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ABSTRACT

Vision-Language Models (VLMs) have shown great potential in the domain of
open-vocabulary medical imaging tasks. However, their reliance on implicit cor-
relations instead of explicit evidence leads to unreliable localization and unex-
plainable reasoning processes. To address these challenges, we introduce ERA
(Evidence-Based Reasoning and Augmentation), a novel framework that trans-
forms VLMs from implicit guessers into explicit reasoners for medical imaging.
ERA leverages Retrieval-Augmented Generation (RAG) and Chain-of-Thought
(CoT) to construct a traceable reasoning path from evidence to results. This frame-
work requires no additional training and can be readily applied on top of any ex-
isting Vision-Language Model. Evaluated across multiple challenging medical
imaging benchmarks, ERA’s performance is comparable to fully-supervised spe-
cialist models and significantly surpasses current open-vocabulary baseline meth-
ods. ERA offers a promising direction for developing more auditable and trans-
parent Vision-Language Models for medical applications.

1 INTRODUCTION

Prompt-based models like the Segment Anything Model (SAM) are a major step forward in image
segmentation Kirillov et al. (2023). They offer great flexibility and precision by outlining objects
based on user inputs. In specialized fields like medicine, however, this approach has a key limitation:
it relies on manual interaction. To use these models well in a clinic, an operator needs deep medical
knowledge to ensure accuracy. Also, the growing volume of diagnostic data makes a manual, case-
by-case method slow and impractical. This scaling problem shows the need for methods that can
automatically create spatial prompts, which is vital for using large models widely in medicine.

To automate this process, a simple idea is to train an object detector for specific medical tasks
to generate prompts like bounding boxes. Yet, this method faces big challenges in getting medical
data. Strict patient privacy rules, the high cost of expert annotation, and slow labeling create a severe
lack of large, high-quality datasets. This data shortage makes it nearly impossible to train a robust
detector for diverse, open-vocabulary needs. This problem calls for a new approach that moves
away from models needing extensive in-domain training. Vision-Language Models (VLMs) are a
promising alternative Feng et al. (2025); Zhang et al. (2025); Xie et al. (2025); Shen et al. (2025).
Pre-trained on vast general image-text data, VLMs can understand open-vocabulary commands and
perform initial localization without specialized data, helping to overcome the data shortage.

Although VLMs offer a good solution for data scarcity, two major flaws block their direct use in
clinical practice and make them unreliable Zhang et al. (2025); Li et al. (2025b); Vaswani et al.
(2017). First, they rely on hidden patterns. Their localization decisions often depend on unclear
statistical correlations from general-domain data, not the clear medical evidence needed for accurate
localization. This leads to unreliable prompts. Second, their reasoning process is a ”black box” that
cannot be traced. This conflicts with the clinical need for every decision to be based on verifiable
evidence, making these models difficult to trust in safety-critical applications.

To address these core challenges, we propose ERA (Evidence-based Reasoning and Augmentation),
a framework that transforms a VLM from an implicit guesser into an explicit reasoner. Instead of
fine-tuning, ERA restructures the model’s inference process. It uses RAG to find verifiable evidence
from an external medical knowledge base Fan et al. (2024); Du et al. (2024); Qi et al. (2024). Sub-
sequently, it employs a CoT to build a structured, traceable reasoning path Wang et al. (2025); Lai
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Figure 1: Visual comparison of a standard VLM versus our ERA framework on the localization
task. Columns show (a) the original medical image, (b) the ground truth segmentation, (c) the
localization result from a typical generalist VLM, and (d) the result from our ERA framework.
Relying on opaque, implicit knowledge, the generalist VLM’s localization (c) is often imprecise or
overly coarse. In contrast, our ERA framework (d), by grounding its reasoning in explicit evidence,
generates a significantly more precise and reliable spatial prompt that aligns closely with the ground
truth.

& Nissim (2024). This mechanism guides the VLM to cross-reference retrieved evidence against
the image before generating a high-confidence prompt. By documenting this reasoning chain, ERA
renders the decision process auditable—an essential step toward building trust. Our work signifi-
cantly improves VLM performance in the medical domain, outperforming existing open-vocabulary
methods and achieving precision close to fully-supervised specialist models.

The main contributions of this paper are:

• We propose ERA, a framework that guides VLMs from unreliable guessing toward explicit,
evidence-based reasoning. This approach offers a key path to improving the robustness and
traceability of VLMs in medical tasks.

• We design a reasoning architecture that joins RAG with a CoT process. This synergy forces
the model to ground its decisions in external, verifiable medical knowledge.

• Our framework transforms the VLM’s black-box decision process into a transparent and
auditable workflow. By generating a clear reasoning path, it provides a verifiable basis for
decision-making in high-stakes medical settings.

• Extensive experiments show that ERA performs robustly on specialized medical datasets
where other zero-shot generalist models fail completely, proving the effectiveness of our
evidence-based approach.

2 RELATED WORK

2.1 SEGMENT ANYTHING MODEL 2

Prompt-based interaction has recently become a powerful paradigm in computer vision, with the
SAM marking a significant milestone by demonstrating unprecedented zero-shot segmentation ca-
pabilities on a massive dataset Kirillov et al. (2023). Its successor, SAM2, further extends this zero-
shot capacity from static images to the video domain, establishing a unified, promptable foundation
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model for visual segmentation Ravi et al. (2024). Beyond introducing mechanisms like stream-
ing memory for temporal data, SAM2 also surpasses the original in image segmentation, achieving
higher precision and a manifold increase in speed Ravi et al. (2024); Xiong et al. (2024); Guo et al.
(2025); Bai et al. (2025). Despite their formidable power, the performance of these models is fun-
damentally contingent on the quality of the input prompts they receive. Consequently, the challenge
of reliably and automatically generating precise prompts to overcome the bottleneck of manual in-
teraction constitutes the central problem our research aims to address.

2.2 VISION-LANGUAGE MODELS

To address the aforementioned prompting bottleneck, Vision-Language Models (VLMs) offer a
highly promising technical pathway for automation Jang et al. (2025); Yamaguchi et al. (2025). The
new generation of VLMs has moved beyond the simple image-text alignment of earlier models like
CLIP, exhibiting deeper levels of vision-language fusion and reasoning. Among these, models like
Qwen-2.5 Team (2024) stand out, built upon an advanced large language model deeply integrated
with a powerful visual encoder. This architecture enables complex tasks ranging from detailed im-
age description to precise referential comprehension, making them ideal candidates for generating
spatial prompts from natural language Li et al. (2025a); Feng et al. (2025). However, a fundamental
challenge persists even with these powerful VLMs: their decision-making process relies on implicit
statistical correlations learned from general-domain data, not on the explicit, evidence-based reason-
ing essential for medical diagnostics Zhang et al. (2025); Li et al. (2025b). This inherent limitation
is precisely the target our ERA framework is designed to resolve.

2.3 RETRIEVAL-AUGMENTED GENERATION

To address the VLM’s lack of explicit evidence, our framework turns to RAG, a pivotal paradigm
from Natural Language Processing (NLP) Fan et al. (2024). The core principle of RAG is to retrieve
relevant information from a large-scale, trusted external knowledge base to serve as context before a
model proceeds with generation or reasoning. By grounding decisions in external, verifiable knowl-
edge, this mechanism has been proven to effectively reduce model hallucinations and enhance the
factual accuracy of generated content Zhang et al. (2025). In this work, we adapt the RAG paradigm
to the task of visual localization, providing the VLM with the explicit evidential foundation it in-
herently lacks. This approach equips the model with a reliable external reference, systematically
solving its predicament of relying on vague internal knowledge and implicit guesswork for its con-
clusions.

2.4 CHAIN OF THOUGHT

While RAG provides the necessary evidence, CoT provides the mechanism to ensure this evidence
is used in a traceable and rigorous manner Wang et al. (2025). Inspired by the Chain of Thought
concept, CoT guides a model to generate a series of intermediate, step-by-step logical inferences
before arriving at a final answer Liang et al. (2025). This structured approach not only boosts
performance on complex tasks but also significantly enhances model interpretability by exposing
the reasoning process. Within our framework, CoT serves not for general-purpose reasoning but
for the specific purpose of constructing an explicit and traceable validation path. This path makes
the VLM’s process of adopting external evidence both rigorous and auditable, providing a logical
guarantee for high-reliability prompts and directly addressing the fundamental demand in clinical
applications for trustworthy, evidence-based decision-making.

3 METHOD

3.1 OVERALL FRAMEWORK

To solve the problem of VLMs relying on unclear, internal knowledge for important medical tasks,
we introduce ERA (Evidence-based Reasoning and Augmentation). ERA is a framework made to
enforce a clear, evidence-based reasoning process. As shown in Figure 2, ERA changes a pre-
trained VLM from a simple guesser into a careful reasoner. It does this by connecting the VLM to
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Figure 2: Overview of the ERA Framework. Given an input image and a text instruction, a query
vector is formed by a visual language model. This vector is used to retrieve the most relevant
visual exemplar from a pre-computed knowledge base to serve as evidence. Subsequently, the input
image, text, and the retrieved exemplar are fed into the core Deliberative Reasoning Engine. The
engine executes a tiered decision policy guided by a Chain-of-Thought to validate the evidence and
synthesize a final, high-confidence spatial prompt, which is then used to drive a segmentation model.

an external, non-parametric medical knowledge base. The framework operates in a zero-shot man-
ner, requiring no task-specific training. ERA remains effective with any value arbitrarily selected
from the reference ranges 7. Instead, it guides the VLM’s existing abilities through a structured
and checkable reasoning process. This process has two main parts: a Non-parametric Knowledge
Integration module to find real-world evidence, and a Deliberative Reasoning Engine to check and
use that evidence.

3.2 THE NON-PARAMETRIC KNOWLEDGE BASE

To allow for clear reasoning, our framework uses an external, non-parametric visual knowledge
base. We build and index this base to provide checkable evidence that adds to the VLM’s own
understanding.

3.2.1 KNOWLEDGE CURATION AND STRUCTURING

At the center of our framework is a large, structured medical knowledge base, K, which serves as
the source of verifiable evidence. We construct this base using MedIMeta Woerner et al. (2025), a
comprehensive standardized meta-dataset that aggregates high-quality medical images and ground-
truth annotations from 10 diverse medical domains, including CT, MRI, X-ray, and dermatoscopy.
We employ this composite, mixed-modality source specifically to maximize the diversity of visual
evidence. Unlike single-domain databases that restrict a model to specific anatomies, a composite
database ensures that the retrieval module can find semantically relevant visual analogues even for
rare or unseen clinical targets, thereby preventing overfitting to a narrow subdomain.

Each item e ∈ K is structured as a tuple e = (i, t, b). Here, i is the image path, and t is the textual
label. Crucially, since the source datasets primarily provided pixel-level segmentation masks, we
algorithmically generated the spatial coordinate b by calculating the minimum bounding rectangle
for each mask. This ensures that the geometric anchor tightly frames the target lesion or organ,
converting diverse segmentation data into a unified prompt format compatible with our framework.
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3.2.2 FEATURE SPACE INDEXING FOR EFFICIENT RETRIEVAL

To allow for fast, meaning-based evidence retrieval, the entire knowledge base K is indexed before-
hand. This one-time pre-calculation of features makes the retrieval process as fast as possible during
use. We use a pre-trained vision-language model, BLIP2 Li et al. (2023), as a feature encoder that
is not changed. We chose BLIP2 because it is good at understanding meaning and works well on
new data. Using this encoder, each image in K is turned into a feature vector in a high-dimensional
space, which is then normalized. This normalization ensures that the inner product of any two vec-
tors equals their cosine similarity. It is worth noting that despite the varying resolutions and aspect
ratios of the source images in the heterogeneous knowledge base, the image encoder standardizes
all inputs via resizing and padding during the embedding process, ensuring consistent feature repre-
sentation across different modalities.

During use, a query made of an image I and a text instruction C is encoded into a normalized query
vector. The top-k most similar items from the knowledge base are then found by an efficient inner
product calculation. This retrieval process is written as:

Ecand = Retrieve(I, C;K) (1)

where Ecand is the set of candidate examples found in the knowledge base K based on the query
(I, C).

3.3 THE DELIBERATIVE REASONING ENGINE

Finding relevant evidence is only the first step. The key innovation of ERA is its careful process for
using that evidence. This module uses a powerful, standard VLM as its reasoning core, which we
call Φ. It guides the VLM’s behavior with a carefully designed CoT to check and use the retrieved
evidence in a structured, traceable way.

3.3.1 THE PARAMETRIC REASONING CORE

The core of our reasoning engine is Qwen2.5, a powerful, open-source Vision-Language Model.
We use its advanced abilities in a zero-shot setting, treating it as a general-purpose reasoner Φ. To
make it run efficiently, we use methods like 8-bit quantization and Flash Attention 2. This allows
the framework to work well without needing costly fine-tuning.

3.3.2 CHAIN-OF-THOUGHT FOR EVIDENCE-BASED REASONING

To guide the VLM’s reasoning, we designed a confidence-aware tiered CoT prompting strategy. The
framework retrieves a candidate set Ecand containing k exemplars (k = 6). The routing logic is de-
termined by the similarity score of the top-ranked exemplar (E∗ ∈ Ecand). If the similarity exceeds
a high-confidence threshold, the system enters Tier 1, efficiently adopting E∗ without further com-
putation. However, if the confidence is ambiguous, the system enters Tier 2. In this mode, unlike
Tier 1, the VLM reasoner Φ is fed the entire candidate set Ecand as reference context. This allows
the model to cross-reference multiple pieces of evidence to robustly validate the primary candidate
before executing the following logical steps:

1. Step 1: Check for Concept Match. The reasoner Φ analyzes the context provided by
Ecand to determine if the primary evidence E∗ is semantically relevant. It judges whether
the visual features in the evidence align with the target description in instruction C, yielding
a judgment vc ∈ {True,False}.

2. Step 2: Test the Location Hypothesis. Only if the concepts match (vc = True), the
reasoner proceeds to spatial validation. It treats the bounding box E∗.b as a location hy-
pothesis and tests if this specific region in the query image I plausibly contains the target
anatomy. This yields a second judgment vp ∈ {True,False}.

3. Step 3: Choose a Policy. Finally, the framework executes a policy based on the validation
outcomes:

• Policy 1: Adopt Evidence. Used if vc ∧ vp. The framework confirms the retrieved
evidence is valid and directly uses E∗.b as the prompt.
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• Policy 2: Concept-guided Search. Used if vc ∧ ¬vp. The framework accepts the
visual concept but rejects the specific location, using the evidence features to guide a
new VLM-driven search in I .

• Policy 3: Zero-shot Reasoning. Used if ¬vc. The framework rejects the evidence
entirely (Tier 3 fallback) and relies on the VLM’s internal knowledge.

The VLM generates a structured text output documenting this reasoning chain. This entire process,
which leverages the full candidate context for deliberation, is formalized as:

B∗ = ERA-Reasoner(I, C,Ecand; Φ) (2)

where B∗ is the final spatial prompt and Ecand is the retrieved evidence set. The full algorithm is
detailed in Algorithm 1 in the Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Data Integrity Our experiments are conducted on a diverse set of medical imaging
datasets. We use the ISIC 2018 dataset Codella et al. (2018) for standard scenarios featuring well-
defined targets, and tasks from the Medical Segmentation Decathlon (MSD) Simpson et al. (2019)
and BraTS 2021 Baid et al. (2021) for complex scenarios characterized by low-contrast targets and
intricate anatomical structures. We implemented rigorous measures to ensure a fair evaluation and
prevent data leakage across all benchmarks. The full details are provided in Section C.2.

Baselines and Metrics We compare ERA against two baseline categories: (1) Supervised Spe-
cialist Models, which for 2D tasks include U-Net Ronneberger et al. (2015), ResU-Net, RecU-Net,
and R2U-Net Alom et al. (2018), and for 3D tasks include CerebriuDIKU, NVDLMED, Kim et
al. Kim et al. (2019), C2FNAS Yu et al. (2020), DINTS He et al. (2021), and nnU-Net Isensee et al.
(2019); and (2) Zero-shot Generalist Models, which include YOLO-World Cheng et al. (2024),
Grounding DINO Liu et al. (2023), FG-CLIP Xie et al. (2025), and MedSAM Ma et al. (2024).

For evaluation, we report Sensitivity (SE), Specificity (SP), F1-Score, Accuracy (AC), and Dice Co-
efficient (DC) for 2D tasks. For 3D tasks, we use the Dice Similarity Coefficient (DSC), Normalized
Surface Distance (NSD). We also report total inference time in seconds for efficiency analysis.

4.2 MAIN QUANTITATIVE RESULTS

4.2.1 PERFORMANCE ON STANDARD SCENARIOS

On the ISIC 2018 benchmark (Table 1), ERA demonstrates a strong balance between sensitivity
and precision. While the baseline YOLO-World achieves a high DC score (0.9021), its extremely
low Specificity (SP) of 0.0817 indicates severe over-segmentation, rendering it clinically unreliable.
In stark contrast, our ERA framework achieves a competitive DC of 0.8701 with a near-perfect SP
of 0.9851, far outperforming other zero-shot approaches in balanced performance. Notably, ERA
is also highly competitive with fully-supervised specialist models, rivaling even the R2U-Net (t=3)
configuration.

4.2.2 PERFORMANCE ON COMPLEX SCENARIOS

ERA’s superiority is most evident in complex scenarios like the MSD tasks, where generalist models
suffer a catastrophic performance collapse with near-zero DSC scores (Table 2). By grounding its
reasoning in a medical knowledge base, ERA is the only zero-shot framework to maintain robust,
clinically viable performance. Most impressively, on the Prostate dataset, ERA achieves a DSC of
0.8462, outperforming the fully-supervised state-of-the-art nnUNet (0.8311). This result demon-
strates that for specialized domains, an evidence-based approach can surpass even models trained
extensively on task-specific data.
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Table 1: Performance on the ISIC 2018 task. The parameter t indicates the number of unfolding
time steps for the recurrent convolutional layers.

Method SE↑ SP↑ F1↑ AC↑ DC↑
U-Net (t=2) 0.9479 0.9263 0.8682 0.9314 0.8476
ResU-Net (t=2) 0.9454 0.9338 0.8799 0.9367 0.8567
RecU-Net (t=2) 0.9334 0.9395 0.8841 0.9380 0.8592
R2U-Net (t=2) 0.9496 0.9313 0.8823 0.9372 0.8608
R2U-Net (t=3) 0.9414 0.9425 0.8920 0.9424 0.8616
ERA + SAM2 0.8306 0.9851 0.8701 0.9639 0.8701
ERA + MedSAM 0.9657 0.9883 0.9460 0.9852 0.9460

YOLO-World + SAM2 0.9418 0.0817 0.8216 0.8236 0.9021
Grounding DINO + SAM2 0.7825 0.2595 0.1385 0.3313 0.2433
FG-CLIP + SAM2 0.3523 0.6621 0.3343 0.3948 0.5011
SAM2 0.0258 0.9968 0.0493 0.8634 0.0493
ERA + SAM2 0.8306 0.9851 0.8701 0.9639 0.8701
MedSAM 0.8679 0.1472 0.2347 0.2436 0.2347
ERA + MedSAM 0.9657 0.9883 0.9460 0.9852 0.9460

Table 2: Performance comparison on specialized medical segmentation tasks from the MSD.

Method Heart Hippo. Prostate Spleen

DSC ↑ NSD ↑ DSC ↑ NSD ↑ DSC ↑ NSD ↑ DSC ↑ NSD ↑
CerebriuDIKU 0.8947 0.9063 0.8900 0.9742 0.7773 0.9631 0.9500 0.9800
NVDLMED 0.9246 0.9557 0.8734 0.9633 0.7801 0.9521 0.9601 0.9972
Kim et al. 0.9311 0.9644 0.8942 0.9775 0.8083 0.9654 0.9192 0.9483
C2FNAS 0.9249 0.9581 0.8867 0.9731 0.8182 0.9696 0.9628 0.9766
DiNTS 0.9299 0.9635 0.8916 0.9766 0.8231 0.9739 0.9698 0.9983
nnUNet 0.9330 0.9674 0.8946 0.9766 0.8311 0.9756 0.9743 0.9989
ERA + SAM2 0.6787 0.1508 0.5694 0.4321 0.8462 0.6242 0.8864 0.7103
ERA+MedSAM 0.8873 0.8656 0.7948 0.9470 0.9568 0.9976 0.9604 0.9768

YOLO-World + SAM2 0.0366 0.1397 0.0081 0.0776 0.0296 0.0956 0.0119 0.0407
Grounding DINO + SAM2 0.0262 0.5002 0.1771 0.5160 0.0851 0.4915 0.0585 0.4171
FG-CLIP + SAM2 0.0333 0.4799 0.1821 0.4923 0.0913 0.4820 0.0150 0.1428
SAM2 0.0031 0.0772 0.0000 0.0051 0.0128 0.0654 0.0010 0.0066
ERA + SAM2 0.6787 0.1508 0.5694 0.4321 0.8462 0.6242 0.8864 0.7103
MedSAM 0.0137 0.0012 0.1535 0.1212 0.0704 0.0474 0.0254 0.0527
ERA + MedSAM 0.8873 0.8656 0.7948 0.9470 0.9568 0.9976 0.9604 0.9768

4.3 EFFICIENCY ANALYSIS

While performance is critical, practical deployment also hinges on computational efficiency. This
section analyzes the inference time of the ERA framework as a necessary trade-off for its superior
accuracy and reliability.

As detailed in Table 3, the ERA framework’s inference time is considerably higher than that of the
zero-shot baselines. For instance, on the ISIC 2018 dataset, ERA requires 2151.29 seconds, whereas
YOLO-World and Grounding DINO complete in 104.92 and 155.24 seconds, respectively. However,
this comparison must be contextualized by performance. The baseline methods, despite their speed,
produce clinically unusable results on all specialized tasks, as evidenced by their near-zero DSC
scores in Table 2. Their speed, therefore, represents the efficiency of arriving at a wrong answer.

The computational cost of ERA is a deliberate trade-off, investing time in a rigorous retrieval and
reasoning process to achieve a massive leap in performance—from complete failure to robust, state-
of-the-art results. This investment transforms the paradigm from an unreliable tool into a viable
clinical instrument, justifying the additional computational budget.
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Table 3: Comparison of total inference time in seconds between the ERA framework and other zero-
shot baseline methods across the ISIC 2018 and four MSD datasets.

Method ISIC 2018 MSD Datasets

time(s) Heart Hippocampus Prostate Spleen

Baselines
YOLO-World + SAM2 104.92 163.13 636.72 43.59 274.72
Grounding DINO + SAM2 155.24 601.78 2901.46 159.82 992.26
FG-CLIP + SAM2 138.77 254.88 792.51 67.36 432.46

Ours ERA + SAM2 2151.29 3309.39 11545.83 643.39 4060.01

Table 4: Ablation study of the ERA framework, evaluating performance across all datasets.

Configuration ISIC 2018 Heart Hippo. Prostate Spleen BraTS 2021

SE↑ SP↑ DC↑ DSC↑ NSD↑ DSC↑ NSD↑ DSC↑ NSD↑ DSC↑ NSD↑ Dice↑ mIoU↑

Ablations
w/o Reasoning 0.60 0.91 0.55 0.67 0.14 0.49 0.40 0.79 0.52 0.87 0.64 0.76 0.65
w/o Retrieval 0.83 0.87 0.84 0.06 0.00 0.14 0.25 0.07 0.03 0.04 0.05 0.27 0.17
w/o Tier-2 0.57 0.89 0.51 0.57 0.13 0.50 0.41 0.80 0.56 0.76 0.68 0.78 0.66
Unguided SAM2 0.03 1.00 0.05 0.00 0.08 0.00 0.01 0.01 0.07 0.00 0.01 0.02 0.01

ERA + SAM2 0.83 0.99 0.87 0.68 0.15 0.57 0.43 0.85 0.62 0.89 0.71 0.78 0.66

4.4 ABLATION STUDIES

Our ablation studies, detailed in Table 4 and Table 5, reveal an indispensable synergy between evi-
dence retrieval and deliberative reasoning that enhances both performance and efficiency. Ablating
either component causes a severe performance collapse. For instance, without the retrieval module
(w/o Retrieval), the VLM’s implicit knowledge is insufficient, causing the Heart DSC to plummet
from 0.68 to 0.06. Conversely, removing the reasoning module (w/o Reasoning) leads to a signif-
icant degradation, with the Spleen DSC dropping from 0.89 to 0.76, demonstrating that evidence
alone is not enough without structured interpretation. Counterintuitively, the retrieval module also
acts as a powerful efficiency booster. While reasoning contributes to inference time, the w/o Re-
trieval configuration is by far the most computationally expensive, taking nearly 7000 seconds on
ISIC 2018. This shows that retrieval, by providing focused evidence, critically prunes the search
space, making subsequent deliberation far more efficient than an unguided, brute-force approach.
The complete ERA framework thus strikes an optimal balance, where both components work in
concert to maximize performance and computational feasibility.

4.5 QUANTITATIVE ANALYSIS OF TIER EFFECTIVENESS

Inferred Tier Contribution To strictly quantify the distinct necessity of each reasoning tier, we
introduce the Relative Performance Drop (RPD) metric, defined as the percentage decline in Dice
score when a specific tiering capability is ablated. Table 6 presents this analysis across all datasets,
including an aggregated average to highlight overall systemic dependencies.

First, Tier 3 (zero-shot fallback) proves functionally insufficient for specialized medical domains,
with a substantial average RPD of 70.3%. However, this dependency exhibits significant variance:
the RPD is negligible for ISIC (3.4%) but exceeds 90% for MSD tasks. This disparity highlights the
critical role of the domain gap: while skin lesions share visual features with natural images found
in VLM pre-training (rendering zero-shot feasible), the specialized, low-contrast anatomy of cross-
sectional organ imaging is entirely alien to the model, strictly necessitating the external evidence
provided by the retrieval module.

Second, Tier 1 (direct adoption) establishes a robust foundational baseline, reflected in a moderate
average RPD of 10.7% when reasoning is removed. Notably, for structurally consistent targets like
the Heart and Spleen, the RPD is minimal (1.5% and 2.2%, respectively). This indicates that for such
“simple” scenarios characterized by stable morphology, the retrieved evidence is sufficiently precise
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Table 5: Ablation study of inference time in seconds for the ERA framework and its different con-
figurations.

Configuration ISIC 2018 Heart Hippocampus Prostate Spleen BraTS 2021

w/o Reasoning 2148.66 3316.50 11575.59 643.35 3914.52 2487.23
w/o Retrieval 6987.60 10554.95 36510.91 2014.39 12181.06 7866.00
w/o Tier-2 2079.83 3206.49 11167.77 652.73 3770.90 2407.64
Unguided SAM2 55.01 93.21 369.94 25.06 163.50 80.65

ERA + SAM2 2151.29 3309.39 11545.83 643.39 4060.01 2527.86

for direct mapping. The framework’s stability here validates its design efficiency: it correctly filters
these clear-cut cases via Tier 1, reserving the computational cost of deliberation for more ambiguous
targets.

Finally, Tier 2 (deliberative reasoning) functions as the critical refinement engine for complex sce-
narios. In contrast to the simple cases above, removing Tier 2 causes sharp performance penalties
in challenging tasks, such as a 14.0% drop in Hippocampus and a 36.8% drop in ISIC segmenta-
tion. These elevated RPD values confirm that for intricate or variable targets, the naive adoption
of evidence is inadequate, and the deliberative reasoning process becomes indispensable for error
correction.

Table 6: Inferred contribution of reasoning tiers based on Relative Performance Drop (RPD). The
Average row highlights the system’s overall reliance on each tier. The data confirms a dynamic
dependency: Tier 1 suffices for morphologically consistent anatomy (Heart, Spleen), while Tier 2 is
essential for complex tasks (Hippocampus, ISIC).

Dataset Full w/o Retrieval (Tier 3 Only) w/o Reasoning (No Tier 2)

Score Score RPD (∆%) Score RPD (∆%)

ISIC 2018 0.87 0.84 3.4% 0.55 36.8%
Heart 0.68 0.06 91.2% 0.67 1.5%
Hippocampus 0.57 0.14 75.4% 0.49 14.0%
Prostate 0.85 0.07 91.8% 0.79 7.1%
Spleen 0.89 0.05 94.4% 0.87 2.2%
BraTS 2021 0.78 0.27 65.4% 0.76 2.6%

Average - - 70.3% - 10.7%

4.6 AUDITABLE WORKFLOW FOR DECISION TRACEABILITY

To address the inherent opacity of VLMs in medical applications, ERA is designed to structure the
decision process into an auditable reasoning chain. Specifically, the framework documents the in-
termediate steps: the retrieved visual evidence, the sequential validation logic, and the final policy
adoption (details in Appendix Figure 4). Crucially, this workflow renders the decision logic ex-
plicit, allowing for easier identification of potential failures, such as cases where retrieved evidence
is rejected. While establishing genuine clinical trust requires extensive validation with medical pro-
fessionals, we believe the evidence-based traceability offered by ERA provides the necessary audit
trail to support such future assessments.

4.7 QUALITATIVE ANALYSIS AND DISCUSSION

Qualitative Analysis As shown in Figure 3, our ERA framework generates accurate, anatomically
plausible segmentations on challenging tasks where baseline models catastrophically fail, producing
unstructured noise or incorrect shapes (see Appendix D for a detailed analysis).

Discussion Our results show that ERA performs well in medical imaging because it changes the
core process from simple pattern matching to explicit, evidence-based reasoning. By grounding its
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Figure 3: Qualitative comparison on challenging examples from the ISIC 2018. Further visualiza-
tions can be found in the appendix.

decisions in an external knowledge base, ERA avoids the internal biases of VLMs. This is why it
remains robust on complex tasks like the MSD challenges, where other generalist models that rely on
flawed internal knowledge fail completely. The framework’s main strength comes from combining
RAG, which provides the necessary evidence, with CoT, which ensures that evidence is used in a
careful and logical way.

The primary limitation of ERA is its slow inference speed, a common problem for large VLMs. This
highlights a key trade-off in the field: the powerful, large-scale models needed for complex reasoning
are computationally expensive. This makes speed a critical area for future work. Research could
focus on model compression, knowledge distillation, or creating more efficient reasoning methods
to make evidence-based frameworks like ERA practical for real-time clinical use. ERA’s ability
to create a transparent and reviewable reasoning path offers a vital step toward building the trust
required to integrate advanced AI into high-stakes medical workflows.

5 CONCLUSION

Large Vision-Language Models often fail in medical imaging because they rely on opaque, internal
knowledge, limiting their reliability and auditability for clinical use. To solve this, we developed
ERA, a zero-shot framework that mitigates this by grounding VLM reasoning in an external, verifi-
able knowledge base. By combining RAG to source evidence with a CoT process to ensure its logical
use, ERA transforms the inference process from implicit guessing to explicit, evidence-based infer-
ence. Experiments show this training-free approach not only remains robust in complex scenarios
where others fail but can also match or exceed fully-supervised specialist models. By generating
a transparent and traceable reasoning path, ERA offers a verifiable workflow that facilitates human
oversight for medical AI. While computational efficiency remains a challenge, our work presents a
crucial step toward building the more accountable and reliable AI systems required for high-stakes
clinical applications.
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APPENDIX

This supplementary document provides additional details, analyses, and visualizations to support
our main paper.

• Section A clarifies that Large Language Models were used exclusively for polishing the
manuscript’s text to improve readability and did not contribute to any core scientific content
or results.

• Section B provides a comprehensive guide to the framework’s implementation for full re-
producibility. This includes the formal pseudocode for the inference pipeline, a detailed
table of all key hyperparameters, visualizations of the prompt templates used in the tiered
reasoning engine, and specifics of the retrieval strategy.

• Section C details the construction of the medical knowledge base, including the data
sources from MedIMeta, the curation process, and the critical measures taken to ensure
data integrity and prevent leakage during evaluation. It also confirms the availability of the
source code.

• Section D presents an in-depth qualitative analysis, supplementing the main paper with ad-
ditional visualizations that highlight the ERA framework’s robust performance in contrast
to the catastrophic failures of baseline models on complex tasks.

• Section E delivers a detailed quantitative breakdown of the framework’s detection perfor-
mance, presenting comprehensive metrics in tables that compare ERA against all baselines
across the ISIC, BraTS, and MSD datasets.

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

To enhance the readability and reduce grammatical errors in this paper, we utilized a Large Lan-
guage Model (LLM) for the sole purpose of polishing the manuscript’s text. The scope of its use
was strictly confined to refining language and improving clarity. The LLM was not involved in gen-
erating the core content, formulating the research ideas, conducting the experiments, or analyzing
the results. All intellectual contributions and scientific claims presented herein are the original work
of the authors.

B IMPLEMENTATION DETAILS AND REPRODUCIBILITY

This section provides key implementation details to ensure reproducibility, addressing hyperparam-
eter settings, the reasoning mechanism, and the retrieval strategy.

B.1 ALGORITHM

The complete ERA inference pipeline is formally detailed in Algorithm 1 below.

B.2 FRAMEWORK AND HYPERPARAMETER SETTINGS

Key hyperparameters for the ERA framework are provided in Table 7. For baseline models, we used
their official pre-trained weights and default inference settings. The logic thresholds are presented
as effective ranges, with the optimal value determined on a validation set for each domain.
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Algorithm 1 The ERA Framework Inference Pipeline
1: Input: Query Image I , Natural Language Instruction C
2: Parameters: Knowledge Base K, VLM Reasoner Φ, Thresholds Thigh

3: Output: High-Confidence Spatial Prompt B∗

4: function ERA-INFERENCE(I, C)
5: Ecand ← Retrieve(I, C;K, k) ▷ Retrieve k candidates
6: if Ecand = ∅ then
7: return ΦZS(I, C) ▷ Tier 3: Fallback
8: end if
9: E∗ ← Ecand[0] ▷ Top-1 candidate

10: s∗ ← Similarity(E∗, I) ▷ Calculate similarity score

11: if s∗ > Thigh then ▷ Tier 1: High Confidence
12: B∗ ← E∗.b ▷ Directly adopt Top-1 evidence
13: else ▷ Tier 2: Ambiguous, need deliberation
14: ▷ VLM reasons over the full candidate set Ecand
15: vc, vp ← ΦDeliberate(I, C,Ecand)
16: if vc ∧ vp then ▷ Policy 1: Adopt Evidence (after validation)
17: B∗ ← E∗.b
18: else if vc then ▷ Policy 2: Concept-guided Search
19: B∗ ← ΦSearch(I, C,Ecand)
20: else ▷ Policy 3: Zero-shot Reasoning
21: B∗ ← ΦZS(I, C)
22: end if
23: end if
24: return B∗

25: end function

Table 7: Key hyperparameters for the ERA Framework.
Category Parameter Value / Description

Retrieval top k 6
image text weight 0.95

Reasoning Logic tier1 similarity Range: [0.93 – 0.96]
tier2 similarity Range: [0.82 – 0.88]

LMM Engine (Qwen)

Model Qwen2.5-VL-7B-Instruct
Quantization 8-bit
Attention Mechanism Standard Eager Attention
Dtype torch.bfloat16

Segmentation (SAM2) Model SAM2 with Hiera-B+ Image Encoder
Checkpoint sam2.1 hiera base plus.pt

B.3 TIERED REASONING AND PROMPT TEMPLATES

Our framework’s tiered reasoning mechanism, illustrated in Figure 2 of the main paper, is detailed in
Figure 4. This diagram provides a comprehensive visualization of the process, detailing the specific
prompt template used at each stage of the decision-making flow to ensure full reproducibility.

B.4 RETRIEVAL STRATEGY DETAILS

The candidate selection mechanism, denoted as get best candidate, is implemented through a multi-
stage retrieval and ranking process. Initially, the retriever module evaluates all candidates from
the knowledge base, assigning each a composite final score that combines both content and size
similarity. The module subsequently returns a ranked list of the top-k candidates, where k is set
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Figure 4: Detailed visualization of the three-tiered reasoning mechanism. Each tier—(1) Direct
Map, (2) RAG with VLM, and (3) VLM-Only Fallback—is governed by a specific prompt template
that dictates the model’s behavior and decision criteria. As shown in the figure, the complete prompt
template for each tier is displayed, which includes a role definition , task description , workflow ,
and specifications for the input/output format.

to 6 in our experiments. The get best candidate operation then formally selects the highest-ranked
candidate from this list. This top-ranked candidate serves as the primary evidence, E∗, for the
deliberative reasoning module.

C KNOWLEDGE BASE CONSTRUCTION AND DATA USAGE

C.1 DATA INTEGRITY AND LEAKAGE PREVENTION

To ensure a fair evaluation and prevent data leakage, our knowledge base was built exclusively from
the training splits of source datasets, with all test benchmark data strictly excluded. Furthermore, an
inference-time filter prevents a query from retrieving itself, guaranteeing that performance relies on
genuine knowledge transfer rather than data leakage.

C.2 KNOWLEDGE BASE COMPOSITION AND CONSTRUCTION

To support our evidence-based reasoning framework, we constructed a large-scale, diverse medical
visual knowledge base. The data for this knowledge base was sourced from MedIMeta Woerner et al.
(2025), a large, standardized, multi-domain meta-dataset containing high-quality medical images
with ground-truth annotations from 10 different medical domains, including dermatoscopy, CT, and
X-ray.

Our construction process programmatically curated these source datasets into a unified knowledge
base. For each source image with a corresponding ground-truth segmentation mask, we computed a
precise bounding box to serve as the geometric anchor. This process resulted in a final JSON mani-
fest where each entry consistently links an image path to a predefined text label and its corresponding
bounding box coordinates. The manifest was then used to build a feature matrix by encoding each
image into a normalized feature vector using a pre-trained BLIP model.
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C.3 CODE AVAILABILITY

To facilitate further research and ensure full reproducibility, our code is included in the supplemen-
tary material provided with this submission.

D DETAILED QUALITATIVE ANALYSIS

To supplement the brief analysis in the main paper, this section provides a more in-depth dis-
cussion of our qualitative results with visualizations in Figure 3 and Figure 5. While the ERA
framework demonstrates strong performance on 2D tasks like ISIC 2018 by producing coherent
and well-defined boundaries, its superiority becomes most evident in highly specialized and de-
manding tasks. In these scenarios, such as MSD organ and BraTS tumor segmentation, baseline
models exhibit catastrophic failures, frequently degenerating into geometrically incorrect shapes,
fragmented predictions, or unstructured noise that bears little resemblance to the target anatomy.
In striking contrast, our ERA framework consistently reconstructs the correct anatomical struc-
tures with high fidelity, accurately delineating organ boundaries in MSD while respecting their 3D
topology, and precisely identifying tumor sub-regions in BraTS. These results visually confirm that
ERA’s evidence-based reasoning paradigm enables it to effectively adapt its knowledge to diverse
and highly specialized clinical scenarios where generalist approaches fall short.

Figure 5: Additional qualitative examples from the MSD and BraTS datasets. This figure pro-
vides more extensive visualizations, showcasing ERA’s consistent performance on a wider range of
challenging 3D medical imaging cases compared to the noisy and inaccurate results from baseline
models.

E DETAILED QUANTITATIVE PERFORMANCE

This section provides a detailed quantitative breakdown of the open-vocabulary detection perfor-
mance. Table 8 presents a consolidated comparison across all six evaluated datasets, including ISIC
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Table 8: Comprehensive performance comparison of the ERA framework against baselines across
six medical datasets.

ISIC 2018 BraTS
Model Recall Prec. F1 mIoU Model Recall Prec. F1 mIoU

FGCLIP 0.9518 0.9518 0.9518 0.3807 FGCLIP 0.3914 0.4705 0.4273 0.1247
GroundingDINO 0.9833 0.5869 0.7351 0.7044 GroundingDINO 0.6002 0.5115 0.5523 0.1519
YOLOWORLD 0.9418 0.7286 0.8216 0.8217 YOLOWORLD 1.0000 0.0968 0.1765 0.0968

ERA 1.0000 1.0000 1.0000 0.8424 ERA 0.8174 0.8034 0.8103 0.5788

MSD: Heart MSD: Hippocampus
Model Recall Prec. F1 mIoU Model Recall Prec. F1 mIoU

FGCLIP 0.5697 0.3743 0.4518 0.1065 FGCLIP 0.9474 0.6838 0.7943 0.4477
GroundingDINO 0.9035 0.9629 0.9322 0.7224 GroundingDINO 0.8691 0.9895 0.9254 0.5155
YOLOWORLD 0.0355 0.0191 0.0248 0.0186 YOLOWORLD 0.0081 0.0041 0.0054 0.0041

ERA 0.9028 0.9978 0.9479 0.6708 ERA 0.9463 0.9610 0.9536 0.4087

MSD: Prostate MSD: Spleen
Model Recall Prec. F1 mIoU Model Recall Prec. F1 mIoU

FGCLIP 0.8973 0.7110 0.7933 0.1785 FGCLIP 0.5524 0.1603 0.2485 0.2347
GroundingDINO 0.9958 0.7890 0.8804 0.8704 GroundingDINO 0.9896 0.2406 0.3871 0.8952
YOLOWORLD 0.0291 0.0153 0.0201 0.0150 YOLOWORLD 0.0118 0.0062 0.0081 0.0060

ERA 0.9958 1.0000 0.9979 0.8382 ERA 0.9915 1.0000 0.9957 0.8690

2018, BraTS, and four tasks from the MSD. To rigorously assess both the localization accuracy and
detection completeness, we employ a standard set of metrics anchored on Intersection over Union
(IoU). Specifically, we report Recall (sensitivity), defined as the ratio of correctly matched ground
truths to the total number of ground truths; Precision, the ratio of correct matches to the total num-
ber of predicted boxes; and F1-Score, the harmonic mean of Recall and Precision. Furthermore, to
evaluate the geometric quality of the detected regions, mIoU is calculated specifically on the True
Positive matches.
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