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Abstract

Sparse autoencoders (SAEs) are a popular tech-
nique for interpreting language model activations,
and there is extensive recent work on improving
SAE effectiveness. However, most prior work
evaluates progress using unsupervised proxy met-
rics with unclear practical relevance. We in-
troduce SAEBench, a comprehensive evaluation
suite that measures SAE performance across eight
diverse metrics, spanning interpretability, feature
disentanglement and practical applications like
unlearning. To enable systematic comparison,
we open-source a suite of over 200 SAEs across
seven recently proposed SAE architectures and
training algorithms. Our evaluation reveals that
gains on proxy metrics do not reliably translate to
better practical performance. For instance, while
Matryoshka SAEs slightly underperform on ex-
isting proxy metrics, they substantially outper-
form other architectures on feature disentangle-
ment metrics; moreover, this advantage grows
with SAE scale. By providing a standardized
framework for measuring progress in SAE de-
velopment, SAEBench enables researchers to
study scaling trends and make nuanced compar-
isons between different SAE architectures and
training methodologies. Our interactive inter-
face enables researchers to flexibly visualize
relationships between metrics across hundreds
of open-source SAEs at neuronpedia.org/
sae-bench. Code and models available at:
github.com/adamkarvonen/SAEBench
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1. Introduction
How can we evaluate dictionary learning for language model
interpretability? Sparse autoencoders (SAEs (Cunningham
et al., 2023; Bricken et al., 2023)) are a popular method for
finding interpretable units in neural networks through dictio-
nary learning. Substantial recent work has been focused on
improving SAE architectures (Rajamanoharan et al., 2024a;
Mudide et al., 2024), activation functions (Gao et al., 2024;
Taggart, 2024; Rajamanoharan et al., 2024b; Bussmann
et al., 2024a; Ayonrinde, 2024), and loss functions (Buss-
mann et al., 2024a; Karvonen et al., 2024; Marks et al.,
2024a). However, measuring the effectiveness of these meth-
ods in improving interpretability remains a core challenge.

An ideal SAE decomposes neural activations into inter-
pretable, independently composable units that faithfully
represent the internal state of a neural network. However,
due to a lack of ground truth labels for language models’
internal features, researchers instead train SAEs by optimiz-
ing unsupervised proxy metrics like sparsity and fidelity
(Cunningham et al., 2023). Maximizing reconstruction ac-
curacy at a given level of sparsity successfully provides
interpretable SAE latents, but sparsity has known problems
as a proxy, such as Feature Absorption (Chanin et al., 2024a)
and composition of independent latents (Bussmann et al.,
2024c). Nevertheless, most SAE improvement work primar-
ily measures whether reconstruction is improved at a given
sparsity, potentially missing problems like uninterpretable
high-frequency latents or increased feature absorption.

In the absence of a single, ideal metric, we argue that the
best way to measure SAE quality is to give a more de-
tailed picture with a range of diverse metrics. In particular,
SAEs should be evaluated according to properties that prac-
titioners actually care about. We characterize SAEs by con-
cept detection, interpretability, feature disentanglement and
reconstruction. Covering all aspects, SAEBench enables
measuring progress with new training approaches, tuning
training hyperparameters, and selecting the best SAE for a
particular task.

1. SAEBench: a standardized suite of eight evaluations
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capturing different aspects of SAE quality, including
two novel metrics for feature disentanglement

2. Training and SAEBench evaluation of over 200 SAEs
with varying architectures, training methodologies, and
widths.

3. A nuanced analysis of the evaluations from (2), with im-
plications for SAE architecture choice, scaling trends,
and training dynamics. Many of these trends are invisi-
ble to traditional SAE evaluation metrics. For instance,
we find that Matryoshka SAEs perform well on feature
disentanglement and concept detection metrics, despite
appearing worse on existing proxy metrics.

2. Related work
2.1. SAEs for Interpretability

Sparse autoencoders (SAEs) emerged as an unsupervised
tool for decomposing LLM activations into sparse linear
combinations of learned feature directions that are often in-
terpretable (Cunningham et al., 2023; Bricken et al., 2023).
In its basic form, an SAE consists of an encoder that maps
model internal activations x to a sparse, higher-dimensional
feature space and a decoder that reconstructs the input ac-
tivations as x̂. The standard architecture uses a linear en-
coder followed by a ReLU activation and a linear decoder,
trained to minimize both reconstruction error and a L1 spar-
sity penalty while maintaining normalized decoder columns.
The forward pass and optimization objective can be formal-
ized as:

h = ReLU(WEx+ bE) (1)
x̂ = WDh+ bD (2)

L = ∥x− x̂∥22︸ ︷︷ ︸
reconstruction

+λ ∥h∥1︸︷︷︸
sparsity

(3)

where x represents the input activation, h is the sparse
hidden representation, x̂ is the reconstructed activation,
WE , bE are the encoder weights and biases, WD, bD are
the decoder weights and biases, wj represents the j-th col-
umn of WD, and λ is the sparsity coefficient.

Recent work has proposed numerous improvements to the
original ReLU SAE design. These innovations span multiple
aspects:

• Network structure: Gated SAE (Rajamanoharan et al.,
2024a), Switch SAE (Mudide et al., 2024)

• Activation function: TopK SAE (Gao et al., 2024),
BatchTopK SAE (Bussmann et al., 2024a), JumpReLU
SAE (Rajamanoharan et al., 2024b), ProLU SAE (Tag-
gart, 2024), Feature Choice SAE (Ayonrinde, 2024)

• Loss function: P-anneal SAE (Karvonen et al., 2024),
Matryoshka SAE (Bussmann et al., 2024b), Feature-
Aligned SAE (Marks et al., 2024a).

Most of these improvements were guided by optimizing
the sparsity-fidelity tradeoff—maximizing reconstruction
quality at a given level of sparsity. However, this unsuper-
vised metric may not directly correspond to desirable traits
such as interpretability. For instance, an infinite-width SAE
with an L0 norm of 1 could theoretically achieve perfect
reconstruction while failing to provide meaningful insights
into the model’s representations.

2.2. SAE Evaluations

Previous evaluation approaches have largely focused on
specific aspects of SAE performance (see Appendix C for
detailed discussion). Automated interpretability using lan-
guage models has been widely adopted (Paulo et al., 2024;
Rajamanoharan et al., 2024b), though it often struggles to
differentiate between architectures (Anthropic Interpretabil-
ity Team, 2024b). Other evaluation methods include sparse
probing of labeled concepts (Gao et al., 2024), evaluation
on board games with ground truth features (Karvonen et al.,
2024), and supervised dictionary comparison (Makelov
et al., 2024; Venhoff et al., 2024).

While these existing benchmarks can provide valuable in-
sights, they each focus on specific aspects of SAE perfor-
mance. This limited evaluation scope has led many re-
searchers to default to optimizing the sparsity-fidelity trade-
off, despite its known limitations.

3. SAEBench: A Comprehensive Benchmark
SAEBench addresses these challenges by providing a uni-
fied evaluation framework that captures multiple aspects
of SAE performance while remaining computationally
tractable and easy to use. We identified five key require-
ments for a comprehensive SAE evaluation framework:

Diversity. Metrics should capture a broad range of SAE
behavior—from basic reconstruction to downstream task
performance—since relying on a single metric can overlook
important tradeoffs. Extensibility. The framework should
offer a standardized structure, making it easy to add new
evaluation methods as the field evolves. Speed. Evaluations
must complete within one to two hours per SAE, facilitating
rapid research iteration. Automation. A single script should
run all evaluations, eliminating the need to integrate separate
codebases manually. Reproducibility. All metrics must be
deterministic and reproducible to ensure fair comparisons
between architectures.
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Figure 1: SAEBench evaluates sparse autoencoders across four fundamental capabilities. Concept Detection measures how
well individual latents map to meaningful concepts. Interpretability evaluates feature comprehensibility using automated
LLM evaluation. Reconstruction quantifies how faithfully the SAE preserves model behavior. Feature Disentanglement
evaluates whether independent concepts are properly separated. These capabilities provide a comprehensive view of SAE
performance beyond traditional metrics.

3.1. Metrics

Effective sparse autoencoders should excel across multi-
ple dimensions: they should capture meaningful individual
concepts, produce human-interpretable latents, faithfully
reconstruct activations, and properly separate independent
concepts. However, optimizing for any single dimension
can lead to undesirable trade-offs. For instance, maximiz-
ing reconstruction might come at the cost of feature inter-
pretability, while focusing solely on concept detection could
sacrifice faithful representation of the original model’s be-
havior.

We therefore organize SAEBench around four fundamental
capabilities that together characterize effective SAEs:

• Concept Detection: Measures how precisely individ-
ual latents correspond to meaningful concepts through
Sparse Probing and Feature Absorption metrics

• Interpretability: Evaluates human-understandability
of learned latents using an LLM as a judge

• Reconstruction: Quantifies how faithfully the SAE
preserves the model’s original behavior via Loss Re-
covered metrics

• Feature Disentanglement: Assesses proper separa-
tion of independent concepts through Unlearning, Spu-
rious Correlation Removal, and Targeted Probe Pertur-
bation

These capabilities are measured through eight distinct met-
rics, combining established approaches with novel evalua-
tion methods. Although baseline methods outperform SAEs
on several of the benchmark tasks (as detailed further in
Appendix D), we retain these tasks to ensure coverage of di-
verse evaluation criteria. Most tasks are practically relevant
to existing problems, but some, such as Sparse Probing and
Feature Absorption, are diagnostic in nature.

Below we summarize each metric. Full implementation
details are provided in Appendix D.

3.2. Existing Metrics

3.2.1. TRADITIONAL SPARSITY–FIDELITY TRADEOFF

The main training objective of sparse autoencoders is to
learn sparse representations that accurately reconstruct the
input. Sparsity is quantified by the L0 norm and often
approximated by an L1 norm training objective or enforced
by a TopK mask. Reconstruction (fidelity) is quantified by
mean squared error or the loss recovered score, which is
defined as

(H∗ −H0)

(Horig −H0)
(4)

where Horig represents the cross-entropy loss of the model
for next-token prediction, H∗ denotes the cross-entropy
loss when substituting the model activation x with its SAE
reconstruction x̂ during the forward pass, and H0 is the
cross-entropy loss resulting from zero-ablating x.

The sparsity-fidelity trade-off has dominated recent SAE
development, typically appearing as the primary evaluation
metric in new architectures, while results on interpretability
metrics often remain inconclusive or secondary. While ad-
vances in this trade-off are valuable, small gains do not nec-
essarily translate into qualitatively better representations or
superior performance on downstream interpretability tasks.
We therefore regard the sparsity-fidelity curve as necessary
but not sufficient for evaluating SAEs.

3.2.2. AUTOMATED INTERPRETABILITY

We adopt a standard LLM-based judging framework (Paulo
et al., 2024): for each selected latent, a language model first
proposes a ”feature description” using a range of activating
examples. In the test phase, we construct a test set by
sampling sequences that activate the latent across different
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activation strengths, along with random control sequences.
The LLM judge uses the feature description it created to
predict which sequences would activate the selected latent,
and the accuracy of these predictions determines the final
interpretability score.

3.2.3. k-SPARSE PROBING

Sparse probing evaluates whether SAEs isolates pre-
specified concepts. For each concept (e.g., sentiment), we
identify the k most relevant latents by comparing their mean
activations on positive versus negative examples and train
a linear probe on top k latents. If those latents align well
with the concept, the probe’s accuracy will be high even
though the SAE was not explicitly supervised to isolate that
concept. This metric can be efficiently calculated using only
the SAE and precomputed model activations.

The choice of k depends on the use case: For human inter-
pretability, mapping concepts to single latents is ideal, while
for understanding model representations, research suggests
concepts can be distributed across multiple latents (Engels
et al., 2024). We evaluate across k ∈ {1, 2, 5} latents but
focus our analysis on k = 1. Our methodology is based on
Gurnee et al. (2023), who applied sparse probing to identify
context-specific MLP neurons, and Gao et al. (2024), who
adapted sparse probing to evaluate SAEs.

3.2.4. RAVEL

If an SAE effectively captures independent concepts, each
should be encoded by dedicated latents, achieving clear dis-
entanglement. To measure this, we implement the RAVEL
(Resolving Attribute–Value Entanglements in Language
Models) evaluation from Huang et al. (2024), which tests
how cleanly interpretability methods separate related at-
tributes within language models. RAVEL evaluates whether
targeted interventions on SAE latents can selectively change
a model’s predictions for specific attributes without unin-
tended side effects—for instance, making the model believe
Paris is in Japan while preserving the knowledge that the
language spoken remains French.

Concretely, RAVEL works as follows: given prompts like
”Paris is in the country of France,” ”People in Paris speak
the language French,” and ”Tokyo is a city,” we encode the
tokens Paris and Tokyo using the SAE. We train a binary
mask to transfer latent values from Tokyo to Paris, decode
the modified latents, and insert them back into the residual
stream for the model to generate completions. The final
disentanglement score averages two metrics: the Cause
Metric, measuring successful attribute changes due to the
intervention, and the Isolation Metric, verifying minimal
interference with other attributes.

3.3. Adapted Metrics

The following approaches were originally developed to
study specific phenomena in SAEs rather than as general
evaluation metrics. We adapt them into quantitative mea-
sures that can be systematically applied to any SAE.

3.3.1. FEATURE ABSORPTION

Feature absorption (Chanin et al., 2024b) is a phenomenon
where sparsity incentivizes SAEs to learn undesirable fea-
ture representations. This occurs with hierarchical concepts
where A implies B (e.g., pig implies mammal, or red im-
plies color)—rather than learning separate latents for both
concepts, the SAE is incentivized to learn a latent for A
and a latent for “B except A” to improve sparsity. Feature
absorption often manifests in unpredictable ways, creating
gerrymandered latents where, for instance, a “starts with
S” feature might activate on 95% of S-starting tokens but
inexplicably fail on an arbitrary 5% where the feature has
been absorbed elsewhere.

We build on the metric proposed in Chanin et al. (2024b),
which examines how SAE latents represent first-letter clas-
sification tasks, identifying cases where the main latents for
a letter fail to fully capture the feature while other latents
compensate. Our implementation extends this approach
with a more flexible measurement technique that enables
evaluation across all model layers. Motivated by manual in-
spection revealing absorption patterns missed by the original
metric, we introduce methods to detect partial absorption
and cases where multiple latents share responsibility for
absorption.

3.3.2. UNLEARNING CAPABILITY

In many practical applications, we want to selectively re-
move knowledge from a language model without disrupting
unrelated capabilities. Farrell et al. (2024) examined the
effectiveness of SAEs for unlearning by applying condi-
tional negative steering. We identify relevant latents by
comparing their activation frequencies between a forget set
(biology-related text in the WMDP-bio corpus) and retain
set (WikiText), then clamp these latents to negative values
whenever they activate. We build on their methodology
and report an unlearning score for each individual SAE,
measuring unlearning success via degraded accuracy on
WMDP-bio test questions while using MMLU categories
to verify retained capabilities. Models that achieve strong
unlearning of the target domain with minimal side effects
on other domains score higher.

3.4. Novel Metrics

While existing metrics capture many aspects of SAE per-
formance, they don’t directly measure how completely and
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cleanly SAEs isolate concepts within small groups of la-
tents—a property crucial for both human analysis and cir-
cuit analysis. Existing methods like unlearning and RAVEL
can modify behavior through steering individual latents,
even when concepts are distributed across many latents, as
steering a few key latents can be sufficient to alter model
behavior. Our metrics instead use zero ablation, which pro-
vides a stronger test of concept isolation: only when we’ve
identified all latents representing a concept will zeroing
them out completely remove that concept’s influence.

Our metrics adapt the methodology from Marks et al.
(2024c), which demonstrated removing unwanted corre-
lations from classifiers through targeted ablation of SAE k
latents. Both metrics evaluate two key properties through
zero ablation:

• Completeness: Whether a concept is fully captured by
a small set of latents

• Isolation: Whether different concepts are encoded by
distinct groups of latents

Spurious Correlation Removal (SCR) extends the SHIFT
method from Marks et al. (2024c). Starting with a biased
linear probe classifier that has learned both intended signals
(e.g., profession) and spurious correlations (e.g., gender),
we measure how effectively zero-ablating a small number of
SAE latents can remove the unwanted correlation from the
SAE’s output. If these latents cleanly isolate the spurious
concept, removing them should significantly improve the
classifier’s accuracy on the intended signal.

Targeted Probe Perturbation (TPP) generalizes this ap-
proach to multi-class settings. For each class, we train
binary classification probes and identify its most relevant
latents. We then measure how zero-ablating these latents
affects probe accuracy across all classes. A high TPP score
indicates that concepts are captured by distinct sets of la-
tents—ablating latents relevant to one class should primarily
degrade that class’s probe accuracy while leaving other class
probes unaffected.

Both metrics can be efficiently calculated using only the
SAE and precomputed model activations, bypassing the
need for expensive model forward passes. We sweep over
ablation set sizes k ∈ {5, 10, 20, 50, 100, 500} to assess
how concept completeness varies with feature count. In
presenting our results, we focus on ablation sets of size 20
as a practical size for manual analysis, although we observe
similar trends within the range of k ∈ [5, 50]. Full results
across all ablation sizes are available in Appendix H.

3.5. Practitioner’s Guide

When evaluating new SAE methods, we recommend train-
ing multiple SAEs across a range of sparsities (L0 ∈

[20, 200]) with directly comparable baselines. Many eval-
uations have a strong correlation with sparsity, making it
essential to assess performance across multiple sparsity lev-
els. This approach ensures that improvements are genuine
rather than statistical noise. Furthermore, it verifies that
advances genuinely advance the Pareto frontier on target
metrics, rather than merely reflecting an underlying correla-
tion with different sparsity levels.

4. Results
We use SAEBench to evaluate a suite of both common
and novel SAE architectures listed in Table 1 trained using
the open source library dictionary learning (Marks
et al., 2024b).

Evaluated SAE Architectures
ReLU (Anthropic Interpretability Team, 2024a)
MatryoshkaBatchTopK (Bussmann et al., 2024b)
TopK (Gao et al., 2024)
BatchTopK (Bussmann et al., 2024a)
Gated (Rajamanoharan et al., 2024a)
JumpReLU (Rajamanoharan et al., 2024b)
P-Annealing (Karvonen et al., 2024)

Table 1: List of evaluated sparse autoencoder architectures

We train multiple variants sweeping over widths (4k, 16k,
and 65k latents) and sparsities (L0 ranging from 20 to 1000)
on residual stream activations obtained at middle layers
of Gemma-2-2B (layer 12; Gemma Team et al. (2024))
and Pythia-160M (layer 8; Biderman et al. (2023)). We
will open-source the suite of over 200 SAEs upon comple-
tion of the peer-review process. Further training details are
contained in Appendix B. In addition, we evaluate SAEs
of widths 16k, 65k, 131k, and 1M on Gemma-2-2B and
Gemma-2-9B from the Gemma-Scope series (Lieberum
et al., 2024), with results in Appendix I.

Our key takeaways are detailed in the following paragraphs.
We discuss 65k width SAEs trained on Gemma-2-2B unless
noted otherwise. Similar trends exist at smaller dictionary
widths, as seen in Appendix J, but we observe clearer differ-
entiation at larger widths.

We emphasize that we examine a much wider range of
sparsities than the typical range of L0 ∈ [20, 200]. Previous
work identified the most interpretable SAE latents in this L0

range (Bricken et al., 2023; Rajamanoharan et al., 2024b).
We evaluate metrics across a much broader range of L0 ∈
[20, 1000] than typically studied to provide a more complete
understanding of sparsity’s role in SAE performance.
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Figure 2: Scores for the Loss Recovered, Automated Interpretability, Absorption, SCR, and Sparse Probing metrics on the
65k width Gemma-2-2B suite of SAEs.

4.1. Comparing SAE Architectures

Matryoshka Batch TopK SAEs perform best on concept
detection and feature disentanglement tasks, especially
in the typical L0 range of 40-200 (5 of 8 metrics). Most
notably, the Matryoshka SAE obtains best scores on several
metrics (Absorption, RAVEL, Sparse Probing, and SCR
in Figure 2 and TPP in Figure J) while performing worse
than TopK and BatchTopK on the sparsity-fidelity frontier
(Figure 2, upper left). In L0s over 200 (larger than typi-
cally used), however, Matryoshka is often not superior. We
observe the recurring theme that Matryoshka shows qualita-
tively different results than all other architectures.

The ReLU SAE is outperformed by other methods on
5 of 8 metrics. The ReLU SAE performs worst on loss
recovered, agreeing with previous work (Anthropic Inter-
pretability Team, 2024b; Rajamanoharan et al., 2024a; Gao
et al., 2024). We further find that all other architectures
outperform the ReLU SAE on absorption, SCR, RAVEL,
and TPP metrics.

However, ReLU variants do outperform on one metric. 65k
width ReLU SAEs with an L0 > 200 (above the range
of [20, 200] typically examined in the literature) perform
the best overall on 1-sparse probing, as seen in Figure J.
ReLU SAEs further show comparable performance in the
unlearning evaluation.

The sparsity-fidelity frontier does not reliably indicate
performance on downstream tasks. The sparsity-fidelity
frontier shows distinct rankings across different L0 regimes.
In the low-L0 regime (< 100), architectures are clearly sep-
arated, with BatchTopK performing best, followed by TopK,
Jump, Gated, Matryoshka, p-anneal, and ReLU performing
worst. As L0 increases to the middle regime [100, 500],
these performance differences diminish substantially, with
most architectures achieving comparable performance ex-
cept for p-anneal and ReLU SAEs.

However, these rankings don’t consistently align with per-
formance on other metrics. For example, the Matryoshka ar-
chitecture shows strong performance on SCR and feature ab-
sorption despite its middling position on the sparsity-fidelity
frontier. Similarly, while p-anneal consistently outperforms
Gated SAE on the absorption metric (Figure 2, lower left),
Gated SAE shows superior performance on loss recovered
(Figure 2, upper left). These contrasting results across dif-
ferent metrics emphasize the importance of comprehensive
evaluation using diverse metrics beyond the sparsity-fidelity
trade-off.

4.2. Dictionary Size Scaling Dynamics

Scaling behaviors are mixed across metrics. As we scale
dictionary size from 4k to 16k to 65k latents, we observe dis-
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tinct patterns that illuminate the fundamental trade-offs in
SAE design. Some metrics show consistent improvements
with scale, as shown in Figure 3. Both Automated Inter-
pretability scores and Loss Recovered generally increase
with dictionary size across all architectures, suggesting that
larger dictionaries enable both better reconstruction and
more interpretable individual latents.

Matryoshka is the only architecture improving on fea-
ture disentanglement with scale. We observe worse per-
formance with scale, also called inverse scaling, for most
architectures on metrics that measure feature disentangle-
ment and concept detection. Absorption scores worsen with
increased dictionary size for all architectures except Ma-
tryoshka, which shows only minor degradation. Similarly,
SCR performance at a fixed intervention budget decreases
for most architectures as dictionary size grows, while Ma-
tryoshka generally improves its performance (Figure 6).

We hypothesize that feature splitting determines scaling be-
havior on disentanglement metrics. Bricken et al. (2023)
demonstrate that increasing SAE width drives feature split-
ting, producing more granular representations at lower levels
of abstraction. Bussmann et al. (2024c) further shows that
a single decoder direction can fragment into multiple sub-
features, highlighting the risk of over-splitting. In contrast,
Matryoshka SAEs employ a hierarchical design to learn
multiple levels of abstraction simultaneously, avoiding such
fragmentation. This hierarchical structure likely explains
their positive scaling behavior on feature disentanglement
metrics, whereas other architectures exhibit negative scaling
trends.

Another hypothesis for the inverse scaling with SCR is that
SCR zero ablates a fixed number of latents, and the inverse
scaling is simply due to the fact that a smaller fraction of the
larger SAE is being modified. However, this inverse scaling
pattern persists even when controlling for intervention size.
When we examine SCR scores across a range of intervention
sizes (Figure 7), non-hierarchical architectures still show de-
graded performance at larger dictionary sizes. This suggests
that phenomena like feature splitting or feature absorption
may be leading to poor isolation of concepts.

Note that we scale with a fixed number of training steps
rather than a fixed compute budget. In other words, all SAEs
were trained with the same amount of training data while
the number of FLOPs grows proportional to the dictionary
size.

4.3. Task-Dependent Optimal Sparsity

While different tasks demand different levels of sparsity,
moderate L0 values of 50-150 offer a reasonable compro-
mise across metrics. Finally, we examine how performance
varies with respect to L0 in Figure J.

• Lower L0 (higher sparsity) often helps human inter-
pretability.

• Higher L0 yields better reconstruction fidelity, RAVEL
and targeted probe perturbation scores, and reduced
feature absorption.

• Moderate L0 sometimes balances these trade-offs or
even performs best on certain metrics like sparse prob-
ing and spurious correlation removal.

In other words, no single L0 is optimal for all tasks. How-
ever, a moderate L0 ∈ [50, 150] strikes a reasonable balance
between our various metrics.

4.4. Monitoring Training

We evaluate checkpoints of our 16k TopK and ReLU SAEs
at 0, 5M, 15M, 50M, 150M, and 500M tokens on our met-
rics, where 500M is the total number of training steps. We
find that many metrics achieve most of their performance
by 50M tokens, although there is still slow improvement,
as seen in Figure G. We caution that minor quantitative im-
provements may also have major qualitative improvements,
and higher training budgets may be worthwhile, especially
for larger dictionary sizes.

4.5. Model Scale Effects

When comparing results between Pythia-160M and Gemma-
2-2B, we find that while reconstruction fidelity trends re-
main consistent, metrics relying on supervised concepts
(SCR, TPP, sparse probing, and feature absorption) show
substantially different patterns, as seen in Appendix J. The
advantages of hierarchical architectures on our SCR met-
ric seen in Gemma-2-2B don’t appear in Pythia-160M. We
attribute this to fundamental differences in model capabili-
ties—our supervised metrics assume robust representation
of concepts like spelling, professions, and demographics,
which are likely weaker in smaller models. This raises ques-
tions about the scale-dependence of SAE evaluation metrics
themselves. We therefore focus on Gemma-2-2B for our
main comparisons as it better represents real-world usage.

4.6. Unexpected Findings and Limitations

Feature disentanglement metrics (TPP, RAVEL) showed an
unexpected preference for higher L0 values (> 400), diverg-
ing significantly from the conventional L0 range of 20-200
typically used in SAE literature. This preference is par-
ticularly pronounced for TPP, while interestingly, SCR—a
conceptually related metric—does not exhibit this pattern.
We hypothesize that higher sparsity forces the composition
of multiple concepts into fewer active latents, potentially
harming disentanglement.
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Figure 3: Scaling SAE width from 4k to 65k for across SAE architectures. For each architecture / width pair, we mean
over all results in the L0 range between 40 and 200. Most notably the hierarchical Matryoshka SAE shows positive scaling
behavior. Due to varying L0 distributions across architectures, this visualization is intended primarily for analyzing scaling
trends rather than architecture comparisons. Complete scaling results across all sparsity values are presented in Figure 6.

While we do see some notable trends with K-sparse probing,
it provides limited differentiation between architectures,
widths, and sparsities, with scores falling within a narrow
range. This aligns with previous findings from Gao et al.
(2024), who had observed that ”Our probe based metric is
quite noisy”, even across 61 binary classification datasets.
However, we observe that all SAEs significantly outperform
a baseline of probing directly on K residual stream channels
(0.65 on Layer 12 of Gemma-2-2B).

Our Unlearning evaluation is constrained by model capabil-
ities – meaningful unlearning measurement requires strong
baseline task performance, but Gemma-2-2B only achieved
sufficient performance on one of the existing unlearning
test sets. Future work should explore larger models with
stronger task performance or develop unlearning datasets
better matched to model capabilities.

5. Limitations
Supervised metrics are fundamentally limited by the
availability of ground truth data. Our supervised metrics
can only evaluate concepts with reliable ground truth data,
representing a small subset of the vast space of concepts
encoded in language models. While this limitation doesn’t

affect unsupervised metrics like automated interpretability
and sparsity-fidelity, it means our supervised metrics exam-
ine only a fraction of each SAE’s latents. Due to this limited
number of supervised concepts, some metrics show rela-
tively noisy results. However, several metrics—particularly
spurious correlation removal and absorption—demonstrate
clear and substantial differences between architectures, with
hierarchical architectures outperforming other approaches
by margins of 30-40%.

Quantitative metrics may not capture qualitative aspects
of interpretability. Our benchmark does not directly cap-
ture qualitative aspects of interpretability that researchers
find valuable in practice. While metrics like automated-
interpretability attempt to quantify feature interpretability,
they may not reflect the nuanced insights gained through
manual investigation of SAE latents during mechanistic
analysis.

Our evaluation covers specific models but cannot address
all language model architectures and scales. While we
provide extensive evaluation across multiple architectures
and dictionary sizes on Gemma-2-2B and Pythia-160M,
SAE behavior may vary across different model scales, ar-
chitectures, and layers. Future work could investigate how
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these patterns generalize across a broader range of models
and network layers.

Metrics cannot be meaningfully combined into a single
score. Different downstream applications or users may pri-
oritize different aspects of SAE performance - for example,
interpretability or reconstruction accuracy. Additionally,
our metrics operate on different scales and exhibit varying
levels of noise. Given these complexities, any attempt to
combine metrics into a single score would require arbitrary
weighting choices that could obscure important trade-offs
between different aspects of SAE performance.

6. Conclusion
SAEBench provides a comprehensive evaluation framework
that moves beyond the traditional sparsity-fidelity frontier
to capture multiple dimensions of SAE performance. Our
results reveal several key insights about SAE design and
scaling. First, while recent architectural innovations show
clear improvements over the original ReLU SAE on some
metrics, hierarchical architectures like Matryoshka SAEs
demonstrate dramatically superior performance on feature
disentanglement tasks despite slightly worse reconstruction
fidelity. Second, we find that dictionary size scaling pro-
duces complex trade-offs: while larger dictionaries gener-
ally improve reconstruction and per-feature interpretabil-
ity, they can lead to degraded concept isolation in non-
hierarchical architectures. Third, optimal sparsity levels
vary significantly by task, though moderate L0 values of
50-150 offer reasonable compromise across most metrics.

These findings highlight the importance of comprehensive
evaluation across multiple metrics when developing new
SAE architectures. While the field has primarily focused
on optimizing the sparsity-fidelity trade-off, our results sug-
gest that downstream task performance and feature disen-
tanglement are both important considerations for practical
applications. By providing a standardized benchmark suite
and revealing previously hidden trade-offs, SAEBench aims
to accelerate progress in neural network interpretability re-
search.

Future work could extend SAEBench to evaluate SAEs
across a broader range of model scales and architectures,
develop additional metrics for capturing qualitative aspects
of interpretability, and investigate the relationship between
training dynamics and downstream performance. In addi-
tion, SAEBench could be extended to other modalities, such
as applying sparse probing to vision or biology models. We
invite the community to implement additional metrics in our
standardized format. We hope that SAEBench will serve
as a valuable resource for researchers developing new SAE
architectures and practitioners selecting pre-trained SAEs
for specific applications.

Impact Statement
This work aims to improve the evaluation of sparse au-
toencoders, a key tool in mechanistic interpretability. By
providing a comprehensive benchmark, we seek to help
researchers develop more interpretable models, diagnose
failure modes, and better understand model representations.
We believe that improving interpretability is more likely to
reduce potential harms from AI systems by making their
behavior more transparent and predictable. However, as
with any research in this space, these insights could also
accelerate broader advancements in AI, which carry both
benefits and risks.
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A. Computational Requirements
The computational requirements for running SAEBench evaluations were measured on an NVIDIA RTX 3090 GPU using
16K width SAEs trained on the Gemma-2-2B model. Table 2 breaks down the timing for each evaluation type into two
components: an initial setup phase and the per-SAE evaluation time. The setup phase includes operations like pre-computing
model activations, training probes, or other one-time preprocessing steps that can be reused across multiple SAE evaluations.
After this setup is complete, each evaluation has its own runtime per SAE tested.

The total evaluation time for a single SAE across all benchmarks is approximately 65 minutes, with an initial setup time
of 107 minutes. Note that actual runtimes can vary significantly based on factors like SAE dictionary size, choice of base
model, and GPU selection.

Evaluation Type Avg Time per SAE (min) Setup Time (min)
Absorption 26 33
Core 9 0
SCR 6 22
TPP 2 5
Sparse Probing 3 15
Automated Interpretability 9 0
Unlearning 10 33
RAVEL 45 45
Total 110 152

Table 2: Timing results for evaluations, rounded to the nearest minute.

B. SAE Training Details
For each [layer, width, type] combination, we target 6 L0 values: [20, 40, 80, 160, 320, 640]. For SAEs trained with a
sparsity penalty, without the ability to explicitly set a desired L0 (all except TopK variants), we may not exactly hit the
targeted L0 values. All other variables are kept fixed to enable direct comparisons. All SAEs are trained in a directly
comparable manner, including identical data and data ordering.

When training, we first estimate a scalar constant to normalize the activations to have a unit mean squared norm during
training, increasing hyperparameter transfer between layers and models. We fold this constant into the weights after training
so our SAEs don’t require normalized activations.

We initialize the decoder to the transpose of the encoder, but do not tie them during training. We found that the transpose
initialization was important for avoiding dead latents which do not activate during training.

Following (Nanda, 2023), we randomly sample from a buffer of 250,000 activations and replenish the buffer when half
empty.

Hyperparameter Value
Tokens processed 500M
Learning rate 3× 10−4

Learning rate warmup (from 0) 1,000 steps
Sparsity penalty warmup (from 0) 5,000 steps
Learning rate decay (to 0) Last 20% of training
Dataset The Pile
Batch size 2,048
LLM context length 1,024

Table 3: SAE training hyperparameters.
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C. Extended Related Work
C.1. SAE Benchmarks

A common approach to evaluating SAE features has been automated interpretability, where language models are used
to judge feature interpretability (Paulo et al., 2024; Rajamanoharan et al., 2024a). In this evaluation, an LLM generates
a natural language description of an SAE feature based on input sentences that activate the feature most. A simulator
model uses the generated description to predict feature activations on held-out data. However, this evaluation method has
struggled to provide statistically significant differences between various SAE architectures and approaches, such as in
Rajamanoharan et al. (2024a). The Anthropic Interpretability Team (2024b) found most SAE variants perform comparably,
while outperforming the standard ReLU SAE.

Gao et al. (2024) propose using the Top-K activation function to SAEs and evaluate their approach on four metrics:
Downstream loss measures the difference in Kullback-Leibler (KL) divergence and cross-entropy (CE) loss of model
predictions after replacing activations with their SAE reconstruction during a forward-pass. Sparse probing quantifies
the correlation of single SAE latents with labeled concepts in natural language. Neuron-to-Graph generates explanations
for SAE latent activations by identifying n-gram patterns. Precision and recall of these explanations are evaluated on an
held-out test. Ablation sparisity is an unsupervised characteristic for the downstream effects on output logits when ablating
individual latents.

Karvonen et al. (2024) evaluate SAE architectures on board game models, leveraging clear ground truth features which
exist in board games. However, their metrics cannot be applied to language models. Makelov et al. (2024) evaluate SAEs
on discovering relevant representations of the indirect-object-identification (IOI) mechanism in GPT-2-small Wang et al.
(2022). They leverage knowledge about the IOI circuit to create supervised dictionaries, which they use for comparison with
unsupervised dictionaries. However, this requires task specific knowledge to create the supervised dictionaries, limiting its
scalability.

Recent work by Venhoff et al. (2024) introduced SAGE, a framework for automated discovery of task-relevant model
components. SAGE computes supervised feature dictionaries that serve as approximate ground truth of model internal
features. The method compares SAEs with supervised dictionaries across layers using a projection-based reconstruction
technique.
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D. Further Evaluation Details
In all evaluations, we mask off the BOS, EOS, and PAD tokens because some existing SAEs do not train on these special
tokens, such as Lieberum et al. (2024).

PCA Baseline Implementation

We include a PCA baseline in all charts, implemented as follows: the PCA is fit on 200M model activations, treating all
PCA components as SAE latents. The PCA encoder is the PCA transformation matrix, and the decoder is its transpose. The
mean activation value is used as a bias term. Due to this implementation, PCA achieves perfect reconstruction but exhibits
very high L0 sparsity, approximately equal to the model’s hidden dimension.

Core Evaluation Metrics

Core metrics include L0 sparsity and Loss Recovered as described in Section 3.2.1. Our core implementation also provides
additional convenient metrics, such as Relative Reconstruction Bias Rajamanoharan et al. (2024a), KL divergence, maximum
cosine similarity between latents, and the percentage of high-frequency latents.

Parameter Value
Dataset OpenWebText
Context length 128 tokens
Loss Recovered samples 3,200 sequences
Sparsity evaluation samples 32,000 sequences

Table 4: Core metrics evaluation hyperparameters.

LLM Scoring / Automated Interpretability

In automated interpretability evaluation, we use gpt4o-mini as an LLM judge to quantify the interpretability of SAE latents
at scale, in line with Bills et al. Our implementation is similar to the detection score proposed by Paulo et al. (2024). The
evaluation consists of two phases: generation and scoring.

In the generation phase, we obtain SAE activation values on webtext sequences. We select sequences with the highest
activation values (top-k) and sample additional sequences with probability proportional to their activation values. These
sequences are formatted by highlighting activating tokens with <<token>> syntax and are used to prompt an LLM to
generate explanations for each feature based on these formatted sequences.

The scoring phase begins by creating a test set for each latent, which contains top activation sequences, importance-weighted
sequences, and random sequences from the remaining distribution, specifically:

• 10 Randomly Sampled Sequences

• 2 Max Activating Sequences

• 2 Importance Weighted Sequences

Given a feature explanation and the shuffled test set of unlabeled sequences, another LLM judge predicts which sequences
would activate the feature. The automatic interpretability score reflects the accuracy of predicted activations. Paulo et al.
(2024) found that LLM judgements correlated with human judgements in this setting.

Sparse Probing

We evaluate our sparse autoencoders’ ability to learn specified concepts through a series of targeted probing tasks across
diverse domains, including language identification, profession classification, and sentiment analysis. We base our methodol-
ogy on that used by Gurnee et al. (2023). For each dataset class, we structure the task as a one-versus-all binary classification
task. For each task, we encode inputs through the SAE, apply mean pooling over non-padding tokens, and select the top-K
latents using maximum mean difference. We chose the maximum mean difference method for feature identification as
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Parameter Value
Sample size 1,000 non-dead latents
Dataset The Pile
Activation dataset size 2M tokens
Context length 128 tokens
LLM judge gpt4o-mini

Table 5: Automated interpretability evaluation hyperparameters.

Gurnee et al. (2023) found it performs comparably to more complex sparse probing methods while being both efficient
and simple. We train a logistic regression probe on the resulting representations and evaluate classification performance on
held-out test data. Our evaluation spans 35 distinct binary classification tasks derived from five datasets.

Our probing evaluation encompasses five datasets spanning different domains and tasks:

Dataset Task Type Description
bias in bios Profession Classification Predicting professional roles from biographical text
Amazon Reviews Product Classification and Sentiment Dual tasks: category prediction and sentiment analysis
Europarl Language Identification Detecting document language
GitHub Programming Language Classification Identifying coding language from source code
AG News Topic Categorization Classifying news articles by subject

Table 6: Datasets used in probing evaluation and their corresponding tasks.

To ensure consistent computational requirements across tasks, we sample 4,000 training and 1,000 test examples per binary
classification task and truncate all inputs to 128 tokens. For GitHub data, we follow Gurnee et al. (2023) by excluding the
first 150 characters (approximately 50 tokens) as a crude attempt to avoid license headers. We evaluated both mean pooling
and max pooling across non-padding tokens and used mean pooling as it obtained slightly higher accuracy. From each
dataset, we select subsets containing up to five classes. Multiple subsets may be drawn from the same dataset to maintain
positive ratios ≥ 0.2.

RAVEL

The RAVEL evaluation assesses the extent to which SAEs achieve clear feature disentanglement, where independent
concepts are encoded in distinct latents without unintended overlaps. We follow the methodology introduced by Huang et al.
(2024), which specifically tests how targeted latent interventions can alter model predictions about particular attributes of
entities (e.g., convincing the model that Paris is in Japan) while preserving other attributes (such as the language spoken in
Paris remaining French).

In detail, the evaluation process involves selecting specific entities (e.g., cities, Nobel laureates) and their attributes (e.g.,
country, language, continent) from the RAVEL dataset. We generate completions for all prompts in the RAVEL dataset
describing these entities and select the top 500 entities and 90 templates based on prediction accuracy. To identify the latents
relevant to each attribute, we follow Chaudhary & Geiger (2024) and use a Multitask Differentiable Binary Mask (MDBM)
to select the latents, simultaneously optimizing for both the Cause and Isolation metrics. Note that this is unlike Huang et al.
(2024), who selected latents using a linear probe. The MDBM is trained on 7,000 examples (equally split between cause and
isolation) for two epochs with a learning rate of 1× 10−3, and evaluated on a separate set of 3,000 test examples.

During intervention, we transfer encoded latent values at a single token: if an entity spans multiple tokens, the latent
intervention is applied specifically to the final token, following Huang et al. (2024). As a performance skyline, we also
implement a jointly-trained Multitask Distributed Alignment Search (MDAS) and MDBM, achieving a disentanglement
score of 0.87. Due to the increased number of trainable parameters, the MDAS/MDBM intervention was trained for 10
epochs instead of 2, with convergence determined through manual inspection.

In certain evaluations (e.g., SCR, TPP), we typically compute the SAE reconstruction error, perform the latent intervention
on the SAE, and then add the original reconstruction error term back to the modified reconstruction. This approach ensures
that any changes remain confined to the targeted SAE latents, preventing unintended effects from a potentially large
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and destabilizing error term. However, for the RAVEL evaluation specifically, we observed that incorporating this error
term negatively impacted both the Cause and Disentangle scores, frequently reducing Disentangle by approximately 0.02.
Therefore, we omit the error term in our RAVEL evaluations.

For the evaluation, we selected two entity types from the RAVEL dataset: cities with attributes Country, Continent, and
Language, and Nobel Prize winners with attributes Country of Birth, Field, and Gender.

Parameter Value
Top entities selected 500
Top templates selected 90
MDBM training samples 7,000 (50% cause, 50% isolation)
MDBM test samples 3,000
MDBM Start Temperature 1
MDBM End Temperature 1× 10−4

MDBM epochs 2
MDAS epochs 10
MDBM learning rate 1× 10−3

Skyline disentangle score 0.87

Table 7: RAVEL evaluation hyperparameters.

Feature Absorption

In general, feature absorption is incentivized any time there’s a pair of concepts, A and B, where A implies B (i.e., if A
activates, then B will always also be active, but not necessarily the other way around). This will happen with categories or
hierarchies, e.g., India =⇒ Asia, pig =⇒ mammal, red =⇒ color, etc. If the SAE learns a latent for A and a latent for
B, then both will fire on inputs with A. But this is redundant—A implies B, so there’s no need for the B latent to light up
on A. If the model learns a latent for A and a latent for “B except A,” then only one activates. This is sparser, but clearly
less interpretable!

Feature absorption often happens in an unpredictable manner, resulting in unusual gerrymandered latents. For example, the
“starts with S” feature may fire on 95% of tokens beginning with S, yet fail to fire on an arbitrary 5% as the “starts with S”
feature has been absorbed for this 5% of tokens. This is an undesirable property that we would like to minimize.

We build on the metric proposed in Chanin et al. (2024b), which focuses on examining how SAE latents represent first-letter
classification tasks, measuring cases where the main latents for a letter fail to fully capture the feature while other latents
compensate. Our implementation extends this approach with a more flexible measurement technique that enables evaluation
across all model layers. Chanin et al. (2024b) included the ablation effect of absorbing latents on the model’s performance
on the spelling task as part of the metric, but this limits the use of the metric to early and middle layers. Ablation effect
always goes to zero in later layers after the relevant information gets moved to the final token position during the model
forward pass, thus diminishing the causal impact of any of the latents at the source token. We therefore adopt an alternate
approach to detecting absorbing latents based on the latent contributing a significant portion of the first-letter probe direction
to the residual stream, where the first-letter direction is defined by a logistic-regression ground truth probe as described
below.

We observed that absorption patterns often involve partial absorption, where the absorbed latent isn’t completely suppressed,
but still activates weakly, with other absorbing latent(s) compensating for their reduced activations. We also observed that
the responsibility for compensating for the reduced activation of the main latents for a given feature is often shared among
several absorbing latents. In some SAEs most cases of absorption involved either or both of these patterns. This motivated
the approach described below where we allow a flexible number of latents to be classified as absorbing and measure the
amount of absorption as a fraction capturing the proportion of the SAE’s representation of the feature which is accounted for
by absorbing latents rather than the main latents for that feature.

Our approach works as follows: first, tokens consisting of only English letters and an optional leading space are split into a
train and test set, and a supervised logistic regression probe for each starting letter is trained on the train set using residual
stream activations from the model. These probes are used as ground truths for the feature directions in the model. Next, for
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each starting letter, k-sparse probing is performed on SAE latents from the train set to find which latents are most relevant
for the task. The k = 1 sparse probing latent is considered as a main SAE latent for a given first letter task. To account for
feature splitting, as k is increased from k = n to k = n+ 1, if the F1 score for the k = n+ 1 sparse probe represents an
increase of more than τfs over the F1 of the k = n probe, the k = n+ 1 feature is considered a feature split and is added to
the set of main SAE latents performing the first letter task. We use τfs = 0.03 following Chanin et al.

Once the main feature split latents for each first letter have been identified, we evaluate their behavior on the test set for
cases of absorption based on the projections of the residual stream activations and the SAE latent activations onto the ground
truth probe direction for the first letter in question. Specifically, we detect absorption to occur on test set inputs where:

1. The ground truth probe correctly classifies the first letter of the token in question (if the ground truth probe cannot
detect the feature, it would be unfair to expect the main feature split latents to do so).

2. The sum of the projections of the main feature split latent activations onto the probe direction is less than the projection
of the residual stream activation onto the probe direction (conceptually, the main feature split latents don’t account for
all of the presence of the feature they are trying to detect in the residual stream activation):∑

i∈Smain

aidi · p < amodel · p

3. The sum of the top Amax ground truth probe projections from other latents accounts for at least a proportion τpa of the
projection of the residual stream activation onto the probe direction. Note we only consider other latents as potential
absorbing latents if they have cosine similarity with the ground truth probe ≥ τps and positive ground truth probe
projection. (conceptually, there are other related latents which significantly compensate for the reduced activation of
the main latents): ∑

i∈Sabs
aidi · p

amodel · p
≥ τpa

For inputs that satisfy the above criteria, the absorption score is defined as:

Absorption Score =

∑
i∈Sabs

aidi · p∑
i∈Sabs

aidi · p+
∑

i∈Smain
aidi · p

Where:

• S is the set of all SAE latents.

• Smain is the set of the main feature split latents.

• Sabs is the set of the absorbing latents. Contains up to the top Amax potential absorbing latents with the highest ground
truth probe projections.

• ai is the activation magnitude of latent i.

• di is the unit decoder direction for latent i.

• p is the unit ground truth probe direction.

• amodel is the activation vector from the model, in our case the residual stream activation.

Conceptually, this captures the proportion of the SAE’s representation of the feature which is accounted for by absorbing
latents rather than the main latents for that feature

For all other inputs, the absorption score is 0. The total absorption score is then the mean absorption score across all test
inputs correctly classified by the probe. The dataset is the model vocabulary, filtered for tokens containing only English
letters and an optional leading space.

For consistency with our other evaluation metrics where higher values are more desirable, we present our results using the
complement of the absorption score (1 - absorption score).
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Parameter Value
Train/test split 80/20
k-sparse probing max k 10
τfs 0.03
τpa 0
τps −1
Amax SAE dictionary size

Table 8: Absorption evaluation hyperparameters.

Unlearning

We evaluate SAEs on their ability to selectively remove knowledge while maintaining model performance on unrelated
tasks, following the methodology in Farrell et al. (2024). While there are several existing unlearning datasets, we found that
Gemma-2-2B’s performance was relatively poor on most test sets. With larger models, this evaluation could be expanded to
leverage a greater diversity of existing unlearning datasets. Evaluation parameters are detailed in Table 9.

This SAE unlearning evaluation uses the WMDP-bio dataset, which contains multiple-choice questions involving dangerous
biology knowledge. The intervention methodology involves clamping selected SAE feature activations to negative values
whenever the latents activate during inference. Feature selection utilizes a dual-dataset approach: calculating feature sparsity
across a ”forget” dataset (WMDP-bio corpus) and a ”retain” dataset (WikiText). The selection and intervention process
involves three key hyperparameters:

1. retain threshold - maximum allowable sparsity on the retain set,

2. n features - number of top latents to select, and

3. multiplier - magnitude of negative clamping.

The procedure first discards latents with retain set sparsity above retain threshold, then selects the top n features
by forget set sparsity, and finally clamps their activations to negative multiplier when activated.

We quantify unlearning effectiveness through two metrics:

1. Accuracy on WMDP-bio questions, and

2. Accuracy on biology-unrelated MMLU subsets, including high school US history, geography, college computer science,
and human aging.

Both metrics only evaluate on questions that the base model answers correctly across all option permutations, to reduce
noise from uncertain model knowledge. Lower WMDP-bio accuracy indicates successful unlearning, while higher MMLU
accuracy demonstrates preserved general capabilities.

We sweep the three hyperparameters to obtain multiple evaluation results per SAE. To derive a single evaluation metric, we
filter for results maintaining MMLU accuracy above 0.99 and select the minimum achieved WMDP-bio accuracy, thereby
measuring optimal unlearning performance within acceptable side effect constraints.

Spurious Correlation Removal (SCR)

In the SHIFT method, a human evaluator debiases a classifier by ablating SAE latents. We automate SHIFT and use it
to measure whether an SAE has found separate latents for distinct concepts—for example, the concept of gender and the
concepts related to someone’s profession. Distinct latents enable a more precise removal of spurious correlations, thereby
effectively debiasing the classifier.

First, we filter datasets (Bias in Bios and Amazon Reviews) for two binary labels. For example, we select text samples of two
professions (professor, nurse) and the gender labels (male, female) from the Bias in Bios dataset. We partition this dataset
into:
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Parameter Value
MMLU Subsets High School US history,College Computer Science,High School Geography,Human Aging
Retain thresholds [0.001, 0.01]
Number of latents [10, 20]
Negative multipliers [25, 50, 100, 200]
Retain / Forget Dataset size 1,024 sequences
Retain / Forget Sequence length 1,024 tokens

Table 9: Unlearning evaluation hyperparameters.

• A balanced set—containing all combinations of professor/nurse and male/female, and

• A biased set—containing only male+professor and female+nurse combinations.

We then train a linear classifier Cb on the biased dataset. The linear classifier picks up on both signals, such as gender and
profession. During the evaluation, we attempt to debias the classifier Cb by selecting SAE latents related to one class (e.g.,
gender) to increase classification accuracy for the other class (e.g., profession).

We select the set L containing the top n SAE latents according to their absolute probe attribution score with a probe trained
specifically to predict the spurious signal (e.g., gender). We found that latents automatically identified through probe
attribution are interpretable and align well with the target concepts, as validated by both human evaluation and automated
LLM judgment. Thus, we select latents using probe attribution to avoid the cost and potential biases associated with an
LLM judge.

For each original and spurious-feature-informed set L of selected latents, we remove the spurious signal by defining a
modified classifier:

Cm = Cb \ L

where all selected unrelated yet highly attributive latents are zero-ablated. The accuracy with which the modified classifier
Cm predicts the desired class when evaluated on the balanced dataset indicates SAE quality. A higher accuracy suggests
that the SAE was more effective in isolating and removing the spurious correlation (e.g., gender), allowing the classifier to
focus on the intended task (e.g., profession classification).

We consider a normalized evaluation score:

SSHIFT =
Aabl −Abase

Aoracle −Abase

where:

• Aabl is the probe accuracy after ablation,

• Abase is the baseline accuracy (spurious probe before ablation), and

• Aoracle is the skyline accuracy (probe trained directly on the desired concept).

This score represents the proportion of improvement achieved through ablation relative to the maximum possible improve-
ment, allowing fair comparison across different classes and models.

Targeted Probe Perturbation (TPP)

SHIFT requires datasets with correlated labels. We generalize SHIFT to all multiclass NLP datasets by introducing the
Targeted Probe Perturbation (TPP) metric. At a high level, we aim to find sets of SAE latents that disentangle the dataset
classes. Inspired by SHIFT, we train probes on the model activations and measure the effect of ablating sets of latents on the
probe accuracy. Ablating a disentangled set of latents should only have an isolated causal effect on one class probe, while
leaving other class probes unaffected. A full write-up is located in “Evaluating Sparse Autoencoders on Targeted Concept
Erasure Tasks”.
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We consider a dataset mapping text to exactly one of m concepts c ∈ C. For each class with index i = 1, . . . ,m, we select
the set Li of the most relevant SAE latents by training a linear probe. Note that we select the top signed importance scores,
as we are only interested in latents that actively contribute to the targeted class.

For each concept ci, we partition the dataset into samples of the targeted concept and a random mix of all other labels.

We define the model with a probe corresponding to concept cj for j = 1, . . . ,m as a linear classifier Cj , which is able
to classify concept cj with accuracy Aj . Further, Ci,j denotes a classifier for cj where latents Li are ablated. Then, we
iteratively evaluate the accuracy Ai,j of all linear classifiers Ci,j on the dataset partitioned for the corresponding class cj .

The Targeted Probe Perturbation (TPP) score is defined as:

STPP = meani=j (Ai,j −Aj)− meani̸=j (Ai,j −Aj)

This score represents the effectiveness of causally isolating a single probe. Ablating a disentangled set of latents should only
show a significant accuracy decrease if i = j, namely if the latents selected for class i are ablated in the classifier of the
same class i, and remain constant if i ̸= j.

Parameter Value
Train set size 4,000 sequences
Test set size 1,000 sequences
Context length 128 tokens
Probe train batch size 16
Probe epochs 20
Probe learning rate 1e-3
Probe L1 penalty 1e-3

Table 10: SCR and TPP shared evaluation hyperparameters.

For SCR evaluation, we create perfectly biased datasets where the spurious correlation is gender for Bias in Bios and
sentiment for Amazon Reviews.

SCR Class Pairs:

• Bias in Bios:

– Professor / Nurse
– Architect / Journalist
– Surgeon / Psychologist
– Attorney / Teacher

• Amazon Reviews:

– Books / CDs and Vinyl
– Software / Electronics
– Pet Supplies / Office Products
– Industrial and Scientific / Toys and Games

TPP Classes:

• Bias in Bios:

– Accountant
– Architect
– Attorney
– Dentist
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– Filmmaker

• Amazon Reviews:

– Toys and Games
– Cell Phones and Accessories
– Industrial and Scientific
– Musical Instruments
– Electronics
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E. Baseline Comparison: SAEs on Randomly Initialized vs. Fully Trained Models
We additionally investigated sparse autoencoders (SAEs) trained on a randomly initialized language model as a baseline,
inspired by recent work involving auto-interp (Heap et al., 2025). Specifically, we trained two sets of 16k-width TopK SAEs
on layer 10 of the Pythia-1B model for 100 million tokens each: one set trained on the fully trained model and another on
the randomly initialized (Step 0) model. We compared these two sets using several SAEBench metrics, specifically focusing
on KL divergence score, sparse probing, automated interpretability (auto-interp), Spurious Correlation Removal (SCR), and
Targeted Probe Perturbation (TPP).

Limitations and Contextual Considerations: When interpreting these results, several limitations should be acknowledged.
The SAEBench metrics employed in this analysis were originally designed for evaluating various SAEs trained on the same
underlying model, rather than comparing SAEs across fundamentally different models, such as fully trained versus randomly
initialized. Consequently, metrics dependent on the inherent capabilities of a trained model—such as unlearning, which
requires the model to perform above random chance on benchmarks like MMLU, or feature absorption, which relies on
accurately predicting specific token-level features—are not applicable to randomly initialized models.

Additionally, comparability challenges arise due to inherent differences in predictive behaviors between models. For
example, Targeted Probe Perturbation (TPP) and SCR measure relative changes in linear probe accuracy within a given
model. However, linear probes trained on randomly initialized models typically yield substantially lower baseline accuracies
compared to fully trained models, making cross-model comparisons potentially misleading. For sparse probing, probing
the residual stream of the trained model gives 94% accuracy vs 84% with the random model.

We observed several noteworthy patterns:

Supervised Metrics: SAEs trained on the fully trained model significantly outperformed those trained on the randomly
initialized model on most metrics, especially on sparse probing and SCR. The SAEs trained on the random model exhibited
performance close to or worse than directly probing residual stream values, indicating their inability to capture meaningful
abstract features.

Automated Interpretability: SAEs trained on the fully trained model achieved slightly higher auto-interp scores compared
to those trained on the random model. However, both sets of SAEs substantially outperformed a baseline involving directly
reading residual stream activations, a notably weak baseline. We note that our auto-interp evaluation employs a detection-
based approach, distinct from the fuzzing method utilized by Heap et al. (2025), which may partly explain differences in
results.

As shown in Figure 5, SAEs consistently and significantly outperformed all other baselines we tested, including MLP
neurons, PCA principal components, and direct residual stream readings.

KL Divergence: Since cross-entropy loss recovery metrics are not meaningful for randomly initialized models, we instead
evaluated a normalized KL divergence score defined as follows:

KL Divergence Score =
DKL(Pablated ∥ Porig)−DKL(PSAE ∥ Porig)

DKL(Pablated ∥ Porig)

where Porig represents logits from the original model, Pablated represents logits after zero-ablation of activations, and PSAE
represents logits after reconstructing activations with the SAE. SAEs trained on the fully trained model achieved significantly
higher KL divergence scores (indicating superior reconstruction quality), despite having higher absolute KL divergence
values. This outcome is expected because randomly initialized models produce essentially random predictions, offering
limited opportunity for meaningful reconstruction improvement.

Targeted Probe Perturbation (TPP): SAEs trained on randomly initialized models achieved higher TPP scores than
those trained on the fully trained Pythia-1B model. However, we caution against interpreting this result as indicative of poor
evaluation quality. The TPP metric measures relative changes in probe accuracy within a given model, not across distinct
models. Given that the linear probes on the randomly initialized model start from a substantially lower baseline accuracy,
direct comparisons of TPP across models may be misleading.
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Figure 4: Evaluation results for SAEs trained on the randomly initialized and final versions of Pythia-1B.

Figure 5: Auto-interp scores for the canonical GemmaScope SAEs when compared to MLP neuron, PCA, and residual
stream baselines. SAEs are significantly more interpretable than the baselines.
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F. Additional Dictionary Scaling Analysis
Figure 3 in the main text aggregates scaling results over L0 values 40-200 to highlight overall trends. Figure 6 decomposes
the scaling behavior from 16k to 65k width across all sparsities, at the cost of obscuring direct architectural comparisons.

Figure 6: Detailed scaling analysis showing the change in metric scores when increasing SAE width from 16k to 65k on
Gemma-2-2B. Unlike the averaged results in Figure 3, this shows how scaling effects vary across different sparsity levels
(L0 values).

Figure 7: Change in SCR score when scaling from 16k to 65k width, evaluated across intervention budgets k=[5, 10, 20, 50,
100, 500]. ReLU and Matryoshka show improved performance with scale, despite having dramatically different absolute
scores (ReLU being lowest and Matryoshka highest in Figure 2).
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G. Training Dynamics

Figure 8: Scores for all 7 metrics on our 16K Gemma-2-2B TopK and ReLU SAEs as we evaluate checkpoints throughout
training.
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H. Intervention Set Size Analysis
Several of our metrics involve a hyperparameter K that determines how many latents we analyze or intervene upon:

SCR and TPP use K latents for zero ablation, evaluated at K = [5, 10, 20, 50, 100, 500] Sparse probing selects K latents to
probe, evaluated at K = [1, 2, 5]

For SCR and TPP, selecting K involves a trade-off: we want enough latents to capture complete concepts, but few enough to
enable meaningful human analysis. We chose K = 20 for our main results as a practical size for manual inspection. Our
analysis shows that relative performance differences between architectures remain consistent for K from 5 to 50, though
these patterns break down at K = 500 (which exceeds reasonable limits for human analysis). For sparse probing, we follow
Gao et al. (2024) in presenting K = 1 results in the main text. However, our extended analysis reveals that SAEs’ advantage
over the PCA baseline grows substantially as K increases from 1 to 5, suggesting that SAEs may be particularly effective at
capturing concepts that require multiple latents. All results shown below use the 65k width Gemma-2-2B SAE suite:
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Figure 9: Impact of intervention set size K on SCR scores across different architectures. Results show how changing the
number of ablated latents affects the ability to remove spurious correlations.
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Figure 10: TPP scores across different intervention set sizes K, showing how the number of ablated latents affects concept
isolation.
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Figure 11: Sparse probing performance with different numbers of probed latents K, demonstrating improved concept
detection with additional latents.
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I. Gemma-Scope Evaluation Results
We evaluate the Gemma-Scope SAE series introduced by Lieberum et al. (2024), which provides a unique opportunity to
study SAE behavior at large scales. While Gemma-Scope includes SAEs trained on all layers, we focus on their ”Width
Series” - a subset of layers where SAEs were trained with dictionary sizes ranging from 16k to 1M latents:

• Gemma-2-2B: Width series trained on layers [5, 12, 19]

• Gemma-2-9B: Width series trained on layers [9, 20, 31]

Our evaluation reveals substantial variation in SAE performance across different layers of the same model. This layer-
dependent behavior is particularly pronounced in the unlearning metric, where SAEs trained on the final evaluated layer
(layer 19 for Gemma-2-2B and layer 31 for Gemma-2-9B) consistently achieve scores near zero, regardless of width. This is
consistent with the findings of Farrell et al. (2024).

We see several key scaling trends that hold across both model sizes:

1. Loss Recovered and AutoInterp improves consistently with increased width

2. Feature Absorption, SCR, and TPP scores degrade at larger widths

3. Unlearning effectiveness if best at earlier layers and varies significantly by layer

4. Sparse Probing scores increase at later layers

These scaling patterns largely align with our findings from the main architecture comparison, suggesting that the trade-offs
we identified between reconstruction fidelity and feature disentanglement persist even at larger scales.
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Figure 12: Performance of Gemma-Scope SAEs trained on layer 5 of Gemma-2-2B across four different widths (16k to 1M
latents). Results show all eight benchmark metrics: Core metrics (Loss Recovered), Concept Detection (Sparse Probing,
Feature Absorption), Interpretability (LLM automated interpretability), and Feature Disentanglement (Unlearning, SCR,
TPP). The x-axis shows L0 sparsity values, while the y-axis represents metric scores. Each line color represents a different
SAE width, revealing how performance scales with dictionary size at fixed sparsity levels.
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Figure 13: Evaluation of Gemma-Scope SAEs (16k to 1M latents) on Gemma-2-2B layer 12.
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Figure 14: Evaluation of Gemma-Scope SAEs (16k to 1M latents) on Gemma-2-2B layer 19.
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Figure 15: Evaluation of Gemma-Scope SAEs (16k to 1M latents) on Gemma-2-9B layer 20.
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Figure 16: Evaluation of Gemma-Scope SAEs (16k to 1M latents) on Gemma-2-9B layer 20.
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Figure 17: Evaluation of Gemma-Scope SAEs (16k to 1M latents) on Gemma-2-9B layer 31.
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J. Further SAE Bench Evaluation Results

Figure 18: Scores for all 7 metrics on our 4K Gemma-2-2B suite.
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Figure 19: Scores for all SAEBench metrics on our 16K Gemma-2-2B suite.
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Figure 20: Scores for all SAEBench metrics on our 65K Gemma-2-2B suite.
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Figure 21: Scores for all 7 metrics on our 4K Pythia-160M suite.
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Figure 22: Scores for all 7 metrics on our 16K Pythia-160M suite.
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Figure 23: Scores for all SAEBench metrics on our 65K Pythia-160M suite.
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