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ABSTRACT

Vision-Language Models (VLMs) have shown great potential in the domain of
open-vocabulary medical imaging tasks. However, their reliance on implicit cor-
relations instead of explicit evidence leads to unreliable localization and unex-
plainable reasoning processes. To address these challenges, we introduce ERA
(Evidence-Based Reasoning and Augmentation), a novel framework that trans-
forms VLMs from implicit guessers into explicit reasoners for medical imaging.
ERA leverages Retrieval-Augmented Generation (RAG) and Chain-of-Thought
(CoT) to construct a traceable reasoning path from evidence to results. This frame-
work requires no additional training and can be readily applied on top of any
existing Vision-Language Model. Evaluated across multiple challenging medi-
cal imaging benchmarks, ERA’s performance is comparable to fully-supervised
specialist models and significantly surpasses current open-vocabulary baseline
methods. ERA provides an effective pathway for building reliable clinical Vision-
Language Models.

1 INTRODUCTION

Prompt-based models like the Segment Anything Model (SAM) are a major step forward in image
segmentation |Kirillov et al.| (2023). They offer great flexibility and precision by outlining objects
based on user inputs. In specialized fields like medicine, however, this approach has a key limitation:
it relies on manual interaction. To use these models well in a clinic, an operator needs deep medical
knowledge to ensure accuracy. Also, the growing volume of diagnostic data makes a manual, case-
by-case method slow and impractical. This scaling problem shows the need for methods that can
automatically create spatial prompts, which is vital for using large models widely in medicine.

To automate this process, a simple idea is to train an object detector for specific medical tasks
to generate prompts like bounding boxes. Yet, this method faces big challenges in getting medical
data. Strict patient privacy rules, the high cost of expert annotation, and slow labeling create a severe
lack of large, high-quality datasets. This data shortage makes it nearly impossible to train a robust
detector for diverse, open-vocabulary needs. This problem calls for a new approach that moves
away from models needing extensive in-domain training. Vision-Language Models (VLMs) are a
promising alternative Feng et al.| (2025); |[Zhang et al.| (2025); Xie et al.[ (2025)); |[Shen et al.| (2025).
Pre-trained on vast general image-text data, VLMs can understand open-vocabulary commands and
perform initial localization without specialized data, helping to overcome the data shortage.

Although VLMs offer a good solution for data scarcity, two major flaws block their direct use in clin-
ical practice and make them unreliable Zhang et al.| (2025); L1 et al.| (2025b)); [Vaswani et al.| (2017).
First, they rely on hidden patterns. Their localization decisions often depend on unclear statistical
correlations from general-domain data, not the clear medical evidence needed for a diagnosis. This
leads to unreliable prompts. Second, their reasoning process is a ’black box™ that cannot be traced.
This conflicts with the clinical need for every decision to be based on verifiable evidence, making
these models difficult to trust in safety-critical applications.

To address these core challenges, we propose ERA (Evidence-based Reasoning and Augmentation),
a framework that turns a VLM from an implicit guesser into an explicit reasoner. Instead of fine-
tuning, ERA rebuilds the model’s decision-making process. It uses Retrieval-Augmented Generation
(RAG) to find verifiable evidence from an external medical knowledge base [Fan et al.|(2024); Du
et al.[(2024); Qi et al.| (2024). Then, it uses a Chain of Thought (CoT) to build a structured, traceable
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Figure 1: Visual comparison of a standard VLM versus our ERA framework on the localization
task. Columns show (a) the original medical image, (b) the ground truth segmentation, (c) the
localization result from a typical generalist VLM, and (d) the result from our ERA framework.
Relying on opaque, implicit knowledge, the generalist VLM’s localization (c) is often imprecise or
overly coarse. In contrast, our ERA framework (d), by grounding its reasoning in explicit evidence,
generates a significantly more precise and reliable spatial prompt that aligns closely with the ground
truth.

reasoning path Wang et al.| (2025b); [La1 & Nissim|(2024). This forces the VLM to logically check
the retrieved evidence against the image before giving a high-confidence prompt. This evidence-

then-reasoning design improves localization reliability and makes the model’s decisions transparent,
building trust for clinical use. Our work significantly improves VLM performance in the medical
domain, outperforming existing open-vocabulary methods and achieving precision close to fully-
supervised specialist models.

The main contributions of this paper are:

* We propose ERA, a framework that guides VLMs from unreliable guessing toward explicit,
evidence-based reasoning. This approach offers a key path to improving the reliability and
interpretability of VLMs in medical tasks.

* We design a reasoning architecture that joins Retrieval-Augmented Generation (RAG) with
a Chain of Thought (CoT) process. This synergy forces the model to ground its decisions
in external, verifiable medical knowledge.

* Our framework transforms the VLM’s black-box decision process into a transparent and
auditable workflow. By generating a clear reasoning path, it builds a foundation of trust for
Al in high-stakes clinical settings.

» Extensive experiments show that ERA performs robustly on specialized medical datasets
where other zero-shot generalist models fail completely, proving the effectiveness of our
evidence-based approach.

2 RELATED WORK

2.1 SEGMENT ANYTHING MODEL 2

Prompt-based interaction has recently become a powerful paradigm in computer vision, with the
Segment Anything Model (SAM) marking a significant milestone by demonstrating unprecedented
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zero-shot segmentation capabilities on a massive dataset Kirillov et al.|(2023)). Its successor, SAM2,
further extends this zero-shot capacity from static images to the video domain, establishing a uni-
fied, promptable foundation model for visual segmentation Ravi et al.| (2024). Beyond introducing
mechanisms like streaming memory for temporal data, SAM?2 also surpasses the original in image
segmentation, achieving higher precision and a manifold increase in speed Ravi et al.|(2024); |Xiong
et al.| (2024); |Guo et al.| (2025); |Bai et al.| (2025). Despite their formidable power, the performance
of these models is fundamentally contingent on the quality of the input prompts they receive. Con-
sequently, the challenge of reliably and automatically generating precise prompts to overcome the
bottleneck of manual interaction constitutes the central problem our research aims to address.

2.2 VISION-LANGUAGE MODELS

To address the aforementioned prompting bottleneck, Vision-Language Models (VLMs) offer a
highly promising technical pathway for automation Jang et al.| (2025); |Yamaguchi et al.| (2025).
The new generation of Vision-Language Models (VLMs) has moved beyond the simple image-text
alignment of earlier models like CLIP, exhibiting deeper levels of vision-language fusion and rea-
soning. Among these, models like Qwen-2.5 [Team| (2024)) stand out, built upon an advanced large
language model deeply integrated with a powerful visual encoder. This architecture enables com-
plex tasks ranging from detailed image description to precise referential comprehension, making
them ideal candidates for generating spatial prompts from natural language |L1 et al.[ (2025a); Feng
et al.|(2025). However, a fundamental challenge persists even with these powerful VLMs: their
decision-making process relies on implicit statistical correlations learned from general-domain data,
not on the explicit, evidence-based reasoning essential for medical diagnostics|Zhang et al.| (2025));
Li et al.| (2025b)). This inherent limitation is precisely the target our ERA framework is designed to
resolve.

2.3 RETRIEVAL-AUGMENTED GENERATION

To address the VLM’s lack of explicit evidence, our framework turns to Retrieval-Augmented Gen-
eration (RAG), a pivotal paradigm from Natural Language Processing (NLP) Fan et al.|(2024). The
core principle of RAG is to retrieve relevant information from a large-scale, trusted external knowl-
edge base to serve as context before a model proceeds with generation or reasoning. By grounding
decisions in external, verifiable knowledge, this mechanism has been proven to effectively reduce
model hallucinations and enhance the factual accuracy of generated content Zhang et al.| (2025)). In
this work, we adapt the RAG paradigm to the task of visual localization, providing the VLM with
the explicit evidential foundation it inherently lacks. This approach equips the model with a reliable
external reference, systematically solving its predicament of relying on vague internal knowledge
and implicit guesswork for its conclusions.

2.4 CHAIN OF THOUGHT

While RAG provides the necessary evidence, Chain of Thought (CoT) provides the mechanism to
ensure this evidence is used in a traceable and rigorous manner |Wang et al. (2025b). Inspired by the
Chain of Thought concept, CoT guides a model to generate a series of intermediate, step-by-step
logical inferences before arriving at a final answer [Liang et al.| (2025). This structured approach
not only boosts performance on complex tasks but also significantly enhances model interpretability
by exposing the reasoning process. Within our framework, CoT serves not for general-purpose
reasoning but for the specific purpose of constructing an explicit and traceable validation path. This
path makes the VLM’s process of adopting external evidence both rigorous and auditable, providing
a logical guarantee for high-reliability prompts and directly addressing the fundamental demand in
clinical applications for trustworthy, evidence-based decision-making.

3 METHOD

3.1 OVERALL FRAMEWORK

To solve the problem of Vision-Language Models (VLMs) relying on unclear, internal knowledge
for important medical tasks, we introduce ERA (Evidence-based Reasoning and Augmentation).
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Figure 2: Overview of the ERA (Evidence-based Reasoning and Augmentation) Framework. Given
an input image and a text instruction, a query vector is formed by a visual language model. This
vector is used to retrieve the most relevant visual exemplar from a pre-computed knowledge base
to serve as evidence. Subsequently, the input image, text, and the retrieved exemplar are fed into
the core Deliberative Reasoning Engine. The engine executes a tiered decision policy guided by a
Chain-of-Thought to validate the evidence and synthesize a final, high-confidence spatial prompt,
which is then used to drive a segmentation model.

ERA is a framework made to enforce a clear, evidence-based reasoning process. As shown in
Figure 2] ERA changes a pre-trained VLM from a simple “guesser” into a careful reasoner. It does
this by connecting the VLM to an external, non-parametric medical knowledge base. The framework
works in a zero-shot way and needs no task-specific training. Instead, it guides the VLM’s existing
abilities through a structured and checkable reasoning process. This process has two main parts:
a Non-parametric Knowledge Integration module to find real-world evidence, and a Deliberative
Reasoning Engine to check and use that evidence.

3.2 THE NON-PARAMETRIC KNOWLEDGE BASE

To allow for clear reasoning, our framework uses an external, non-parametric visual knowledge
base. We build and index this base to provide checkable evidence that adds to the VLM’s own
understanding.

3.2.1 KNOWLEDGE CURATION AND STRUCTURING

At the center of our framework is a large, structured medical knowledge base, which we call /.
This knowledge base is carefully built by combining a large collection of public medical imaging
datasets. It includes many types of scans, like CT, MRI, and X-ray, and covers different body parts
and diseases. Each item e € K is a single visual example, structured as a set e = (4,¢,b). Here,
i is the path to the image, ¢ is a text label that describes the target, and b gives its exact location,
taken from the ground-truth segmentation mask. This format makes sure that every piece of visual
evidence is linked to both a concept and a location.

3.2.2 FEATURE SPACE INDEXING FOR EFFICIENT RETRIEVAL

To allow for fast, meaning-based evidence retrieval, the entire knowledge base K is indexed before-
hand. This one-time pre-calculation of features makes the retrieval process as fast as possible during



Under review as a conference paper at ICLR 2026

use. We use a pre-trained vision-language model, BLIP2 |Li et al.| (2023)), as a feature encoder that
is not changed. We chose BLIP2 because it is good at understanding meaning and works well on
new data. Using this encoder, each image in K is turned into a feature vector in a high-dimensional
space, which is then normalized. This normalization ensures that the inner product of any two
vectors equals their cosine similarity, which makes similarity calculations very efficient.

During use, a query made of an image I and a text instruction C' is encoded into a normalized query
vector. The top-k most similar items from the knowledge base are then found by an efficient inner
product calculation. This retrieval process is written as:

FEeana = Retrieve(I, C; K) (D

where FE.,nq is the set of candidate examples found in the knowledge base K based on the query

(1,0).

3.3 THE DELIBERATIVE REASONING ENGINE

Finding relevant evidence is only the first step. The key innovation of ERA is its careful process for
using that evidence. This module uses a powerful, standard VLM as its reasoning core, which we
call ®. It guides the VLM’s behavior with a carefully designed Chain-of-Thought (CoT) to check
and use the retrieved evidence in a structured, traceable way.

3.3.1 THE PARAMETRIC REASONING CORE

The core of our reasoning engine is Qwen2.5, a powerful, open-source Vision-Language Model.
We use its advanced abilities in a zero-shot setting, treating it as a general-purpose reasoner . To
make it run efficiently, we use methods like 8-bit quantization and Flash Attention 2. This allows
the framework to work well without needing costly fine-tuning.

3.3.2 CHAIN-OF-THOUGHT FOR EVIDENCE-BASED REASONING

To guide the VLM’s reasoning, we designed a Chain-of-Thought (CoT) prompting strategy. This
strategy makes the VLM follow a step-by-step, hypothesis-testing path. After finding the candidate
set Ecang, the top-ranked example, E* € E .y, is chosen. The VLM reasoner ® then performs the
following logical steps, guided by the CoT prompt:

1. Step 1: Check for Concept Match. The reasoner @ first checks if the meaning of the
exemplar E* is relevant. It decides if the information in E* is helpful for finding the
target from instruction C' in the query image I. It gives a simple yes/no judgment, v. €
{True, False}.

2. Step 2: Test the Location Hypothesis. Only if the concepts match (v, = True), the
reasoner then checks the location. It treats the exemplar’s bounding box, E*.b, as a location
hypothesis and tests if this location is believable in image /. This gives a second yes/no
judgment, v, € {True, False}.

3. Step 3: Choose a Policy. Finally, the framework chooses a final action by running a policy
based on the results of the two checks. Each policy follows a separate, reviewable reasoning
path:

* Policy 1: Adopt Evidence. Used if v, Av,. The framework directly uses the bounding
box from the evidence, £*.b, as the final prompt.

* Policy 2: Concept-guided Search. Used if v, A —v,. The framework uses the evi-
dence as a strong clue to start a new, VLM-driven search for the target in the query
image I.

* Policy 3: Zero-shot Reasoning. Used if —v.. The framework decides the evidence is
not relevant, ignores it, and uses the VLM’s own zero-shot abilities.

The VLM generates a structured text output that explains the full reasoning chain and the final
decision. By reading this output, we get a high-confidence spatial prompt B*. This entire careful
process can be written as:

B* = ERA-Reasoner(I,C, E*; D) 2)
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Table 1: Performance on the ISIC 2018 task. The parameter t indicates the number of unfolding
time steps for the recurrent convolutional layers.

Method SEt SP1 F11 ACt DCt

U-Net (t=2) 0.9479 0.9263 0.8682 0.9314 0.8476
ResU-Net (t=2) 0.9454 0.9338 0.8799 0.9367 0.8567
RecU-Net (t=2) 0.9334 0.9395 0.8841 0.9380 0.8592
R2U-Net (t=2) 0.9496 0.9313 0.8823 0.9372 0.8608
R2U-Net (t=3) 0.9414 0.9425 0.8920 0.9424 0.8616
ERA + SAM2 0.8306 0.9851 0.8701 0.9639 0.8701
ERA + MedSAM 0.9657 0.9883 0.9460 0.9852 0.9460

YOLO-World + SAM?2 0.9418 0.0817 0.8216 0.8236 0.9021
Grounding DINO + SAM2  0.7825 0.2595 0.1385 0.3313 0.2433

FG-CLIP + SAM2 0.3523 0.6621 0.3343 0.3948 0.5011
SAM2 0.0258 0.9968 0.0493 0.8634 0.0493
ERA + SAM2 0.8306 0.9851 0.8701 0.9639 0.8701
MedSAM 0.8679 0.1472 0.2347 0.2436 0.2347
ERA + MedSAM 0.9657 0.9883 0.9460 0.9852 0.9460

where B* is the final spatial prompt, (I, C') is the input query, E* is the best evidence found, and ®
is the core VLM reasoner. The full algorithm for the end-to-end process is given in Algorithm I]in
the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Data Integrity Our experiments are conducted on a diverse set of medical imaging
datasets. We use the ISIC 2018 dataset for standard scenarios featuring well-defined targets, and
tasks from the Medical Segmentation Decathlon (MSD) and BraTS 2021 for complex scenarios
characterized by low-contrast targets and intricate anatomical structures. We implemented rigorous
measures to ensure a fair evaluation and prevent data leakage across all benchmarks. The full details
are provided in Section[C.2]

Baselines and Metrics We compare ERA against two baseline categories: (1) Supervised Spe-
cialist Models, which for 2D tasks include U-Net Ronneberger et al.|(2015), ResU-Net, RecU-Net,
and R2U-Net |Alom et al.| (2018)), and for 3D tasks include CerebriuDIKU, NVDLMED, Kim et
al.[Kim et al.|(2019), C2FNAS [Yu et al.| (2020), DINTS He et al. (2021)), and nnU-Net [Isensee et al.
(2019); and (2) Zero-shot Generalist Models, which include YOLO-World (Cheng et al.| (2024),
Grounding DINO Liu et al.|(2023)), and FG-CLIP [Xie et al.| (2025)).

For evaluation, we report Sensitivity (SE), Specificity (SP), F1-Score, Accuracy (AC), and Dice Co-
efficient (DC) for 2D tasks. For 3D tasks, we use the Dice Similarity Coefficient (DSC), Normalized
Surface Distance (NSD). We also report total inference time in seconds for efficiency analysis.

4.2 MAIN QUANTITATIVE RESULTS
4.2.1 PERFORMANCE ON STANDARD SCENARIOS

On the ISIC 2018 benchmark (Table [I), ERA demonstrates a strong balance between sensitivity
and precision. While the baseline YOLO-World achieves a high DC score (0.9021), its extremely
low Specificity (SP) of 0.0817 indicates severe over-segmentation, rendering it clinically unreliable.
In stark contrast, our ERA framework achieves a competitive DC of 0.8701 with a near-perfect SP
of 0.9851, far outperforming other zero-shot approaches in balanced performance. Notably, ERA
is also highly competitive with fully-supervised specialist models, rivaling even the R2U-Net (t=3)
configuration.
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Table 2: Performance comparison on specialized medical segmentation tasks from the MSD.

Method Heart Hippo. Prostate Spleen
DSC1+ NSD1 DSC1 NSD1 DSCT NSDt DSCT NSD*?T
CerebriuDIKU 0.8947 0.9063 0.8900 0.9742 0.7773 0.9631 0.9500 0.9800
NVDLMED 0.9246 0.9557 0.8734 0.9633 0.7801 0.9521 0.9601 0.9972
Kim et al. 0.9311 0.9644 0.8942 0.9775 0.8083 0.9654 0.9192 0.9483
C2FNAS 0.9249 0.9581 0.8867 0.9731 0.8182 0.9696 0.9628 0.9766
DINTS 0.9299 0.9635 0.8916 0.9766 0.8231 0.9739 0.9698 0.9983
nnUNet 0.9330 0.9674 0.8946 0.9766 0.8311 0.9756 0.9743 0.9989
ERA + SAM2 0.6787 0.1508 0.5694 0.4321 0.8462 0.6242 0.8864 0.7103
ERA+MedSAM 0.8873 0.8656 0.7948 0.9470 0.9568 0.9976 0.9604 0.9768

YOLO-World + SAM2 0.0366 0.1397 0.0081 0.0776 0.0296 0.0956 0.0119 0.0407
Grounding DINO + SAM2 0.0262 0.5002 0.1771 0.5160 0.0851 0.4915 0.0585 0.4171

FG-CLIP + SAM2 0.0333 0.4799 0.1821 0.4923 0.0913 0.4820 0.0150 0.1428
SAM2 0.0031 0.0772 0.0000 0.0051 0.0128 0.0654 0.0010 0.0066
ERA + SAM2 0.6787 0.1508 0.5694 0.4321 0.8462 0.6242 0.8864 0.7103
MedSAM 0.0137 0.0012 0.1535 0.1212 0.0704 0.0474 0.0254 0.0527
ERA + MedSAM 0.8873 0.8656 0.7948 0.9470 0.9568 0.9976 0.9604 0.9768

Table 3: Comparison of total inference time in seconds between the ERA framework and other zero-
shot baseline methods across the ISIC 2018 and four MSD datasets.

ISIC 2018 MSD Datasets
Method
time(s) Heart Hippocampus  Prostate ~ Spleen
YOLO-World + SAM2 104.92 163.13 636.72 43.59 274.72
Baselines  Grounding DINO + SAM2 155.24 601.78 2901.46 159.82  992.26
FG-CLIP + SAM2 138.77 254.88 792.51 67.36 432.46
Ours ERA + SAM2 2151.29 3309.39 11545.83 643.39  4060.01

4.2.2 PERFORMANCE ON COMPLEX SCENARIOS

ERA’s superiority is most evident in complex scenarios like the MSD tasks, where generalist models
suffer a catastrophic performance collapse with near-zero DSC scores (Table [2). By grounding its
reasoning in a medical knowledge base, ERA is the only zero-shot framework to maintain robust,
clinically viable performance. Most impressively, on the Prostate dataset, ERA achieves a DSC of
0.8462, outperforming the fully-supervised state-of-the-art nnUNet (0.8311). This result demon-
strates that for specialized domains, an evidence-based approach can surpass even models trained
extensively on task-specific data.

4.3 EFFICIENCY ANALYSIS

While performance is critical, practical deployment also hinges on computational efficiency. This
section analyzes the inference time of the ERA framework as a necessary trade-off for its superior
accuracy and reliability.

As detailed in Table [3| the ERA framework’s inference time is considerably higher than that of the
zero-shot baselines. For instance, on the ISIC 2018 dataset, ERA requires 2151.29 seconds, whereas
YOLO-World and Grounding DINO complete in 104.92 and 155.24 seconds, respectively. However,
this comparison must be contextualized by performance. The baseline methods, despite their speed,
produce clinically unusable results on all specialized tasks, as evidenced by their near-zero DSC
scores in Table[2] Their speed, therefore, represents the efficiency of arriving at a wrong answer.

The computational cost of ERA is a deliberate trade-off, investing time in a rigorous retrieval and
reasoning process to achieve a massive leap in performance—from complete failure to robust, state-
of-the-art results. This investment transforms the paradigm from an unreliable tool into a viable
clinical instrument, justifying the additional computational budget.
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Table 4: Ablation study of the ERA framework, evaluating performance across all datasets.
ISIC 2018 | Heart | Hippo. | Prostate | Spleen | BraTS 2021

Configuration |

| SEt SPt DCt | DSCT NSDt | DSCt NSD?T | DSCt NSDt | DSCT NSD? | Dicet mlIoUf
Ablations
w/o Reasoning 0.60 091 0.55 | 0.67 0.14 0.49 0.40 0.79 0.52 0.87 0.64 0.76 0.65
w/o Retrieval 0.83 0.87 0.84 | 0.06 0.00 0.14 0.25 0.07 0.03 0.04 0.05 0.27 0.17
w/o Tier-2 0.57 0.89 0.51 0.57 0.13 0.50 0.41 0.80 0.56 0.76 0.68 0.78 0.66
Unguided SAM2 | 0.03 1.00 0.05 | 0.00 0.08 0.00 0.01 0.01 0.07 0.00 0.01 0.02 0.01

ERA + SAM2 | 0.83 099 0.87 | 0.68 0.15 | 0.57 043 | 0.85 0.62 | 0.89 0.71 | 0.78 0.66

Table 5: Ablation study of inference time in seconds for the ERA framework and its different con-
figurations.

Configuration ISIC 2018 Heart Hippocampus Prostate Spleen BraTs 2021

w/o Reasoning 2148.66 3316.50 11575.59 643.35 3914.52 2487.23
w/o Retrieval 6987.60 10554.95 36510.91 2014.39  12181.06 7866.00
w/o Tier-2 2079.83 3206.49 11167.77 652.73 3770.90 2407.64
Unguided SAM2 55.01 93.21 369.94 25.06 163.50 80.65

ERA + SAM2 2151.29 3309.39 11545.83 643.39 4060.01 2527.86

4.4 ABLATION STUDIES

Our ablation studies, detailed in Table ] and Table [5] reveal an indispensable synergy between evi-
dence retrieval and deliberative reasoning that enhances both performance and efficiency. Ablating
either component causes a severe performance collapse. For instance, without the retrieval module
(w/o Retrieval), the VLM’s implicit knowledge is insufficient, causing the Heart DSC to plummet
from 0.68 to 0.06. Conversely, removing the reasoning module (w/o Reasoning) leads to a signif-
icant degradation, with the Spleen DSC dropping from 0.89 to 0.76, demonstrating that evidence
alone is not enough without structured interpretation. Counterintuitively, the retrieval module also
acts as a powerful efficiency booster. While reasoning contributes to inference time, the w/o Re-
trieval configuration is by far the most computationally expensive, taking nearly 7000 seconds on
ISIC 2018. This shows that retrieval, by providing focused evidence, critically prunes the search
space, making subsequent deliberation far more efficient than an unguided, brute-force approach.
The complete ERA framework thus strikes an optimal balance, where both components work in
concert to maximize performance and computational feasibility.

4.5 AUDITABLE REASONING FOR CLINICAL TRUST

To mitigate the critical black-box problem of VLMs in medicine, ERA is designed to generate a
more transparent and auditable reasoning chain for each decision. This chain documents the re-
trieved visual evidence, its step-by-step validation, and the final policy adopted (details in Appendix
Figure [d). Crucially, this process helps to make the model’s uncertainty more explicit by automat-
ically flagging cases for human review, such as when retrieved evidence is discarded. In this way,
the evidence-based traceability offered by ERA can be an essential step toward building the clinical
trust required for reliable human-AlI collaboration.

4.6 QUALITATIVE ANALYSIS AND DISCUSSION

Qualitative Analysis As shown in Figure[3] our ERA framework generates accurate, anatomically
plausible segmentations on challenging tasks where baseline models catastrophically fail, producing
unstructured noise or incorrect shapes (see Appendix [D]for a detailed analysis).

Discussion Our results show that ERA performs well in medical imaging because it changes the
core process from simple pattern matching to explicit, evidence-based reasoning. By grounding its
decisions in an external knowledge base, ERA avoids the internal biases of VLMs. This is why it
remains robust on complex tasks like the MSD challenges, where other generalist models that rely on
flawed internal knowledge fail completely. The framework’s main strength comes from combining
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Figure 3: Qualitative comparison on challenging examples from the ISIC 2018. Further visualiza-
tions can be found in the appendix.

RAG, which provides the necessary evidence, with CoT, which ensures that evidence is used in a
careful and logical way.

The primary limitation of ERA is its slow inference speed, a common problem for large VLMs. This
highlights a key trade-off in the field: the powerful, large-scale models needed for complex reasoning
are computationally expensive. This makes speed a critical area for future work. Research could
focus on model compression, knowledge distillation, or creating more efficient reasoning methods
to make evidence-based frameworks like ERA practical for real-time clinical use. ERA’s ability
to create a transparent and reviewable reasoning path offers a vital step toward building the trust
required to integrate advanced Al into high-stakes medical workflows.

5 CONCLUSION

Large Vision-Language Models often fail in medical imaging because they rely on opaque, internal
knowledge, making them untrustworthy for clinical use. To solve this, we developed ERA, a zero-
shot framework that directly addresses this by grounding VLM reasoning in an external, verifiable
knowledge base. By combining Retrieval-Augmented Generation (RAG) to source evidence with a
Chain of Thought (CoT) process to ensure its logical use, ERA shifts the paradigm from implicit
guessing to explicit, evidence-based inference. Experiments show this training-free approach not
only remains robust in complex scenarios where others fail but can also match or exceed fully-
supervised specialist models. By generating a transparent and auditable reasoning path, ERA offers
a more trustworthy and data-efficient foundation for medical AI. While computational efficiency
remains a challenge, our work presents a crucial step toward building the safer, more reliable Al
systems required for high-stakes clinical applications.
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APPENDIX

This supplementary document provides additional details, analyses, and visualizations to support
our main paper.

* Section A clarifies that Large Language Models were used exclusively for polishing the
manuscript’s text to improve readability and did not contribute to any core scientific content
or results.

* Section B provides a comprehensive guide to the framework’s implementation for full re-
producibility. This includes the formal pseudocode for the inference pipeline, a detailed
table of all key hyperparameters, visualizations of the prompt templates used in the tiered
reasoning engine, and specifics of the retrieval strategy.

* Section C details the construction of the medical knowledge base, including the data
sources from MedIMeta, the curation process, and the critical measures taken to ensure
data integrity and prevent leakage during evaluation. It also confirms the availability of the
source code.

 Section D presents an in-depth qualitative analysis, supplementing the main paper with ad-
ditional visualizations that highlight the ERA framework’s robust performance in contrast
to the catastrophic failures of baseline models on complex tasks.

* Section E delivers a detailed quantitative breakdown of the framework’s detection perfor-
mance, presenting comprehensive metrics in tables that compare ERA against all baselines
across the ISIC, BraTS, and MSD datasets.

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

To enhance the readability and reduce grammatical errors in this paper, we utilized a Large Lan-
guage Model (LLM) for the sole purpose of polishing the manuscript’s text. The scope of its use
was strictly confined to refining language and improving clarity. The LLM was not involved in gen-
erating the core content, formulating the research ideas, conducting the experiments, or analyzing
the results. All intellectual contributions and scientific claims presented herein are the original work
of the authors.

B IMPLEMENTATION DETAILS AND REPRODUCIBILITY

This section provides key implementation details to ensure reproducibility, addressing hyperparam-
eter settings, the reasoning mechanism, and the retrieval strategy.
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B.1 ALGORITHM

The complete ERA inference pipeline is formally detailed in Algorithm [I]below.

Algorithm 1 The ERA Framework Inference Pipeline

1: Input: Query Image I, Natural Language Instruction C'
2: Parameters: Knowledge Base /C, VLM Reasoner ¢
3: Output: High-Confidence Spatial Prompt B*

4: function ERA-INFERENCE(/, (')
5: Eeang < Retrieve(I, C; K) > Retrieve candidate evidence set from Eq.
6: if Eang = 0 then
7 return ®;5(1,C) > Fallback to zero-shot reasoning if no evidence is found
8 end if
9 E* + SelectBest(Feana) > Select the top-ranked exemplar
10: > Begin CoT-guided deliberation (Sec.
11: Ve, Up 4 Ppetiverate (L, C, E*) > Perform Steps 1 & 2 to get validation outcomes
12: if v. A v, then > Policy 1: Prior Adoption
13: B* «+ E*.b
14: else if v, then > Policy 2: Concept-guided Search
15: B* + ®genen(I,C, E¥)
16: else > Policy 3: Zero-shot Reasoning
17: B* (—q)zs(I,C)
18: end if
19: return B*

20: end function

B.2 FRAMEWORK AND HYPERPARAMETER SETTINGS
Key hyperparameters for the ERA framework are provided in Table[6] For baseline models, we used

their official pre-trained weights and default inference settings. The logic thresholds are presented
as effective ranges, with the optimal value determined on a validation set for each domain.

Table 6: Key hyperparameters for the ERA Framework.

Category Parameter Value / Description
. top_k 6
Retrieval image_text_weight 0.95
. . tierl _similarity Range: [0.93 — 0.96]
Reasoning Logic tier2_similarity Range: [0.82 - 0.88]
Model Qwen2.5-VL-7B-Instruct
LMM Engine (Qwen) Quantization 8-bit
& Attention Mechanism  Standard Eager Attention
Dtype torch.bfloat16
. Model SAM?2 with Hiera-B+ Image Encoder
Segmentation (SAM2) Checkpoint sam?2.1_hiera_base_plus.pt

B.3 TIERED REASONING AND PROMPT TEMPLATES
Our framework’s tiered reasoning mechanism, illustrated in Figure 2 of the main paper, is detailed in

Figure ] This diagram provides a comprehensive visualization of the process, detailing the specific
prompt template used at each stage of the decision-making flow to ensure full reproducibility.
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Figure 4: Detailed visualization of the three-tiered reasoning mechanism. Each tier—(1) Direct
Map, (2) RAG with VLM, and (3) VLM-Only Fallback—is governed by a specific prompt template
that dictates the model’s behavior and decision criteria. As shown in the figure, the complete prompt
template for each tier is displayed, which includes a role definition , task description , workflow ,
and specifications for the input/output format.

B.4 RETRIEVAL STRATEGY DETAILS

The candidate selection mechanism, denoted as get_best_candidate, is implemented through a multi-
stage retrieval and ranking process. Initially, the retriever module evaluates all candidates from
the knowledge base, assigning each a composite final score that combines both content and size
similarity. The module subsequently returns a ranked list of the top-k candidates, where k is set
to 6 in our experiments. The get_best_candidate operation then formally selects the highest-ranked
candidate from this list. This top-ranked candidate serves as the primary evidence, E*, for the
deliberative reasoning module.

C KNOWLEDGE BASE CONSTRUCTION AND DATA USAGE

C.1 DATA INTEGRITY AND LEAKAGE PREVENTION

To ensure a fair evaluation and prevent data leakage, our knowledge base was built exclusively from
the training splits of source datasets, with all test benchmark data strictly excluded. Furthermore, an
inference-time filter prevents a query from retrieving itself, guaranteeing that performance relies on
genuine knowledge transfer rather than data leakage.

C.2 KNOWLEDGE BASE COMPOSITION AND CONSTRUCTION

To support our evidence-based reasoning framework, we constructed a large-scale, diverse medical
visual knowledge base. The data for this knowledge base was sourced from MedIMeta, a large,
standardized, multi-domain meta-dataset containing high-quality medical images with ground-truth
annotations from 10 different medical domains, including dermatoscopy, CT, and X-ray. The
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Table 7: Consolidated performance comparison of object detection models across the ISIC 2018 and
BraTsS datasets. All key metrics are presented for a comprehensive evaluation.

ISIC 2018 BraTS
Model ToU Prec. Sens. Area Ratio ToU Prec. Sens.  Area Ratio
FGCLIP 0.3633 0.3682 0.9665 4.8251 0.0561 0.0598 0.6962 87.0999

GroundingDINO  0.6982 0.8429 0.8549 1.9155 0.0985 0.0990 0.9824 74.3120
YOLOWORLD  0.8217 0.7286 0.9418 5.1335 0.0968 0.0968 1.0000 78.9254

ERA 0.8424  0.8424  1.0000 1.1886 0.4820 0.4866 0.9866 11.4947

dataset is publicly available and can be downloaded from the Zenodo repository (DOI: 10.5281/zen-
0do.7884735).

Our construction process programmatically curated these source datasets into a unified knowledge
base. For each source image with a corresponding ground-truth segmentation mask, we computed a
precise bounding box to serve as the geometric anchor. This process resulted in a final JSON mani-
fest where each entry consistently links an image path to a predefined text label and its corresponding
bounding box coordinates. The manifest was then used to build a feature matrix by encoding each
image into a normalized feature vector using a pre-trained BLIP model.

C.3 CODE AVAILABILITY

To facilitate further research and ensure full reproducibility, our code is included in the supplemen-
tary material provided with this submission.

D DETAILED QUALITATIVE ANALYSIS

To supplement the brief analysis in the main paper, this section provides a more in-depth dis-
cussion of our qualitative results with visualizations in Figure [3] and Figure [5] While the ERA
framework demonstrates strong performance on 2D tasks like ISIC 2018 by producing coherent
and well-defined boundaries, its superiority becomes most evident in highly specialized and de-
manding tasks. In these scenarios, such as MSD organ and BraTS tumor segmentation, baseline
models exhibit catastrophic failures, frequently degenerating into geometrically incorrect shapes,
fragmented predictions, or unstructured noise that bears little resemblance to the target anatomy.
In striking contrast, our ERA framework consistently reconstructs the correct anatomical struc-
tures with high fidelity, accurately delineating organ boundaries in MSD while respecting their 3D
topology, and precisely identifying tumor sub-regions in BraTS. These results visually confirm that
ERA’s evidence-based reasoning paradigm enables it to effectively adapt its knowledge to diverse
and highly specialized clinical scenarios where generalist approaches fall short.

E DETAILED QUANTITATIVE PERFORMANCE

This section provides a detailed quantitative breakdown of the open-vocabulary detection perfor-
mance. Table [/| presents a consolidated comparison on the ISIC 2018 and BraTS datasets, while
Table [8| details the performance across the four evaluated Medical Segmentation Decathlon (MSD)
datasets. Key metrics such as Intersection over Union (IoU), Precision (Prec.), Sensitivity (Sens.),
and Area Ratio are reported to offer a comprehensive evaluation of the ERA framework against the
baselines.
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Figure 5: Additional qualitative examples from the MSD and BraTS datasets. This figure pro-
vides more extensive visualizations, showcasing ERA’s consistent performance on a wider range of
challenging 3D medical imaging cases compared to the noisy and inaccurate results from baseline

models.

Table 8: Open-vocabulary detection performance across the four MSD datasets. The table compares
our ERA framework against baselines on the Heart, Hippocampus, Prostate, and Spleen datasets.

Heart Hippocampus
Model IoU Prec. Sens.  Area Ratio Model IoU Prec. Sens.  Area Ratio
FGCLIP 0.0709 0.0716 0.9309 30.0336 FGCLIP 0.4258 0.6312 0.7036 2.4984
GroundingDINO  0.6605 0.8558 0.7050 1.1317 GroundingDINO  0.5079 0.9648 0.5184 0.5953
YOLOWORLD  0.0186 0.0191 0.0355 35.1234 YOLOWORLD  0.0041 0.0041 0.0081 0.8991
ERA 0.6186 0.8434 0.7191 1.5739 ERA 0.3901  0.9429 0.4005 0.4846
Prostate Spleen

Model IoU Prec. Sens.  Area Ratio Model IoU Prec. Sens.  Area Ratio
FGCLIP 0.1626  0.1684 0.9711 14.0018 FGCLIP 0.1385 0.1393  0.9436 52.4592
GroundingDINO  8.8668 0.9484  0.9092 1.3190 GroundingDINO  0.8894 0.9402 0.9423 1.6592
YOLOWORLD  0.0150 0.0153 0.0291 16.5432 YOLOWORLD  0.0060 0.0062 0.0118 60.1121
ERA 0.8347 0.9584 0.8697 1.2676 ERA 0.8627 0.9451 0.9110 1.6347
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