models to share and reuse the same KV cache across all layers. The core idea of
ICaRus originates from conceptually decomposing a decoder-only Transformer into two parts: a
logical encoder, which is responsible for generating KV cache, and a logical decoder, which pre-
dicts the next token from the cache. We freeze the logical encoder of pretrained LLM (i.e. base
model) and fine-tune only the logical decoder. Since all specialized models share the identical log-
ical encoder, the KV cache generated for an identical prompt is likewise identical, enabling direct
sharing without redundant memory usage as shown in Fig. 1(a). This prevents GPU memory from
rapidly saturating due to KV cache growth, avoiding costly recomputation caused by cache eviction.
Moreover, shared KV caches enable prefix caching across models, eliminating redundant compu-
tation for identical prompts and further improving efficiency as depicted in Fig. 1(b). In addition,
ICaRus leverages the adapter architecture to generate the KV cache for the next step in parallel
with the next-token computation during the decode phase. We evaluate ICaRus across diverse tasks
including mathematics, coding, and knowledge understanding on a wide range of model families
and scales (LLaMA-3.1-8B, Qwen3-1.7B/8B/14B). The results demonstrate that ICaRus achieves
accuracy comparable to task-specific fine-tuned models, even though ICaRus-tuned models are able
to share KV caches across tasks. Furthermore, when integrated into the vLLM serving system and
evaluated in various multi agent scenarios including ReAct (Yao et al., 2023) and Reflexion (Shinn
et al., 2023), ICaRus delivers as much as a 11.1× reduction in 95th-percentile (P95) latency and a
3.8× throughput gain compared to conventional multi model system.

In summary, the main contributions of this work are as follows:

• We propose ICaRus, the first architecture that enables multiple decoder-only Transformers
to fully share KV caches, guaranteeing high generation quality in real serving scenarios by
explicitly modeling the fully shared-KV setting already at training time.

• We demonstrate that ICaRus achieves accuracy comparable to task-specific fine-tuning
across diverse tasks (mathematics, coding, and knowledge understanding) and model ar-
chitectures (LLaMA-3.1-8B, Qwen3-1.7B/8B/14B).

• We confirm that ICaRus significantly improves efficiency in multi agent workflows, achiev-
ing up to 11.1× reduction in P95 latency and 3.8× improvement in throughput compared
to conventional multi model system.
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2 BACKGROUND & MOTIVATION

Key-Value Cache in LLM Serving Systems. During autoregressive inference, decoder-only
Transformers generate tokens sequentially, where each new token depends on all previously gener-
ated tokens. Computing self-attention naïvely for every step requires recomputation over the entire
sequence, incurring a per-token complexity of O(n2) where n is the sequence length. To avoid this
quadratic overhead, modern LLM serving systems cache the key and value representations of previ-
ously processed tokens (Vaswani et al., 2017). By reusing these cached states, each new decoding
step only attends to the most recent token, reducing the per-token attention complexity to O(n) and
thereby significantly lowering computational cost. However, the size of KV caches grows linearly
with both sequence length and model depth, imposing substantial memory pressure on GPU-based
serving systems (Kwon et al., 2023; Zheng et al., 2024). Consequently, memory-efficient cache
management has emerged as a critical challenge for scalable LLM deployment.

Prefix Caching in LLM Serving Systems. Prefix caching is a widely adopted optimization that
reuses the KV cache corresponding to a fixed prefix across multiple queries sharing the same initial
context (Kwon et al., 2023; Zheng et al., 2024). This technique is particularly effective in scenarios
such as retrieval-augmented generation (RAG) (Lewis et al., 2020) and instruction-tuned applica-
tions (Chung et al., 2024; Ouyang et al., 2022), where prompts often contain long but invariant
components like system prompts, task-specific templates, or retrieved documents. By reusing the
cached key-value states of these repeated prefixes, serving systems can avoid redundant computation
during the prefill phase, effectively reducing the computational complexity from O(n2) to O(mn),
where n denotes the sequence length and m denotes the variable suffix length with m≪ n, thereby
improving both throughput and latency. Moreover, prefix caching is highly beneficial in multi-turn
conversational settings, where a large dialogue history is preserved across turns and only the most
recent user utterance changes; by caching the KV states of the shared history and computing atten-
tion only for newly appended tokens, serving systems can efficiently support interactive dialogues
without recomputing the entire context at every turn (Kim et al., 2025).

Agentic AI Workflow and Multi Model Inference. Agentic AI and workflow-based reasoning
have given rise to complex pipelines in which models are orchestrated to perform specialized roles.
For instance, ReAct (Yao et al., 2023) alternates between Thought→ Act→ Observation, Reflexion
(Shinn et al., 2023) incorporates self-evaluation loops, LATS (Zhou et al., 2024) explores reasoning
through parallel branch expansion, and LLMCompiler (Kim et al., 2024) constructs a DAG to sched-
ule overlapping tool and model calls. When executed within a single model, such workflows can
leverage prefix caching to avoid redundant computation, thereby reducing effective memory usage,
lowering P95 latency, and improving throughput (Kim et al., 2025). However, in multi model set-
tings where task-specialized models collaborate within a single pipeline, each model must maintain
its own KV cache even for identical prefixes. Such KV cache duplication leads to memory usage
that grows linearly with the number of active models; once GPU capacity is saturated, this growth
inevitably triggers cache eviction, which in turn forces recomputation of evicted prefixes. More-
over, since prefix caching typically operates only within individual models, identical prefixes must
be recomputed separately across models, leading to redundant prefill computation that inflates both
latency and energy consumption. These limitations underscore the need for new architectures that
support cross-model KV sharing and prefill de-duplication in multi model inference.

3 DESIGN OF ICARUS

3.1 DECODER-ONLY TRANSFORMER AS LOGICAL ENCODER AND DECODER

We first present a mathematical formulation of the decoder-only Transformer, which predicts the
next token conditioned on the current token context. Specifically, we abstract xi, ki, and vi as the
i-th token, its key representation, and its value representation, respectively, and denote the decoder-
only Transformer by F . In this case, the next-token generation from the current token context in
a decoder-only Transformer can be expressed as xi+1 = F (x1, x2, . . . , xi). To generate the next
token xi+1, the model requires two types of information: the current token xi and the accumulated
key–value pairs. We denote the key set and value set up to step i as K1:i = {k1, k2, . . . , ki}, V1:i =
{v1, v2, . . . , vi}. More concretely, in the attention operation, the query derived from xi is generated
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anew at each step, whereas the keys and values are continuously appended to the cache and reused
across subsequent decoding steps. In other words, the query does not persist beyond its step, but the
KV pairs accumulate and form the long-term memory. This dependency can be expressed as

xi+1 = F (x1, x2, . . . , xi) = F
(
xi, K1:i, V1:i

)
. (1)

Eq.1 indicates that a decoder-only Transformer predicts the next token conditioned on the current
token xi and the KV cache constructed up to this point. More generally, the generation process
can be decomposed into two conceptual stages: (1) constructing the key set Ki and the value set Vi

from the input sequence x1:i = {x1, x2 . . . , xi}, and (2) decoding the next token xi+1 based on the
current token xi together with the accumulated sets (Ki, Vi). Formally, this can be expressed as

K1:i, V1:i = E(x1:i), (2)

xi+1 = D
(
xi, K1:i, V1:i

)
, (3)

where E denotes the logical encoder that transforms the input sequence into its key and value rep-
resentations, thereby constructing the KV cache, and D denotes the logical decoder that consumes
the current token and the KV set to generate the next token. Importantly, a decoder-only Trans-
former can be interpreted as the special case where the parameters of the logical encoder and logical
decoder are identical. More detailed concept of logical encoder-decoder architecture is depicted in
Appendix C.

3.2 ICARUS: IDENTICAL CACHE REUSE ACROSS LLMS

As described in Section 3.1, a decoder-only model can be decomposed into a logical encoder, which
generates key–value pairs from a given token, and a logical decoder, which predicts the next token
using the current token and the accumulated KV cache, as shown in Eqs. 2–3. From this perspective,
task-specific fine-tuning can be viewed as jointly training both the logical encoder and the logical
decoder to specialize in a given task. While such task-tuned models achieve strong task-specific
capabilities, each maintains its own logical encoder thereby preventing KV cache sharing even when
prompts are identical across models.

Building on this insight, we propose the ICaRus architecture which fine-tunes only the logical de-
coder of a decoder-only Transformer as below.

K1:i, V1:i = Et(x1:i) = E(x1:i), (4)

xt
i+1 = Dt

(
xi, K1:i, V1:i

)
, (5)

Here, t and Dt denote a specific task and the logical decoder fine-tuned for that task, respectively.
Specifically, the logical encoder (E) and the logical decoder (D) are initialized with the parameters
of the base model, a pretrained decoder-only Transformer. The task-specific logical decoder Dt in
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Figure 2: Training loss curves of conventional fine-tuning and ICaRus, both applied with LoRA on
LLaMA-3.1-8B, trained on the MetaMathQA-40k and Evol-Instruct-Code-80k dataset.
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Eq. 5 is then trained, starting from the base decoder D, to predict the next token xi+1 under two
objectives: (1) specializing in the target task, and (2) leveraging the KV cache generated by the
frozen logical encoder in Eq. 4. As a result, multiple task-specific logical decoders (e.g., Dmath,
Dcoding, Dreasoning) can share a single logical encoder (i.e., Emath ≡ Ecoding ≡ Ereasoning ≡ E), which
is identical to the base model, thereby enabling all models to reuse the identical KV cache generated
by the shared encoder, as illustrated in Fig. 1.

During training, the input data are duplicated and provided to both the logical encoder and the logical
decoder. The logical encoder generates the corresponding key–value representations, while the log-
ical decoder computes attention over these representations with its final output used to compute the
training loss for gradient updates. The logical encoder is kept frozen during training to ensure cache
sharing across tasks. This training procedure, which explicitly accounts for KV cache sharing, helps
ensure robustness when KV caches are shared at inference time in real serving scenarios, especially
compared with approaches that attempt to share KV caches across models trained independently
without considering KV cache sharing.

Figure 2 shows the training loss of LLaMA-3.1-8B on MetaMathQA-40k (Yu et al., 2023) and
Evol-Instruct-80k (Roshdieh, 2023). The ICaRus curves almost perfectly overlap with those of
conventional task-specific fine-tuning, indicating that restricting learning to the logical decoder does
not hinder optimization and is sufficient for task-specific adaptation even when the logical encoder
is shared across models. In other words, freezing the logical encoder forces all task-specialized
models to reuse a common sequence representation and express their differences only through the
decoder, which can be interpreted as a form of implicit regularization.

The core idea of ICaRus is to factorize a decoder-only Transformer into a logical encoder and a log-
ical decoder, and to train only the logical decoder so that KV caches can be shared across different
models. Consequently, the specific adaptation method used to train the logical decoder is not essen-
tial to ICaRus itself: in principle, it could be trained via full-parameter fine-tuning, prompt tuning
(Lester et al., 2021), LoRA (Hu et al., 2022) or variants (Liu et al., 2024a; Jiang et al., 2024; Woo
et al., 2025) thereof. We adopt LoRA to train the logical decoder because LoRA offers high training
efficiency, which enables rapid deployment of new agents in multi-agent systems, while achiev-
ing performance comparable to full-parameter fine-tuning (Schulman & Lab, 2025) and making it
straightforward to optimize the decoding phase in ICaRus for inference efficiency. In the following
section, we describe how we integrate LoRA into ICaRus and how this design further optimizes the
overall inference cost.

3.3 OPTIMIZING ICARUS FOR MULTI MODEL INFERENCE

In Section 3.2, we introduced the concept and training methodology of ICaRus. In this section, we
explain how ICaRus operates in multi model inference scenarios and discuss its key optimization
strategies. During the prefill phase, ICaRus uses only the logical encoder, which encodes the in-
put prompt into a KV cache and produces the next token. In the subsequent decode phase, ICaRus
duplicates the current token (xi) and performs two operations: (1) encoding xi into a key–value
pair (ki, vi) through the logical encoder, and (2) predicting the task-specific output token (xi+1)
through the logical decoder by using the duplicated xi together with the accumulated KV cache
({k1, . . . , ki}, {v1, . . . , vi}), as in Eq. 5. Consequently, regardless of which model performs decod-
ing, the KV cache is always generated by the logical encoder, and other role-specific decoders can
directly reuse this shared KV cache without any need to recompute or further update it. The details
can be found in Appendix C

Sequential execution of the logical encoder and decoder may incur up to 2× latency overhead com-
pared to a single model execution, since both weights and KV caches are accessed twice. To mitigate
the problem, we insert and fine-tune only lightweight adapters within the logical decoder instead of
fully fine-tuning the decoder. Consequently, the logical encoder and logical decoder share most pa-
rameters except for the adapters, enabling the shared parameters to be loaded only once and allowing
the computations of the two modules to be executed in parallel as depicted in Fig. 3.

In addition, because both models attend to the identical KV cache generated by the base model, we
optimize attention computation by concatenating the query representations of the logical encoder
and decoder along the head dimension (Fig. 3). This enables parallel attention computation without
redundant KV cache reads. Consequently, although the decoding phase of ICaRus appears to dou-
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Figure 3: Overview of the ICaRus architecture. The base model, a pretrained decoder-only Trans-
former, serves as the logical encoder, while the adapter-tuned model (consisting of the base model
and a tunable adapter) serves as the logical decoder. The blue and orange lines indicate computations
performed by the base model and the adapter-tuned model, respectively. The purple square denotes
that the same base model generates the KV cache during both the prefill and decoding phases. Con-
sequently, different ICaRus models that share this base model as their logical encoder can reuse KV
caches, even when the KV caches were created during the decoding phase by a different ICaRus
model.

Table 1: Space and time complexity comparisons between single model and multi model scenarios.

Scenario Method

Space Complexity Time Complexity

Total Prefill
Decode (per token)

Memory Access Compute

Single Model — O(M + Lt) O(MLt + L2
t ) O(M + Lt) O(M + Lt)

Multi Model
BaseLine O(M +NLt) O(N(MLt + L2

t )) O(M +Lt) O(M +Lt)
ICaRus O(M +Lt) O(MLt +L2

t ) O(M +Lt) O(2M + 2Lt)

ble the computational workload by running both the logical encoder and decoder, the system adds
only negligible latency overhead. This is because parallel execution generates memory traffic (base
parameters, KV caches, and lightweight adapter weights) that is almost the same as that of a single
model. The detailed algorithm can be found in Appendix B,

To validate the effectiveness of ICaRus, we further analyze the time and space complexity of multi
model system built with the conventional approach (baseline) and with ICaRus, using N adapters
in multi agent scenarios. Table 1 summarizes the results. We denote the input prompt length as
Li, the number of interaction turns per adapter as t, and the number of output tokens per turn as
Lo, with the total sequence length Lt = Li + tLo. The base model size is represented by M . In
the baseline, each model independently allocates KV memory and recomputes prefill for the same
prompt, yielding space complexity O(M + NLt) and prefill complexity O(N(MLt + L2

t )). In
contrast, ICaRus shares a single KV cache across models, reducing both to single model order, with
space O(M + Lt) and prefill O(MLt + L2

t ). The advantage grows with longer sequences from
inter-model communication and with larger agent counts N .

During decoding, the baseline requires O(M + Lt) memory access and computation per token be-
cause each adapter-tuned model reads the model weights and its own KV cache. ICaRus computes
both the logical encoder and decoder (O(2M + 2Lt)) but parallelizes most of the computation so
that the model and KV cache are read only once, restoring O(M + Lt). In multi-model, long-
context, many-turn settings where decoding is memory-bound, memory access dominates; accord-
ingly, ICaRus achieves decoding latency comparable to the baseline.
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Table 2: Comparison of conventional methods and ICaRus on diverse datasets. Single Model de-
notes the base model without fine tuning. Multi Model consists of three independently fine tuned
models: one on MetaMathQA-40K, one on Evol-Instruct-Code, and one on Oasst1. ICaRus uses the
same three specializations, but trains only task-specific logical decoders on a shared logical encoder,
enabling KV cache sharing across models.

Model Method KV
Sharing

Math Coding Knowledge

GSM8K GSM+ HEval HEval+ GPQA

LLaMA3.1-8B
Single Model . 25.9 18.0 36.6 29.9 16.7
Multi Model X 69.7 48.5 48.2 41.5 27.3

ICaRus (Ours) O 67.9 45.8 48.2 43.9 28.8

Qwen3-8B-Base
Single Model . 11.8 12.5 68.3 61.6 24.2
Multi Model X 85.4 66.1 81.7 75.6 34.3

ICaRus (Ours) O 87.3 67.5 86.6 79.9 33.8

4 EVALUATION

4.1 EXPERIMENTAL SETUP

We evaluate ICaRus from two perspectives: (1) accuracy and (2) performance in multi model infer-
ence. In section 4.2, we construct multi model systems as follows. Starting from LLaMA-3.1-8B
(Dubey et al., 2024) and Qwen3-1.7B/8B/14B-Base (Yang et al., 2025), we build three task-specific
models per base model by fine-tuning on MetaMathQA-40k for mathematics (Yu et al., 2023), Evol-
Instruct-Code-80k for coding (Roshdieh, 2023), and OASST1 for instruction tuning (Köpf et al.,
2023) using either conventional fine-tuning or ICaRus. These systems are then evaluated on bench-
marks aligned with each task: GSM8K (Cobbe et al., 2021) and GSM-Plus (Li et al., 2024) for
mathematics, HumanEval (Chen et al., 2021) and HumanEval+ (Liu et al., 2023) for coding, and
GPQA-Diamond (Rein et al., 2024) for knowledge understanding, using lm-eval-harness (Biderman
et al., 2024) and EvalPlus (Liu et al., 2023) to measure zero-shot accuracy. For comparison, both
the conventional fine-tuning and ICaRus use LoRA (Hu et al., 2022) as the adaptation method.

For multi model inference (Section 4.3), we measure latency and throughput under representative
agent workflows such as ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2023), and for each
workflow we evaluate configurations with 2, 4, and 8 agents. We adapt these workflows to a multi
model, multi-turn request-routing setup: within a single workflow, successive requests from a multi-
turn interaction are routed in a round-robin manner to different models. In this setting, the baseline
is a conventional multi-LoRA system, whereas ICaRus replaces it with a cache-sharing multi agent
system. To ensure a fair comparison, we integrate both systems into the vLLM serving framework
and evaluate them under identical settings. More details can be found in the Appendix A.

4.2 ACCURACY EVALUATION

Accuracy on diverse task. We first train and evaluate ICaRus alongside conventional fine-tuning
across mathematics, coding, and instruction-tuning tasks using LLaMA-3.1-8B and Qwen3-8B, as
reported in Table 2. The results show that ICaRus achieves accuracy comparable to, or even surpass-
ing, task-specific fine-tuning across all tasks. In particular, for the Qwen3-8B-Base model, ICaRus
outperforms prior task-tuned models by at least 1.4% on benchmark evaluations for both mathemat-
ics and coding tasks. We expect that the superior accuracy of ICaRus stems from a generalization
effect: by fine-tuning only the logical decoder while keeping the logical encoder frozen, ICaRus
reduces the risk of overfitting compared to full task-specific fine-tuning.

Scaling with model size. We also examine the scalability of ICaRus with respect to model size
by conducting experiments on Qwen3-1.7B/8B/14B-Base in Table 3. The results show that ICaRus
consistently achieves higher accuracy compared to prior conventionally fine-tuned baseline, with
improvements exceeding 2% on Qwen3-14B-Base, demonstrating that our method remains compet-
itive as model capacity increases. Additionally, we verify the robustness of ICaRus across tasks and
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Table 3: Comparison of conventional fine-tuning and ICaRus across different model sizes (Qwen3-
1.7B/8B/14B-Base) trained on the MetaMathQA-40K dataset.

Model Qwen3-1.7B-Base Qwen3-8B-Base Qwen3-14B-Base

Method Baseline ICaRus Baseline ICaRus Baseline ICaRus

GSM8K 73.2 74.0 85.4 87.3 85.6 88.8
GSM+ 53.7 54.1 66.1 67.5 66.7 68.8

its scalability to larger model sizes by evaluating Qwen3-32B on tool-calling tasks, as described in
Appendix D.

Table 4: Comparison of conventional methods and ICaRus in multi-model inference scenarios. Base
Model denotes the LLaMA-3.1-8B-Base model without fine-tuning, while Math, Coding, and IF
denote models fine-tuned on MetaMathQA-40K, Evol-Instruct-Code, and OASST1, respectively.
Multi Model and ICaRus both consist of these three task-specific models; in ICaRus, however, only
the logical decoders are fine-tuned while the logical encoder is shared across models.

# Model Method KV
Sharing

Math Coding Knowledge Avg.
GSM8K GSM-Plus HEval HEval+ GPQA

1

Base Model . 25.9 18.0 36.6 29.9 16.7 25.4
Math Model . 69.7 48.5 42.7 36.6 20.7 43.6

Coding Model . 22.8 17.5 48.2 41.5 21.7 30.3
IF Model . 24.5 16.5 44.5 39.0 27.2 30.3

3 Multi Model X 69.7 48.5 48.2 41.5 27.2 47.0
ICaRus (Ours) O 67.9 45.8 48.2 43.9 28.8 46.9

Multi domain orchestration results. Table 4 compares ICaRus orchestration with diverse single
and multi model configurations using LLaMA-3.1-8B. Each task-tuned model is fine-tuned on a
single domain-specific dataset (MetaMathQA for mathematics, Evol-Instruct-Code-80K for coding,
and OASST1 for instruction-tuning). The results show that while a single task-specific fine-tuned
model achieves high accuracy on its target task, the model suffers from significant performance
degradation on other tasks. In contrast, a multi model system composed of multiple task-specific
fine-tuned models achieves consistently high accuracy across all tasks. Our ICaRus also attains
accuracy comparable to such multi model system, while additionally benefiting from KV cache
sharing across agents, which enables orchestration at substantially lower computational cost.

4.3 PERFORMANCE IN MULTI MODEL INFERENCE

(a) P95 latency across QPS (b) Throughput across QPS

Figure 4: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow. Here, N denotes the number
of LoRA modules, which are integrated into multi model system built using either the conventional
approach or ICaRus.
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Figure 5: Comparison of P95 latency and maximum throughput across QPS for LLaMA3.1-8B and
Qwen-3-14B Base under ReAct and Reflexion workflows.

P95 latency and throughput across QPS. ICaRus consistently outperforms a baseline multi
model system across all load levels in both latency and throughput, as evaluated on LLaMA-3.1-
8B under the ReAct workflow (Fig. 4). We measure performance as the number of queries per
second (QPS) increases; latency is reported at the 95th percentile (P95).

A key advantage of ICaRus is its ability to reuse identical prefix caches across models, avoiding
the redundant recomputation required in baseline system where each model reconstructs its own
cache. For example, at QPS 0.3 with 4 models, ICaRus reduces P95 latency by 5.1× compared to
the baseline, and this benefit becomes more pronounced as the number of models increases.

As the QPS increases, the cumulative KV cache size of baseline system soon exceeds GPU memory
capacity, triggering eviction of previously stored KV caches and their subsequent recomputation.
Consequently, throughput first plateaus and then declines, with the degradation occurring earlier as
the number of models increases (e.g., at 0.6 QPS for two models and 0.3 QPS for four models;
Fig. 4(b). In contrast, ICaRus avoids redundant cache growth through cross-model KV sharing,
allowing throughput to continue increasing even as baseline system plateau and decline.

Consequently, when comparing maximum achievable throughput, ICaRus outperforms the baseline
by 1.4×, 2.3×, and 3.8× with 2, 4, and 8 models, respectively. At the QPS where baseline system
reach their peak throughput, ICaRus also achieves substantially lower P95 latency-3.8×, 5.1×, and
11.1× for 2, 4, and 8 models, respectively. Furthermore, we confirm that ICaRus continues to
achieve lower latency and higher throughput than the baseline even in scenarios where evicted KV
cache entries are managed by swapping rather than recomputation, as detailed in Appendix E.

Performance under diverse workflows or models. We further evaluate baseline system and
ICaRus system across different models (LLaMA-3.1-8B and Qwen3-14B-Base) and multi agent
workflows (ReAct and Reflexion). Specifically, we measure P95 latency over varying QPS and the
maximum throughput achieved at the optimal QPS setting, as summarized in Fig. 5.

ICaRus prevents KV cache explosion and enables cross-model prefix caching, thereby achieving
lower P95 latency and higher throughput in multi agent workflows. These gains persist even for
larger models like Qwen3-14B, where ICaRus achieves up to 7.4× lower latency and 3.6× higher
throughput compared to the baseline. Additionally, we verify that the advantages of ICaRus are
preserved even under more realistic agentic patterns, where agents are invoked in a random order
and the workload is skewed across agents, as demonstrated in Appendix F.
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5 RELATED WORK

Multi model Inference Leveraging multiple models has been widely explored as a way to improve
performance over a single model. Routing methods either select the most appropriate model or use
multiple models in a cascade (Chen et al., 2024; Shnitzer et al., 2024), while ensemble approaches
combine the outputs of multiple models, either at the token level (Yu et al., 2024; Huang et al., 2024)
or at the reasoning step level (Park et al., 2025). Multi model approaches have also been applied
in multi agent systems, where interactions among agents have been shown to enhance performance
across diverse tasks (Fu et al., 2023; Sun et al., 2024; Du et al., 2024). In these systems, each agent
used either a base model or fine-tuned variants obtained with methods such as LoRA or instruction
tuning (Mineiro, 2024; Liu et al., 2025b).

KV Cache Optimization KV cache stores the keys and values of previous tokens to avoid redun-
dant recomputation during autoregressive generation and is traditionally used on a per-request basis
(Vaswani et al., 2017). Prefix caching techniques extend the lifetime of the KV cache beyond a
single request, enabling multiple turns or related requests to share the same cache (Gao et al., 2024;
Gim et al., 2024). However, prefix caching alone cannot address the challenge of deploying multiple
models, as KV caches cannot be shared across different models even for identical prompts, and each
model generates a distinct KV cache. DroidSpeak (Liu et al., 2025b) addresses this issue by reusing
the KV cache of a shared foundational model for non-sensitive layers, while selectively recomputing
only the sensitive layers in each agent model. This approach requires identifying sensitive layers that
must be recomputed by the agent model, thereby affecting subsequent layers. On a different axis,
KVFlow (Pan et al., 2025) manages KV caches by evicting and prefetching based on predetermined
agentic workflows instead of an LRU policy, but it remains a single model approach with agents
defined by prompts.

6 CONCLUSION

In this work, we presented ICaRus, a KV cache-sharing architecture for multi model inference.
ICaRus addresses the memory inefficiency of conventional system by enabling cross-model KV
cache reuse, while maintaining accuracy through fine-tuning. Experiments across mathematics,
coding, and instruction-following tasks confirm that ICaRus delivers accuracy on par with task-
specific fine-tuned models, yet achieves significantly lower latency and higher throughput in multi
agent workflows. Taken together, these results establish ICaRus as a principled approach for scalable
and efficient multi model inference. Looking ahead, we expect ICaRus to extend to large-scale
models, heterogeneous agent systems, and real-world deployment scenarios where scalability and
efficiency are increasingly critical.

REPRODUCIBILITY STATEMENT

We formulated the concept of the logical encoder and decoder in detail, which forms the foundation
of the ICaRus algorithm, in Section 3.1. Furthermore, we provided a rigorous mathematical formu-
lation of ICaRus, along with its training procedure and convergence of the loss curve, in Section
3.2. The inference process of ICaRus and the corresponding optimization strategies are described in
Section 3.3, with pseudocode provided in Appendix B. Finally, the detailed experimental setup for
both training and inference is presented in Section 4.1 and Appendix A.
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APPENDICES

A EXPERIMENTAL SETUP

A.1 TRAINING SETUP

All experiments were conducted on a single node with 8xNVIDIA A100 GPUs (80GB each). Each
GPU processed a micro-batch of size 1, and we applied gradient accumulation over 16 steps, result-
ing in an effective batch size of 128 examples across all devices. This corresponds to approximately
131k tokens per optimization step when the maximum sequence length was 1024, and 262k tokens
when it was 2048.

We trained on three datasets: MetaMathQA (40k sampled examples), Evol-Instruct (80k full set),
and OASST1 (10k sampled examples). The maximum sequence length was set to 2048 for Evol-
Instruct and 1024 for the others. The number of training epochs was 1 for MetaMathQA and Evol-
Instruct, and 3 for OASST1.

Optimization was performed using the AdamW optimizer with default hyperparameters (β1=0.9,
β2=0.999) and a weight decay of 0.01. We used a cosine learning rate decay schedule with a warmup
ratio of 0.03, and performed a grid search over learning rates {1× 10−4, 2× 10−4, 5× 10−4}. No
additional regularization techniques (e.g., dropout or gradient clipping) were applied.

For all experiments, we applied low-rank adaptation (LoRA) with a rank of 128 and an α of 256.

A.2 MULTI MODEL INFERENCE SETUP

A.2.1 AGENT WORKFLOW SELECTION AND DESIGN

We designed our experimental setup to evaluate the scalability and performance characteristics of
multi model AI agent systems under realistic workload conditions. For this study, we selected two
representative agent workflows that exemplify different reasoning patterns commonly deployed in
production environments:

ReAct (Yao et al., 2023): This framework synergizes chain-of-thought reasoning with external
tool use through an iterative process where agents generate reasoning traces and task-specific ac-
tions in an interleaved manner. In the ReAct paradigm, agents alternate between internal reason-
ing (thoughts) and external actions (tool calls), with each iteration consisting of a thought-action-
observation cycle. This pattern is particularly effective for tasks requiring dynamic interaction with
external knowledge bases and APIs.

Reflexion (Shinn et al., 2023): This framework reinforces language agents through linguistic feed-
back, maintaining reflective text in an episodic memory buffer to improve decision-making across
multiple trials. Unlike ReAct, Reflexion adds self-evaluation capabilities where agents generate ver-
bal reinforcement cues to assist in self-improvement, storing these experiences in long-term memory
for rapid adaptation. This approach enables agents to learn from past mistakes without requiring
model fine-tuning, achieving superior performance on complex reasoning tasks.

A.2.2 MULTI MODEL ARCHITECTURE WITH LORA ADAPTERS

To simulate realistic multi-tenant agent deployments, we implemented a multi model inference setup
where each agent instance operates with its own Low-Rank Adaptation (LoRA) adapter. This con-
figuration mirrors production scenarios where different agents may require specialized model be-
haviors or domain-specific fine-tuning. Specifically, we matched the number of concurrent agents
to the number of LoRA adapters, ensuring that each agent maintains its own parameter space.

In evaluation, multiple task-specific LoRA adapters share the same base model on a single GPU.
Under this setup, both the baseline multi-LoRA system and ICaRus already leverage the standard
prefix/KV-aware mechanisms of the serving stack: requests routed to the same LoRA module reuse
the existing KV cache for identical prefixes whenever possible, thereby sharing KV-cache memory
and avoiding redundant prefill recomputation within each model.

This architectural choice has significant implications for system resources:
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1. Memory Overhead: Each agent maintains its own KV cache throughout multi-turn inter-
actions. With N concurrent agents, the memory requirement scales by a factor of N , as
each agent’s context must be preserved independently across conversation turns.

2. Computational Load: Multi-turn agent requests generate new computational burdens at
each interaction step. As agents progress through reasoning chains (ReAct) or reflection
cycles (Reflexion), each turn requires fresh attention computations over the accumulated
context, leading to quadratic scaling in computational complexity.

A.2.3 WORKLOAD CHARACTERIZATION

For workload modeling, we based our input/output distributions and tool-calling patterns on empir-
ical measurements from Kim et al. (2025), which provides comprehensive statistics on real-world
agent workflow characteristics. These patterns informed our synthetic workload generation, ensur-
ing our experiments reflect actual deployment scenarios.

A.2.4 EXPERIMENTAL PARAMETERS

We conducted systematic scaling experiments with the following configuration:

Agent Scaling: We evaluated system behavior with 2, 4, and 8 concurrent agents to understand how
resource contention and memory pressure evolve with increasing agent density.

Request Rate (QPS):

• For Qwen2.5 14B: Tested at 0.1, 0.2, 0.3, and 0.4 QPS

• For Llama 3.1 8B: Tested at 0.2, 0.4, 0.6, and 0.8 QPS

The different QPS ranges reflect the computational differences between model sizes, with the smaller
8B model capable of sustaining higher request rates.

Throughput Measurement: We measured actual system throughput at the 0.8 QPS configuration
to empirically determine system saturation points under peak load conditions.

Batch Size and Latency Dynamics: To understand latency behavior under constrained conditions,
we fixed the total request count at 128 while varying QPS. This experimental design differs from
unbounded request streams where continuously arriving requests would cause monotonically in-
creasing batch sizes and consequently unbounded growth in 95th percentile latency. Under our
fixed-request protocol, we observed that 95th percentile latency initially increases with QPS but
eventually saturates at a plateau, indicating the system reaches a steady-state where all requests are
being processed within the available compute budget.

This saturation behavior provides critical insights into:

• The maximum sustainable batch size for each agent configuration

• The point at which additional request rate increases no longer impact tail latency

• The effective capacity limits of multi agent systems under resource constraints

A.2.5 RATIONALE AND IMPLICATIONS

Our experimental design captures several critical aspects of production multi agent systems:

1. Resource Isolation: By assigning separate LoRA adapters to each agent, we model sce-
narios where agents require distinct specializations (e.g., different domains, languages, or
task-specific fine-tuning).

2. Memory Pressure: The multiplicative effect of agent count on KV cache requirements
reflects real-world memory bottlenecks in multi-tenant deployments.

3. Workflow Diversity: The combination of ReAct’s tool-calling patterns and Reflexion’s
self-improvement cycles represents a broad spectrum of agent behavioral patterns, from
reactive tool use to iterative refinement.
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4. Scaling Characteristics: Our range of agent counts (2–8) and QPS values provides in-
sights into both vertical scaling (request rate) and horizontal scaling (agent parallelism)
dimensions.

This setup enables us to quantify the trade-offs between agent autonomy, system throughput, and
resource utilization in modern AI agent deployments, providing actionable insights for practitioners
deploying multi agent systems at scale.

B PSEUDO ALGORITHM

B.1 PREFILL PHASE IN ICARUS

Algorithm 1: Prefill Phase (Standard Linear Only)

Input: Prompt tokens P ∈ VN

Output: First token yprefill ∈ V , KV_CACHE[1 . . . L]
1 X1 ← Embed(P ) ∈ RN×d

2 for i = 1 to L do
3 Qi ← Linear(Xi;W

i
q),Ki ← Linear(Xi;W

i
k), Vi ← Linear(Xi;W

i
v)

4 Qi,Ki ∈ RN×dk , Vi ∈ RN×dv

5 /* generate KV cache (w. the Logical Encoder) */
6 KV_CACHE[i]← (Ki, Vi)

7 Ai ← Attention(Qi,Ki, Vi) ∈ RN×dv

8 Xi+1 ← FFN(AttentionOutput(Ai)) ∈ RN×d

9 yprefill ← Sample(LMHead((XL+1[N ])) // Prefill Result
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B.2 DECODE PHASE IN ICARUS

Algorithm 2: ICaRus Linear

Input: X ∈ R2×T×d // batch=2, seqlen T, hidden size d
1 X[0]: Input for Logical Encoder (Base model)
2 X[1]: Input for Logical Decoder (Base model + Adaptive model)

Output: Y ∈ R2×T×d

3 /* Parallel execution for Base Model and Adaptive Model */
4 Xtemp ← Linear(X)
5 Xtemp[1]← Xtemp[1] + AdaptiveLinear(Xtemp[1])
6 Y ← Xtemp

Algorithm 3: Decode Phase (w. ICaRus Linear)
Input: yprefill ∈ V , KV_CACHE[1 . . . L]

1 KV_CACHE: Prompt KV cache from Logical Encoder (Base Model)
Output: Generated tokens Y = (yN+1, yN+2, . . . , yN+T )

(where N is the prompt length, T is the number of generated tokens)
2 Input_Token← yprefill
3 for t = 1 . . . T do
4 X1 ← Embed(Input_Token) ∈ RN×d

5 /* Stack hidden states for ICaRus Execution */

6 Xpair
1 ← stack_batch(X1, X1) // shape: [2,1,d]

7 for i = 1 to L do
8 /* KV cache from base model for sharing */

9 Kstep
i ← Linear(Xi;W

i
k), V step

i ← Linear(Xi;W
i
v)

10 (Kcache
i , V cache

i )← KV_CACHE[i]

11 Ki ← concat_sequence(Kcache
i ,Kstep

i )

12 Vi ← concat_sequence(V cache
i , V step

i )
13 KV_CACHE[i]← (Ki, Vi)

14 Qpair
i ← ICaRusLinear(Xpair

i ;W i
q , A

i
q) // shape: [2,1,H,d_k]

15 /* Enable attention parallelism via GQA */

16 Qi ← concat_numhead(Qpair
i [0], Qpair

i [1]) // shape: [1,2*H,d_k]
17 Ai ← GQA(Qi, ki, Vi) // shape: [1,2*H,d_v]

18 Apair
i ← transpose_and_reshape(Ai) // shape: [2,1,H,d_v]

19 Zpair
i ← ICaRusLinear(Apair

i ;W i
o, A

i
o) // shape: [2,1,d]

/* FFN: up → act → down (W.ICaRusLinear) */

20 F pair
i ← FFN(Zpair

i ) // shape: [2,1,d]

21 /* use only Adaptive Result */

22 new_token← Sample(LMHead(F pair
L+1[1]))

23 Y ← concat(Y, new_token)
24 Input_Token← new_token
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C LOGICAL ENCODER–DECODER: CONCEPT AND INFERENCE WORKFLOW

Figure 6: Inference workflow of the logical encoder-decoder.

In this section, we provide a more detailed explanation of the logical encoder–decoder concept.
Inference in a decoder-only Transformer can be viewed as consisting of two phases: a prefill phase
and a decode phase.

• Prefill: generate the KV cache for the input prompt.
• Decode: (1) generate the KV cache for the current token, and (2) predict the next token.

Motivated by this behavior, we conceptually decompose the model into a logical encoder and a
logical decoder. The logical encoder denotes the part of the computation that is solely responsible
for producing the KV cache, whereas the logical decoder denotes the part that predicts the next
token during decoding and does not produce any new KV entries: it treats the KV cache as a pre-
computed sequence representation and only issues queries against it to generate tokens. Under this
decomposition, inference can be reinterpreted as follows:

• Prefill: the logical encoder generates the KV cache for the input prompt.
• Decode: (1) the logical encoder generates the KV cache for the current token, and (2) the

logical decoder predicts the next token.

ICaRus fine-tunes only the logical decoder and freeze logical encoder. Specifically, the task-
specialized decoders consume the shared KV cache from the common logical encoder for attention
computation, as shown in Fig. 6, enabling heterogeneous, task-specialized decoders to operate on a
single shared representation without any approximation or recomputation. In other words, ICaRus
models can reuse KV cache entries produced not only in the prefill phase but also in the decode
phase without any updates or reconstruction, because all KV entries are always generated by the
same logical encoder.

D ROBUSTNESS OF ICARUS ON TOOL-CALLING TASKS WITH LARGER
MODELS

To demonstrate the scalability and robustness of ICaRus, We conducted experiments with Qwen3-
32B on the ToolAce dataset (Liu et al., 2025a) for tool calling related task, and evaluated the resulting
models on the BFCL benchmark as shown below.

As shown in Fig. 2, the loss curve of ICaRus converges smoothly and is comparable to that of the
baseline, which is consistent with the behavior observed in Figure 2 of the manuscript for math and
coding tasks with 8B models. This indicates that our training procedure remains stable even when
scaling to larger models and to a different task domain.

Moreover, as reported in Table 5, even with a larger 32B model and the tool calling task, ICaRus
achieves comparable accuracy than a baseline that does not share the KV cache. This suggests that
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Figure 7: Training loss curves of conventional fine-tuning and ICaRus, both applied with LoRA on
Qwen-3-82B, trained on the ToolAce dataset.

Table 5: Comparison of conventional fine-tuning and ICaRus when training Qwen3-32B on the
ToolAce dataset.

Model Method
BFCL Non-live (AST)

Simple Python Simple Java Simple JavaScript

Qwen3-32B Baseline 96.5 62.0 74.0
ICaRus (Ours) 94.5 63.0 76.0

our method is not only trainable and stable, but also robust and effective, both in terms of model
scale and task type.

E ICARUS UNDER SWAP-BASED KV CACHE MANAGEMENT

We conducted experiments with swap enabled (4GB swap space) using an earlier version of vLLM
that supports this feature. The experimental results are reported below.

Figure 8b shows that ICaRus continues to provide lower P95 latency and higher throughput even
when the multi-model system uses swap for KV cache management. In particular, with 8 LoRA
modules, ICaRus achieves up to 12.1× lower P95 latency and 3.8× higher throughput than the base-
line. This is because ICaRus reduces the KV cache footprint itself, so that even at higher QPS the
GPU does not saturate and expensive swap operations are rarely triggered in the first place.

(a) P95 latency across QPS (b) Throughput across QPS

Figure 8: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow with swap-based KV cache
management. Here, N denotes the number of LoRA modules, which are integrated into multi model
system built using either the conventional approach or ICaRus.
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In summary, we emphasize that recompute/swap strategies and ICaRus address orthogonal as-
pects of the problem. Concretely, recompute or swap determine how to manage KV cache once
GPU memory becomes full (e.g., whether to evict and reload from host storage or to recompute),
whereas ICaRus fundamentally reduces KV pressure by enabling cross-model KV sharing across
task-specialized models. By avoiding redundant KV construction across models, ICaRus effectively
delays or mitigates the point at which the KV cache saturates GPU memory, thereby improving
performance regardless of whether the underlying system chooses recompute or swap as its eviction
policy. In principle, ICaRus could also be combined with swap-based KV management.

F PERFORMANCE UNDER RANDOM AND SKEWED AGENTIC PATTERN IN
REAL-WORLD SCENARIOS

We evaluate the scenario in which the controller invokes agents at random with a skewed workload
under ReAct workflow, so that on a typical turn only a subset of agents is active, better reflecting
such real-world scenarios. Specifically, unlike the round-robin invocation pattern in Section 4.3,
we construct a skewed workload in which one agent is invoked with probability 50% on each turn,
while the remaining agents share the rest of the probability mass and are invoked in a random order
rather than a fixed sequence. The experiments are conducted on the vLLM v0 architecture and the
results are reported below.

(a) P95 latency across QPS (b) Throughput across QPS

Figure 9: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow where the agent invocation
pattern is random and skewed. Here, N denotes the number of LoRA modules, which are integrated
into multi model system built using either the conventional approach or ICaRus.

Fig. 9 shows that ICaRus maintains low P95 latency and high throughput under dynamic and skewed
agentic patterns. For example, with 2 models at 0.4 QPS, ICaRus achieves 15× lower P95 latency
and 1.2× higher throughput than the baseline, demonstrating that the core advantage of ICaRus, en-
abling per-model prefix caching on top of cross-model KV sharing, is preserved even under skewed
and random agent invocation patterns. Furthermore, in the baseline, throughput quickly saturates
beyond a certain QPS because rapid growth of the KV cache triggers frequent evictions and recom-
putations. In contrast, ICaRus allows multiple models to share a single KV cache pool, keeping
entries within the available GPU memory budget without eviction so that throughput continues to
increase with QPS without saturation. As a result, in the 8-model setting, ICaRus achieves up to
3.5× higher throughput than the baseline under skewed and dynamic agent invocation patterns.
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