
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ICARUS: IDENTICAL CACHE REUSE FOR EFFICIENT
MULTI MODEL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi model inference, where multiple task-specialized models collaborate to
solve complex real-world problems, has recently emerged as a prominent
paradigm, particularly in the development of agentic AI systems. However, in
such scenarios, each model must maintain its own Key-Value (KV) cache for
the identical prompt, leading to substantial memory consumption. This explo-
sive growth of KV caches forces LLM serving systems to evict previously stored
caches, which in turn introduces significant recomputation overhead whenever the
evicted caches are required again. Moreover, prefix caching is inherently infea-
sible across different models, forcing each model to recompute KV cache for the
identical prompt, which leads to signficant overhead. To alleviate these issues,
we propose Identical Cache Reuse (ICaRus), a novel architecture that allows
multiple models to share identical KV caches across all layers. ICaRus is based
on the key observation that a decoder-only Transformer can be conceptually de-
composed into a logical encoder, which generates KV caches, and a logical de-
coder, which predicts output tokens from the KV caches. ICaRus fine-tunes only
the logical decoder while freezing the logical encoder, enabling multiple mod-
els to share an identical KV cache. This eliminates cache memory explosion
and unexpected evictions while also allowing cross-model reuse of KV caches
for new input tokens, thereby removing redundant recomputation in multi model
inference achieving both efficiency and scalability. Moreover, by incorporating
lightweight adapters such as LoRA, ICaRus parallelizes KV cache generation and
next-token prediction during decoding. ICaRus achieves comparable accuracy to
task-specific fine-tuned model across a diverse set of tasks, while allowing mul-
tiple specialized models to fully share KV caches. ICaRus achieves up to 11.1×
lower P95 latency and 3.8× higher throughput in agentic workflow with 8 differ-
ent models, compared to conventional multi model system.

1 INTRODUCTION

Large Language Models (LLMs) have shown strong performance across domains (Zhao et al., 2024;
Dubey et al., 2024; Comanici et al., 2025; Yang et al., 2025); however, a single model struggles with
complex tasks that demand multi step reasoning and domain-specific expertise (Tang et al., 2020;
Yao et al., 2023; Sun et al., 2024). Recently, the emerging paradigm of multi model inference
addresses this limitation by orchestrating task-specialized models, achieving higher accuracy and
problem-solving ability than a general-purpose model (Fu et al., 2023; Du et al., 2024; Shen et al.,
2024; Subramaniam et al., 2025). However, this paradigm introduces severe challenges in managing
the Key-Value (KV) cache: each model maintains its own cache even for identical prefixes, causing
memory consumption to grow rapidly with the number of models. Once GPU memory is saturated
by KV cache, serving systems (Kwon et al., 2023; Zheng et al., 2024) must evict caches, which
triggers redundant recomputation and significantly degrades throughput. Furthermore, because KV
caches are model-specific, prefix caching (Kwon et al., 2023; Zheng et al., 2024) cannot be applied
across different models, which forces identical prompts to rebuild KV caches independently and
thereby increases latency.

Previous KV cache optimization techniques, such as pruning (Zhang et al., 2023), quantization
(Hooper et al., 2024; Yang et al., 2024), and inter-layer sharing (Qiao et al., 2024), reduce cache
size while minimizing accuracy degradation. Unlike traditional LRU-based prefix caching, KVFlow

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) KV Cache management strategies
in agent workflow using multi model

Multi ModelSingle
Model ICaRus (Ours)Conventional

Fine-tuning
(only logical Decoder)

Fine-tuningPromptingTraining Method

StrongStrongWeakTask Performance
SupportedUnsupportedInherentKV Sharing

LowHighLowKV Memory Usage

LowHighLow# Prefill
Recomputation

(b) Comparison of ICaRus and conventional approaches

Ti
m

e

Agent B
(ex. Executor)

Agent C
(ex. Summarizer)

Agent A
(ex. Planner)

Conventional Approach

Recompute

Recompute

a1 a2Prompt

a1 a2 a3Prompt

a1Prompt

KV CacheWorkflow

ICaRus

Prefix
caching

Prefix
caching

KV load

KV load

a2

a3

a1Prompt

KV Cache

Figure 1: Comparison of KV cache management strategies and effectiveness in multi model scenar-
ios between conventional approaches and ICaRus.

(Pan et al., 2025) schedules KV cache eviction and prefetching based on anticipated agent work-
flow, reducing recomputation overhead. However, these methods focus only on single model cache
management, leaving unresolved the challenges of cache explosion and the lack of KV cache shar-
ing of prefix in multi model settings. DroidSpeak (Liu et al., 2024b) addressed multi model KV
cache management by sharing non-sensitive layer caches between a base model and its fine-tuned
variants, thereby reducing recomputation cost. However, this approach has inherent limitations, as
caches from sensitive layers remain unshared and must still be recomputed.

To address these issues, we propose Identical Cache Reuse (ICaRus), a novel architecture that en-
ables multiple models to share and reuse the same KV cache across all layers. The core idea of
ICaRus originates from conceptually decomposing a decoder-only Transformer into two parts: a
logical encoder, which is responsible for generating KV cache, and a logical decoder, which pre-
dicts the next token from the cache. We freeze the logical encoder of pretrained LLM (i.e. base
model) and fine-tune only the logical decoder. Since all specialized models share the identical log-
ical encoder, the KV cache generated for an identical prompt is likewise identical, enabling direct
sharing without redundant memory usage as shown in Fig. 1(a). This prevents GPU memory from
rapidly saturating due to KV cache growth, avoiding costly recomputation caused by cache eviction.
Moreover, shared KV caches enable prefix caching across models, eliminating redundant compu-
tation for identical prompts and further improving efficiency as depicted in Fig. 1(b). In addition,
ICaRus leverages the adapter architecture to generate the KV cache for the next step in parallel
with the next-token computation during the decode phase. We evaluate ICaRus across diverse tasks
including mathematics, coding, and knowledge understanding on a wide range of model families
and scales (LLaMA-3.1-8B, Qwen3-1.7B/8B/14B). The results demonstrate that ICaRus achieves
accuracy comparable to task-specific fine-tuned models, even though ICaRus-tuned models are able
to share KV caches across tasks. Furthermore, when integrated into the vLLM serving system and
evaluated in various multi agent scenarios including ReAct (Yao et al., 2023) and Reflexion (Shinn
et al., 2023), ICaRus delivers as much as a 11.1× reduction in 95th-percentile (P95) latency and a
3.8× throughput gain compared to conventional multi model system.

In summary, the main contributions of this work are as follows:

• We propose ICaRus, the first architecture that enables multiple decoder-only Transformers
to fully share KV caches, guaranteeing high generation quality in real serving scenarios by
explicitly modeling the fully shared-KV setting already at training time.

• We demonstrate that ICaRus achieves accuracy comparable to task-specific fine-tuning
across diverse tasks (mathematics, coding, and knowledge understanding) and model ar-
chitectures (LLaMA-3.1-8B, Qwen3-1.7B/8B/14B).

• We confirm that ICaRus significantly improves efficiency in multi agent workflows, achiev-
ing up to 11.1× reduction in P95 latency and 3.8× improvement in throughput compared
to conventional multi model system.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND & MOTIVATION

Key-Value Cache in LLM Serving Systems. During autoregressive inference, decoder-only
Transformers generate tokens sequentially, where each new token depends on all previously gener-
ated tokens. Computing self-attention naïvely for every step requires recomputation over the entire
sequence, incurring a per-token complexity of O(n2) where n is the sequence length. To avoid this
quadratic overhead, modern LLM serving systems cache the key and value representations of previ-
ously processed tokens (Vaswani et al., 2017). By reusing these cached states, each new decoding
step only attends to the most recent token, reducing the per-token attention complexity to O(n) and
thereby significantly lowering computational cost. However, the size of KV caches grows linearly
with both sequence length and model depth, imposing substantial memory pressure on GPU-based
serving systems (Kwon et al., 2023; Zheng et al., 2024). Consequently, memory-efficient cache
management has emerged as a critical challenge for scalable LLM deployment.

Prefix Caching in LLM Serving Systems. Prefix caching is a widely adopted optimization that
reuses the KV cache corresponding to a fixed prefix across multiple queries sharing the same initial
context (Kwon et al., 2023; Zheng et al., 2024). This technique is particularly effective in scenarios
such as retrieval-augmented generation (RAG) (Lewis et al., 2020) and instruction-tuned applica-
tions (Chung et al., 2024; Ouyang et al., 2022), where prompts often contain long but invariant
components like system prompts, task-specific templates, or retrieved documents. By reusing the
cached key-value states of these repeated prefixes, serving systems can avoid redundant computation
during the prefill phase, effectively reducing the computational complexity from O(n2) to O(mn),
where n denotes the sequence length and m denotes the variable suffix length with m≪ n, thereby
improving both throughput and latency. Moreover, prefix caching is highly beneficial in multi-turn
conversational settings, where a large dialogue history is preserved across turns and only the most
recent user utterance changes; by caching the KV states of the shared history and computing atten-
tion only for newly appended tokens, serving systems can efficiently support interactive dialogues
without recomputing the entire context at every turn (Kim et al., 2025).

Agentic AI Workflow and Multi Model Inference. Agentic AI and workflow-based reasoning
have given rise to complex pipelines in which models are orchestrated to perform specialized roles.
For instance, ReAct (Yao et al., 2023) alternates between Thought→ Act→ Observation, Reflexion
(Shinn et al., 2023) incorporates self-evaluation loops, LATS (Zhou et al., 2024) explores reasoning
through parallel branch expansion, and LLMCompiler (Kim et al., 2024) constructs a DAG to sched-
ule overlapping tool and model calls. When executed within a single model, such workflows can
leverage prefix caching to avoid redundant computation, thereby reducing effective memory usage,
lowering P95 latency, and improving throughput (Kim et al., 2025). However, in multi model set-
tings where task-specialized models collaborate within a single pipeline, each model must maintain
its own KV cache even for identical prefixes. Such KV cache duplication leads to memory usage
that grows linearly with the number of active models; once GPU capacity is saturated, this growth
inevitably triggers cache eviction, which in turn forces recomputation of evicted prefixes. More-
over, since prefix caching typically operates only within individual models, identical prefixes must
be recomputed separately across models, leading to redundant prefill computation that inflates both
latency and energy consumption. These limitations underscore the need for new architectures that
support cross-model KV sharing and prefill de-duplication in multi model inference.

3 DESIGN OF ICARUS

3.1 DECODER-ONLY TRANSFORMER AS LOGICAL ENCODER AND DECODER

We first present a mathematical formulation of the decoder-only Transformer, which predicts the
next token conditioned on the current token context. Specifically, we abstract xi, ki, and vi as the
i-th token, its key representation, and its value representation, respectively, and denote the decoder-
only Transformer by F . In this case, the next-token generation from the current token context in
a decoder-only Transformer can be expressed as xi+1 = F (x1, x2, . . . , xi). To generate the next
token xi+1, the model requires two types of information: the current token xi and the accumulated
key–value pairs. We denote the key set and value set up to step i as K1:i = {k1, k2, . . . , ki}, V1:i =
{v1, v2, . . . , vi}. More concretely, in the attention operation, the query derived from xi is generated

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

anew at each step, whereas the keys and values are continuously appended to the cache and reused
across subsequent decoding steps. In other words, the query does not persist beyond its step, but the
KV pairs accumulate and form the long-term memory. This dependency can be expressed as

xi+1 = F (x1, x2, . . . , xi) = F
(
xi, K1:i, V1:i

)
. (1)

Eq.1 indicates that a decoder-only Transformer predicts the next token conditioned on the current
token xi and the KV cache constructed up to this point. More generally, the generation process
can be decomposed into two conceptual stages: (1) constructing the key set Ki and the value set Vi

from the input sequence x1:i = {x1, x2 . . . , xi}, and (2) decoding the next token xi+1 based on the
current token xi together with the accumulated sets (Ki, Vi). Formally, this can be expressed as

K1:i, V1:i = E(x1:i), (2)

xi+1 = D
(
xi, K1:i, V1:i

)
, (3)

where E denotes the logical encoder that transforms the input sequence into its key and value rep-
resentations, thereby constructing the KV cache, and D denotes the logical decoder that consumes
the current token and the KV set to generate the next token. Importantly, a decoder-only Trans-
former can be interpreted as the special case where the parameters of the logical encoder and logical
decoder are identical. More detailed concept of logical encoder-decoder architecture is depicted in
Appendix C.

3.2 ICARUS: IDENTICAL CACHE REUSE ACROSS LLMS

As described in Section 3.1, a decoder-only model can be decomposed into a logical encoder, which
generates key–value pairs from a given token, and a logical decoder, which predicts the next token
using the current token and the accumulated KV cache, as shown in Eqs. 2–3. From this perspective,
task-specific fine-tuning can be viewed as jointly training both the logical encoder and the logical
decoder to specialize in a given task. While such task-tuned models achieve strong task-specific
capabilities, each maintains its own logical encoder thereby preventing KV cache sharing even when
prompts are identical across models.

Building on this insight, we propose the ICaRus architecture which fine-tunes only the logical de-
coder of a decoder-only Transformer as below.

K1:i, V1:i = Et(x1:i) = E(x1:i), (4)

xt
i+1 = Dt

(
xi, K1:i, V1:i

)
, (5)

Here, t and Dt denote a specific task and the logical decoder fine-tuned for that task, respectively.
Specifically, the logical encoder (E) and the logical decoder (D) are initialized with the parameters
of the base model, a pretrained decoder-only Transformer. The task-specific logical decoder Dt in

0 50 100 150 200 250 300
Training Steps

0.4

0.6

0.8

1.0

Lo
ss

MetaMathQA-40k
Conventional Fine-Tuning
ICaRus

0 100 200 300 400 500 600
Training Steps

0.4

0.5

0.6

0.7

0.8 Evol-Instruct-Code-80k
Conventional Fine-Tuning
ICaRus

Figure 2: Training loss curves of conventional fine-tuning and ICaRus, both applied with LoRA on
LLaMA-3.1-8B, trained on the MetaMathQA-40k and Evol-Instruct-Code-80k dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Eq. 5 is then trained, starting from the base decoder D, to predict the next token xi+1 under two
objectives: (1) specializing in the target task, and (2) leveraging the KV cache generated by the
frozen logical encoder in Eq. 4. As a result, multiple task-specific logical decoders (e.g., Dmath,
Dcoding, Dreasoning) can share a single logical encoder (i.e., Emath ≡ Ecoding ≡ Ereasoning ≡ E), which
is identical to the base model, thereby enabling all models to reuse the identical KV cache generated
by the shared encoder, as illustrated in Fig. 1.

During training, the input data are duplicated and provided to both the logical encoder and the logical
decoder. The logical encoder generates the corresponding key–value representations, while the log-
ical decoder computes attention over these representations with its final output used to compute the
training loss for gradient updates. The logical encoder is kept frozen during training to ensure cache
sharing across tasks. This training procedure, which explicitly accounts for KV cache sharing, helps
ensure robustness when KV caches are shared at inference time in real serving scenarios, especially
compared with approaches that attempt to share KV caches across models trained independently
without considering KV cache sharing.

Figure 2 shows the training loss of LLaMA-3.1-8B on MetaMathQA-40k (Yu et al., 2023) and
Evol-Instruct-80k (Roshdieh, 2023). The ICaRus curves almost perfectly overlap with those of
conventional task-specific fine-tuning, indicating that restricting learning to the logical decoder does
not hinder optimization and is sufficient for task-specific adaptation even when the logical encoder
is shared across models. In other words, freezing the logical encoder forces all task-specialized
models to reuse a common sequence representation and express their differences only through the
decoder, which can be interpreted as a form of implicit regularization.

The core idea of ICaRus is to factorize a decoder-only Transformer into a logical encoder and a log-
ical decoder, and to train only the logical decoder so that KV caches can be shared across different
models. Consequently, the specific adaptation method used to train the logical decoder is not essen-
tial to ICaRus itself: in principle, it could be trained via full-parameter fine-tuning, prompt tuning
(Lester et al., 2021), LoRA (Hu et al., 2022) or variants (Liu et al., 2024a; Jiang et al., 2024; Woo
et al., 2025) thereof. We adopt LoRA to train the logical decoder because LoRA offers high training
efficiency, which enables rapid deployment of new agents in multi-agent systems, while achiev-
ing performance comparable to full-parameter fine-tuning (Schulman & Lab, 2025) and making it
straightforward to optimize the decoding phase in ICaRus for inference efficiency. In the following
section, we describe how we integrate LoRA into ICaRus and how this design further optimizes the
overall inference cost.

3.3 OPTIMIZING ICARUS FOR MULTI MODEL INFERENCE

In Section 3.2, we introduced the concept and training methodology of ICaRus. In this section, we
explain how ICaRus operates in multi model inference scenarios and discuss its key optimization
strategies. During the prefill phase, ICaRus uses only the logical encoder, which encodes the in-
put prompt into a KV cache and produces the next token. In the subsequent decode phase, ICaRus
duplicates the current token (xi) and performs two operations: (1) encoding xi into a key–value
pair (ki, vi) through the logical encoder, and (2) predicting the task-specific output token (xi+1)
through the logical decoder by using the duplicated xi together with the accumulated KV cache
({k1, . . . , ki}, {v1, . . . , vi}), as in Eq. 5. Consequently, regardless of which model performs decod-
ing, the KV cache is always generated by the logical encoder, and other role-specific decoders can
directly reuse this shared KV cache without any need to recompute or further update it. The details
can be found in Appendix C

Sequential execution of the logical encoder and decoder may incur up to 2× latency overhead com-
pared to a single model execution, since both weights and KV caches are accessed twice. To mitigate
the problem, we insert and fine-tune only lightweight adapters within the logical decoder instead of
fully fine-tuning the decoder. Consequently, the logical encoder and logical decoder share most pa-
rameters except for the adapters, enabling the shared parameters to be loaded only once and allowing
the computations of the two modules to be executed in parallel as depicted in Fig. 3.

In addition, because both models attend to the identical KV cache generated by the base model, we
optimize attention computation by concatenating the query representations of the logical encoder
and decoder along the head dimension (Fig. 3). This enables parallel attention computation without
redundant KV cache reads. Consequently, although the decoding phase of ICaRus appears to dou-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

: adapter

prefill output
using base model

ICaRus flies to

𝑊! 𝑊"

GQA

the

𝑊#

Attention

FFN

𝑊$

𝑊%&'(

𝑊)*

X N

(b) Decode Phase(a) Prefill Phase

𝑊! 𝑊"

GQA

the

moonsky

𝑊#

duplicate

Attention

FFN

not used

thethe

fine-tuned output
using base model KV cache!

𝑊$

𝑊%&'(

𝑊)*

X N

: Linear layer

: matmul

+ +
𝑄 𝐾 𝑉

: Loaded KV

:Computed KV
𝑄 𝐾 𝑉

not used

not used

not used

not used

Figure 3: Overview of the ICaRus architecture. The base model, a pretrained decoder-only Trans-
former, serves as the logical encoder, while the adapter-tuned model (consisting of the base model
and a tunable adapter) serves as the logical decoder. The blue and orange lines indicate computations
performed by the base model and the adapter-tuned model, respectively. The purple square denotes
that the same base model generates the KV cache during both the prefill and decoding phases. Con-
sequently, different ICaRus models that share this base model as their logical encoder can reuse KV
caches, even when the KV caches were created during the decoding phase by a different ICaRus
model.

Table 1: Space and time complexity comparisons between single model and multi model scenarios.

Scenario Method

Space Complexity Time Complexity

Total Prefill
Decode (per token)

Memory Access Compute

Single Model — O(M + Lt) O(MLt + L2
t) O(M + Lt) O(M + Lt)

Multi Model
BaseLine O(M +NLt) O(N(MLt + L2

t)) O(M +Lt) O(M +Lt)
ICaRus O(M +Lt) O(MLt +L2

t) O(M +Lt) O(2M + 2Lt)

ble the computational workload by running both the logical encoder and decoder, the system adds
only negligible latency overhead. This is because parallel execution generates memory traffic (base
parameters, KV caches, and lightweight adapter weights) that is almost the same as that of a single
model. The detailed algorithm can be found in Appendix B,

To validate the effectiveness of ICaRus, we further analyze the time and space complexity of multi
model system built with the conventional approach (baseline) and with ICaRus, using N adapters
in multi agent scenarios. Table 1 summarizes the results. We denote the input prompt length as
Li, the number of interaction turns per adapter as t, and the number of output tokens per turn as
Lo, with the total sequence length Lt = Li + tLo. The base model size is represented by M . In
the baseline, each model independently allocates KV memory and recomputes prefill for the same
prompt, yielding space complexity O(M + NLt) and prefill complexity O(N(MLt + L2

t)). In
contrast, ICaRus shares a single KV cache across models, reducing both to single model order, with
space O(M + Lt) and prefill O(MLt + L2

t). The advantage grows with longer sequences from
inter-model communication and with larger agent counts N .

During decoding, the baseline requires O(M + Lt) memory access and computation per token be-
cause each adapter-tuned model reads the model weights and its own KV cache. ICaRus computes
both the logical encoder and decoder (O(2M + 2Lt)) but parallelizes most of the computation so
that the model and KV cache are read only once, restoring O(M + Lt). In multi-model, long-
context, many-turn settings where decoding is memory-bound, memory access dominates; accord-
ingly, ICaRus achieves decoding latency comparable to the baseline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of conventional methods and ICaRus on diverse datasets. Single Model de-
notes the base model without fine tuning. Multi Model consists of three independently fine tuned
models: one on MetaMathQA-40K, one on Evol-Instruct-Code, and one on Oasst1. ICaRus uses the
same three specializations, but trains only task-specific logical decoders on a shared logical encoder,
enabling KV cache sharing across models.

Model Method KV
Sharing

Math Coding Knowledge

GSM8K GSM+ HEval HEval+ GPQA

LLaMA3.1-8B
Single Model . 25.9 18.0 36.6 29.9 16.7
Multi Model X 69.7 48.5 48.2 41.5 27.3

ICaRus (Ours) O 67.9 45.8 48.2 43.9 28.8

Qwen3-8B-Base
Single Model . 11.8 12.5 68.3 61.6 24.2
Multi Model X 85.4 66.1 81.7 75.6 34.3

ICaRus (Ours) O 87.3 67.5 86.6 79.9 33.8

4 EVALUATION

4.1 EXPERIMENTAL SETUP

We evaluate ICaRus from two perspectives: (1) accuracy and (2) performance in multi model infer-
ence. In section 4.2, we construct multi model systems as follows. Starting from LLaMA-3.1-8B
(Dubey et al., 2024) and Qwen3-1.7B/8B/14B-Base (Yang et al., 2025), we build three task-specific
models per base model by fine-tuning on MetaMathQA-40k for mathematics (Yu et al., 2023), Evol-
Instruct-Code-80k for coding (Roshdieh, 2023), and OASST1 for instruction tuning (Köpf et al.,
2023) using either conventional fine-tuning or ICaRus. These systems are then evaluated on bench-
marks aligned with each task: GSM8K (Cobbe et al., 2021) and GSM-Plus (Li et al., 2024) for
mathematics, HumanEval (Chen et al., 2021) and HumanEval+ (Liu et al., 2023) for coding, and
GPQA-Diamond (Rein et al., 2024) for knowledge understanding, using lm-eval-harness (Biderman
et al., 2024) and EvalPlus (Liu et al., 2023) to measure zero-shot accuracy. For comparison, both
the conventional fine-tuning and ICaRus use LoRA (Hu et al., 2022) as the adaptation method.

For multi model inference (Section 4.3), we measure latency and throughput under representative
agent workflows such as ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2023), and for each
workflow we evaluate configurations with 2, 4, and 8 agents. We adapt these workflows to a multi
model, multi-turn request-routing setup: within a single workflow, successive requests from a multi-
turn interaction are routed in a round-robin manner to different models. In this setting, the baseline
is a conventional multi-LoRA system, whereas ICaRus replaces it with a cache-sharing multi agent
system. To ensure a fair comparison, we integrate both systems into the vLLM serving framework
and evaluate them under identical settings. More details can be found in the Appendix A.

4.2 ACCURACY EVALUATION

Accuracy on diverse task. We first train and evaluate ICaRus alongside conventional fine-tuning
across mathematics, coding, and instruction-tuning tasks using LLaMA-3.1-8B and Qwen3-8B, as
reported in Table 2. The results show that ICaRus achieves accuracy comparable to, or even surpass-
ing, task-specific fine-tuning across all tasks. In particular, for the Qwen3-8B-Base model, ICaRus
outperforms prior task-tuned models by at least 1.4% on benchmark evaluations for both mathemat-
ics and coding tasks. We expect that the superior accuracy of ICaRus stems from a generalization
effect: by fine-tuning only the logical decoder while keeping the logical encoder frozen, ICaRus
reduces the risk of overfitting compared to full task-specific fine-tuning.

Scaling with model size. We also examine the scalability of ICaRus with respect to model size
by conducting experiments on Qwen3-1.7B/8B/14B-Base in Table 3. The results show that ICaRus
consistently achieves higher accuracy compared to prior conventionally fine-tuned baseline, with
improvements exceeding 2% on Qwen3-14B-Base, demonstrating that our method remains compet-
itive as model capacity increases. Additionally, we verify the robustness of ICaRus across tasks and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of conventional fine-tuning and ICaRus across different model sizes (Qwen3-
1.7B/8B/14B-Base) trained on the MetaMathQA-40K dataset.

Model Qwen3-1.7B-Base Qwen3-8B-Base Qwen3-14B-Base

Method Baseline ICaRus Baseline ICaRus Baseline ICaRus

GSM8K 73.2 74.0 85.4 87.3 85.6 88.8
GSM+ 53.7 54.1 66.1 67.5 66.7 68.8

its scalability to larger model sizes by evaluating Qwen3-32B on tool-calling tasks, as described in
Appendix D.

Table 4: Comparison of conventional methods and ICaRus in multi-model inference scenarios. Base
Model denotes the LLaMA-3.1-8B-Base model without fine-tuning, while Math, Coding, and IF
denote models fine-tuned on MetaMathQA-40K, Evol-Instruct-Code, and OASST1, respectively.
Multi Model and ICaRus both consist of these three task-specific models; in ICaRus, however, only
the logical decoders are fine-tuned while the logical encoder is shared across models.

Model Method KV
Sharing

Math Coding Knowledge Avg.
GSM8K GSM-Plus HEval HEval+ GPQA

1

Base Model . 25.9 18.0 36.6 29.9 16.7 25.4
Math Model . 69.7 48.5 42.7 36.6 20.7 43.6

Coding Model . 22.8 17.5 48.2 41.5 21.7 30.3
IF Model . 24.5 16.5 44.5 39.0 27.2 30.3

3 Multi Model X 69.7 48.5 48.2 41.5 27.2 47.0
ICaRus (Ours) O 67.9 45.8 48.2 43.9 28.8 46.9

Multi domain orchestration results. Table 4 compares ICaRus orchestration with diverse single
and multi model configurations using LLaMA-3.1-8B. Each task-tuned model is fine-tuned on a
single domain-specific dataset (MetaMathQA for mathematics, Evol-Instruct-Code-80K for coding,
and OASST1 for instruction-tuning). The results show that while a single task-specific fine-tuned
model achieves high accuracy on its target task, the model suffers from significant performance
degradation on other tasks. In contrast, a multi model system composed of multiple task-specific
fine-tuned models achieves consistently high accuracy across all tasks. Our ICaRus also attains
accuracy comparable to such multi model system, while additionally benefiting from KV cache
sharing across agents, which enables orchestration at substantially lower computational cost.

4.3 PERFORMANCE IN MULTI MODEL INFERENCE

(a) P95 latency across QPS (b) Throughput across QPS

Figure 4: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow. Here, N denotes the number
of LoRA modules, which are integrated into multi model system built using either the conventional
approach or ICaRus.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Comparison of P95 latency and maximum throughput across QPS for LLaMA3.1-8B and
Qwen-3-14B Base under ReAct and Reflexion workflows.

P95 latency and throughput across QPS. ICaRus consistently outperforms a baseline multi
model system across all load levels in both latency and throughput, as evaluated on LLaMA-3.1-
8B under the ReAct workflow (Fig. 4). We measure performance as the number of queries per
second (QPS) increases; latency is reported at the 95th percentile (P95).

A key advantage of ICaRus is its ability to reuse identical prefix caches across models, avoiding
the redundant recomputation required in baseline system where each model reconstructs its own
cache. For example, at QPS 0.3 with 4 models, ICaRus reduces P95 latency by 5.1× compared to
the baseline, and this benefit becomes more pronounced as the number of models increases.

As the QPS increases, the cumulative KV cache size of baseline system soon exceeds GPU memory
capacity, triggering eviction of previously stored KV caches and their subsequent recomputation.
Consequently, throughput first plateaus and then declines, with the degradation occurring earlier as
the number of models increases (e.g., at 0.6 QPS for two models and 0.3 QPS for four models;
Fig. 4(b). In contrast, ICaRus avoids redundant cache growth through cross-model KV sharing,
allowing throughput to continue increasing even as baseline system plateau and decline.

Consequently, when comparing maximum achievable throughput, ICaRus outperforms the baseline
by 1.4×, 2.3×, and 3.8× with 2, 4, and 8 models, respectively. At the QPS where baseline system
reach their peak throughput, ICaRus also achieves substantially lower P95 latency-3.8×, 5.1×, and
11.1× for 2, 4, and 8 models, respectively. Furthermore, we confirm that ICaRus continues to
achieve lower latency and higher throughput than the baseline even in scenarios where evicted KV
cache entries are managed by swapping rather than recomputation, as detailed in Appendix E.

Performance under diverse workflows or models. We further evaluate baseline system and
ICaRus system across different models (LLaMA-3.1-8B and Qwen3-14B-Base) and multi agent
workflows (ReAct and Reflexion). Specifically, we measure P95 latency over varying QPS and the
maximum throughput achieved at the optimal QPS setting, as summarized in Fig. 5.

ICaRus prevents KV cache explosion and enables cross-model prefix caching, thereby achieving
lower P95 latency and higher throughput in multi agent workflows. These gains persist even for
larger models like Qwen3-14B, where ICaRus achieves up to 7.4× lower latency and 3.6× higher
throughput compared to the baseline. Additionally, we verify that the advantages of ICaRus are
preserved even under more realistic agentic patterns, where agents are invoked in a random order
and the workload is skewed across agents, as demonstrated in Appendix F.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Multi model Inference Leveraging multiple models has been widely explored as a way to improve
performance over a single model. Routing methods either select the most appropriate model or use
multiple models in a cascade (Chen et al., 2024; Shnitzer et al., 2024), while ensemble approaches
combine the outputs of multiple models, either at the token level (Yu et al., 2024; Huang et al., 2024)
or at the reasoning step level (Park et al., 2025). Multi model approaches have also been applied
in multi agent systems, where interactions among agents have been shown to enhance performance
across diverse tasks (Fu et al., 2023; Sun et al., 2024; Du et al., 2024). In these systems, each agent
used either a base model or fine-tuned variants obtained with methods such as LoRA or instruction
tuning (Mineiro, 2024; Liu et al., 2025b).

KV Cache Optimization KV cache stores the keys and values of previous tokens to avoid redun-
dant recomputation during autoregressive generation and is traditionally used on a per-request basis
(Vaswani et al., 2017). Prefix caching techniques extend the lifetime of the KV cache beyond a
single request, enabling multiple turns or related requests to share the same cache (Gao et al., 2024;
Gim et al., 2024). However, prefix caching alone cannot address the challenge of deploying multiple
models, as KV caches cannot be shared across different models even for identical prompts, and each
model generates a distinct KV cache. DroidSpeak (Liu et al., 2025b) addresses this issue by reusing
the KV cache of a shared foundational model for non-sensitive layers, while selectively recomputing
only the sensitive layers in each agent model. This approach requires identifying sensitive layers that
must be recomputed by the agent model, thereby affecting subsequent layers. On a different axis,
KVFlow (Pan et al., 2025) manages KV caches by evicting and prefetching based on predetermined
agentic workflows instead of an LRU policy, but it remains a single model approach with agents
defined by prompts.

6 CONCLUSION

In this work, we presented ICaRus, a KV cache-sharing architecture for multi model inference.
ICaRus addresses the memory inefficiency of conventional system by enabling cross-model KV
cache reuse, while maintaining accuracy through fine-tuning. Experiments across mathematics,
coding, and instruction-following tasks confirm that ICaRus delivers accuracy on par with task-
specific fine-tuned models, yet achieves significantly lower latency and higher throughput in multi
agent workflows. Taken together, these results establish ICaRus as a principled approach for scalable
and efficient multi model inference. Looking ahead, we expect ICaRus to extend to large-scale
models, heterogeneous agent systems, and real-world deployment scenarios where scalability and
efficiency are increasingly critical.

REPRODUCIBILITY STATEMENT

We formulated the concept of the logical encoder and decoder in detail, which forms the foundation
of the ICaRus algorithm, in Section 3.1. Furthermore, we provided a rigorous mathematical formu-
lation of ICaRus, along with its training procedure and convergence of the loss curve, in Section
3.2. The inference process of ICaRus and the corresponding optimization strategies are described in
Section 3.3, with pseudocode provided in Appendix B. Finally, the detailed experimental setup for
both training and inference is presented in Section 4.1 and Appendix A.

REFERENCES

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa
Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Ja-
son Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata,
François Yvon, and Andy Zou. Lessons from the trenches on reproducible evaluation of language
models. arXiv preprint arXiv:2405.14782, 2024. URL https://arxiv.org/abs/2405.14782.

10

https://arxiv.org/abs/2405.14782

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
reducing cost and improving performance. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=cSimKw5p6R.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models. J. Mach. Learn. Res., 25:70:1–70:53, 2024. URL https://jmlr.org/papers/v25/
23-0870.html.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S.
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaï Deutel, Nam Nguyen,
Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller,
Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan
Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy
Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Hey-
ward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik,
Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu,
Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-
Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Le-
ichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin
Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vy-
tiniotis, Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities. CoRR, abs/2507.06261, 2025.
doi: 10.48550/ARXIV.2507.06261. URL https://doi.org/10.48550/arXiv.2507.06261.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
zj7YuTE4t8.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,

11

https://openreview.net/forum?id=cSimKw5p6R
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.48550/arXiv.2507.06261
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving language model negotiation with
self-play and in-context learning from ai feedback, 2023. URL https://arxiv.org/abs/2305.
10142.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang,
Zhou Yu, and Pengfei Zuo. {Cost-Efficient} large language model serving for multi-turn conver-
sations with {CachedAttention}. In 2024 USENIX Annual Technical Conference (USENIX ATC
24), pp. 111–126, 2024.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. In P. Gibbons, G. Pekhimenko, and
C. De Sa (eds.), Proceedings of Machine Learning and Systems, volume 6, pp. 325–338, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length
LLM inference with KV cache quantization. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=7arAADUK6D.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating
for parameter-efficient fine-tuning. CoRR, abs/2405.12130, 2024. doi: 10.48550/ARXIV.2405.
12130. URL https://doi.org/10.48550/arXiv.2405.12130.

Jiin Kim, Byeongjun Shin, Jinha Chung, and Minsoo Rhu. The cost of dynamic reasoning:
Demystifying AI agents and test-time scaling from an AI infrastructure perspective. CoRR,
abs/2506.04301, 2025. doi: 10.48550/ARXIV.2506.04301. URL https://doi.org/10.48550/
arXiv.2506.04301.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. An LLM compiler for parallel function calling. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=uQ2FUoFjnF.

Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in neural information
processing systems, 36:47669–47681, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

12

https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2305.10142
https://arxiv.org/abs/2305.10142
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=7arAADUK6D
https://doi.org/10.48550/arXiv.2405.12130
https://doi.org/10.48550/arXiv.2506.04301
https://doi.org/10.48550/arXiv.2506.04301
https://openreview.net/forum?id=uQ2FUoFjnF
https://doi.org/10.1145/3600006.3613165

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 3045–
3059. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.
243. URL https://doi.org/10.18653/v1/2021.emnlp-main.243.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=3d5CIRG1n2.

Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning
the points of LLM function calling. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=8EB8k6DdCU.

Yuhan Liu, Esha Choukse, Shan Lu, Junchen Jiang, and Madan Musuvathi. Droidspeak: Enhancing
cross-llm communication. CoRR, abs/2411.02820, 2024b. doi: 10.48550/ARXIV.2411.02820.
URL https://doi.org/10.48550/arXiv.2411.02820.

Yuhan Liu, Yuyang Huang, Jiayi Yao, Shaoting Feng, Zhuohan Gu, Kuntai Du, Hanchen Li, Yihua
Cheng, Junchen Jiang, Shan Lu, Madan Musuvathi, and Esha Choukse. Droidspeak: Kv cache
sharing for cross-llm communication and multi-llm serving, 2025b. URL https://arxiv.org/
abs/2411.02820.

Paul Mineiro. Online joint fine-tuning of multi-agent flows, 2024. URL https://arxiv.org/abs/
2406.04516.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Zaifeng Pan, Ajjkumar Patel, Zhengding Hu, Yipeng Shen, Yue Guan, Wan-Lu Li, Lianhui Qin,
Yida Wang, and Yufei Ding. Kvflow: Efficient prefix caching for accelerating llm-based multi-
agent workflows. CoRR, abs/2507.07400, 2025. doi: 10.48550/ARXIV.2507.07400. URL https:
//doi.org/10.48550/arXiv.2507.07400.

13

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=8EB8k6DdCU
https://doi.org/10.48550/arXiv.2411.02820
https://arxiv.org/abs/2411.02820
https://arxiv.org/abs/2411.02820
https://arxiv.org/abs/2406.04516
https://arxiv.org/abs/2406.04516
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2507.07400
https://doi.org/10.48550/arXiv.2507.07400

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi. Ensembling large language models with
process reward-guided tree search for better complex reasoning. In Luis Chiruzzo, Alan Ritter,
and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 10256–10277, Albuquerque, New Mexico, April 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.515. URL
https://aclanthology.org/2025.naacl-long.515/.

Aurick Qiao, Zhewei Yao, Samyam Rajbhandari, and Yuxiong He. Swiftkv: Fast prefill-optimized
inference with knowledge-preserving model transformation. CoRR, abs/2410.03960, 2024. doi:
10.48550/ARXIV.2410.03960. URL https://doi.org/10.48550/arXiv.2410.03960.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Nick Roshdieh. Evol-instruct-code-80k. https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1, 2023. Hugging Face dataset.

John Schulman and Thinking Machines Lab. Lora without regret. https://thinkingmachines.
ai/blog/lora/, 2025. Blog post.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong Chen, Ji Zhang,
and Fei Huang. Small llms are weak tool learners: A multi-llm agent. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pp. 16658–16680. Association for Computational Linguistics, 2024. doi: 10.18653/V1/
2024.EMNLP-MAIN.929. URL https://doi.org/10.18653/v1/2024.emnlp-main.929.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large language model routing with benchmark datasets. In First Confer-
ence on Language Modeling, 2024. URL https://openreview.net/forum?id=Zb0ajZ7vAt.

Vighnesh Subramaniam, Yilun Du, Joshua B. Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. In The Thir-
teenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-
28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=JtGPIZpOrz.

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong. Corex: Push-
ing the boundaries of complex reasoning through multi-model collaboration. In First Conference
on Language Modeling, 2024. URL https://openreview.net/forum?id=7BCmIWVT0V.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (PLE):
A novel multi-task learning (MTL) model for personalized recommendations. In Rodrygo L. T.
Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein,
and Edleno Silva de Moura (eds.), RecSys 2020: Fourteenth ACM Conference on Recommender
Systems, Virtual Event, Brazil, September 22-26, 2020, pp. 269–278. ACM, 2020. doi: 10.1145/
3383313.3412236. URL https://doi.org/10.1145/3383313.3412236.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,

14

https://aclanthology.org/2025.naacl-long.515/
https://doi.org/10.48550/arXiv.2410.03960
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://thinkingmachines.ai/blog/lora/
https://thinkingmachines.ai/blog/lora/
https://doi.org/10.18653/v1/2024.emnlp-main.929
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://openreview.net/forum?id=Zb0ajZ7vAt
https://openreview.net/forum?id=JtGPIZpOrz
https://openreview.net/forum?id=7BCmIWVT0V
https://doi.org/10.1145/3383313.3412236

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Sunghyeon Woo, Sol Namkung, Sunwoo Lee, Inho Jeong, Beomseok Kim, and Dongsuk Jeon. Paca:
Partial connection adaptation for efficient fine-tuning. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=iYkhxre0In.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable KV cache compression via
importance-aware mixed precision quantization. CoRR, abs/2402.18096, 2024. doi: 10.48550/
ARXIV.2402.18096. URL https://doi.org/10.48550/arXiv.2402.18096.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Yao-Ching Yu, Chun Chih Kuo, Ye Ziqi, Chang Yucheng, and Yueh-Se Li. Breaking the ceiling
of the LLM community by treating token generation as a classification for ensembling. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 1826–1839, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.99. URL
https://aclanthology.org/2024.findings-emnlp.99/.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen.
H2O: heavy-hitter oracle for efficient generative inference of large language models. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery Kinnison, Alex Sher-
stinsky, Piero Molino, Travis Addair, and Devvret Rishi. Lora land: 310 fine-tuned llms that
rival gpt-4, A technical report. CoRR, abs/2405.00732, 2024. doi: 10.48550/ARXIV.2405.00732.
URL https://doi.org/10.48550/arXiv.2405.00732.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng.
Sglang: Efficient execution of structured language model programs. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html.

15

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=iYkhxre0In
https://arxiv.org/abs/2505.09388
https://doi.org/10.48550/arXiv.2402.18096
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.findings-emnlp.99/
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.00732
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=njwv9BsGHF.

16

https://openreview.net/forum?id=njwv9BsGHF

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDICES

A EXPERIMENTAL SETUP

A.1 TRAINING SETUP

All experiments were conducted on a single node with 8xNVIDIA A100 GPUs (80GB each). Each
GPU processed a micro-batch of size 1, and we applied gradient accumulation over 16 steps, result-
ing in an effective batch size of 128 examples across all devices. This corresponds to approximately
131k tokens per optimization step when the maximum sequence length was 1024, and 262k tokens
when it was 2048.

We trained on three datasets: MetaMathQA (40k sampled examples), Evol-Instruct (80k full set),
and OASST1 (10k sampled examples). The maximum sequence length was set to 2048 for Evol-
Instruct and 1024 for the others. The number of training epochs was 1 for MetaMathQA and Evol-
Instruct, and 3 for OASST1.

Optimization was performed using the AdamW optimizer with default hyperparameters (β1=0.9,
β2=0.999) and a weight decay of 0.01. We used a cosine learning rate decay schedule with a warmup
ratio of 0.03, and performed a grid search over learning rates {1× 10−4, 2× 10−4, 5× 10−4}. No
additional regularization techniques (e.g., dropout or gradient clipping) were applied.

For all experiments, we applied low-rank adaptation (LoRA) with a rank of 128 and an α of 256.

A.2 MULTI MODEL INFERENCE SETUP

A.2.1 AGENT WORKFLOW SELECTION AND DESIGN

We designed our experimental setup to evaluate the scalability and performance characteristics of
multi model AI agent systems under realistic workload conditions. For this study, we selected two
representative agent workflows that exemplify different reasoning patterns commonly deployed in
production environments:

ReAct (Yao et al., 2023): This framework synergizes chain-of-thought reasoning with external
tool use through an iterative process where agents generate reasoning traces and task-specific ac-
tions in an interleaved manner. In the ReAct paradigm, agents alternate between internal reason-
ing (thoughts) and external actions (tool calls), with each iteration consisting of a thought-action-
observation cycle. This pattern is particularly effective for tasks requiring dynamic interaction with
external knowledge bases and APIs.

Reflexion (Shinn et al., 2023): This framework reinforces language agents through linguistic feed-
back, maintaining reflective text in an episodic memory buffer to improve decision-making across
multiple trials. Unlike ReAct, Reflexion adds self-evaluation capabilities where agents generate ver-
bal reinforcement cues to assist in self-improvement, storing these experiences in long-term memory
for rapid adaptation. This approach enables agents to learn from past mistakes without requiring
model fine-tuning, achieving superior performance on complex reasoning tasks.

A.2.2 MULTI MODEL ARCHITECTURE WITH LORA ADAPTERS

To simulate realistic multi-tenant agent deployments, we implemented a multi model inference setup
where each agent instance operates with its own Low-Rank Adaptation (LoRA) adapter. This con-
figuration mirrors production scenarios where different agents may require specialized model be-
haviors or domain-specific fine-tuning. Specifically, we matched the number of concurrent agents
to the number of LoRA adapters, ensuring that each agent maintains its own parameter space.

In evaluation, multiple task-specific LoRA adapters share the same base model on a single GPU.
Under this setup, both the baseline multi-LoRA system and ICaRus already leverage the standard
prefix/KV-aware mechanisms of the serving stack: requests routed to the same LoRA module reuse
the existing KV cache for identical prefixes whenever possible, thereby sharing KV-cache memory
and avoiding redundant prefill recomputation within each model.

This architectural choice has significant implications for system resources:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1. Memory Overhead: Each agent maintains its own KV cache throughout multi-turn inter-
actions. With N concurrent agents, the memory requirement scales by a factor of N , as
each agent’s context must be preserved independently across conversation turns.

2. Computational Load: Multi-turn agent requests generate new computational burdens at
each interaction step. As agents progress through reasoning chains (ReAct) or reflection
cycles (Reflexion), each turn requires fresh attention computations over the accumulated
context, leading to quadratic scaling in computational complexity.

A.2.3 WORKLOAD CHARACTERIZATION

For workload modeling, we based our input/output distributions and tool-calling patterns on empir-
ical measurements from Kim et al. (2025), which provides comprehensive statistics on real-world
agent workflow characteristics. These patterns informed our synthetic workload generation, ensur-
ing our experiments reflect actual deployment scenarios.

A.2.4 EXPERIMENTAL PARAMETERS

We conducted systematic scaling experiments with the following configuration:

Agent Scaling: We evaluated system behavior with 2, 4, and 8 concurrent agents to understand how
resource contention and memory pressure evolve with increasing agent density.

Request Rate (QPS):

• For Qwen2.5 14B: Tested at 0.1, 0.2, 0.3, and 0.4 QPS

• For Llama 3.1 8B: Tested at 0.2, 0.4, 0.6, and 0.8 QPS

The different QPS ranges reflect the computational differences between model sizes, with the smaller
8B model capable of sustaining higher request rates.

Throughput Measurement: We measured actual system throughput at the 0.8 QPS configuration
to empirically determine system saturation points under peak load conditions.

Batch Size and Latency Dynamics: To understand latency behavior under constrained conditions,
we fixed the total request count at 128 while varying QPS. This experimental design differs from
unbounded request streams where continuously arriving requests would cause monotonically in-
creasing batch sizes and consequently unbounded growth in 95th percentile latency. Under our
fixed-request protocol, we observed that 95th percentile latency initially increases with QPS but
eventually saturates at a plateau, indicating the system reaches a steady-state where all requests are
being processed within the available compute budget.

This saturation behavior provides critical insights into:

• The maximum sustainable batch size for each agent configuration

• The point at which additional request rate increases no longer impact tail latency

• The effective capacity limits of multi agent systems under resource constraints

A.2.5 RATIONALE AND IMPLICATIONS

Our experimental design captures several critical aspects of production multi agent systems:

1. Resource Isolation: By assigning separate LoRA adapters to each agent, we model sce-
narios where agents require distinct specializations (e.g., different domains, languages, or
task-specific fine-tuning).

2. Memory Pressure: The multiplicative effect of agent count on KV cache requirements
reflects real-world memory bottlenecks in multi-tenant deployments.

3. Workflow Diversity: The combination of ReAct’s tool-calling patterns and Reflexion’s
self-improvement cycles represents a broad spectrum of agent behavioral patterns, from
reactive tool use to iterative refinement.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

4. Scaling Characteristics: Our range of agent counts (2–8) and QPS values provides in-
sights into both vertical scaling (request rate) and horizontal scaling (agent parallelism)
dimensions.

This setup enables us to quantify the trade-offs between agent autonomy, system throughput, and
resource utilization in modern AI agent deployments, providing actionable insights for practitioners
deploying multi agent systems at scale.

B PSEUDO ALGORITHM

B.1 PREFILL PHASE IN ICARUS

Algorithm 1: Prefill Phase (Standard Linear Only)

Input: Prompt tokens P ∈ VN

Output: First token yprefill ∈ V , KV_CACHE[1 . . . L]
1 X1 ← Embed(P) ∈ RN×d

2 for i = 1 to L do
3 Qi ← Linear(Xi;W

i
q),Ki ← Linear(Xi;W

i
k), Vi ← Linear(Xi;W

i
v)

4 Qi,Ki ∈ RN×dk , Vi ∈ RN×dv

5 /* generate KV cache (w. the Logical Encoder) */
6 KV_CACHE[i]← (Ki, Vi)

7 Ai ← Attention(Qi,Ki, Vi) ∈ RN×dv

8 Xi+1 ← FFN(AttentionOutput(Ai)) ∈ RN×d

9 yprefill ← Sample(LMHead((XL+1[N])) // Prefill Result

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 DECODE PHASE IN ICARUS

Algorithm 2: ICaRus Linear

Input: X ∈ R2×T×d // batch=2, seqlen T, hidden size d
1 X[0]: Input for Logical Encoder (Base model)
2 X[1]: Input for Logical Decoder (Base model + Adaptive model)

Output: Y ∈ R2×T×d

3 /* Parallel execution for Base Model and Adaptive Model */
4 Xtemp ← Linear(X)
5 Xtemp[1]← Xtemp[1] + AdaptiveLinear(Xtemp[1])
6 Y ← Xtemp

Algorithm 3: Decode Phase (w. ICaRus Linear)
Input: yprefill ∈ V , KV_CACHE[1 . . . L]

1 KV_CACHE: Prompt KV cache from Logical Encoder (Base Model)
Output: Generated tokens Y = (yN+1, yN+2, . . . , yN+T)

(where N is the prompt length, T is the number of generated tokens)
2 Input_Token← yprefill
3 for t = 1 . . . T do
4 X1 ← Embed(Input_Token) ∈ RN×d

5 /* Stack hidden states for ICaRus Execution */

6 Xpair
1 ← stack_batch(X1, X1) // shape: [2,1,d]

7 for i = 1 to L do
8 /* KV cache from base model for sharing */

9 Kstep
i ← Linear(Xi;W

i
k), V step

i ← Linear(Xi;W
i
v)

10 (Kcache
i , V cache

i)← KV_CACHE[i]

11 Ki ← concat_sequence(Kcache
i ,Kstep

i)

12 Vi ← concat_sequence(V cache
i , V step

i)
13 KV_CACHE[i]← (Ki, Vi)

14 Qpair
i ← ICaRusLinear(Xpair

i ;W i
q , A

i
q) // shape: [2,1,H,d_k]

15 /* Enable attention parallelism via GQA */

16 Qi ← concat_numhead(Qpair
i [0], Qpair

i [1]) // shape: [1,2*H,d_k]
17 Ai ← GQA(Qi, ki, Vi) // shape: [1,2*H,d_v]

18 Apair
i ← transpose_and_reshape(Ai) // shape: [2,1,H,d_v]

19 Zpair
i ← ICaRusLinear(Apair

i ;W i
o, A

i
o) // shape: [2,1,d]

/* FFN: up → act → down (W.ICaRusLinear) */

20 F pair
i ← FFN(Zpair

i) // shape: [2,1,d]

21 /* use only Adaptive Result */

22 new_token← Sample(LMHead(F pair
L+1[1]))

23 Y ← concat(Y, new_token)
24 Input_Token← new_token

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C LOGICAL ENCODER–DECODER: CONCEPT AND INFERENCE WORKFLOW

Figure 6: Inference workflow of the logical encoder-decoder.

In this section, we provide a more detailed explanation of the logical encoder–decoder concept.
Inference in a decoder-only Transformer can be viewed as consisting of two phases: a prefill phase
and a decode phase.

• Prefill: generate the KV cache for the input prompt.
• Decode: (1) generate the KV cache for the current token, and (2) predict the next token.

Motivated by this behavior, we conceptually decompose the model into a logical encoder and a
logical decoder. The logical encoder denotes the part of the computation that is solely responsible
for producing the KV cache, whereas the logical decoder denotes the part that predicts the next
token during decoding and does not produce any new KV entries: it treats the KV cache as a pre-
computed sequence representation and only issues queries against it to generate tokens. Under this
decomposition, inference can be reinterpreted as follows:

• Prefill: the logical encoder generates the KV cache for the input prompt.
• Decode: (1) the logical encoder generates the KV cache for the current token, and (2) the

logical decoder predicts the next token.

ICaRus fine-tunes only the logical decoder and freeze logical encoder. Specifically, the task-
specialized decoders consume the shared KV cache from the common logical encoder for attention
computation, as shown in Fig. 6, enabling heterogeneous, task-specialized decoders to operate on a
single shared representation without any approximation or recomputation. In other words, ICaRus
models can reuse KV cache entries produced not only in the prefill phase but also in the decode
phase without any updates or reconstruction, because all KV entries are always generated by the
same logical encoder.

D ROBUSTNESS OF ICARUS ON TOOL-CALLING TASKS WITH LARGER
MODELS

To demonstrate the scalability and robustness of ICaRus, We conducted experiments with Qwen3-
32B on the ToolAce dataset (Liu et al., 2025a) for tool calling related task, and evaluated the resulting
models on the BFCL benchmark as shown below.

As shown in Fig. 2, the loss curve of ICaRus converges smoothly and is comparable to that of the
baseline, which is consistent with the behavior observed in Figure 2 of the manuscript for math and
coding tasks with 8B models. This indicates that our training procedure remains stable even when
scaling to larger models and to a different task domain.

Moreover, as reported in Table 5, even with a larger 32B model and the tool calling task, ICaRus
achieves comparable accuracy than a baseline that does not share the KV cache. This suggests that

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: Training loss curves of conventional fine-tuning and ICaRus, both applied with LoRA on
Qwen-3-82B, trained on the ToolAce dataset.

Table 5: Comparison of conventional fine-tuning and ICaRus when training Qwen3-32B on the
ToolAce dataset.

Model Method
BFCL Non-live (AST)

Simple Python Simple Java Simple JavaScript

Qwen3-32B Baseline 96.5 62.0 74.0
ICaRus (Ours) 94.5 63.0 76.0

our method is not only trainable and stable, but also robust and effective, both in terms of model
scale and task type.

E ICARUS UNDER SWAP-BASED KV CACHE MANAGEMENT

We conducted experiments with swap enabled (4GB swap space) using an earlier version of vLLM
that supports this feature. The experimental results are reported below.

Figure 8b shows that ICaRus continues to provide lower P95 latency and higher throughput even
when the multi-model system uses swap for KV cache management. In particular, with 8 LoRA
modules, ICaRus achieves up to 12.1× lower P95 latency and 3.8× higher throughput than the base-
line. This is because ICaRus reduces the KV cache footprint itself, so that even at higher QPS the
GPU does not saturate and expensive swap operations are rarely triggered in the first place.

(a) P95 latency across QPS (b) Throughput across QPS

Figure 8: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow with swap-based KV cache
management. Here, N denotes the number of LoRA modules, which are integrated into multi model
system built using either the conventional approach or ICaRus.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

In summary, we emphasize that recompute/swap strategies and ICaRus address orthogonal as-
pects of the problem. Concretely, recompute or swap determine how to manage KV cache once
GPU memory becomes full (e.g., whether to evict and reload from host storage or to recompute),
whereas ICaRus fundamentally reduces KV pressure by enabling cross-model KV sharing across
task-specialized models. By avoiding redundant KV construction across models, ICaRus effectively
delays or mitigates the point at which the KV cache saturates GPU memory, thereby improving
performance regardless of whether the underlying system chooses recompute or swap as its eviction
policy. In principle, ICaRus could also be combined with swap-based KV management.

F PERFORMANCE UNDER RANDOM AND SKEWED AGENTIC PATTERN IN
REAL-WORLD SCENARIOS

We evaluate the scenario in which the controller invokes agents at random with a skewed workload
under ReAct workflow, so that on a typical turn only a subset of agents is active, better reflecting
such real-world scenarios. Specifically, unlike the round-robin invocation pattern in Section 4.3,
we construct a skewed workload in which one agent is invoked with probability 50% on each turn,
while the remaining agents share the rest of the probability mass and are invoked in a random order
rather than a fixed sequence. The experiments are conducted on the vLLM v0 architecture and the
results are reported below.

(a) P95 latency across QPS (b) Throughput across QPS

Figure 9: P95 latency and throughput of ICaRus compared with multiple task-specific agents fine-
tuned from the LLaMA-3.1-8B base model under the ReAct workflow where the agent invocation
pattern is random and skewed. Here, N denotes the number of LoRA modules, which are integrated
into multi model system built using either the conventional approach or ICaRus.

Fig. 9 shows that ICaRus maintains low P95 latency and high throughput under dynamic and skewed
agentic patterns. For example, with 2 models at 0.4 QPS, ICaRus achieves 15× lower P95 latency
and 1.2× higher throughput than the baseline, demonstrating that the core advantage of ICaRus, en-
abling per-model prefix caching on top of cross-model KV sharing, is preserved even under skewed
and random agent invocation patterns. Furthermore, in the baseline, throughput quickly saturates
beyond a certain QPS because rapid growth of the KV cache triggers frequent evictions and recom-
putations. In contrast, ICaRus allows multiple models to share a single KV cache pool, keeping
entries within the available GPU memory budget without eviction so that throughput continues to
increase with QPS without saturation. As a result, in the 8-model setting, ICaRus achieves up to
3.5× higher throughput than the baseline under skewed and dynamic agent invocation patterns.

23

	Introduction
	Background & Motivation
	Design of ICaRus
	Decoder-only Transformer as Logical Encoder and Decoder
	ICaRus: Identical Cache Reuse across LLMs
	Optimizing ICaRus for Multi Model Inference

	Evaluation
	Experimental Setup
	Accuracy Evaluation
	Performance in Multi Model Inference

	Related Work
	Conclusion
	Experimental Setup
	Training Setup
	Multi Model Inference Setup
	Agent Workflow Selection and Design
	Multi Model Architecture with LoRA Adapters
	Workload Characterization
	Experimental Parameters
	Rationale and Implications

	Pseudo Algorithm
	Prefill Phase in ICaRus
	Decode Phase in ICaRus

	Logical Encoder–Decoder: Concept and Inference Workflow
	Robustness of ICaRus on Tool-Calling Tasks with Larger Models
	ICaRus under Swap-based KV Cache Management
	Performance under Random and Skewed Agentic Pattern in Real-World Scenarios

