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ABSTRACT

Large language models (LLMs) combined with instruction tuning have shown
significant progress in information extraction (IE) tasks, exhibiting strong general-
ization capabilities to unseen datasets by following annotation guidelines. However,
their applicability to low-resource languages remains limited due to lack of both
labeled data for fine-tuning, and unlabeled text for pre-training. In this paper,
we propose TransFusion, a framework in which models are fine-tuned to use En-
glish translations of low-resource language data, enabling more precise predictions
through annotation fusion. Based on TransFusion, we introduce GoLLIE-TF, a
cross-lingual instruction-tuned LLM for IE tasks, designed to close the perfor-
mance gap between high and low-resource languages. Our experiments across
twelve multilingual IE datasets spanning 50 languages demonstrate that GoLLIE-
TF achieves better cross-lingual transfer over the base model. In addition, we show
that TransFusion significantly improves low-resource language named entity recog-
nition when applied to proprietary models such as GPT-4 (+5 F1) with a prompting
approach, or fine-tuning different language models including decoder-only (+14
F1) and encoder-only (+13 F1) architectures.

1 INTRODUCTION

The task of information extraction (IE) is challenging due to fine-grained annotation guidelines
for span-level annotations. Fortunately, recent advances in instruction-following large language
models (LLM) (Ouyang et al., 2022; Gemini et al., 2023) such as GoLLIE (Sainz et al., 2024) have
demonstrated the ability to perform zero-shot IE without labels using annotation guidelines. However,
these models are often pre-trained on English-centric data (Touvron et al., 2023; Roziere et al., 2023).
Even state-of-the-art proprietary models such as GPT-4 exhibit significant performance degradation
from 80 English F1 to 55 F1 on low-resource African languages, as shown in Figure 1 (right).

To improve NLP on low-resource languages, the research community has turned to machine translation
to translate fine-tuning datasets (translate-train) and translate test data into high-resource languages
for easier processing (translate-test) (Hu et al., 2020). Recent studies (Shi et al., 2022; Huang et al.,
2023) on prompting LLMs with translated data have shown improvements on diverse tasks such
as math reasoning and summarization. Prior work has explored the use of machine translation to
improve multilingual instruction-following on traditional NLP benchmarks, such as natural language
inference, and sentiment analysis, however, the use of MT to improve instruction-following IE models
is less explored, as there is not a trivial alignment between labels in the native language and translated
texts (Ahuja et al., 2023). With recent efforts to develop machine translation (MT) models such as
M2M (Fan et al., 2021) and NLLB-200 (Costa-jussà et al., 2022) that better support low-resource
languages, we study how to teach LLMs to leverage an external MT system in a resource-efficient
manner to improve low-resource IE.

In this paper, we propose a Translation and Fusion (TransFusion) framework, which aims to teach
models to use translation data from an external MT system to make better predictions. The framework
includes three steps: (1) translating low-resource data into English at inference time, to be annotated
by a high-resource model. Next, (2) these span-annotated English translations are combined with
low-resource language text in a fusion model that is trained to make predictions conditioned on both
types of data. Finally (3), the language model generates a TransFusion reasoning chain (annotate
and fuse) in a single autoregressive decoding pass. To train TransFusion models, we construct
cross-lingual instruction fine-tuning data by translating and projecting labels from English IE datasets
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Cross-lingual
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English IE Datasets

GoLLIE-TF

Bambara:  
Yan, tiɲɛni bɛ suman… 

1) English Translation 

Here, accuracy is 
measured by error rate, 
which is defined as… 

2) Annotate on English

accuracy, error rate 

3) Fuse to  target language text

tiɲɛni, fili hakɛ

“Metric”: refers to 
evaluation metrics used to 
assess the performance of 
algorithms.  
Extract spans of Metric in: 

Yan, tiɲɛni bɛ suman ni fili 
hakɛ ye, o min ɲɛfɔlen…
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Figure 1: Our TransFusion framework aims to bridge the performance gap between high and low-
resource languages on information extraction tasks. (left) TransFusion reasoning includes three steps:
translate, annotate, and fuse. (right) GoLLIE-TF shows superior cross-lingual evaluation on a range
of IE datasets (including unseen labels) over the base model.

to low-resource languages using EasyProject (Chen et al., 2023b), a simple, yet effective method that
has been shown to scale across many NLP tasks and languages.

Our cross-lingual IE evaluation reveals that the TransFusion fine-tuned model, GoLLIE-TF, outper-
forms the base GoLLIE model across 50 languages, spanning high, mid, and low-resource categories,
on both seen and unseen label schemas. Notably, in our evaluation on African language named entity
recognition (NER) using the MasakhaNER2 dataset (Adelani et al., 2022), GoLLIE-TF achieves
significant improvements in F1 scores compared to the base model and shows an average improvement
of +6.6 F1 on unseen label schema datasets. Furthermore, we demonstrate that the TransFusion
framework enhances GPT-4’s performance on MasakhaNER2, yielding an average +5.7 F1 score
improvement, and substantially boosts the encoder-only African language model, AfroXLM-R (Alabi
et al., 2022), by +13.3 F1. Our analysis underscores the effectiveness of the TransFusion framework
for low-resource language tasks.

2 BACKGROUND: ANNOTATION GUIDELINE FOLLOWING LLMS FOR IE

In this paper, we employ the GoLLIE model (Sainz et al., 2024), which has been instruction-tuned on
English Information Extraction (IE) tasks using label schema guidelines, to achieve state-of-the-art
zero-shot IE on unseen datasets. GoLLIE utilizes a Python code representation for both inputs and
outputs, providing a clear and human-readable structure that unifies various IE annotation tasks. Each
label schema is encapsulated as a Python class object, with the annotation guidelines embedded as
strings within these objects (an example of a GoLLIE prompt is provided in the the Appendix in
Figure 6.

Limitation of Cross-lingual Transferbilitiy: Despite GoLLIE’s impressive performance, it is
designed for use on English, as it is primarily fine-tuned on English data. This limitation is shown in
Figure 1 (right), where we see a significant drop in performance on low-resource African languages,
from 95 to 48, compared to English. In this study, we experiment with cross-lingual transfer, where
human-labeled data in the target languages are assumed to be unavailable. Collecting such data
is costly and time-inefficient, as it requires well-trained native language speakers. Recent efforts,
such as NLLB-200 (Costa-jussà et al., 2022), have focused on gathering low-resource translation
data to train multilingual MT models capable of translating across 200 languages. Building on this
progress, we explore whether an instruction-tuned information extraction model can learn to use an
external translation model (Schick et al., 2024) to enhance performance on low-resource language IE
tasks. This offers an efficient and effective alternative to computationally intensive pre-training based
methods for adapting to new languages (Scao et al., 2022; Xue et al., 2021; Alabi et al., 2022; Üstün
et al., 2024).

3 USING LOW-RESOURCE MACHINE TRANSLATION TO IMPROVE
MULTILINGUAL IE

As multilingual machine translation (MT) systems, such as M2M-100 (Fan et al., 2021) and NLLB-
200 (Costa-jussà et al., 2022), gain increasing support for low-resource languages, an opportunity
emerges to re-evaluate the utilization of MT systems for enhancing cross-lingual IE. We propose a
Translation-and-fusion approach that benefits from the advancements of MT systems to make robust
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cross-lingual transfer predictions at inference time. In this section, we outline the Translation-and-
fusion framework and introduce language models trained to utilize translation data at inference time
for low-resource language IE tasks.

3.1 TRANSLATION-AND-FUSION (TRANSFUSION)
Cross-lingual Transfer. The conventional cross-lingual transfer method involves fine-tuning a
pre-trained language model, on high-resource language annotated data (src) and evaluating its
performance on test data in other languages ptgtq.

In accordance with the low-resource assumption, we assume access to an annotated dataset in the
high-resource language (usually English), Dsrc “ pxi

src, y
i
srcq

N

i“1. The task-specific fine-tuning loss
is formulated as:

Lpθ,Dsrcq “
ÿ

pxsrc,ysrcqPDsrc

LpP py|xsrc; θq, ysrcq

However, previous studies have highlighted the limited performance of fine-tuned models on lan-
guages that were unseen during pre-training or are under-represented in the pre-training data (Ade-
lani et al., 2021; Ebrahimi et al., 2022). As an additional approach to adapt to low-resource lan-
guages (Wang et al., 2020), we describe the translation-and-fusion framework, which leverages
annotations on (translated) high-resource language text to steer predictions on a low-resource lan-
guage at inference time. The framework encompasses three key steps:

• Translate: Use an MT system to translate low-resource language test data into a high-
resource language, MTpxtgtq ÞÑ xtrans

src .

• Annotate: Making predictions to the (high-resource) translated text using a high-resource
language supervised fine-tuned model P p; θsrcq: argmaxytP py|xtrans

src ; θsrcqu ÞÑ ỹtrans
src .

• Fuse:

Given the annotations on the translated data from the previous step (ỹtrans
src ), a fusion model

combines the high-resource predictions together with the target language text to make final
predictions.

Based on the framework outlined above, we present TransFusion, a fusion model that is trained to
makes predictions on the test data conditioned on annotations from the corresponding translated data
(ỹtrans

src ):
argmaxytP py|xtgt, x

trans
src , ỹ

trans
src ; θfusionqu ÞÑ y1

tgt

Below, we describe the training procedure of TransFusion, starting with the approach to create
training data.

Training Dataset. To learn a TransFusion model, parallel sentences with IE task annotations
on both high-resource and low-resource languages are essential. To fulfill this requirement, we
translate high-resource annotated training data into a list of target languages, while projecting
span-level annotations, using a simple mark-then-translate approach - EasyProject (Chen et al.,
2023b): MTpxsrc, ysrcq Ñ pxtrans

tgt , y
trans
tgt q. We then pair the translation outputs with the original

high-resource language data to create a training data set with a mixture of both parallel sentences:
Dmix “ txsrc, ysrc, x

trans
tgt , y

trans
tgt uNi“1.

Learning. We train the fusion model P p; θfusionq on Dmix using cross-entropy loss:

Lfusionpθ,Dmixq “
ÿ

pxsrc,ysrc,x
trans
tgt ,ytrans

tgt qPDmix

LpP py|xtrans
tgt , xsrc, ysrc; θfusionq, ytrans

tgt q

The model architecture can vary, encompassing both decoder-only language models (e.g.,
LLaMA (Touvron et al., 2023)) and encoder-only language models (e.g., mBERT (Devlin et al.,
2019)). In this work, we primarily utilize decoder-only language models to integrate the annotate and
fuse steps in an autoregressive manner during inference. Additionally, we assess the performance of
encoder-only models in Section 5.3 to demonstrate the robustness of our framework across different
architectures.

3
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Training a Decoder-only LM (GoLLIE-TF). To implement our TransFusion framework within the
instruction-following GoLLIE model, we represent the framework as natural language instructions,
providing the model with supplementary English translation text of the original target language
sentence, which is illustrated in Figure 1 (left). The TransFusion instruction specifies the output
format, guiding the model to first generate annotations for the English translation and subsequently
for the target language data, using the English annotations as context (an example can be found
in Appendix Figure 6 ). This autoregressive approach enables the model to perform the annotate
and fuse steps concurrently during inference. During training, we fine-tune the GoLLIE model to
adhere to these instructions, ensuring it generates annotations for both the English and target language
data sequentially. We apply the next token prediction loss to the tokens following the TransFusion
instruction. At inference time, x is the low-resource language and xtrans is the English translation:

rGoLLIE Guidelines, x, xtrans,TransFusion Instructions
LLM

ÝÝÝÝÝÑ rytrans, ys

Training and Inference with Encoder-only LMs. Given that encoder-only models are not in-
herently designed for text generation, we employ a two-step pipeline approach for inference in
TransFusion: annotation and fusion. First, we utilize an English fine-tuned model to annotate the
English translation of the target language text. These annotations are marked using XML tags around
the relevant spans (e.g., <PER> ... </PER>). Next, we construct the input for the fusion model by
embedding these annotations into the English translation. We concatenate the annotated English
translation (xtrans) with the original target language text (x), using a marker (||) to separate the two
segments. The input to the encoder is formatted as follows:

rxtrans
1 , xtrans

2 ,<PER>, xtrans
3 , xtrans

4 ,</PER>, xtrans
5 , ||, x1, x2, x3, ...s

At training time, we add a linear classification layer to classify each token and only apply the
cross-entropy loss to the target language tokens (right of the separation token ||).

To summarize, Translation-and-Fusion framework can be adapted into three different configurations
for different usages including decoder-only (§ 5.1), prompting (§ 5.2), and encoder-only (§ 5.3), with
the same appraoch.

4 EXPERIMENTAL SETTING

We use a collection of English Information Extraction (IE) datasets for supervised fine-tuning and
multilingual IE datasets for evaluation (see Table 1). Assessing cross-lingual transfer capabilities
requires IE datasets annotated in a diverse set of languages. To this end, we gather multilingual
Named Entity Recognition (NER) datasets from MasakhaNER2.0 (Adelani et al., 2022) (20 African
languages) and UNER (Mayhew et al., 2023) (13 languages) to conduct low-resource language
evaluation on label schemas that are seen during fine-tuning. In addition, we evaluate on unseen label
schemas using the non-English subset of ACE2005 (Tjong Kim Sang & De Meulder, 2003) (Chinese
and Arabic), which includes several tasks: NER, RE, Event Extraction (EE), and Event Argument
Extraction (EAE). For evaluation on labels that were unseen during fine-tuning, we use MultiN-
ERD (Tedeschi & Navigli, 2022) (10 high-resource languages), MultiCoNER2 (12 high-resource
languages) (Fetahu et al., 2023), in addition to Slot Intent Detection data from MultiTO (Schuster
et al., 2018), xSID (10 high-resource languages) (van der Goot et al., 2021), a subset of Massive
(15 low-resource languages were determined based on the NLLB categorization (Costa-jussà et al.,
2022)) (FitzGerald et al., 2022) and Relation Extraction (RE) data from RED-FM (7 high-resource
languages) (Cabot et al., 2023). We adopt the data pre-processing and task formulation methodologies
used by GoLLIE and use publicly available English training data from GoLLIE to train the model.
Due to the high cost of inference with GPT-4, we use 200 examples per language (Le et al., 2024),
per task, for evaluation.

Multilingual Translation Data. The TransFusion framework relies on a machine translation system
as a core component. In this paper, we utilize the state-of-the-art open-source multilingual transla-
tion model - NLLB-200 (Costa-jussà et al., 2022), which has 3.3 billion parameters and supports
translation between 200 languages. The NLLB-200-3.3B model translates target language test data
into English at test time. For TransFusion training data, a marker-based translation approach named
EasyProject (Chen et al., 2023b), powered by the NLLB-200 model, translates English training
data into a collection of 36 target language candidates. From this translated data, 8 examples per
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Table 1: Datasets used in the experiment. The table shows the task, domain, whether it was used in
the training and evaluation including the number of languages in the evaluation set.

Training Dataset Domain Tasks Language

CoNLL 03(Tjong Kim Sang & De Meulder, 2003) News NER English
BC5CDR (Li et al., 2016) Biomedical NER English
NCBIDisease (Dogan et al., 2014) Biomedical NER English
OntoNotes 5 (Pradhan et al., 2013) News NER English
WNUT 2017 (Derczynski et al., 2017) News NER English
RAMS (Ebner et al., 2020) News Arg. Extraction English
TACRED (Zhang et al., 2017) News Slot Filling English
CoNLL 04 (Roth & Yih, 2004) News Relation Extraction English
ACE (Walker et al., 2006) News EE, EAE, NER, RE English

Evaluation Dataset Domain Tasks Seen # Language
Label?

MasakhaNER2.0 (Adelani et al., 2022) News NER ✓ 20 African langs
UNER (Mayhew et al., 2023) News NER ✓ 13 langs
ACE (Walker et al., 2006) News EE, EAE, NER, RE ✓ 3 (en, ar, zh)

MultiNERD (Tedeschi & Navigli, 2022) Wikipedia NER ✗ 10 langs
MultiCoNER2 (Fetahu et al., 2023) Wikipedia NER ✗ 12 langs
xSID (van der Goot et al., 2021) Dialog Slot Detection ✗ 10 langs
MultiTO (Schuster et al., 2018) Dialog Slot Detection ✗ 3 (en, es, th)
Massive (FitzGerald et al., 2022) Dialog Slot Detection ✗ 15 low-res langs
RED-FM (Cabot et al., 2023) Wikipedia Relation Extraction ✗ 7 langs

language and each task are randomly sampled, resulting in around 20-40 examples per language. To
summarize, we started from the GoLLIE-7B checkpoint and fine-tune the model on 20,000 examples
including English (19,109) and translated data (891) (See per task and per language distribution in
Appendix Figure 8). This small portion of translation data (Shaham et al., 2024) ensures that the
GoLLIE model generalizes to unseen labels while maintaining English performance to avoid the
catastrophic forgetting issue during continue fine-tuning (Luo et al., 2023).

4.1 LANGUAGE MODELS AND BASELINES

Models: We adopt GoLLIE-7B as our primary starting checkpoint. GoLLIE is an instruction
fine-tuned version of CodeLLaMA (Roziere et al., 2023) that is trained on approximately 500,000
English demonstrations. Although the model was not explicitly pre-trained on multilingual data,
its pre-training corpus includes a substantial amount of high-resource language content, such as
Wikipedia, covering a diverse linguistic range (Touvron et al., 2023). This makes GoLLIE-7B an
appropriate testbed for examining the adaptation of English-centric LLMs to low-resource languages
that may be underrepresented in pre-training. In addition to this decoder-only LLM, we explore
encoder-only models specifically pre-trained on African languages, such as AfroXLM-R (Alabi et al.,
2022) in Section 5.3.

Training Setup: Initilized from GoLLIE-7B, we continue fine-tuning the model on a dataset of
20,000 TransFusion training examples using QLoRA (Dettmers et al., 2024). QLoRA has been shown
to better maintain the base model’s performance (Biderman et al., 2024) and offers faster training
times compared to full fine-tuning. To implement this, we freeze the transformer model weights
and apply LoRA (Hu et al., 2021) to all linear layers within all the transformer blocks. We set the
LoRA rank to 128 and the alpha parameter to 16 based on preliminary experiments as we found
smaller alpha leads to more stable training and higher rank for fast convergence. We use the AdamW
optimizer (Kingma & Ba, 2015) with a batch size of 16 and a learning rate of 1e-4, managed by a
cosine scheduler. The training process was conducted on a setup of 2 NVIDIA A40 GPUs, each
equipped with 48GB of memory. The entire experiment session spanned approximately 6 hours. We
use greedy decoding at inference time.

Baselines: We compare to both the base GoLLIE model, in addition to GPT-4, which represents a
state-of-the-art proprietary model pre-trained on multilingual corpora (Achiam et al., 2023). We report
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Table 2: Cross-lingual transfer performance (F1 score). The table compiles all the seen label schema
and unseen label schema evaluation results. Blue numbers highlight the performance improvements
over GoLLIE-7B (∆). Full results for each language can be found in Appendix.

Task Benchmark GPT-4 GoLLIE7B Trans-Train GoLLIE-TF

Seen Label Schema

NER MasakhaNER2 (20 languages)

Bambara 42.2 38.9 40.1 54.8 (+15.9)
Ghomala 58.2 43.7 49.2 50.2 (+6.5)
Ewe 72.2 74.0 73.1 73.2 (-0.8)
Fon 39.4 49.7 55.7 57.9 (+8.2)
Hausa 65.9 57.1 55.6 67.1 (+10.0)
Igbo 42.2 51.1 42.4 56.6 (+5.5)
Kinyarwanda 47.5 45.0 47.7 58.5 (+13.6)
Luganda 62.5 61.8 66.8 75.5 (+13.7)
Luo 47.2 36.5 42.8 51.7 (+15.3)
Mossi 43.2 45.1 46.1 48.8 (+3.7)
Chichewa 71.1 39.1 59.8 78.2 (+39.1)
Naija 78.9 75.9 74.9 81.1 (+5.2)
Shona 39.5 39.7 50.4 57.4 (+17.6)
Swahili 79.2 66.9 68.3 73.5 (+6.5)
Tswana 56.3 52.1 58.9 71.0 (+18.9)
Twi 44.2 41.7 50.6 74.2 (+32.5)
Wolof 52.6 49.1 55.5 61.9 (+12.8)
Xhosa 49.8 29.2 47.6 49.9 (+20.7)
Yoruba 54.7 35.7 39.3 54.4 (+18.7)
Zulu 36.9 25.6 31.7 52.8 (+27.2)

Average 54.2 47.9 52.8 62.4 (+14.5)

NER UNER (13 languages) 69.0 73.6 73.6 77.8 (+4.2)
NER ACE05 (English, Arabic, Chinese) 41.6 58.7 61.2 61.5 (+2.8)
Arg. Extraction ACE05 (English, Arabic, Chinese) 11.7 92.7 92.9 86.0 (-6.7)
Event Detection ACE05 (English, Arabic, Chinese) 21.3 42.6 40.0 44.0 (+1.4)
Rel. Extraction ACE05 (English, Arabic, Chinese) 4.6 37.3 39.4 39.1 (+1.8)

Unseen Label Schema

NER MultiNERD (10 languages) 71.9 62.2 63.9 63.0 (+0.8)
NER MultiCoNER2 (12 languages) 46.1 22.2 28.4 34.5 (+12.2)
Slot Detection xSID (10 languages) 47.0 6.0 27.1 26.4 (+20.4)
Slot Detection MultiTO (English, Spanish, Thai) 19.9 17.7 20.3 18.1 (+0.4)
Slot Detection Massive (15 low-resource languages) 33.3 5.8 12.1 19.0 (+13.1)
Rel. Extraction REDFM (7 languages) 19.1 15.5 16.8 16.2 (+0.7)

Average

Seen 33.7 58.8 60.0 61.8 (+3.0)
Unseen 39.5 21.6 28.1 29.5 (+8.0)
English-only 55.2 58.6 60.3 59.3 (+0.7)
All 36.6 40.2 44.1 45.7 (+5.5)

few-shot prompting results using GPT-4 (gpt4-02-14) with a GoLLIE style prompt. Additionally,
we explore the application of the TransFusion framework to GPT-4 in Section 5.2. Furthermore,
we use Translate-train (Trans-train) (Hu et al., 2020) as another baseline, which shows strong
improvements over English fine-tuned (English FT) models (Chen et al., 2023b). We use the same
translated training data used by TransFusion and fine-tune GoLLIE-7B on a total of 20,000 examples
(English + translated data). So the only differences between Trans-Train and GoLLIE-TF is the
Trans-Train fine-tune on the (xtrans, ytrans) translated pairs where GoLLIE-TF is fine-tune on the
four-way parallel data (x, y, xtrans, ytrans) with TransFusion instruction.

5 RESULTS

We present cross-lingual transfer results for IE tasks in Table 2, evaluating both seen and unseen label
schemas across 36 languages. Our proposed GoLLIE-TF model consistently outperforms the original

6
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Figure 2: TransFusion leads to larger NER F1 improvements for low resource languages in
MasakhaNER2 (right) compared to high resource languages in UNER (left).

GoLLIE, achieving an average F1 score improvement of +4.6 across 11 datasets. Notably, GoLLIE-
TF demonstrates significant performance gains in low-resource language NER while mainting English
performance on average. For instance, on the MasakhaNER2 dataset, TransFusion boosts F1 from
47.9 to 62.4, surpassing both GPT-4 and the translate-train baseline. Furthermore, GoLLIE-TF
supports generalization to unseen label schemas. In particular, TransFusion significantly improves
performance on MultiCoNER2 (+12.2), xSID (+20.4), and on low-resource language dataset Massive
(+13.1) over GoLLIE, showcasing its adaptability to unseen tasks. While GPT-4 still demonstrates
superior performance on unseen label schemas, we would like to highlight that our experiments are
conducted in a controlled setting. In contrast, for proprietary models, we are unaware of the dataset
used, leading to potential dataset contamination.

TransFusion performance on High vs. Low-resource languages. Figure 2 reveals a noteworthy
trend: GoLLIE-TF exhibits substantial performance enhancements particularly in low-resource
language settings. This underscores the significance of leveraging external Machine Translation
systems to enrich input data for such languages. We followed the categorization of high and low-
resource languages from Costa-jussà et al. (2022), which categorizes a language as low-resource
if there are fewer than 1M publicly available deduplicated bitext samples. While the performance
disparity between GoLLIE-TF and other models remains modest in high-resource language scenarios,
a notable performance gap emerges in the low-resource language domain. Furthermore, results on
the unseen-label low-resource language dataset, Massive, also show that GoLLIE-TF signficiantly
outperforms Translate-Train, as shown in in Table 2.

5.1 ABLATION STUDY

Table 3: Ablation study.

Model MasakhaNER2 MASSIVE

GoLLIE-TF 62.4 19.0
- w/o annotate 55.7 13.3
- no translation 41.2 10.7

Analyzing Performance Improvements Table 3
shows a critical insight into the performance gains
observed in the TransFusion framework, particularly
in the annotate step on the English translation, which
plays a crucial role in enhancing the performance
of MasakhaNER2. We conduct an ablation study
wherein we trained a variant of GoLLIE-TF, termed
GoLLIE-TF (w/o annotate), directly generating pre-
dictions on target language text from the unlabelled
English text. We observe a notable performance drop from 62.4 to 55.7 F1 score. This observation
underscores the significance of TransFusion’s ability to leverage English annotations during test time,
resulting in more precise predictions. Furthermore, we take the GoLLIE-TF model to direct make
inference on target language without translation (no translation), the performance further drops to
41.2 and 10.7 on MasakhaNER2 and MASSIVE, showing the importance of using translation data at
the test time.

Effectiveness at different training data size. In Table 4, we explored the impact of varying the
amount of translated data (ranging from 1000 to 40000) combined with 19000 English data for
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training. The results demonstrate that across all scales, GoLLIE-TF consistently outperforms the
trans-train baseline on the MasakhaNER task, with performance improving from 62.4 to 66.3 as the
translation data size increases from 1000 to 40000, compared to trans-train’s performance increase
from 52.8 to 56.4. These results highlight the effectiveness of GoLLIE-TF in leveraging both English
and translated data for improved NER performance.

Table 4: NER performance on MasakhaNER with varying translation data sizes.

Translation Data Size Trans-train GoLLIE-TF
1,000 52.8 62.4
5,000 52.6 61.2

10,000 54.9 62.7
40,000 56.4 66.3

Robustness to translation quality. TransFusion offers a distinct advantage by leveraging an
external multilingual MT system to augment its dataset with English translations. However, the
efficacy of this approach hinges on the translation quality provided by the external MT system.

In Figure 3, we explore this aspect by evaluating GoLLIE-TF’s performance with three different
MT systems (NLLB-200-600m, 1.3b, 3.3b) and use Flores-200 translation benchmark (X to En-
glish) (Costa-jussà et al., 2022) to measure translation quality (spBLUE) of languages covered by
MasakhaNER2. Our experiments reveal that GoLLIE-TF exhibits robustness across various MT
systems, as we observe that the F1 score on MasakhaNER2 does not exhibit a significant drop,
however performance does improve with a stronger translation system.

5.2 ENHANCING GPT-4 WITH TRANSFUSION

25.2 28.2 29.1
Translation Quality (spBLEU)

59

60

61

62

63

64

F1

NLLB-600m

60.1 NLLB-1.3B

61.4
NLLB-3.3B

62.4

Impact of translation quality at inference
GoLLIE-TF

Figure 3: TransFusion robustness
to different translation systems.

Despite GPT-4’s pre-training on multilingual corpora, a notable
performance gap persists between its English NER capabili-
ties on CoNLL03 (80 F1) and its performance on low-resource
languages (54.2 F1). In Figure 4, we employ the TransFu-
sion instruction, asking GPT-4 for predictions on the English
translation and to then use these labels to predict on the target
language sentence. We show TransFusion prompting yields a
substantial enhancement in GPT-4’s NER performance across
MasakhaNER2 and three additional low-resource languages
from the UNER dataset (Cebuano, Tagalog-Philippines, and
Uganda), improving the average F1 score from 53.4 to 62. This
shows the GPT-4 can follow TransFusion prompting frame-
work to leverage its English predictions to make more accurate
predictions on low-resource languages.

5.3 TRANSFUSION WITH ENCODER-ONLY MODELS

We have demonstrated that TransFusion can be applied to GPT-4 to improve low-resource language
NER performance and also with the decoder-only LLM GoLLIE, which has the benefit of generalizing
to unseen label schemas. In this section, we experiment with encoder-only multilingual LMs (Devlin,
2018) as the encoder architecture is one of the standard approaches for NER tasks used in practice.

As encoder-only models generally assume the same label schema between fine-tuning and evaluation,
we focus on the seen label schema experiment setting, where we use CoNLL03 English as training
data and test on the full test set of MasakhaNER2. We use AfroXLM-R (Alabi et al., 2022), an
African language pre-trained language model as MasakhaNER is an African language dataset. For
each language, we fine-tuned the model on a combination (50/50%) of English and translation
(Trans-train) or TransFusion data for 5 epochs with a learning rate of 2e-5. The specific TransFusion
implementation is introduced in Section 3.1.

In Table 5, we show the effectiveness of the TransFusion framework which boosts the F1 from 58.8
to 72.1 F1 on MasakhaNER2 with AfroXLM-R. In addition, it outperforms the Trans-train baseline
significantly with a +6.3 F1 improvement and achieves state-of-the-art performance on MasakhaNER2,
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F1
(-6.0)
79.2

(0.0)
78.9

(+0.2)
72.4 (+5.3)

76.4

(+5.7)
71.6

(+5.7)
68.2

(0.0)
58.2

(+14.9)
71.2

(+12.0)
67.7

(-2.6)
54.7 (+6.5)

59.1 (+12.9)
62.7

(+8.9)
56.4 (+11.5)

58.7 (+16.4)
61.2

(+39.1)
83.5

(+21.1)
65.3

(+1.6)
44.8

(+18.0)
60.2

(-4.3)
42.2

(+11.5)
51.0 (+14.2)

53.6

(+6.7)
43.6

NER F1 Score (Ordered by GPT-4 performance)
GPT-4
GPT-4+TransFusion

Figure 4: GPT-4 + TransFusion framework improves NER on low-resource language from
MasakhaNER2 and UNER subsets. On average, GPT-4 + TransFusion improves average F1 from
53.4 to 62.
Table 5: F1 of encoder-only multilingual LM on MasakhaNER2, average of 3 random seeds. Avg
(CLaP) shows the average of F1 over nine languages reported in CLaP.

Model Avg (CLaP) Avg (all)

Translate-train
EasyProject (Chen et al., 2023b) 67.2 64.9
CLaP (Parekh et al., 2023) 58.8 -

Translate-test
Awesome-align (Dou & Neubig, 2021) 67.0 65.8
CoDec (Le et al., 2024) 73.9 70.4

TransFusion (ours) 74.2 72.0

surpassing the previous state-of-the-art Codec (Le et al., 2024). Codec uses constrained decoding
within a translation model to generate precise label projections from English to the target language for
Translate-test. In contrast, TransFusion introduces a model that learns to fuse annotations, showing
robustness to errors in English annotation predictions. Overall, this shows the generalization of the
TransFusion to the encoder-only multilingual language model.

5.4 ERROR ANALYSIS

To understand the reasons why GoLLIE-TF makes mistakes, we conducted a manual error analysis
on the MasakhaNER2 (Akan) subset and annotated 31 errors from the model. In Figure 5, we show
examples of two common error types made by GoLLIE-TF: (1) English prediction errors, where the
predictions on English translation are incorrect, and (2) Fusion errors, where the error arises from the
fusion stage. We identified 22 out of 31 cases where the model made errors in predicting NER for
the English translation text, and thus these errors propagated to the final predictions. On the other
hand, we found 12 out of 31 cases where the model made incorrect fusion processes, leading to
hallucinations in the final predictions or predictions in the English text.

6 RELATED WORK

Multilingual language models. Multilingual language models (Devlin, 2018; Conneau & Lample,
2019; Conneau et al., 2020; Xue et al., 2021; Scao et al., 2022; Asai et al., 2023), have facilitated
cross-lingual transfer by leveraging pre-training on large-scale multilingual corpora. Recent models
such as Gemini (Gemini et al., 2023) show emergent capabilities such as ultra low-resource language
translation with a book and wordlist in context. However, their performance tends to be subpar on
languages that were not seen during pre-training or are underrepresented in the training data (Adelani
et al., 2021; Ebrahimi et al., 2022). To address this limitation, several approaches have been explored,
including bilingual models (Lan et al., 2020; Wang et al., 2020), language-specific extensions (Ogueji
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Error Type Target Text English Translation Gold English 
Prediction

Final 
Prediction

English 
Prediction 
Error

Mehyɛ mo nyinaa bɔ sɛ yei yɛ 
nneɛma akɛsea mfitiaseɛ ma 
Ghana Mmaranim Sukuu no . 
Aban bɔhyɛ sɛ ɔbɛgya biribi 
ama nkyirmma wɔ'

I promise you all that this 
is a great beginning for 
the Ghana School of Law

LOC: Ghana ORG: Ghana 
School of Law

ORG: Ghana 
Mmaranim Sukuu no

English 
Prediction 

Error


ka kyerɛɛ asɛnnibea sɛ 
Yeboah de nkuu bi ɛhyehye 
faa abɔfra no ayaase de ne 
nsa wowɔɔ nase ansa ɔreto 
no mmonaa

Ntee said to the court 
that Yeboah took a 
burning torch to the 
child's throat and rubbed 
his nose with his hand 
before kissing him

PER: Yeboah PER: Ntee

PER: Yeboah

PER: Ntee

PER: Yeboah

English 
Prediction

+ Fusion Error

Mɛka akyerɛ Ghana manfoɔ 
nyinaa ara sɛ yɛretu anamɔn a 
ɛho hia biara sɛ yɛbɛhwɛ ama 
nnipakan dwumadie yi bɛdi 
COVID - 19 banbɔ nhyehyɛeɛ 
so . Nneɛma bɛn na yɛreyɛ ? 
Yadikan ne Ghana Apɔmuden 
Asoeɛ anya nkitahodie na wɔn 
ne Dr . Annthony Nsiah Asare 
a ɔyɛ'

 I would like to inform all 
Ghanaians that we are 
taking all necessary 
steps to ensure that this 
census is conducted in 
accordance with the 
COVID - 19 safety 
protocols. What steps 
are we taking? Yadikan 
has been in contact with 
…

LOC: Ghana

PER: Anthony 
Nsiah Asare

ORG: 
Apɔmuden 
Asoeɛ

ORG: Yadikan

PER: Annthony 
Nsiah Asare

ORG: Ministry of 
Health

ORG: Yadikan

PER: Annthony Nsiah 
Asare

ORG: Ministry of 
Health

Fusion Error
Sɛ́ Asamoah da so ara wɔ 
ɔsram biako bio a ɛsɛ sɛ ɔkɔ 
ansa na wawie sukuu

Asamoah still has one 
more month to go before 
he graduates

PER: 
Asamoah PER: Asamoah PER: Sɛ́ Asamoah da 

so ara wɔ ɔsram…

Prediction 
in English

Error Propagation

Error Propagation

Hallucination

Figure 5: Error analysis of GoLLIE-TF’s 31 incorrect predictions on MasakhaNER2 (Akan). Two
common errors are categorized as English prediction error (22/31) and fusion error (12/31).

et al., 2021; Alabi et al., 2022; Yoon et al., 2024), continued training (Wang et al., 2020; Pfeiffer
et al., 2020; Wang et al., 2022; Imani et al., 2023), and few-shot learning (Lin et al., 2022). Recently,
multilingual instruction-tuning (Chen et al., 2023a) datasets such as Aya (Singh et al., 2024; Üstün
et al., 2024) focusing on text generation and IEPile (Gui et al., 2024) (English and Chinese) have
been proposed to facilitate this direction of research.

Translation for cross-lingual transfer. To enhance LLM on multilingual NLP tasks such as
QA (Agrawal et al., 2023), translating train or test data (Artetxe et al., 2023) into English has proven
as an effective approach (Paolini et al., 2021; Hu et al., 2020; Xue et al., 2021; Ebing & Glavaš, 2024;
Ansell et al., 2023). Recent studies on prompting LLMs with translation demonstrate improvements
on multilingual math reasoning (Shi et al., 2022), text generation (Huang et al., 2023; Intrator et al.,
2024; Liu et al., 2024) and sentence classification (Etxaniz et al., 2023). In contrast, our work focuses
on challenging IE tasks that require extracting span annotations on the target language directly,
instead of generating text. It is even more challenging to construct translated data for translate-train
as span annotations are missing after translation. To solve this, word alignment models (Och & Ney,
2003; Dyer et al., 2013; Lan et al., 2021; Dou & Neubig, 2021; Parekh et al., 2023; Le et al., 2024)
and a simple mark-then-translate approach (Lee et al., 2018; Lewis et al., 2020; Hu et al., 2020;
Bornea et al., 2021; Chen et al., 2023b) have been utilized to project labels across different languages.
In contrast, we train a model to fuse annotations from English and directly make predictions on target
language.

7 CONCLUSION

We introduce TransFusion, a framework that bridges the performance gap between high and
low-resource languages in information extraction by leveraging machine translation. Our experi-
ments demonstrate that TransFusion significantly improves the cross-lingual transfer capabilities
of instruction-tuned LLMs, surpassing both proprietary models and encoder-only architectures on
low-resource languages NER. This work demonstrates the potential of translation-based techniques
to unlock the power of LLMs for a wider range of low-resource languages, paving the way for more
inclusive and equitable IE capabilities across diverse linguistic communities.
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A APPENDIX

Table 6: Evaluation datasets used and the language code for each dataset.

Dataset Language Code

MasakhaNER2.0 (Adelani et al., 2022) Bambara (bam), Ghomala (bbj), Ewe (ewe), Fon (fon), Hausa
(hau),

afl-3.0 License Igbo (ibo), Kinyarwanda (kin), Luganda (lug), Luo (luo), Mossi
(mos),

masakhane/masakhaner2 Nyanja (nya), Naija (pcm), Shona (sna), Swahili (swh), Tswana
(tsn)
Twi (twi), Wolof (wol), Xhosa (xho), Yoruba (yor), Zulu (zul)

UNER (Mayhew et al., 2023) Cebuano (ceb_gja), Danish (da_ddt), German (de_pud),
universalner.org/ English (en_ewt), English (en_pud), Croatian (hr_set),
(Unknown License) Portuguese (pt_bosque), Portuguese (pt_pud), Russian (ru_pud),

Slovak (sk_snk), Serbian (sr_set),
Swedish (sv_pud), Swedish (sv_talbanken),
Tagalog (tl_trg), Tagalog (tl_ugnayan), Chinese (zh_gsd),
Chinese (zh_gsdsimp), Chinese (zh_pud)

ACE05 (Walker et al., 2006) English (en), Arabic (ar), Chinese (zh)
LDC license: LDC2006T06

MultiNERD (Tedeschi & Navigli, 2022) German (de), Spanish (es), French (fr), Italian (it), Dutch (nl),
CC BY-NC-SA 4.0 Polish (pl), Portuguese (pt), Russian (ru), Chinese (zh)
Babelscape/multinerd

MultiCoNER2 (Fetahu et al., 2023) Bengali (bn), German (de), Spanish (es), Persian (fa), French
(fr),

CC BY 4.0 Hindi (hi), Italian (it), Portuguese (pt), Swedish (sv),
MultiCoNER/multiconer_v2 Ukrainian (uk), Chinese (zh), English (en)

xSID (van der Goot et al., 2021) Arabic (ar), Danish (da), German (de), English (en), Indonesian
(id),

CC BY-SA 4.0 Italian (it), Japanese (ja), Kazakh (kk), Dutch (nl), Serbian (sr),
Turkish (tr), Chinese (zh)

MultiTO (Schuster et al., 2018) English (en), Spanish (es), Thai (th)
CC-BY-SA

RED-FM (Cabot et al., 2023) Arabic (ar), German (de), English (en), Spanish (es), French (fr),
CC BY-SA 4.0 Italian (it), Chinese (zh)
Babelscape/REDFM

MASSIVE (FitzGerald et al., 2022) Afrikaans (af-za), Amharic (am-et), Azeri (az-za), Bengali (bn-
bd),

CC BY 4.0 Armenian (hy-am), Georgian (ka-ge),Khmer (km-kh), Mongo-
lian (mn-mn),

AmazonScience/massive Burmese (my-mm), Kannada (kn-in), Malayalam (ml-in),
Tamil (ta-in), Telugu (te-in), Tagalog (tl-ph), Welsh (cy-gb)

B LIMITATIONS AND BROADER IMPACT

The NER experiments conducted on GPT-4 have yielded promising results for low-resource languages.
However, concerns remain regarding potential data contamination resulting from the possibility that
GPT-4 was pre-trained or fine-tuned on the test data.1 The Translation-and-fusion framework, while
effective in enhancing cross-lingual transfer, does introduce additional inference costs during test time
inference. These additional steps include translation using an external MT system and annotation
processes, which can contribute to an increased number of token generation. This is similar to
chain-of-thought prompting or retrieval augmented generation, which uses additional computational
cost at inference for better quality generation. Thus, practitioners should consider the trade-off
between performance and efficiency when deciding to adopt the Translation-and-fusion approach.
We show an estimate of inference time costs in Table 7.

1https://hitz-zentroa.github.io/lm-contamination/blog/

17

masakhane/masakhaner2
universalner.org/
Babelscape/multinerd
MultiCoNER/multiconer_v2
Babelscape/REDFM
AmazonScience/massive


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

# This is the text to analyze 
text = “Yan, tiɲɛni bɛ suman ni fili hakɛ ye, o 
min ɲɛfɔlen don ko...”

# The annotation instances that take place in the 
text above are listed here 

result = [ 
Metric(span=“tiɲɛni”), 
Metric(span=“fili hakɛ”), 

]

# This is the text to analyze 
text = “Yan, tiɲɛni bɛ suman ni fili hakɛ ye, o 
min ɲɛfɔlen don ko…” 

# This is the English translation of the text 
eng_text = “Here, accuracy is measured by 
error rate, which is defined as…” 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text

# The annotation instances that take place in 
the eng_text above are listed here 
result = [ 

Metric(span=“accuracy”), 
Metric(span=“error rate”), 

] 

# The annotation instances that take place in 
the text above are listed here 
final_result = [ 

Metric(span=“tiɲɛni”), 
Metric(span=“fili hakɛ”), 

]

Input text

Output annotations

Annotations are

Represented as instances

Input text

Output annotations

(b) TransFusion Prompt(a) GoLLIE Prompt

# The following lines describe the task definition 

@dataclass 
Class Metric(Entity): 

“””Refers to evaluation metrics used to assess the 
performance of AI models and algorithms. Annotate 
specific metrics like F1-score.””” 

span: str # Such as: “mean squared error”, “DCG”, 
…

Schema definition

Guidelines are introduced 
as docstrings

Representative 
candidates are 
introduced as comments

Labels are defined as 
python classes

Figure 6: Example of input and output representation. (left) An example of a named entity recognition
prompt and output annotations. (right) The same example but with translation text appended in the
input prompt with instructions to guide the model to generate annotations on English translation text
first, followed by annotations on the target language.

# This is the text to analyze 
text = "削 除 さ れる まで 毎 ⽇ アラーム を 午 後 7 時 3 0 
分 に スケジュール" 

# This is the English translation of the text 
eng_text = "Schedule an alarm every day at 7:30 p.m. 
until it is cut off" 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text 

# The annotation instances that take place in the 
eng_text above are listed here 
result = [ 
    RecurringDatetime(span="every day"), 
    RecurringDatetime(span="7:30 p.m."), 
] 

# The annotation instances that take place in the text 
above are listed here 
final_result = [ 
    RecurringDatetime(span="毎 ⽇"), 
    RecurringDatetime(span="午 後 7 時 3 0 分"), 
] 

xSID Japanese
# This is the text to analyze 
text = "Для переработки в пищевые продукты , такие как сахар , 
крахмал , растительное масло , используются сахарная свёкла и 
сахарный тростник , кукуруза , соя , рапс ." 

# This is the English translation of the text 
eng_text = "For processing into food products such as sugar, starch, 
vegetable oil, sugar beet and sugar cane, corn, soybean, rapeseed are 
used." 

# Using translation and fusion 
# (1) generate annotation for eng_text 
# (2) generate annotation for text 

# The annotation instances that take place in the eng_text above are listed 
here 
result = [ 
    Plant(span="sugar"), 
    Plant(span="sugar beet"), 
    Plant(span="sugar cane"), 
    Plant(span="corn"), 
    Plant(span="soybean"), 
    Plant(span="rapeseed"), 
] 

# The annotation instances that take place in the text above are listed here 
final_result = [ 
    Plant(span="сахар"), 
    Plant(span="сахарная свёкла"), 
    Plant(span="сахарный тростник"), 
    Plant(span="кукуруза"), 
    Plant(span="соя"), 
    Plant(span="рапс"), 
]

MultiNERD Russian

Figure 7: Examples of GoLLIE-TF model generation out (colored in gray).

The proposed method carries minimal risk, given that it addresses a traditional IE task. Its primary
objective is to enhance IE cross-lingual transfer performance for low-resource languages lacking
annotated training data. Consequently, our work aims to have a broader impact by facilitating research
for global communities with diverse languages.
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Figure 8: TransFusion training dataset mixture for a total of 20,000.
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Table 7: Inference time (seconds/sentence) cost comparison of GoLLIE and GoLLIE-TF models on a
single NVIDIA A40 GPU.

Dataset Language Model F1 Score Inference Time MT Time Total Time

MasakhaNER Bambara GoLLIE 38.9 0.58 0 0.58
MasakhaNER Bambara GoLLIE-TF 54.8 1.11 0.285 1.395
Massive Bengali GoLLIE 5.7 0.555 0 0.555
Massive Bengali GoLLIE-TF 18.1 0.705 0.08 0.785

Table 8: We report GoLLIE-TF on MasakhaNER2 and Massive for 3 different seeds.

Dataset Seed 0 Seed 1 Seed 2 Mean Std dev

masakhaner.bam.ner 54.8 53.7 56.1 54.9 1.2
masakhaner.bbj.ner 50.2 46.2 50.9 49.1 2.6
masakhaner.ewe.ner 73.2 72.7 73.1 73.0 0.3
masakhaner.fon.ner 57.9 54.3 55.7 56.0 1.8
masakhaner.hau.ner 67.1 65.6 66.2 66.3 0.8
masakhaner.ibo.ner 56.6 54.2 55.7 55.5 1.3
masakhaner.kin.ner 58.5 59.5 59.6 59.2 0.6
masakhaner.lug.ner 75.5 74.5 75.1 75.0 0.5
masakhaner.luo.ner 51.7 51.6 51.5 51.6 0.1
masakhaner.mos.ner 48.8 43.8 44.4 45.7 2.7
masakhaner.nya.ner 78.2 78.7 78.9 78.6 0.3
masakhaner.pcm.ner 81.1 80.8 80.6 80.8 0.2
masakhaner.sna.ner 57.4 59.2 56.7 57.7 1.3
masakhaner.swh.ner 73.5 72.6 72.9 73.0 0.5
masakhaner.tsn.ner 71.0 70.3 71.1 70.8 0.5
masakhaner.twi.ner 74.2 68.6 76.6 73.1 4.1
masakhaner.wol.ner 61.9 55.6 60.2 59.2 3.2
masakhaner.xho.ner 49.9 54.4 51.3 51.9 2.3
masakhaner.yor.ner 54.4 52.4 53.4 53.4 1.0
masakhaner.zul.ner 52.8 53.3 51.4 52.5 1.0
Average 62.4 61.1 62.1 61.9 0.7

massive.en-us.ner 53.6 51.6 51.6 52.3 1.1
massive.af-za.ner 24.2 21.2 24.2 23.2 1.7
massive.am-et.ner 6.5 5.4 7.2 6.4 0.9
massive.az-az.ner 1.2 1.3 1.3 1.2 0.1
massive.bn-bd.ner 18.1 18.8 19.4 18.8 0.6
massive.hy-am.ner 19.4 16.2 21.1 18.9 2.5
massive.ka-ge.ner 18.4 16.0 19.6 18.0 1.9
massive.km-kh.ner 20.4 21.1 23.2 21.5 1.5
massive.mn-mn.ner 5.8 5.4 5.2 5.5 0.3
massive.my-mm.ner 31.7 32.4 33.2 32.4 0.8
massive.kn-in.ner 17.2 14.2 20.7 17.3 3.2
massive.ml-in.ner 11.0 10.6 10.3 10.7 0.4
massive.ta-in.ner 17.0 11.6 17.3 15.3 3.2
massive.te-in.ner 18.8 17.6 23.5 20.0 3.1
massive.tl-ph.ner 32.0 32.0 34.7 32.9 1.5
massive.cy-gb.ner 8.3 5.8 7.0 7.0 1.2
Average 19.0 17.6 20.0 18.8 1.2
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Table 9: Full experimental results (1) for each dataset and language. Format: [task name].[language
code].[task].

GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

uner.ceb_gja.ner 44.4 49.6 52.9 87.5
uner.da_ddt.ner 77.2 76.7 79.4 84.8
uner.de_pud.ner 80.3 80.1 82.3 83.8
uner.en_ewt.ner 59.9 84.7 67.6 66.4
uner.en_pud.ner 75.4 82.4 85.5 84.9
uner.hr_set.ner 82.1 83.0 87.7 89.6
uner.pt_bosque.ner 82.7 84.5 84.2 81.3
uner.pt_pud.ner 80.5 87.2 89.6 90.3
uner.ru_pud.ner 69.8 68.3 71.6 73.3
uner.sk_snk.ner 70.9 71.2 81.4 85.5
uner.sr_set.ner 85.9 86.2 88.5 88.9
uner.sv_pud.ner 73.7 81.5 79.6 85.7
uner.sv_talbanken.ner 68.7 69.4 64.6 75.7
uner.tl_trg.ner 55.7 58.8 60.3 54.2
uner.tl_ugnayan.ner 44.8 61.0 57.1 74.2
uner.zh_gsd.ner 60.6 62.5 58.8 67.6
uner.zh_gsdsimp.ner 57.9 62.4 61.4 68.8
uner.zh_pud.ner 72.0 74.8 72.6 77.7
average 69.0 73.6 73.6 78.9

ace.en.eae 24.5 97.3 97.9 98.3
multiace.ar.eae 1.6 84.3 83.8 81.8
multiace.zh.eae 9.6 96.6 97.1 77.9
average 11.7 92.7 92.9 86.0

ace.en.ee 27.8 67.5 64.0 60.4
multiace.ar.ee 24.4 16.1 12.8 25.0
multiace.zh.ee 11.6 44.2 43.3 46.7
average 21.3 42.6 40.0 44.0

ace.en.ner 58.0 78.3 87.3 86.5
multiace.ar.ner 32.3 29.5 30.3 37.5
multiace.zh.ner 34.6 68.2 66.0 60.6
average 41.6 58.7 61.2 61.5

ace.en.re 5.40 58.2 59.8 58.1
multiace.ar.re 3.2 14.1 13.5 15.8
multiace.zh.re 5.1 39.5 44.8 43.3
average 4.6 37.3 39.4 39.1

multinerd.de.ner 75.8 69.3 73.2 74.4
multinerd.es.ner 69.4 72.0 68.1 69.5
multinerd.fr.ner 71.8 71.9 74.4 72.5
multinerd.it.ner 76.2 69.8 74.2 70.5
multinerd.nl.ner 76.9 67.8 73.0 72.5
multinerd.pl.ner 72.1 62.0 64.0 61.5
multinerd.pt.ner 67.7 67.7 66.3 64.9
multinerd.ru.ner 65.3 57.9 55.7 58.7
multinerd.zh.ner 7.8 7.1 13.9 8.8
multinerd.ner 71.5 76.2 75.6 76.2
average 71.9 62.2 63.9 63.0
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Table 10: Full experimental results (2) for each dataset and language. Format: [task name].[language
code].[task].

GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

multiconer2.bn.ner 43.9 2.7 7.9 27.6
multiconer2.de.ner 54.4 27.3 30.8 33.1
multiconer2.es.ner 44.8 18.1 23.9 26.1
multiconer2.fa.ner 40.1 15.6 34.9 41.4
multiconer2.fr.ner 54.2 29.2 32.1 34.2
multiconer2.hi.ner 46.9 5.0 14.8 33.5
multiconer2.it.ner 51.1 41.4 46.0 46.5
multiconer2.pt.ner 49.7 23.6 31.5 34.7
multiconer2.sv.ner 52.5 14.8 16.1 19.6
multiconer2.uk.ner 55.9 41.1 47.7 51.7
multiconer2.zh.ner 5.1 14.0 20.9 28.3
multiconer2.en.ner 54.6 34.1 34.7 36.7
average 46.1 22.2 28.4 34.5

xsid.ar.ner 53.2 0.0 29.7 28.7
xsid.da.ner 48.1 2.7 15.5 16.0
xsid.de.ner 48.9 9.8 36.0 35.5
xsid.en.ner 63.1 28.8 38.4 37.5
xsid.id.ner 49.4 0.7 25.6 23.2
xsid.it.ner 52.1 3.4 30.2 32.8
xsid.ja.ner 28.1 10.1 32.8 26.5
xsid.kk.ner 34.9 0.0 0.0 2.5
xsid.nl.ner 48.9 4.9 33.8 31.4
xsid.sr.ner 48.7 0.0 19.4 16.8
xsid.tr.ner 40.8 0.8 20.9 22.2
xsid.zh.ner 47.3 10.7 43.5 43.7
average 47.0 6.0 27.1 26.4

multito.en.ner 51.1 35.3 39.0 40.3
multito.es.ner 1.4 2.5 3.0 2.3
multito.th.ner 7.3 15.4 18.9 11.8
average 19.9 17.7 20.3 18.1

redfm.ar.re 18.3 11.6 9.0 13.9
redfm.de.re 31.0 22.3 24.8 13.1
redfm.en.re 19.9 14.8 18.6 15.7
redfm.es.re 17.4 13.8 18.6 14.4
redfm.fr.re 17.1 15.2 19.2 17.6
redfm.it.re 17.2 20.0 17.1 29.1
redfm.zh.re 12.9 10.4 10.5 9.7
average 19.1 15.5 16.8 16.2
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Table 11: Full experimental results (3) for each dataset and language. Format: [task name].[language
code].[task].

GPT-4 GoLLIE Trans-train GoLLIE-TF (ours)

massive.en-us.ner 55.2 45.9 54.7 53.6
massive.af-za.ner 52.6 8.2 23.4 24.2
massive.am-et.ner 17.0 0.0 0.8 6.5
massive.az-az.ner 25.7 4.0 11.0 1.2
massive.bn-bd.ner 33.1 5.7 13.0 18.1
massive.hy-am.ner 33.6 1.2 11.9 19.4
massive.ka-ge.ner 32.1 10.4 12.2 18.4
massive.km-kh.ner 33.9 0.0 11.3 20.4
massive.mn-mn.ner 19.5 0.0 5.3 5.8
massive.my-mm.ner 27.9 4.8 15.2 31.7
massive.kn-in.ner 33.1 0.0 2.6 17.2
massive.ml-in.ner 25.1 0.0 4.5 11.0
massive.ta-in.ner 30.7 1.2 5.0 17.0
massive.te-in.ner 28.7 0.0 0.0 18.8
massive.tl-ph.ner 50.3 12.3 20.2 32.0
massive.cy-gb.ner 33.6 0.0 3.1 8.3
average 33.3 5.9 12.1 19.0

Table 12: Comparison of GPT-4 and GPT-4+Transfusion.

Language GPT-4 GPT-4+Transfusion

MasakhaNER2

bam 42.2 60.2
bbj 58.2 52.9
ewe 72.2 72.4
fon 39.4 53.6
hau 65.9 71.6
ibo 42.2 37.9
kin 47.5 56.4
lug 62.5 68.2
luo 47.2 58.7
mos 43.2 44.8
nya 71.1 76.4
pcm 78.9 75.7
sna 39.5 51.0
swh 79.2 73.2
tsn 56.3 71.2
twi 44.2 65.3
wol 52.6 59.1
xho 49.8 62.7
yor 54.7 52.1
zul 36.9 43.6

MasakhaNER2 average 54.2 59.9

UNER

ceb_gja 44.4 83.5
tl_trg 55.7 67.7
tl_ugnayan 44.8 61.2

All average 53.4 62.0
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