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Abstract
This paper revisits datasets and evaluation criteria for Symbolic Regression (SR), specifically
focused on its potential for scientific discovery. Focused on a set of formulas used in the
existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss
the performance of symbolic regression for scientific discovery (SRSD). For each of the
120 SRSD datasets, we carefully review the properties of the formula and its variables to
design reasonably realistic sampling ranges of values so that our new SRSD datasets can
be used for evaluating the potential of SRSD such as whether or not an SR method can
(re)discover physical laws from such datasets. We also create another 120 datasets that
contain dummy variables to examine whether SR methods can choose necessary variables
only. Besides, we propose to use normalized edit distances (NED) between a predicted
equation and the true equation trees for addressing a critical issue that existing SR metrics
are either binary or errors between the target values and an SR model’s predicted values
for a given input. We conduct benchmark experiments on our new SRSD datasets using
various representative SR methods. The experimental results show that we provide a more
realistic performance evaluation, and our user study shows that the NED correlates with
human judges significantly more than an existing SR metric. We publish repositories of our
code 1 and 240 SRSD datasets.2 3 4 5 6 7

Keywords: symbolic regression for scientific discovery, physics, datasets, benchmarks

∗. This work was mainly done while this author was a research intern at OMRON SINIC X Corporation.
†. This work was mainly done while this author was a project researcher at OMRON SINIC X Corporation.
1. https://github.com/omron-sinicx/srsd-benchmark
2. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy
3. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium
4. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard
5. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy_dummy
6. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium_dummy
7. https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard_dummy

©2024 Matsubara, Chiba, Igarashi and Ushiku.

https://openreview.net/forum?id=qrUdrXsiXX
https://github.com/omron-sinicx/srsd-benchmark
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_easy_dummy
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_medium_dummy
https://huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_hard_dummy


Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery

1 Introduction

Recent advances in machine learning (ML), especially deep learning, have led to the proposal
of many methods that can reproduce the given data and make appropriate inferences on new
inputs. Such methods are, however, often black-box, which makes it difficult for humans to
understand how they made predictions for given inputs. This property will be more critical
especially when non-ML experts apply ML to problems in their research domains such as
physics and chemistry. Symbolic regression (SR) is the task of producing a mathematical
expression (symbolic expression) that fits a given dataset. SR has been studied in the
genetic programming (GP) community (Hoai et al., 2002; Keijzer, 2003; Koza and Poli,
2005; Johnson, 2009; Uy et al., 2011; Orzechowski et al., 2018), and deep learning-based SR
methods have been attracting more attention from the machine learning community (Petersen
et al., 2020; Landajuela et al., 2021; Biggio et al., 2021; Valipour et al., 2021; La Cava et al.,
2021; Kamienny et al., 2022). Because of its interpretability, various scientific communities
apply SR to advance research in their scientific fields e.g., Physics (Wu and Tegmark,
2019; Udrescu and Tegmark, 2020; Udrescu et al., 2020; Kim et al., 2020; Cranmer et al.,
2020; Liu and Tegmark, 2021; Liu et al., 2021), Applied Mechanics (Huang et al., 2021),
Climatology (Abdellaoui and Mehrkanoon, 2021), Materials (Sun et al., 2019; Wang et al.,
2019; Weng et al., 2020; Loftis et al., 2020), and Chemistry (Batra et al., 2020). Given that
SR has been studied in various communities, La Cava et al. (2021) propose a benchmark
framework for symbolic regression methods. In the benchmark study, they combine the
Feynman Symbolic Regression Database (FSRD) (Udrescu and Tegmark, 2020) and the
ODE-Strogatz repository (Strogatz, 2018) and compare a number of SR methods, using a
large-scale heterogeneous computing cluster.8

To discuss the potential of symbolic regression for scientific discovery (SRSD), there still
remain some issues to be addressed: oversimplified datasets and lack of evaluation metric
towards SRSD. For symbolic regression tasks, existing datasets consist of minimum necessary
variables and values sampled from limited domains e.g., in range of 1 to 5, and there are
no large-scale datasets with reasonably realistic values that capture the properties of the
formula and its variables. Thus, it is difficult to discuss the potential of symbolic regression
for scientific discovery using such existing datasets. For instance, the FSRD consists of 120
formulas selected mostly from Feynman Lectures Series9 (Feynman et al., 1963a,b,c) and
are core benchmark datasets used in SRBench (La Cava et al., 2021). While the formulas
indicate physical laws, variables and constants in each dataset have no physical meanings
since the datasets are not designed to discover the physical laws from the observed data in
the real world. (See Section 3.1.)

Moreover, there is a lack of appropriate metrics to evaluate these methods for SRSD.
An intuitive approach would be to measure the prediction error or correlation between the
predicted values and the target values in the test data, as in standard regression problems.
However, low prediction errors could be achieved even by complex models that differ from
the original law. In addition, SRBench (La Cava et al., 2021) presents the percentage of
agreement between the target and the estimated equations as solution rate. But in such cases,

8. Hosts with 24-28 core Intel(R) Xeon(R) CPU E5-2690 v4 2.60GHz processors and 250GB RAM.
9. Udrescu and Tegmark (2020) extract 20 of the 120 equations as “bonus” from other seminal books (Gold-

stein et al., 2002; Jackson, 1999; Weinberg, 1972; Schwartz, 2014).
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both 1) equations that do not match at all and 2) that differ by only one term10 are equally
treated as incorrect. As a result, it is considered as a coarse-resolution evaluation method for
accuracy in SRSD, which still needs more discussion towards real-world applications. A key
feature of SR is its interpretability, and some studies (Udrescu et al., 2020; La Cava et al.,
2021) use complexity of the predicted expression as an evaluation metric (the simpler the
better). However, it is based on a big assumption that a simpler expression may be more
likely to be a hidden law in the data (e.g., physical law), which may not be true for SRSD.
Therefore, there are no single evaluation metrics proposed to take into account both the
interpretability and how close to the true expression the estimated expression is.

To address these issues, we propose new SRSD datasets, introduce a new evaluation
method, and conduct benchmark experiments using various representative SR baseline
methods. We carefully review and design annotation policies for the new datasets, considering
the properties of the physics formulas. Besides, given that a formula can be represented
as a tree structure, we introduce a normalized edit distance on the tree structure to allow
quantitative evaluation of predicted formulas that do not perfectly match the true formulas.
Using the proposed SRSD datasets and evaluation metric, we perform benchmark experiments
with a set of SR baselines and find that there is still significant room for improvements in
SRSD. Besides the datasets (Appendix A), we publish our code repository for reproducibility.

2 Related Studies

In this section, we briefly introduce related studies focused on 1) symbolic regression for
scientific discovery and 2) symbolic regression dataset and evaluation.

2.1 SRSD: Symbolic Regression for Scientific Discovery

A pioneer study on symbolic regression for scientific discovery is conducted by Schmidt and
Lipson (2009), who propose a data-driven scientific discovery method. They collect data
from standard experimental systems like those used in undergrad physics education: an
air-track oscillator and a double pendulum. Their proposed algorithm detects different types
of laws from the data such as position manifolds, energy laws, and equations of motion and
sum of forces laws.

Following the study, data-driven scientific discovery has been attracting attention from
research communities and been applied to various domains such as Physics (Wu and Tegmark,
2019; Udrescu and Tegmark, 2020; Udrescu et al., 2020; Kim et al., 2020; Cranmer et al.,
2020; Liu and Tegmark, 2021; Liu et al., 2021), Applied Mechanics (Huang et al., 2021),
Climatology (Abdellaoui and Mehrkanoon, 2021), Materials (Sun et al., 2019; Wang et al.,
2019; Weng et al., 2020; Loftis et al., 2020), and Chemistry (Batra et al., 2020). These
studies leverage symbolic regression in different fields. While general symbolic regression
tasks use synthetic datasets with limited sampling domains for benchmarks, many of the
SRSD studies collect data from the real world and discuss how we could leverage symbolic
regression toward scientific discovery.

While SRSD tasks share the same input-output interface with general symbolic regression
(SR) tasks (i.e., input: dataset, output: symbolic expression), we differentiate SRSD tasks in

10. If those differ by a constant or scalar, SRBench treats the estimated equation as correct for solution rate.
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this study from general SR tasks by whether or not the datasets including true symbolic
expressions are created with reasonably realistic assumptions for scientific discovery such
as meaning of true symbolic expressions (whether or not they have physical meanings) and
sampling domains for input variables.

2.2 Dataset and Evaluation

For symbolic regression methods, there exist several benchmark datasets and empirical studies.
FSRD (Udrescu and Tegmark, 2020) is one of the largest symbolic regression datasets, which
consists of 100 physics-inspired equations based on Feynman Lectures on Physics (Feynman
et al., 1963a,b,c) and 20 equations from other seminal books (Goldstein et al., 2002; Jackson,
1999; Weinberg, 1972; Schwartz, 2014). By randomly sampling from small ranges of value,
they generate the corresponding tabular datasets for the 120 equations. The ODE-Strogatz
repository (La Cava et al., 2016) contains two-state dynamic models of first-order, ordinary
differential equations sourced from (Strogatz, 2018). Inspired by Hoai et al. (2002); Keijzer
(2003); Johnson (2009), Uy et al. (2011) suggest 10 different real-valued symbolic regression
problems (functions) and create the corresponding dataset (a.k.a. Nguyen dataset). The
suggested functions consist of either 1 or 2 variables e.g., f(x) = x6 + x5 + x4 + x3 + x2 + x
and f(x, y) = sin(x) + sin(y2). They generate each dataset by randomly sampling 20 - 100
data points. La Cava et al. (2021) design a symbolic regression benchmark, named SRBench,
and conduct a comprehensive benchmark experiment, using existing symbolic regression
datasets such as FSRD and ODE-Strogatz repository (La Cava et al., 2016). In SRBench,
SR methods are assessed by 1) an error metric based on squared error between target and
estimated values, and 2) solution rate that shows a percentage of the estimated symbolic
regression models that match the true models based on sympy (Meurer et al., 2017). However,
these datasets and evaluations are not necessarily designed to discuss the potential of SRSD.
In Sections 3.1 and 4.1, we further describe potential issues in prior studies.

3 Datasets

We summarize issues we found in the existing symbolic regression datasets, and then propose
new datasets to address them towards symbolic regression for scientific discovery (SRSD).

3.1 Issues in Existing Datasets

As introduced in Section 2.2, there are many symbolic regression datasets. However, we
consider that novel datasets are required to discuss SRSD for the following reasons:

1. No physical meaning: Many of the existing symbolic regression datasets (Hoai et al.,
2002; Keijzer, 2003; Johnson, 2009; Uy et al., 2011; Trujillo et al., 2016; Jin et al., 2019)
are not necessarily physics-inspired, but instead randomly generated e.g., f(x) = log(x),
f(x, y) = xy + sin((x− 1)(y− 1)). To discuss the potential of SRSD, we need to further
elaborate datasets and evaluation metrics, considering how we would leverage symbolic
regression in practice.

2. Oversimplified sampling process: While some of the datasets are physics-inspired
such as FSRD (Udrescu and Tegmark, 2020) and ODE-Strogatz repository (La Cava
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et al., 2016), their sampling strategies are very simplified. Specifically, the strategies
do not distinguish between constants and variables e.g., speed of light11 is treated as
a variable and randomly sampled in range of 1 to 5. Besides, most of the sampling
domains are far from values we could observe in the real world e.g, II.4.23 in Table 8
(the vacuum permittivity values are sampled from range of 1 to 5). When sampled
ranges of the distributions are narrow, we cannot distinguish Lorentz transformation
from Galilean transformation e.g. I.15.10 and I.16.6 in Table 10, I.48.2 in Table 12,
I.15.3t, I.15.3x, and I.34.14 in Table 14, or the black body radiation can be misestimated
to Stephan-Boltzmann law or the Wien displacement law e.g. I.41.16 in Table 15.

3. Duplicate SR problems: Due to the two issues above, many of the equations in
existing datasets turn out to be duplicate. e.g., as shown in Table 2, F = µNn (I.12.1)
and F = q2E (I.12.5) in the original FSRD are considered identical since both the
equations are multiplicative and consists of two variables, and their sampling domains
(Distributions in Table 2) are exactly the same. For instance, approximately 25% of the
symbolic regression problems in the original FSRD have 1 - 5 duplicates in that regard.

4. Incorrect/Inappropriate formulas: FSRD (Udrescu and Tegmark, 2020) treat every
variables as float whereas they should be integer to be physically meaningful. For
example, the difference in number of phases in Bragg’s law should be integer but
sampled as real number (I.30.5 in Table 8). Furthermore, they do not even give special
treatment of angle variables (I.18.12, I.18.16, and I.26.2 in Table 2). Physically some
variables can be negative whereas the original FSRD only samples positive values (e.g.
I.8.14 and I.11.19 in Table 10). We also avoid using arcsin/arccos in the equations since
the use of arcsin/arccos in FSRD just to obtain angle variables is not experimentally
meaningful (I.26.2 in Table 2, I.30.5 in Table 8, and B10 in Table 18). Equations using
arcsin and arccos in the original annotation are I.26.2 (Snell’s law), I.30.5 (Bragg’s law),
and B10 (Relativistic aberration). These are all describing physical phenomena related
to two angles, and it is an unnatural deformation to describe only one of them with an
inverse function. Additionally, inverse function use implicitly limits the range of angles,
but there is no such limitation in the actual physical phenomena.

5. Ignoring feature selection: The existing SR datasets consist of samples using only
necessary input variables to symbolically express the true models. E.g., if the true
model is F = µNn (I.12.1) in Table 2, an existing SR dataset would consist of three
variables only (i.e., a three-column tabular dataset): two input variables µ (coefficient
of friction), Nn (normal force), and the target variable F (force of friction). Suppose we
do not know the physics law F = µNn. When we observe scenes of the system using
some experimental tools, we may measure other input variables 1) ground contact area
of the object a and 2) velocity of the object v in addition to µ, Nn, and F . When we
want to discover the physics law from the observed data points (a five-column tabular
dataset), both a and v play the same role as dummy variables and should be excluded
through feature selections. SR methods should be able to select the only necessary input
variables or features (µ, Nn) from the given data (µ, Nn, a, v, and w), but we cannot
discuss such robustness of SR methods, using the existing SR datasets.

11. We treat speed of light as a constant (2.998× 108 [m/s]).
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Table 1: SR dataset comparisons with respect to issues summarized in Section 3.1. (✗: not
addressed, ✓: addressed)

Dataset #problems Issue 1 Issue 2 Issue 3 Issue 4 Issue 5

(Hoai et al., 2002) 4 ✗ ✗ ✓ ✓ ✗

(Keijzer, 2003) 15 ✗ ✗ ✗ ✓ ✗

(Johnson, 2009) 7 ✗ ✗ ✓ ✓ ✗

(Uy et al., 2011) 10 ✗ ✗ ✓ ✓ ✗

(Trujillo et al., 2016) 9 ✗ ✗ ✓ ✓ ✗

(La Cava et al., 2016) 10 ✓ ✗ ✓ ✓ ✗

(Jin et al., 2019) 6 ✗ ✗ ✓ ✓ ✗

(Udrescu and Tegmark, 2020) 120 ✓ ✗ ✗ ✗ ✗

Ours: SRSD-Feynman 240 ✓ ✓ ✓ ✓ ✓

3.2 Proposed SRSD Datasets

We address the issues in existing datasets above by proposing new SRSD datasets based
on the equations used in the FSRD (Udrescu and Tegmark, 2020). Section 3.1 and Table 1
summarize the differences between the FSRD and our SRSD datasets. Our annotation policy
is carefully designed to simulate typical physics experiments so that the SRSD datasets can
engage studies on symbolic regression for scientific discovery in the research community.

3.2.1 Annotation policy

We thoroughly revised the sampling range for each variable from the annotations in the
FSRD (Udrescu and Tegmark, 2020). First, we reviewed the properties of each variable and
treated physical constants (e.g., speed of light, gravitational constant) as constants while
such constants are treated as variables in the original FSRD datasets (Issues 1, 4). As
shown in Table 2, it also makes I.12.1 and I.12.5 two separate problems in SRSD datasets
while these two problems in the original FSRD are duplicates because both the problems
share the identical symbolic expressions and sampling ranges. Next, we defined sampling
ranges in SI units to correspond to each typical physics experiment to confirm the physical
phenomenon for each equation (Issues 2, 3, 4). We referenced (Feynman et al., 1963a,b,c;
National Astronomical Observatory of Japan, 2022) to understand the context in which
each formula appeared in our datasets. Taking mass as an example, it can be the mass of
the Earth, an atom, or something else, depending on the context of each formula. In cases
where a specific experiment is difficult to be assumed, ranges were set within which the
corresponding physical phenomenon can be seen. Generally, the ranges are set to be sampled
on log scales within their orders as 102 in order to take both large and small changes in value
as the order changes. Variables such as angles, for which a linear distribution is expected are
set to be sampled uniformly. In addition, variables that take a specific sign were set to be
sampled within that range. Tables 2 and 8 – 18 show the detailed comparisons between the
original FSRD and our proposed SRSD datasets. We also build another 120 SRSD datasets,
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which contain dummy variables to discuss the robustness of SR methods against dummy
variables (Issue 5), and there will be 240 proposed datasets in total.12 See Section 3.3 for
the detail of the datasets with dummy variables.

Table 2: Easy set of our proposed datasets (part 1). C: Constant, V: Variable, F: Float, I:
Integer, P: Positive, N: Negative, NN: Non-Negative, U : Uniform distribution, Ulog:
Log-Uniform distribution. Other 110 datasets are summarized in Tables 8 - 18.

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.12.1 F = µNn

F Force of friction V, F, P V, F, P N/A N/A
µ Coefficient of friction V, F, P V, F, P U(1, 5) Ulog(10

−2, 100)

Nn Normal force V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

I.12.4 E = q1
4πϵr2

E Magnitude of electric field V, F, P V, F N/A N/A
q1 Electric charge V, F, P V, F U(1, 5) Ulog(10

−1, 101)

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

I.12.5 F = q2E

F Force V, F, P V, F N/A N/A
q2 Electric charge V, F, P V, F U(1, 5) Ulog(10

−1, 101)

E Electric field V, F, P V, F U(1, 5) Ulog(10
−1, 101)

I.14.3 U = mgz

U Potential energy V, F, P V, F N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−2, 100)

g Gravitational acceleration V, F, P C, F, P U(1, 5) 9.807× 100

z Height V, F, P V, F U(1, 5) Ulog(10
−2, 100)

I.14.4 U =
kspringx

2

2

U Elastic energy V, F, P V, F, P N/A N/A
kspring Spring constant V, F, P V, F, P U(1, 5) Ulog(10

2, 104)

x Position V, F, P V, F U(1, 5) Ulog(10
−2, 100)

I.18.12 τ = rF sin θ

τ Torque V, F V, F N/A N/A
r Distance V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

F Force V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

θ Angle V, F, NN V, F, NN U(0, 5) U(0, 2π)

I.18.16 L = mrv sin θ

L Angular momentum V, F V, F N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

v Velocity V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

θ Angle V, F, P V, F, NN U(1, 5) U(0, 2π)

I.25.13 V = q
C

V Voltage V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−5, 10−3)

C Electrostatic Capacitance V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.26.2 n = sin θ1
sin θ2

n Relative refractive index V, F, NN V, F, P U(0, 1) N/A
θ1 Refraction angle 1 V, F V, F, NN N/A U(0, π

2
)

θ2 Refraction angle 2 V, F, P V, F, NN U(1, 5) U(0, π
2
)

I.27.6 f = 1
1
d1

+ n
d2

f Focal length V, F, P V, F, P N/A N/A
d1 Distance V, F, P V, F, P U(1, 5) Ulog(10

−3, 10−1)

n Refractive index V, F, P V, F, P, U(1, 5) Ulog(10
−1, 101)

d2 Distance V, F, P V, F, P U(1, 5) Ulog(10
−3, 10−1)

12. We provide scripts to generate the datasets as part of our code repository.
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Figure 1: Distribution map of three subsets for our SRSD datasets with respect to our
complexity metrics of SR problem. Data points at top right/bottom left indicate
more/less complex problems.

3.2.2 Complexity-aware Dataset Categories

While the proposed datasets consist of 120 different problems, there will be non-trivial training
cost required to train a symbolic regression model for all the problems individually (La Cava
et al., 2021) i.e., there will be 120 separate training sessions to assess the symbolic regression
approach. To allow more flexibility in assessing symbolic regression models for scientific
discovery, we define three clusters of the proposed datasets based on their complexity: Easy,
Medium, and Hard sets, which consist of 30, 40, and 50 different problems respectively.

We define the complexity of a problem, using the number of operations to represent
the true equation tree and range of the sampling domains. The former measures how
many mathematical operations compose the true equation such as add, mul, pow, exp,
and log operations (see Fig. 2). The latter considers magnitude of sampling distributions
(Distributions column in Tables 2 and 8 – 18) and increases the complexity when sampling
values from wide range of distributions. We define the domain range as follows:

frange (S) =
∣∣∣∣log10 ∣∣∣∣max

s∈S
s−min

s∈S
s

∣∣∣∣∣∣∣∣ , (1)

where S indicates a set of sampling domains (distributions) for a given symbolic regression
problem. Using these two metrics, we define Easy, Medium, or Hard sets as illustrated in
Fig. 1.

These clusters represent problem difficulties at high level. For instance, these subsets will
help the research community to shortly tune and/or perform sanity-check new approaches
on the Easy set (30 problems) instead of using the whole datasets (120 problems). Figure 1
shows the three different distribution maps of our proposed datasets.
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3.3 Introducing Dummy Variables to Our SRSD Datasets

As pointed out in Section 3.1, existing SR datasets such as the FSRD consist of only necessary
variables to express the predicted equation. However, there may be irrelevant features (input
variables) in the observed samples for real-world applications, and then SR methods should
detect and exclude such input variables from their predicted solutions (equations). The
existing SR datasets are not suitable for benchmarking SR methods from the aspect, especially
for SRSD problems, and thus we introduce dummy variables to our SRSD datasets:

1. Given an SRSD dataset (input variables + target variable), randomly choose kdummy,
the number of dummy variables to be introduced, from {1, 2, 3}.

2. For each of the kdummy dummy variables,

2.1. randomly choose the index of the dummy variable (column index of the dummy
variable in the resulting tabular dataset),

2.2. randomly determine (with a probability of 50%) whether or not the dummy variable
can be sampled from negative sampling range, and

2.3. randomly choose s from {−32,−31,−30, . . . , 30, 31, 32} and sample N values from
Ulog(10

s−1, 10s+1) for the dummy variable, where N is the number of samples in
the given SRSD dataset.

We apply the above procedure to each of the 120 SRSD-Feynman datasets independently.
Thus, each of the 120 new SRSD datasets (“SRSD-Feynman + Dummy Variables” in Table 5)
will have a different configuration: number of dummy variables, indices of the dummy
variables, and their sampling ranges. Table 3 summarizes how many random dummy
variables were introduced to which datasets (equations).

4 Benchmark

Besides the conventional metrics, we propose a new metric to discuss the performance of
symbolic regression for scientific discovery in Section 4.1. Following the set of metrics, we
design an evaluation framework of symbolic regression for scientific discovery, hoping that
the proposed SRSD benchmark helps non-ML experts choose SR methods for their problems.

4.1 Metrics

In general, it would be difficult to define “accuracy” of symbolic regression models since
we will compare its estimated equation to the ground truth equation and need criteria to
determine whether or not it is “correct”. La Cava et al. (2021) suggest a reasonable definition
of symbolic solution, which is designed to capture symbolic regression models that differ
from the true model by a constant or scalar.13 They also use R2 score (Eq. 2) and define as
accuracy the percentage of symbolic regression problems that a model meets R2 > τ , where
τ is a threshold e.g., τ = 0.999 in (La Cava et al., 2021):

R2 = 1−
∑N

j (fpred (Xtest,j)− ftrue (Xtest,j))
2∑N

k (ftrue (Xtest,k)− ȳ)2
, (2)

13. Code in La Cava et al. (2021) ignores coefficient terms whose absolute values are less than 10−4.

9
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Table 3: Equation IDs and numbers of dummy variables introduced to our SRSD datasets.
Group 1 dummy variable 2 dummy variables 3 dummy variables

Easy I.12.1, I.12.4, I.12.5, I.18.12,
I.25.13, I.47.23

I.14.3, I.18.16, I.43.16,
II.3.24, II.8.31, II.10.9,
II.13.17, II.15.5, II.27.18,
III.7.38, III.12.43

I.14.4, I.26.2, I.27.6, I.30.5,
II.2.42, II.4.23, II.15.4,
II.27.16, II.34.11, II.34.29b,
II.38.3, II.38.14, III.15.27

Medium

I.10.7, I.12.2, I.13.12,
I.16.6, I.32.5, I.43.31,
II.11.3, II.34.2, II.34.29a,
III.14.14, III.15.14, B8

I.11.19, I.12.11, I.13.4,
I.15.10, I.18.4, I.24.6, I.34.8,
I.38.12, I.39.11, I.43.43,
I.48.2, II.6.11, II.21.32,
II.34.2a, III.4.32, III.13.18,
III.15.12, III.17.37

I.8.14, I.29.4, I.34.10,
I.34.27, I.39.10, II.8.7,
II.37.1, III.8.54, III.19.51,
B18

Hard

I.15.3x, I.30.3, II.6.15a,
II.11.17, II.11.28, II.13.23,
II.13.34, II.24.17, B1, B6,
B12, B16, B17

I.6.20, I.6.20b, I.9.18,
I.15.3t, I.29.16, I.34.14,
I.39.22, I.44.4, II.11.20,
II.11.27, II.35.18, III.9.52,
III.10.19, III.21.20, B2, B3,
B7, B9

I.6.20a, I.32.17, I.37.4,
I.40.1, I.41.16, I.50.26,
II.6.15b, II.35.21, II.36.38,
III.4.33, B4, B5, B10, B11,
B13, B14, B15, B19, B20

Mul1. Substitute values

2. Convert to an equation tree

Figure 2: Example of preprocessing a true equation (III.7.38 in Table 8) in evaluation session.
When converting to an equation tree, we replace constant values and variables
with specific symbols e.g., 8.32647716907439× 10−33 → C, µ → X1, B → X2.

where N indicates the number of test samples (i.e., the number of rows in the test dataset
Xtest), and Xtest,i indicates the i-th test sample. ȳ is a mean of target outputs produced by
ftrue. fpred and ftrue are a trained SR model and a true model, respectively. However, these
two metrics are still binary (correct or not) or require a threshold and do not explain how
structurally close to the true equation the estimated one is. While a key feature of symbolic
regression is its interpretability, there are no single evaluation metrics to take into account
both the interpretability and how close to the true expression the estimated expression is.

To offer more flexibility and assess estimated equations in such a way, we propose use
of edit distance between estimated and ground truth equations, processing equations as
trees. Although edit distance has been employed in different domains such as machine
translation (Przybocki et al., 2006) (text-based edit distance), its primary use has been to
study the search process for genetic programming approaches (O’Reilly, 1997; Burke et al.,
2002; Nakai et al., 2013). Different from prior work, we propose a use of tree-based edit
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distance as a new metric of solution quality for SRSD. For a pair of two trees, edit distance
computes the minimum cost to transform one to another with a sequence of operations, each
of which either 1) inserts, 2) deletes, or 3) renames a node. In this study, a node can be
either a mathematical operation (e.g., add, exp as symbols), a variable symbol, or a constant
symbol. For the detail of the algorithm, we refer readers to (Zhang and Shasha, 1989).

As illustrated in Fig. 2, we preprocess equations by 1) substituting constant values e.g.,
π and Planck constant to the expression, and 2) converting the resulting expression to an
equation tree that represents the preorder traversal of the equation with simplified symbols.
It should be worth noting that before generating the equation tree, we simplify and convert
equations to floating-point approximations14 by sympy Meurer et al. (2017), a Python library
for symbolic mathematics. It helps us consistently map a given equation to the unique
equation tree and compute edit distance between the true and estimated equation trees since
our evaluation interest is in simplified expressions of the estimated equations rather than
how SR models produced the equations. For instance, “x+ x+ x”, “4 ∗ x− x”, and “x+2 ∗ x”
will be simplified by sympy to “3 ∗ x” and considered identical.

For edit distance, we use a method proposed by Zhang and Shasha (1989). Given that the
range of edit distance values depends on complexity of equations, we normalize the distance
in range of 0 to 1 as

d(fpred, ftrue) = min

(
1,

d (fpred, ftrue)

|ftrue|

)
, (3)

where fpred and ftrue are estimated and true equation trees, respectively. d(fpred, ftrue) is
an edit distance between fpred and ftrue. |ftrue| indicates the number of the tree nodes that
compose an equation ftrue. We note that this metric is designed to capture similarity between
estimated and true equations, thus coefficient values themselves (e.g., value of C in Fig. 2)
should not be important.

4.2 Evaluation Framework

For each problem, we use the validation tabular dataset and choose the best trained SR
model f∗

pred from F , a set of the trained models by a given method respect to Eq. (4)

f∗
pred = argmin

fpred∈F

1

n

n∑
i=1

∣∣∣∣fpred(Xval,i)− ftrue(Xval,i)

ftrue(Xval,i)

∣∣∣∣2 , (4)

where Xval,i indicates the i-th row of the validation tabular dataset Xval.
In our SRSD-Feynman, we provide true equations as part of test datasets besides tabular

data for benchmark purposes. In real-world applications, however, only observed samples
(e.g., tabular data) are available for training, validation, and test. Notice that similar to the
solution rate proposed in (La Cava et al., 2021), normalized edit distance (NED) requires
both the predicted and true equations. For this reason, we use the geometrical distance
between predicted values against a validation tabular dataset to choose the best model
obtained through hyperparameter tuning. Using the best model per method, we compute
the normalized edit distance to assess the given method.

14. https://github.com/omron-sinicx/srsd-benchmark/blob/main/eq_comparator.py
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5 Experiments

5.1 Baseline Methods

For baselines, we use the five best symbolic regression methods in SRBench (La Cava et al.,
2021). Specifically, we choose gplearn (Koza and Poli, 2005), AFP (Schmidt and Lipson,
2011), AFP-FE (Schmidt and Lipson, 2009), AI Feynman (AIF) (Udrescu et al., 2020), and
DSR (Petersen et al., 2020), referring to the rankings of solution rate for the FSRD datasets in
their study. We note that La Cava et al. (2021) also benchmark symbolic regression methods
for black-box problems,15 whose true symbolic expressions are unknown, and other symbolic
regression methods e.g., Operon (Kommenda et al., 2020), SBP-GP (Virgolin et al., 2019),
FEAT (La Cava et al., 2018), EPLEX (La Cava et al., 2019), and GP-GOMEA (Virgolin et al.,
2021) outperform the five baseline methods we choose from their study, in terms of R2-based
accuracy. However, we find solution rate more aligned with edit distance, thus we choose the
five best symbolic regression methods in terms of solution rate empirically shown for the
FSRD datasets in SRBench (La Cava et al., 2021). We also use three symbolic regression
methods proposed in recent studies: a Transformer-based symbolic regression method referred
to as E2E in (Kamienny et al., 2022), unified deep symbolic regression (uDSR) (Landajuela
et al., 2022), and a multi-population evolutionary algorithm named PySR (Cranmer, 2023).
For details of the baseline models, we refer readers to the corresponding papers (Koza and
Poli, 2005; Schmidt and Lipson, 2011, 2009; Udrescu et al., 2020; Petersen et al., 2020;
Kamienny et al., 2022; Landajuela et al., 2022; Cranmer, 2023). While we are aware that the
research community is interested in performance of closed API services powered by language
models such as ChatGPT 16, it is not known what datasets are used to train the models
behind the services. We do not consider such services in this study since the benchmark uses
our SRSD datasets on popular physics laws.17

5.2 Runtime Constraints

The implementations of the baseline methods in Section 5.1 except E2E18 do not use any
GPUs. We run 1,680 high performance computing (HPC) jobs in total, using compute nodes
in an HPC cluster, which have 5 - 20 assigned physical CPU cores, 30 - 120 GB RAM, and
720 GB local storage. Due to the properties of our resource, we have runtime constraints:

1. Since each HPC job is designed to run for up to 24 hours due to the limited resource,
we run a job with a pair of a target tabular dataset and a symbolic regression method.

2. Given a pair of a dataset and a method, each of our HPC jobs runs up to 100 separate
training sessions with different hyperparameter values (see Appendix C).

15. Since the set of the black-box problems is not either physics-inspired or aligned with our scope of scientific
discovery (e.g., car price estimation from car width, height, length, etc), we do not use the datasets in
this study.

16. https://chat.openai.com/
17. As of February 6th, 2024, we confirmed using our SRSD Easy set that ChatGPT-4 is not a strong baseline

as given a SRSD dataset, it provides Python code to train linear regression models in scikit-learn or SR
models in gplearn.

18. For E2E, we used an NVIDIA RTX 3090Ti.
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5.3 Results

We discuss experimental results of our baseline methods using SRSD datasets. Tables 4 and 5
summarize the performance of the baselines in terms of various metrics for the new datasets
without/with dummy variables. With our SRSD datasets, we confirm new findings and a
different trend in the overall results compared to those in SRBench as summarized below:

uDSR and PySR performed the best on our SRSD-Feynman datasets: According
to R2-based accuracy, uDSR significantly outperforms all the other baselines we considered
for the Easy and Medium sets19, including AIF, which achieved the highest solution rate for
the FSRD datasets in SRBench (see Appendix F). Note that R2-based accuracy does not
consider the interpretability of the prediction, which is a key property of SR methods and
taken into account by solution rate and NED. PySR produced more solutions structurally
close to the true models than the other baseline methods and improved the other baseline
methods in terms of solution rate and NED. The results of uDSR and PySR also indicate
difficulty levels of the three categories of our SRSD datasets, which looks aligned with our
complexity-aware dataset categorization (Section 3.2.2).

None of the baseline methods is robust against dummy variables: Overall,
the performance differences between SRSD-Feynman datasets without and with dummy
variables in Tables 4 and 5 highlight that dummy variables made the SRSD problems even
more challenging. The dummy variable usage in Table 6 indicates that all the baseline
methods considered in this study failed to filter out random dummy variables, which the true
models do not use and thus predicted solutions should not use. It should be notable that
while PySR’s overall performance degraded due to the dummy variables, none of the PySR’s
solutions that include at least one dummy variable does not achieve R2 > 0.999. Even for
SRSD datasets with dummy variables, PySR performed best among the considered baseline
methods in terms of NED. Those two trends suggest that it may be important in SRSD
problems to penalize overcomplex solutions in a similar way to PySR (Cranmer, 2023).

R2-based accuracy is vulnerable to dummy variables: Table 5 shows that compared
to the results for SRSD-Feynman (Table 4), AFP and DSR achieved comparable or even
improved R2-based accuracy for the datasets with dummy variables. However, the results do
not necessarily mean that those methods successfully filter out dummy variables. While DSR
performed incredibly better than other baseline methods in terms of R2-based accuracy on
the datasets with dummy variables, approximately 45.1% of its non-zero predicted equations
that meet R2 > 0.999 (“correct”) use at least one dummy variable (Table 6 (right)). Similarly,
100% of the “correct” equations from E2E meet the same conditions.

NED provides a more fine-grained analysis than solution rate does: As pointed
out in Section 4.1, solution rate is based on binary evaluations10 and does not help us how
structurally close the predicted equation is to the true equation. Thus, the solution rate
may be not informative for challenging datasets, which is highlighted at the sparse rows of
“Solution Rate” for SRSD-Feynman + Dummy Variables (especially Medium and Hard sets)
in Table 5. As demonstrated in the table, NED overcomes the drawback of solution rate
and enables comparisons between AFP, AFP-FE, and DSR for the datasets with dummy
variables while solution rate shows 0.00% for most of the configurations.

19. Chi-squared tests for uDSR and PySR (the second best method in terms of R2-based accuracy) showed
p-values of 1.08× 10−4 and 1.37× 10−4, respectively.
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Table 4: Baseline results for SRSD-Feynman from various perspectives: 1) accuracy (R2 >
0.999) (La Cava et al., 2021), 2) solution rate (La Cava et al., 2021), and 3) NED
(normalized edit distance).

Metric Group
SRSD-Feynman

gplearn AFP AFP-FE AIF DSR E2E uDSR PySR

A
cc

ur
ac

y
R

2
>

0
.9
9
9 Easy 6.67% 20.0% 26.7% 33.3% 63.3% 26.7% 100.0% 66.7%

Medium 7.50% 2.50% 2.50% 5.00% 45.0% 17.5% 75.0% 45.0%
Hard 2.00% 4.00% 4.00% 6.00% 28.0% 14.0% 20.0% 38.0%

So
lu

ti
on

R
at

e Easy 6.67% 20.0% 23.3% 30.0% 46.7% 0.00% 50.0% 60.0%
Medium 0.00% 2.50% 2.50% 2.50% 10.0% 0.00% 17.5% 30.0%
Hard 0.00% 0.00% 0.00% 2.00% 2.00% 0.00% 4.00% 4.00%

N
E

D

Easy 0.866 0.727 0.693 0.646 0.524 1.00 0.478 0.269
Medium 0.917 0.873 0.897 0.936 0.793 1.00 0.781 0.537
Hard 0.968 0.946 0.954 0.927 0.839 0.987 0.949 0.785

Table 5: Baseline results for SRSD-Feynman with dummy variables from various perspectives:
1) accuracy (R2 > 0.999) (La Cava et al., 2021), 2) solution rate (La Cava et al.,
2021), and 3) NED (normalized edit distance).

Metric Group
SRSD-Feynman + Dummy Variables

gplearn AFP AFP-FE AIF DSR E2E uDSR PySR

A
cc

ur
ac

y
R

2
>

0
.9
9
9 Easy 0.00% 20.0% 16.7% 6.67% 76.7% 16.7% 53.3% 20.0%

Medium 0.00% 5.00% 0.00% 0.00% 45.0% 12.5% 37.5% 10.0%
Hard 0.00% 4.00% 4.00% 0.00% 22.0% 10.0% 12.0% 2.00%

So
lu

ti
on

R
at

e Easy 0.00% 16.7% 16.7% 0.00% 10.0% 0.00% 10.0% 20.0%
Medium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.50% 5.00%
Hard 0.00% 0.00% 0.00% 0.00% 2.00% 0.00% 0.00% 0.00%

N
E

D

Easy 0.963 0.769 0.786 0.975 0.771 1.00 0.871 0.418
Medium 0.978 0.932 0.935 1.00 0.841 1.00 0.916 0.625
Hard 0.989 0.961 0.963 1.00 0.800 1.00 0.967 0.819

6 User Study: R2 Score & NED

To investigate how aligned with human judges the existing SR and new SRSD evaluation
metrics are, we recruited 23 volunteers from industry and academia who either have doctoral
degrees (scientists, professors, engineers) or are doctoral students, and performed a user
study with approval from an ethics review board. The volunteers are in diverse research
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Table 6: Percentages of predictions that use at least one dummy variable (left) and those
also considered “correct” as R2 > 0.999 (right). N/A: Denominator is zero.

Group
≥ 1 dummy variable used

gplearn AFP AFP-FE AIF DSR E2E uDSR PySR

Easy 66.7% 52.9% 56.3% 50.0% 53.3% 100% 75.0% 63.3%
Medium 0.00% 70.6% 43.8% N/A 59.0% 100% 66.7% 67.5%
Hard 100.0% 81.8% 58.3% N/A 56.3% 100% 46.7% 64.0%

Group
≥ 1 dummy variable used & R2 > 0.999

gplearn AFP AFP-FE AIF DSR E2E uDSR PySR

Easy N/A 16.7% 0.00% 50.0% 47.8% 100% 75.0% 0.00%
Medium N/A 50.0% N/A N/A 44.4% 100% 73.3% 0.00%
Hard N/A 50.0% 0.00% N/A 36.4% 100% 33.3% 0.00%

fields such as computer science, mathematics, physics, chemistry, material science, aerospace
engineering, engineering, medical nutrition, and computational biology. Given a pair of true
and estimate equations for an SRSD problem, the subjects were asked to assess an estimated
equation on a discretized 1-to-5 scale, where 1 and 5 indicate “1: Completely different from
the true equation” and “5: Equivalent to the true equation” respectively. We chose SRSD
problems among the 120 SRSD datasets such that we can obtain from the experimental
results in Section 5 at least two different equations estimated by different methods that are
best among the baseline methods in terms of R2 score and normalized edit distance (NED),
respectively. There were 24 resulting SRSD problems for the user study. Note that we do
not consider solution rate in the user study. Different from R2 score and NED (real values),
we get a binary score (0 or 1) per predicted equation for solution rate, and the best predicted
equation in terms of the binary score will be identical to the best predicted equation in terms
of NED or randomly chosen from all the predicted equations if the best binary score is 0 i.e.,
none of the predicted equations is identical to the true equation.

Table 7: Pearson correlation coefficients
(PCCs) between the human judges
and SR/SRSD metrics.

Metrics PCC P-value

SR: R2 score 4.66× 10−3 0.913
SRSD: NED −0.416 1.85× 10−24

Table 7 shows Pearson correlation coeffi-
cients (PCCs) between the human judges
and SR/SRSD evaluation metrics. For
normalized edit distance (NED), the Pear-
son correlation coefficient and p-value were
−0.416 and 1.85× 10−24 respectively, which
show a much stronger and statistically more
significant correlation between NED and hu-
man judges than one for R2 scores. In other
words, the results suggest that normalized
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edit distance is more aligned with human judges than R2 score, and thus can be a better
estimate of how close to the true equations the estimated equations are, in a more human-
understandable way. Note that the smaller an NED is, the better (structurally closer to the
true model) the solution is, thus the negative correlation coefficient is expected.

7 Conclusion

In this work, we pointed out issues of existing datasets (e.g., FSRD) and benchmarks of
symbolic regression for scientific discovery (SRSD). To address the issues, we proposed 1) 120
new SRSD datasets based on a set of physics formulas in FSRD (Udrescu and Tegmark, 2020),
2) another 120 new SRSD datasets containing dummy variables, and 3) a new evaluation
metric for SRSD to discuss the structural similarity between the true and estimated symbolic
expressions (equations). The benchmark results revealed key findings including uDSR and
PySR being the state of the art for the SRSD datasets (AIF performed the best for the FSRD
datasets in SRBench (La Cava et al., 2021)) and the vulnerability of both the SR baselines
and R2-based accuracy to dummy variables in SRSD problems. The experimental results and
user study also suggest that the normalized edit distance is an additional reasonable metric
for SRSD, which provides a more fine-grained analysis than solution rate and incorporates
existing SR metrics (e.g., Tables 4 and 5). We also summarize the limitations of this work in
Appendix G. Last but not least, the experimental results suggest that our SRSD datasets
are more challenging for existing SR methods than the FSRD datasets, and there is still
significant room for improvement in SR methods for SRSD problems according to the metrics
considered in this study. To encourage the studies of SRSD, we publish our datasets and
code with Creative Commons Attribution 4.0 (CC BY) and MIT License, respectively.

Broader Impact Statement

Intended uses of our proposed datasets and evaluation criteria are for scientific knowledge
discoveries such as hidden laws in physics. The datasets consist of physics formulas and do
not include any social/personal information. We believe that a potential positive societal
consequence of this work is that our benchmark datasets and evaluation criteria will help
non-ML experts choose which symbolic regression (SR) methods they want to apply to
their problem for scientific discoveries. The proposed datasets and evaluation criteria are
more realistic for discussing scientific discovery than existing SR datasets and evaluation
criteria as 1) we carefully reviewed the properties of the physics formulas and designed new
annotation policies for the proposed datasets, 2) we introduced dummy variables to the
proposed datasets to discuss the robustness of SR methods, and 3) our user study shows
that the proposed NED is more aligned with human judges than a popular existing SR
metric. There are also important considerations regarding the benchmark. When applying
SR method to real-world problems, there must be observation noises. However, simulating
such realistic noise injections for creating datasets is a challenging task, and our benchmark
might bias research in favor of methods that work well for problems where such realistic
noises do not exist. Instead, we introduced an assumption that the observed data may
include dummy variables, which are not necessary to explain a hidden law.
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Appendix A. Our SRSD Datasets: Additional Information

This section provides additional information about our SRSD datasets. We created the
datasets to discuss the performance of symbolic regression for scientific discovery (SRSD).
Each of the 120 SRSD datasets consists of 10,000 samples and has train, val, and test splits
with ratio of 8:1:1. For the annotation policy of our SRSD datasets, we refer readers to
Section 3.2.1.

Tables 8 – 18 comprehensively summarize the differences between FSRD and our SRSD
datasets. Note that the table of Easy set (part 1) is provided as Table 2 in Section 3.1. As
described in Section 3.2.2, we categorized each of the 120 SRSD datasets into one of Easy,
Medium, and Hard sets. We also introduced dummy variables to the three groups of the
datasets, which created another three groups of the datasets (see Section 3.3). We published
the six groups of the SRSD datasets with Creative Commons Attribution 4.0 and DOIs
(digital object identifiers) at Hugging Face Dataset repositories.The dataset documentations
are publicly available as Hugging Face Dataset cards, where we additionally provide an SI
derived unit and an SI unit for each of all the constants and variables due to the limited
horizontal space in this paper. We also published our codebase as a GitHub repository.1

These repositories are version-controlled with Git 20 so that users can track the log of the
changes. We bear all responsibility in case of violation of rights.

20. https://git-scm.com/
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Table 8: Easy set of our proposed datasets (part 2). C: Constant, V: Variable, F: Float, I:
Integer, P: Positive, N: Negative, NN: Non-Negative, I⋆: Integer treated as float
due to the capacity of 32-bit integer, U : Uniform distribution, Ulog: Log-Uniform
distribution.

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.30.5 d = λ
n sin θ

d Interplanar distance V, F, P V, F, P U(2, 5) N/A
λ Wavelength of X-ray V, F, P V, F, P U(1, 2) Ulog(10

−11, 10−9)

n Number of phase difference V, F, P V, I, P U(1, 5) Ulog(10
0, 102)

θ Incidence/Reflection angle V, F, P V, F, NN N/A U(0, π
2
)

I.43.16 v = µq V
d

v Velocity V, F, P V, F N/A N/A
µ Ionic conductivity V, F, P V, F U(1, 5) Ulog(10

−6, 10−4)

q Electric charge of ions V, F, P V, F U(1, 5) Ulog(10
−11, 10−9)

V Voltage V, F, P V, F U(1, 5) Ulog(10
−1, 101)

d Distance V, F, P V, F, P U(1, 5) Ulog(10
−3, 10−1)

I.47.23 c =
√

γP
ρ

c Velocity of sound V, F, P V, F, P N/A N/A
γ Heat capacity ratio V, F, P V, F, P U(1, 5) U(1, 2)

P Atmospheric pressure V, F, P V, F, P U(1, 5) U(5× 10−6, 1.5× 10−5)

ρ Density of air V, F, P V, F, P U(1, 5) U(1, 2)

II.2.42 J = κ(T2 − T1)
A
d

J Rate of heat flow V, F V, F N/A N/A
κ Thermal conductivity V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

T2 Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

T1 Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

A Area V, F, P V, F, P U(1, 5) Ulog(10
−4, 10−2)

d Length V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

II.3.24 h = W
4πr2

h Heat flux V, F, P V, F N/A N/A
W Work V, F, P V, F U(1, 5) Ulog(10

0, 102)

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

II.4.23 ϕ = q
4πϵr

ϕ Electric potential V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

II.8.31 u = ϵE2

2

u Energy V, F, P V, F, P N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

E Magnitude of electric field V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

II.10.9 E = σfree
ϵ

1
1+χ

E Electric field V, F, P V, F N/A N/A
σfree Surface charge V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

χ Electric susceptibility V, F, P V, F, P U(1, 5) Ulog(10
0, 102)

II.13.17 B = 1
4πϵc2

2I
r

B Magnitude of the magnetic field V, F, P V, F N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

c Speed of light V, F, P C, F, P U(1, 5) 2.998× 108

I Electric current V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

r Radius V, F, P V, F, P U(1, 5) Ulog(10
−3, 10−1)

II.15.4 U = −µB cos θ

U Energy from magnetic field V, F V, F N/A N/A
µ Magnetic dipole moment V, F, P V, F U(1, 5) Ulog(10

−25, 10−23)

B Magnetic field strength V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

θ Angle V, F, P V, F, NN U(1, 5) U(0, 2π)
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Table 9: Easy set of our proposed datasets (part 3).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

II.15.5 U = −pE cos θ

U Energy V, F V, F N/A N/A
p Electric dipole moment V, F, P V, F U(1, 5) Ulog(10

−22, 10−20)

E Magnitude of electric field V, F, P V, F U(1, 5) Ulog(10
1, 103)

θ Angle V, F, P V, F, NN U(1, 5) U(0, 2π)

II.27.16 L = ϵcE2

L Radiance V, F, P V, F N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

c Speed of light V, F, P C, F, P U(1, 5) 2.998× 108

E Magnitude of electric field V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

II.27.18 u = ϵE2

u Energy density V, F, P V, F, P N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

E Magnitude of electric field V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

II.34.11 ω = g qB
2m

ω Angular frequency V, F, P V, F, P N/A N/A
g g-factor V, F, P V, F U(1, 5) U(−1, 1)

q Electric charge V, F, P V, F U(1, 5) Ulog(10
−11, 10−9)

B Magnetic field strength V, F, P V, F U(1, 5) Ulog(10
−9, 10−7)

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−30, 10−28)

II.34.29b U = 2πgµB Jz
h

U Energy V, F, P V, F N/A N/A
g g-factor V, F, P V, F U(1, 5) U(−1, 1)

µ Bohr magneton V, F, P C, F, P U(1, 5) 9.2740100783× 10−24

B Magnetic field strength V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

Jz Element of angular momentum V, F, P V, F U(1, 5) Ulog(10
−26, 10−22)

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

II.38.3 F = Y A∆l
l

F Force V, F, P V, F N/A N/A
Y Young’s modulus V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

A Area V, F, P V, F, P U(1, 5) Ulog(10
−4, 10−2)

δl Displacement V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

l Length V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

II.38.14 µ = Y
2(1+σ)

µ Rigidity modulus V, F, P V, F, P N/A N/A
Y Young’s modulus V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

σ Poisson coefficient V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

III.7.38 ω = 4πµB
h

ω Precession frequency V, F, P V, F N/A N/A
µ Magnetic moment V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

B Magnetic flux density V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

III.12.43 J = mh
2π

J Spin magnetic moment V, F, P V, F, P N/A N/A
m Spin state V, F, P V, I,NN U(1, 5) Ulog(10

0, 102)

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

III.15.27 k = 2π
Nb

s

k Wavenumber V, F, P V, F N/A N/A
s Parameter of state V, F, P V, I U(1, 5) Ulog(10

0, 102)

N Number of atoms V, F, P V, I, P U(1, 5) Ulog(10
0, 102)

b Lattice constant V, F, P V, F, P U(1, 5) Ulog(10
−10, 10−8)
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Table 10: Medium set of our proposed datasets (part 1).

Eq. ID Formula Symbols Properties Distributions
Original Ours Original Ours

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2

d Distance V, F, P V, F, NN N/A N/A
x2 Position V, F, P V, F U(1, 5) Ulog(10

−1, 101)

x1 Position V, F, P V, F U(1, 5) Ulog(10
−1, 101)

y2 Position V, F, P V, F U(1, 5) Ulog(10
−1, 101)

y1 Position V, F, P V, F U(1, 5) Ulog(10
−1, 101)

I.10.7
m = m0√

1− v2

c2

m Mass V, F, P V, F, P N/A N/A
m0 Invariant mass V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

v Velocity V, F, P V, F, P U(1, 2) Ulog(10
5, 108)

c Speed of light V, F, P C, F, P U(3, 10) 2.998× 108

I.11.19 A = x1y1 + x2y2 + x3y3

A Inner product V, F, P V, F N/A N/A
x1 Element of a vector V, F, P V, F U(1, 5) Ulog(10

−1, 101)

y1 Element of a vector V, F, P V, F U(1, 5) Ulog(10
−1, 101)

x2 Element of a vector V, F, P V, F U(1, 5) Ulog(10
−1, 101)

y2 Element of a vector V, F, P V, F U(1, 5) Ulog(10
−1, 101)

x3 Element of a vector V, F, P V, F U(1, 5) Ulog(10
−1, 101)

y3 Element of a vector V, F, P V, F U(1, 5) Ulog(10
−1, 101)

I.12.2 F = q1q2
4πϵr2

F Electrostatic force V, F, P V, F N/A N/A
q1 Electric charge V, F, P V, F U(1, 5) Ulog(10

−1, 101)

q2 Electric charge V, F, P V, F U(1, 5) Ulog(10
−1, 101)

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

I.12.11 F = q (E +Bv sin (θ))

F Force V, F V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−1, 101)

E Electric field V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

B Magnetic field strength V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

v Velocity V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

θ Angle V, F, P V, F, NN U(1, 5) U(0, π
2
)

I.13.4 K = 1
2
m(v2 + u2 + w2)

K Kinetic energy V, F, P V, F, P N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

v Element of velocity V, F, P V, F U(1, 5) Ulog(10
−1, 101)

u Element of velocity V, F, P V, F U(1, 5) Ulog(10
−1, 101)

w Element of velocity V, F, P V, F U(1, 5) Ulog(10
−1, 101)

I.13.12 U = Gm1m2

(
1
r2

− 1
r1

)
U Potential energy V, F V, F N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 5) 6.674× 10−11

m1 Mass (The Earth) V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

m2 Mass V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

r2 Distance V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

r1 Distance V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

I.15.10 p = m0v√
1−v2/c2

p Relativistic momentum V, F, P V, F, P N/A N/A
m0 Rest Mass V, F, P V, F, P U(1, 5) Ulog(10

−2, 100)

v Velocity V, F, P V, F U(1, 2) Ulog(10
5, 107)

c Speed of light V, F, P C, F, P U(3, 10) 2.998× 108

I.16.6 v1 = u+v
1+uv/c2

v1 Velocity V, F, P V, F N/A N/A
u Velocity V, F, P V, F U(1, 5) Ulog(10

6, 108)

v Velocity V, F, P V, F U(1, 5) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(1, 5) 2.998× 108

I.18.4 r = m1r1+m2r2
m1+m2

r Center of gravity V, F, P V, F N/A N/A
m1 Mass V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

r1 Position V, F, P V, F U(1, 5) Ulog(10
−1, 101)

m2 Mass V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

r2 Position V, F, P V, F U(1, 5) Ulog(10
−1, 101)
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Table 11: Medium set of our proposed datasets (part 2).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.24.6 E = 1
4
m(ω2 + ω2

0)x
2

E Energy V, F, P V, F, P N/A N/A
m Mass V, F, P V, F, P U(1, 3) Ulog(10

−1, 101)

ω Angular velocity V, F, P V, F U(1, 3) Ulog(10
−1, 101)

ω0 Angular velocity V, F, P V, F U(1, 3) Ulog(10
−1, 101)

x Position V, F, P V, F U(1, 3) Ulog(10
−1, 101)

I.29.4 k = ω
c

k Wavenumber V, F, P V, F, P N/A N/A
ω Frequency of electromagnetic waves V, F, P V, F, P U(1, 10) Ulog(10

9, 1011)

c Speed of light V, F, P C, F, P U(1, 10) 2.998× 108

I.32.5 P = q2a2

6πϵc3

P Radiant energy V, F, P V, F, P N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

a Magnitude of direction vector V, F, P V, F, P U(1, 5) Ulog(10
5, 107)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

c Speed of light V, F, P C, F, P U(1, 5) 2.998× 108

I.34.8 ω = qvB
p

ω Angular velocity V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F, P V, F U(1, 5) Ulog(10
5, 107)

B Magnetic field V, F, P V, F U(1, 5) Ulog(10
1, 103)

p Angular momentum V, F, P V, F U(1, 5) Ulog(10
9, 1011)

I.34.10 ω = ω0
1−v/c

ω Frequency of electromagnetic waves V, F, P V, F, P N/A N/A
ω0 Frequency of electromagnetic waves V, F, P V, F, P U(1, 5) Ulog(10

9, 1011)

v Velocity V, F, P V, F U(1, 2) Ulog(10
5, 107)

c Speed of light V, F, P C, F, P U(3, 10) 2.998× 108

I.34.27 W = h
2π

ω

W Energy V, F, P V, F, P N/A N/A
h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

ω Frequency of electromagnetic waves V, F, P V, F, P U(1, 5) Ulog(10
9, 1011)

I.38.12 r = 4πϵ
(h/(2π))2

mq2

r Bohr radius V, F, P V, F, P N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−28, 10−26)

q Electric charge V, F, P V, F, P U(1, 5) Ulog(10
−11, 10−9)

I.39.10 U = 3
2
PV

U Internal energy V, F, P V, F, P N/A N/A
P Pressure V, F, P V, F, P U(1, 5) Ulog(10

4, 106)

V Volume V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.39.11 U = PV
γ−1

U Energy V, F, P V, F, P N/A N/A
γ Heat capacity ratio V, F, P V, F, P U(2, 5) U(1, 2)

P Pressure V, F, P V, F, P U(1, 5) Ulog(10
4, 106)

V Volume V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.43.31 D = µkT

D Diffusion coefficient V, F, P V, F, P N/A N/A
µ Viscosity V, F, P V, F, P U(1, 5) Ulog(10

13, 1015)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381× 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)
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Table 12: Medium set of our proposed datasets (part 3).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.43.43 κ = 1
γ−1

kv
σc

κ Thermal conductivity V, F, P V, F, P N/A N/A
γ Heat capacity ratio V, F, P V, F, P U(2, 5) U(1, 2)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381× 10−23

v Velocity V, F, P V, F, P U(1, 5) Ulog(10
2, 104)

σc Molecular collision cross section V, F, P V, F, P U(1, 5) Ulog(10
−21, 10−19)

I.48.2 E = mc2√
1−v2/c2

E Energy V, F, P V, F, P N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−29, 10−27)

c Speed of light V, F, P C, F, P U(3, 10) 2.998× 108

v Velocity V, F, P V, F, P U(1, 2) Ulog(10
6, 108)

II.6.11 ϕ = 1
4πϵ

p cos θ
r2

ϕ Electric potential V, F V, F N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 3) 8.854× 10−12

p Electric dipole moment V, F, P V, F U(1, 3) Ulog(10
−22, 10−20)

θ Angle V, F, P V, F, NN U(1, 3) U(0, 2π)

r Distance V, F, P V, F, P U(1, 3) Ulog(10
−10, 10−8)

II.8.7 U = 3
5

Q2

4πϵa

U Energy V, F, P V, F, P N/A N/A
Q Electric charge V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

a Radius V, F, P V, F, P U(1, 5) Ulog(10
−12, 10−10)

II.11.3 x = qE

m(ω2
0−ω2)

x Position V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 3) Ulog(10

−11, 10−9)

E Magnitude of electric field V, F, P V, F, P U(1, 3) Ulog(10
−9, 10−7)

m Mass V, F, P V, F, P U(1, 3) Ulog(10
−28, 10−26)

ω0 Angular velocity V, F, P V, F U(3, 5) Ulog(10
9, 1011)

ω Angular velocity V, F, P V, F U(1, 2) Ulog(10
9, 1011)

II.21.32 ϕ = q
4πϵr(1−v/c)

ϕ Electric potential V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

r Distance V, F, P V, F, P U(1, 5) Ulog(10
0, 102)

v Velocity V, F, P V, F, P U(1, 2) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(3, 10) 2.998× 108

II.34.2 µ = qvr
2

µ Magnetic moment V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F, P V, F U(1, 5) Ulog(10
5, 107)

r Radius V, F, P V, F, P U(1, 5) Ulog(10
−11, 10−9)

II.34.2a I = qv
2πr

I Electric Current V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

v Velocity V, F, P V, F U(1, 5) Ulog(10
5, 107)

r Radius V, F, P V, F, P U(1, 5) Ulog(10
−11, 10−9)

II.34.29a µ = qh
4πm

µ Bohr magneton V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−11, 10−9)

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−30, 10−28)

II.37.1 E = µ(1 + χ)B

E Energy of magnetic field V, F, P V, F N/A N/A
µ Magnetic moment V, F, P V, F U(1, 5) Ulog(10

−25, 10−23)

χ Volume magnetic susceptibility V, F, P V, F U(1, 5) Ulog(10
4, 106)

B Magnetic field strength V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)
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Table 13: Medium set of our proposed datasets (part 4).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

III.4.32 n = 1
exp(hω/2πkT )−1

n Average number of photons V, F, P V, F, P N/A N/A
h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

ω Frequency V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381× 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

III.8.54 |C|2 = sin2
(

2πAt
h

) |C|2 Probability V, F V, F, NN N/A N/A
A Energy V, F, P V, F U(1, 2) Ulog(10

−18, 10−16)

t Time V, F, P V, F, NN U(1, 2) Ulog(10
−18, 10−16)

h Planck constant V, F, P C, F, P U(1, 4) 6.626× 10−34

III.13.18 v = 4πAb2

h
k

v Speed of the waves V, F, P V, F N/A N/A
A Energy V, F, P V, F U(1, 5) Ulog(10

−18, 10−16)

b Lattice constant V, F, P V, F, P U(1, 5) Ulog(10
−10, 10−8)

k Wavenumber V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

III.14.14 I = I0 (exp (q∆V/κT )− 1)

I Electric Current V, F, P V, F N/A N/A
I0 Electric current V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

q Electric charge V, F, P V, F, P U(1, 2) Ulog(10
−22, 10−20)

∆V Voltage V, F, P V, F U(1, 2) Ulog(10
−1, 101)

κ Boltzmann constant V, F, P C, F, P U(1, 2) 1.381× 10−23

T Temperature V, F, P V, F, P U(1, 2) Ulog(10
1, 103)

III.15.12 E = 2A (1− cos (kd))

E Energy V, F V, F, P N/A N/A
A Amplitude V, F, P V, F, P U(1, 5) Ulog(10

−18, 10−16)

k Propagation coefficient V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

d Lattice constant V, F, P V, F, P U(1, 5) Ulog(10
−10, 10−8)

III.15.14 m = h2

8π2Ab2

m Effective mass V, F, P V, F, P N/A N/A
h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

A Amplitude V, F, P V, F, P U(1, 5) Ulog(10
−18, 10−16)

b Lattice constant V, F, P V, F, P U(1, 5) Ulog(10
−10, 10−8)

III.17.37 f = β(1 + α cos θ)

f Distribution V, F V, F, P N/A N/A
β Variable V, F, P V, F, P U(1, 5) Ulog(10

−18, 10−16)

α Variable V, F, P V, F U(1, 5) Ulog(10
−18, 10−16)

θ Angle V, F, P V, F, NN U(1, 5) U(0, 2π)

III.19.51 E = − mq4

2(4πϵ)2(h/(2π))2n2

E Energy V, F, P V, F, P N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−30, 10−28)

q Electric charge V, F, P V, F U(1, 5) Ulog(10
−11, 10−9)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 5) 8.854× 10−12

h Planck constant V, F, P C, F, P U(1, 5) 6.626× 10−34

n Number of protons V, F, P V, I, P U(1, 5) Ulog(10
0, 102)

B8 U = E

1+ E
mc2

(1−cos θ)

U Energy V, F, P V, F, P N/A N/A
E Electromagnetic energy V, F, P V, F, P U(1, 3) Ulog(10

−24, 10−22)

m Electron mass V, F, P C, F, P U(1, 3) 9.109× 10−31

c Speed of light V, F, P C, F, P U(1, 3) 2.998× 108

θ Incidence angle V, F, P V, F U(1, 3) U(−π, π)

B18 ρ = 3
8πG

(
c2kf
a2
f

+H2

)
ρ Density V, F, P V, F N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 5) 6.674× 10−11

c Speed of light V, F, P C, F, P U(1, 5) 2.998× 108

kf Curvature of the Universe V, F, P V, F U(1, 5) Ulog(10
1, 103)

af Distance V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)

H Hubble’s constant V, F, P V, F U(1, 5) Ulog(10
0, 102)
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Table 14: Hard set of our proposed datasets (part 1).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.6.20 f = exp

(
− θ2

2σ2

)
/
√
2πσ2

f Probability density
function

V, F, P V, F, P N/A N/A

θ Position V, F, P V, F U(1, 3) Ulog(10
−1, 101)

σ Standard deviation V, F, P V, F, P U(1, 3) Ulog(10
−1, 101)

I.6.20a f = exp

(
− θ2

2

)
/
√
2π

f Probability density
function

V, F, P V, F, P N/A N/A

θ Position V, F, P V, F U(1, 3) Ulog(10
−1, 101)

I.6.20b f = exp

(
− (θ−θ1)2

2σ2

)
/
√
2πσ

f Probability density
function

V, F, P V, F, P N/A N/A

θ Position V, F, P V, F U(1, 3) Ulog(10
−1, 101)

θ1 Position V, F, P V, F U(1, 3) Ulog(10
−1, 101)

σ Standard deviation V, F, P V, F, P U(1, 3) Ulog(10
−1, 101)

I.9.18
F =

Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

F Force of gravity V, F, P V, F, P N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 2) 6.674 × 10−11

m1 Mass V, F, P V, F, P U(1, 2) Ulog(10
0, 103)

m2 Mass V, F, P V, F, P U(1, 2) Ulog(10
0, 103)

x2 Position V, F, P V, F U(1, 2) Ulog(10
0, 101)

x1 Position V, F, P V, F U(3, 4) Ulog(10
0, 101)

y2 Position V, F, P V, F U(1, 2) Ulog(10
0, 101)

y1 Position V, F, P V, F U(3, 4) Ulog(10
0, 101)

z2 Position V, F, P V, F U(1, 2) Ulog(10
0, 101)

z1 Position V, F, P V, F U(3, 4) Ulog(10
0, 101)

I.15.3t t1 =
t−ux/c2√
1−u2/c2

t1 Time V, F V, F N/A N/A
t Time V, F, P V, F, NN U(1, 5) Ulog(10

−6, 10−4)

u Velocity V, F, P V, F U(1, 2) Ulog(10
5, 107)

x Position V, F, P V, F U(1, 5) Ulog(10
0, 102)

c Speed of light V, F, P C, F, P U(3, 10) 2.998 × 108

I.15.3x x1 = x−ut√
1−u2/c2

x1 Position V, F, P V, F N/A N/A
x Position V, F, P V, F U(5, 10) Ulog(10

0, 102)

u Velocity V, F, P V, F U(1, 2) Ulog(10
6, 108)

t Time V, F, P V, F, P U(1, 2) Ulog(10
−6, 10−4)

c Speed of light V, F, P C, F, P U(3, 20) 2.998 × 108

I.29.16
x =√

x2
1 + x2

2 + 2x1x2 cos (θ1 − θ2)

x Wavelength V, F, P V, F, P N/A N/A
x1 Wavelength V, F, P V, F, P U(1, 5) Ulog(10

−1, 101)

x2 Wavelength V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

θ1 Angle V, F, P V, F, NN U(1, 5) U(0, 2π)

θ2 Angle V, F, P V, F, NN U(1, 5) U(0, 2π)

I.30.3 I = I0
sin2(nθ/2)

sin2(θ/2)

I Amplitude of combined
wave

V, F, P V, F, P N/A N/A

I0 Amplitude of wave V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

n Number of waves V, F, P V, I, P U(1, 5) Ulog(10
1, 103)

θ Phase difference V, F, P V, F U(1, 5) U(−2π, 2π)

I.32.17 P =
(

1
2
ϵcE2

)(
8πr2

3

) ω4(
ω2−ω2

0

)2


P Energy V, F, P V, F, P N/A N/A
ϵ Vacuum permittivity V, F, P C, F, P U(1, 2) 8.854 × 10−12

c Speed of light V, F, P C, F, P U(1, 2) 2.998 × 108

E Magnitude of electric
field

V, F, P V, F U(1, 2) Ulog(10
1, 103)

r Radius V, F, P V, F, P U(1, 2) Ulog(10
−2, 100)

ω Frequency of electro-
magnetic waves

V, F, P V, F U(1, 2) Ulog(10
9, 1011)

ω0 Frequency of electro-
magnetic waves

V, F, P V, F U(3, 5) Ulog(10
9, 1011)

I.34.14 ω =
1+v/c√
1−v2/c2

ω0

ω Frequency of electro-
magnetic waves

V, F, P V, F, P N/A N/A

v Velocity V, F, P V, F U(1, 2) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(3, 10) 2.998 × 108

ω0 Frequency of electro-
magnetic waves

V, F, P V, F, P U(1, 5) Ulog(10
9, 1011)
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Table 15: Hard set of our proposed datasets (part 2).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

I.37.4
I12 = I1 + I2

+ 2
√

I1I2 cos δ

I12 Amplitude of wave V, F, NN V, F, NN N/A N/A
I1 Amplitude of wave V, F, P V, F, P U(1, 5) Ulog(10

−3, 10−1)

I2 Amplitude of wave V, F, P V, F, P U(1, 5) Ulog(10
−3, 10−1)

δ Phase difference V, F, P V, F, NN U(1, 5) U(0, 2π)

I.39.22 P = nkT
V

P Pressure V, F, P V, F, P N/A N/A
n Number of molecules V, F, P V, I⋆, P U(1, 5) Ulog(10

23, 1025)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

V Volume V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.40.1 n = n0 exp (−mgx/kT )

n Molecular density V, F, P V, F, P N/A N/A
n0 Molecular density V, F, P V, F, P U(1, 5) Ulog(10

25, 1027)

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−24, 10−22)

g Gravitational acceleration V, F, P C, F, P U(1, 5) 9.807 × 100

x Height V, F, P V, F U(1, 5) Ulog(10
−2, 100)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

I.41.16

Lrad =
h

2π

ω3

π2c2(exp(hω/2πkT ) − 1)

Lrad Radiation per frequency V, F, P V, F, P N/A N/A
h Planck constant V, F, P C, F, P U(1, 5) 6.626 × 10−34

ω Frequency of electromag-
netic wave

V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

c Speed of light V, F, P C, F, P U(1, 5) 2.998 × 108

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

I.44.4 Q = nkT ln(
V2
V1

)

Q Energy V, F V, F N/A N/A
n Number of molecules V, F, P V, I⋆, P U(1, 5) Ulog(10

24, 1026)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

V2 Volume V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

V1 Volume V, F, P V, F, P U(1, 5) Ulog(10
−5, 10−3)

I.50.26 x = K
(
cosωt + ϵ cos2 ωt

)
x Amplitude V, F V, F N/A N/A
K Amplitude V, F, P V, F, P U(1, 3) Ulog(10

−1, 101)

ω Angular velocity V, F, P V, F U(1, 3) Ulog(10
1, 103)

t Time V, F, P V, F, NN U(1, 3) Ulog(10
−3, 10−1)

ϵ Variable V, F, P V, F U(1, 3) Ulog(10
−3, 10−1)

II.6.15a E = p
4πϵ

3z
r5

√
x2 + y2

E Electric field V, F, P V, F N/A N/A
p Electric dipole moment V, F, P V, F U(1, 3) Ulog(10

−22, 10−20)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 3) 8.854 × 10−12

z Position V, F, P V, F U(1, 3) Ulog(10
−10, 10−8)

r Distance V, F, P V, F, P U(1, 3) Ulog(10
−10, 10−8)

x Position V, F, P V, F U(1, 3) Ulog(10
−10, 10−8)

y Position V, F, P V, F U(1, 3) Ulog(10
−10, 10−8)

II.6.15b E = p
4πϵ

3 cos θ sin θ
r3

E Electric field V, F V, F N/A N/A
p Electric dipole moment V, F, P V, F U(1, 3) Ulog(10

−22, 10−20)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 3) 8.854 × 10−12

θ Angle V, F, P V, F U(1, 3) U(0, π)

r Distance V, F, P V, F, P U(1, 3) Ulog(10
−10, 10−8)

II.11.17 n = n0

(
1 +

p0E cos θ
kT

)
n Number of polar molecules

per angle per unit volume
V, F V, F N/A N/A

n0 Number of molecules per
unit volume

V, F, P V, F, P U(1, 3) Ulog(10
27, 1029)

p0 Electric dipole moment V, F, P V, F U(1, 3) Ulog(10
−22, 10−20)

E Magnitude of electric field V, F, P V, F U(1, 3) Ulog(10
1, 103)

θ Angle V, F, P V, F, NN U(1, 3) U(0, 2π)

k Boltzmann constant V, F, P C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 3) Ulog(10
1, 103)

II.11.20 P =
n0p20E

3kT

P Polarizability V, F, P V, F N/A N/A
n0 Number of atom V, F, P V, I⋆, P U(1, 5) Ulog(10

23, 1025)

p0 Electric dipole moment V, F, P V, F U(1, 5) Ulog(10
−22, 10−20)

E Magnitude of electric field V, F, P V, F U(1, 5) Ulog(10
1, 103)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)
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Table 16: Hard set of our proposed datasets (part 3).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

II.11.27 P = Nα
1−(Nα/3)

ϵE

P Polarizability V, F, P V, F N/A N/A
N Number of atom V, F, NN V, I⋆, P U(0, 1) Ulog(10

23, 1025)

α Molecular polarizabil-
ity

V, F, NN V, F, P U(0, 1) Ulog(10
−33, 10−31)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 2) 8.854 × 10−12

E Magnitude of electric
field

V, F, P V, F, P U(1, 2) Ulog(10
1, 103)

II.11.28 κ = 1 + Nα
1−(Nα/3)

κ Electric dipole moment
per unit volume

V, F, P V, F N/A N/A

N Number of electric
dipoles

V, F, NN V, I⋆, P U(0, 1) Ulog(10
23, 1025)

α Molecular polarizabil-
ity

V, F, NN V, F, P U(0, 1) Ulog(10
−33, 10−31)

II.13.23 ρ =
ρ0√

1−v2/c2

ρ Electric charge density V, F, P V, F, P N/A N/A
ρ0 Electric charge density V, F, P V, F, P U(1, 5) Ulog(10

27, 1029)

v Velocity V, F, P V, F, P U(1, 2) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(3, 10) 2.998 × 108

II.13.34 j =
ρ0v√

1−v2/c2

j Electric current V, F, P V, F, P N/A N/A
ρ0 Electric charge density V, F, P V, F, P U(1, 5) Ulog(10

27, 1029)

v Velocity V, F, P V, F, P U(1, 2) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(3, 10) 2.998 × 108

II.24.17 k =
√

ω2/c2 − π2/a2

k Wavenumber V, F, P V, F, P N/A N/A
ω Angular velocity V, F, P V, F U(4, 6) Ulog(10

9, 1011)

c Speed of light V, F, P C, F, P U(1, 2) 2.998 × 108

a Length V, F, P V, F, P U(2, 4) Ulog(10
−3, 10−1)

II.35.18
a =

N

exp(µB/kT ) + exp(−µB/kT )

a Number of atoms with
the equivalent mag-
netic moment

V, F, P V, I⋆, P N/A N/A

N Number of atoms per
unit volume

V, F, P V, I⋆, P U(1, 3) Ulog(10
23, 1025)

µ Magnetic moment V, F, P V, F, P U(1, 3) Ulog(10
−25, 10−23)

B Magnetic flux density V, F, P V, F, P U(1, 3) Ulog(10
−3, 10−1)

k Boltzmann constant V, F, P C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 3) Ulog(10
1, 103)

II.35.21 M = Nµ tanh
(

µB
kT

)
M Number of magnetized

atoms
V, F, P V, I⋆, P N/A N/A

N Number of atom V, F, P V, I⋆, P U(1, 5) Ulog(10
23, 1025)

µ Magnetic moment V, F, P V, F, P U(1, 5) Ulog(10
−25, 10−23)

B Magnetic flux density V, F, P V, F, P U(1, 5) Ulog(10
−3, 10−1)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

II.36.38 x = µH
kT

+ µλ

ϵc2kT
M

x Parameter of magneti-
zation

V, F, P V, F N/A N/A

µ Magnetic moment V, F, P V, F U(1, 3) Ulog(10
−25, 10−23)

H Magnetic field strength V, F, P V, F U(1, 3) Ulog(10
−3, 10−1)

k Boltzmann constant V, F, P C, F, P U(1, 3) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 3) Ulog(10
1, 103)

λ Constant V, F, P V, F, NN U(1, 3) U(0, 1)

ϵ Vacuum permittivity V, F, P C, F, P U(1, 3) 8.854 × 10−12

c Speed of light V, F, P C, F, P U(1, 3) 2.998 × 108

M Number of magnetized
atoms

V, F, P V, I⋆, P U(1, 3) Ulog(10
23, 1025)

III.4.33 E = hω
2π(exp(hω/2πkT )−1)

E Energy V, F, P V, F, P N/A N/A
h Planck constant V, F, P C, F, P U(1, 5) 6.626 × 10−34

ω Frequency V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)

k Boltzmann constant V, F, P C, F, P U(1, 5) 1.381 × 10−23

T Temperature V, F, P V, F, P U(1, 5) Ulog(10
1, 103)

III.9.52

PI→II =(
2πµEt

h

)2 sin2 ((ω − ω0) t/2)

((ω − ω0) t/2)
2

PI→II Probability V, F, P V, F, NN N/A N/A
µ Electric dipole moment V, F, P V, F U(1, 3) Ulog(10

−22, 10−20)

E Magnitude of electric
field

V, F, P V, F U(1, 3) Ulog(10
1, 103)

t Time V, F, P V, F, NN U(1, 3) Ulog(10
−18, 10−16)

h Planck constant V, F, P C, F, P U(1, 3) 6.626 × 10−34

ω Frequency V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)

ω0 Resonant frequency V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)
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Table 17: Hard set of our proposed datasets (part 4).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

III.10.19 E = µ
√

B2
x + B2

y + B2
z

E Energy V, F, P V, F N/A N/A
µ Magnetic moment V, F, P V, F U(1, 5) Ulog(10

−25, 10−23)

Bx Element of magnetic field V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

By Element of magnetic field V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

Bz Element of magnetic field V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

III.21.20 J = −ρ q
m

A

J Electric current V, F, N V, F N/A N/A
ρ Electric charge density V, F, P V, F, N U(1, 5) Ulog(10

27, 1029)

q Electric charge V, F, P V, F, N U(1, 5) Ulog(10
−11, 10−9)

A Magnetic vector potential V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−30, 10−28)

B1 A =

(
Z1Z2αhc

4E sin2(θ/2)

)2

A Differential scattering cross section V, F, P V, F, P N/A N/A
Z1 Atomic number V, F, P V, I, P U(1, 2) Ulog(10

0, 101)

Z2 Atomic number V, F, P V, I, P U(1, 2) Ulog(10
0, 101)

α Fine structure constant V, F, P C, F, P U(1, 5) 7.297 × 10−3

h Dirac’s constant V, F, P C, F, P U(1, 2) 1.055 × 10−34

c Speed of light V, F, P C, F, P U(1, 2) 2.998 × 108

E Non-relativistic kinetic energy V, F, P V, F, P U(1, 3) Ulog(10
−18, 10−16)

θ Scattering angle V, F, P V, F, NN U(1, 3) U(0, 2π)

B2

k =
mkG

L21 +

√√√√1 +
2EL2

mk2
G

cos (θ1 − θ2)



k Inverse radius V, F V, F N/A N/A
m Mass (The Earth) V, F, P V, F, P U(1, 3) Ulog(10

23, 1025)

kG Variable V, F, P V, F, P U(1, 3) Ulog(10
9, 1011)

L Angular Momentum V, F, P V, F, P U(1, 3) Ulog(10
8, 1010)

E Energy V, F, P V, F, P U(1, 3) Ulog(10
25, 1027)

θ1 Angle V, F, P V, F, NN U(0, 6) U(0, 2π)

θ2 Angle V, F, P V, F, NN U(0, 6) U(0, 2π)

B3 r =
d(1−α2)

1+α cos(θ1−θ2)

r Distance V, F, N V, F, P N/A N/A
d Semi-major axis of elliptical orbit V, F, P V, F, P U(1, 3) Ulog(10

8, 1010)

α Orbital eccentricity V, F, P V, F, P U(2, 4) U(0, 1)

θ1 Angle V, F, P V, F, NN U(4, 5) U(0, 2π)

θ2 Angle V, F, P V, F, NN U(4, 5) U(0, 2π)

B4 v =

√
2
m

(
E − U − L2

2mr2

)
v Velocity V, F, P V, F, P N/A N/A
m Mass (The Earth) V, F, P V, F, P U(1, 3) Ulog(10

23, 1025)

E Energy V, F, P V, F, P U(8, 12) Ulog(10
25, 1027)

U Potential energy V, F, P V, F, P U(1, 3) Ulog(10
25, 1027)

L Angular momentum V, F, P V, F U(1, 3) Ulog(10
8, 1010)

r Distance V, F, P V, F, P U(1, 3) Ulog(10
8, 1010)

B5 t = 2πd3/2√
G(m1+m2)

t Orbital period V, F, P V, F, P N/A N/A
d Semimajor axis of elliptical orbit V, F, P V, F, P U(1, 3) Ulog(10

8, 1010)

G Gravitational constant V, F, P C, F, P U(1, 3) 6.674 × 10−11

m1 Mass (The Earth) V, F, P V, F, P U(1, 3) Ulog(10
23, 1025)

m2 Mass (The Earth) V, F, P V, F, P U(1, 3) Ulog(10
23, 1025)

B6 α =

√
1 + 2ϵ2EL2

m(Z1Z2q2)2

α Orbital eccentricity V, F, P V, F, P N/A N/A
ϵ Energy V, F, P V, F U(1, 3) Ulog(10

−18, 10−16)

E Energy V, F, P V, F, P U(1, 3) Ulog(10
−18, 10−16)

L Distance V, F, P V, F, P U(1, 3) Ulog(10
−10, 10−8)

m Mass V, F, P V, F, P U(1, 3) Ulog(10
−30, 10−28)

Z1 Atomic number V, F, P V, I, P U(1, 3) Ulog(10
0, 101)

Z2 Atomic number V, F, P V, I, P U(1, 3) Ulog(10
0, 101)

q Electric charge V, F, P V, F U(1, 3) Ulog(10
−11, 10−9)

B7 H =

√
8πGρ

3
− kfc2

a2
f

H Hubble’s constant V, F, P V, F, P N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 3) 6.674 × 10−11

ρ Density of the Universe V, F, P V, F, P U(1, 3) Ulog(10
−28, 10−26)

kf Spacetime curvature V, F, P V, I U(1, 2) U(−1, 1)

c Speed of light V, F, P C, F, P U(1, 2) 2.998 × 108

af Radius V, F, P V, F, P U(1, 3) Ulog(10
22, 1024)

B9
P =

−
32

5

G4

c5

(m1m2)
2(m1 + m2)

r5

P Gravitational wave energy V, F, N V, F, N N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 2) 6.674 × 10−11

c Speed of light V, F, P C, F, P U(1, 2) 2.998 × 108

m1 Mass V, F, P V, F, P U(1, 5) Ulog(10
23, 1025)

m2 Mass V, F, P V, F, P U(1, 5) Ulog(10
23, 1025)

r Distance V, F, P V, F, P U(1, 2) Ulog(10
8, 1010)
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Table 18: Hard set of our proposed datasets (part 5).

Eq. ID Formula Symbols
Properties Distributions

Original Ours Original Ours

B10 cos θ1 =
cos θ2−v/c

(1−v/c) cos θ2

cos θ1 Value V, F V, F N/A N/A
θ2 Angle V, F, P V, F, NN U(1, 3) U(0, π)

v Velocity V, F, P V, F U(1, 3) Ulog(10
6, 108)

c Speed of light V, F, P C, F, P U(4, 6) 2.998 × 108

B11 I = I0

(
sin(α/2)

α/2
sin(Nδ/2)
sin(δ/2)

)2
I Wave intensity V, F, P V, F, P N/A N/A
I0 Amplitude of wave V, F, P V, F, P U(1, 3) Ulog(10

−3, 10−1)

α Wavelength of X-ray V, F, P V, F, P U(1, 3) Ulog(10
−11, 10−9)

N Number of phase difference V, F, P V, I, P U(1, 2) Ulog(10
0, 102)

δ Wavelength of X-ray V, F, P V, F, P U(1, 3) Ulog(10
−11, 10−9)

B12

F =
q

4πϵy2(
4πϵVed −

qdy3

(y2 − d2)2

)
F Force V, F, P V, F N/A N/A
q Electric charge V, F, P V, F U(1, 5) Ulog(10

−3, 10−1)

ϵ Permittivity V, F, P V, F, P U(1, 5) Ulog(10
−12, 10−10)

y Distance V, F, P V, F, P U(1, 3) Ulog(10
−2, 100)

Ve Voltage V, F, P V, F U(1, 5) Ulog(10
−1, 101)

d Distance V, F, P V, F, P U(4, 6) Ulog(10
−2, 100)

B13 Ve = q

4πϵ

√
r2+d2−2dr cosα

Ve Potential V, F, P V, F N/A N/A
ϵ permittivity V, F, P V, F, P U(1, 5) Ulog(10

−12, 10−10)

q Electric charge V, F, P V, F U(1, 5) Ulog(10
−3, 10−1)

r Distance V, F, P V, F, P U(1, 3) Ulog(10
−2, 100)

d Distance between dipoles V, F, P V, F, P U(4, 6) Ulog(10
−2, 100)

α Angle V, F, NNV, F, NN U(0, 6) U(0, π)

B14 Ve = Ef cos θ

(
α−1
α+2

d3

r2
− r

)
Ve Potential (out) V, F V, F N/A N/A
Ef Magnitude of electric field V, F, P V, F U(1, 5) Ulog(10

1, 103)

θ Angle V, F, NNV, F, NN U(0, 6) U(0, π)

r Distance V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

d Radius of dielectric sphere V, F, P V, F, P U(1, 5) Ulog(10
−2, 100)

α Polarizability V, F, P V, F, P U(1, 5) Ulog(10
−1, 101)

B15 ω0 =

√
1− v2

c2

1+ v
c

cos θ
ω

ω0 Frequency of electromagnetic waves V, F, P V, F N/A N/A
v Velocity V, F, P V, F, P U(1, 3) Ulog(10

5, 107)

c Speed of light V, F, P C, F, P U(5, 20) 2.998 × 108

ω Frequency of electromagnetic waves V, F, P V, F, P U(1, 5) Ulog(10
9, 1011)

θ Angle V, F, NNV, F, NN U(0, 6) U(0, 2π)

B16
E = qVe

+
√

(p − qA)2c2 + m2c4

E Energy V, F, P V, F N/A N/A
p Momentum V, F, P V, F U(1, 5) Ulog(10

−9, 10−7)

q Electric charge V, F, P V, F U(1, 5) Ulog(10
−11, 10−9)

A Vector potential V, F, P V, F U(1, 5) Ulog(10
1, 103)

c Speed of light V, F, P C, F, P U(1, 5) 2.998 × 108

m Mass V, F, P V, F, P U(1, 5) Ulog(10
−30, 10−28)

Ve Voltage V, F, P V, F U(1, 5) Ulog(10
−1, 101)

B17
E =

1

2m(
p
2
+ m

2
ω
2
x
2
(
1 + α

x

y

))
E Energy V, F, P V, F N/A N/A
m Mass V, F, P V, F, P U(1, 5) Ulog(10

−30, 10−28)

p Momentum V, F, P V, F U(1, 5) Ulog(10
−9, 10−7)

ω Frequency of electromagnetic waves V, F, P V, F U(1, 5) Ulog(10
9, 1011)

x Position V, F, P V, F U(1, 5) Ulog(10
−11, 10−9)

α Deviation from the harmonic oscillator V, F, P V, F U(1, 5) Ulog(10
−1, 101)

y Distance V, F, P V, F, P U(1, 5) Ulog(10
−11, 10−9)

B19

pf = −
1

8πG(
c4kf

a2
f

+ c
2
H

2
(1 − 2α)

)
pf Pressure V, F V, F N/A N/A
G Gravitational constant V, F, P C, F, P U(1, 5) 6.674 × 10−11

c Speed of light V, F, P C, F, P U(1, 5) 2.998 × 108

kf Variable V, F, P V, F U(1, 5) Ulog(10
1, 103)

af Distance V, F, P V, F, P U(1, 5) Ulog(10
8, 1010)

H Hubble’s Constant V, F, P V, F, P U(1, 5) Ulog(10
0, 102)

α Variable V, F, P V, F U(1, 5) U(−10, 10)

B20
A =

α2h2

4πm2c2

(
ω0

ω

)2

(
ω0

ω
+

ω

ω0

− sin
2
θ

)

A Differential cross section V, F V, F, P N/A N/A
α Fine structure constant V, F, P C, F, P U(1, 5) 7.297 × 10−3

h Planck constant V, F, P C, F, P U(1, 5) 6.626 × 10−34

m Electron mass V, F, P C, F, P U(1, 5) 9.109 × 10−31

c Speed of light V, F, P C, F, P U(1, 5) 2.998 × 108

ω0 Frequency V, F, P V, F, P U(1, 5) Ulog(10
9, 1011)

ω Frequency V, F, P V, F, P U(1, 5) Ulog(10
9, 1011)

θ Scattering angle V, F, NNV, F, NN U(0, 6) U(0, 2π)
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Appendix B. License of External Code

We briefly summarize the licenses of external code we used in this study. BSD 3-Clause is used
for both gplearn (Koza and Poli, 2005) (https://gplearn.readthedocs.io/en/stable/
index.html), DSR (Petersen et al., 2020) and uDSR (Landajuela et al., 2022)(https://
github.com/brendenpetersen/deep-symbolic-optimization). Both AFP (Schmidt and
Lipson, 2011) and AFP-FE (Schmidt and Lipson, 2009) (https://github.com/cavalab/
ellyn) use GPL ver. 2 or later. AIF (Udrescu et al., 2020) (https://github.com/
SJ001/AI-Feynman) use MIT License, and both E2E (Kamienny et al., 2022) (https://
github.com/facebookresearch/symbolicregression) and PySR (Cranmer, 2023)(https:
//github.com/MilesCranmer/PySR) use Apache License 2.0.

Appendix C. Hyperparameters for Symbolic Regression Baselines

Tables 19 and 20 show the hyperparameter space for symbolic regression baselines considered
in this study. The hyperparameters of gplearn (Koza and Poli, 2005) 21, AFP (Schmidt and
Lipson, 2011), and AFP-FE (Schmidt and Lipson, 2009) 22 are optimized by Optuna (Ak-
iba et al., 2019), a hyperparameter optimization framework. For E2E (Kamienny et al.,
2022), we reuse the checkpoint of the pretrained model the authors provided.23 We choose
hyperparameters of other methods based on suggestions in their code and/or papers.

21. https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-regressor
22. https://github.com/cavalab/ellyn
23. https://dl.fbaipublicfiles.com/symbolicregression/model1.pt
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Table 19: Hyperparameter sets for symbolic regression baselines (part 1).

Method Hyperparameter sets

gplearn 100 trials with random combinations of the following hyperparameter spaces:
population_size: U(102, 103), generations: U(10, 102),
stopping_criteria: U(10−10, 10−2), warm_start : {True, False},
const_range: {None, (−1.0, 1.0), (−10, 10), (−102, 102), (−103, 103), (−104, 104)},
max_samples: U(0.9, 1.0), parsimony_coefficient : U(10−3, 10−2)

AFP 100 trials with random combinations of the following hyperparameter spaces:
popsize: U(100, 1000), g : U(250, 2500), stop_threshold : U(10−10, 10−2),
op_list : {[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’],
[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’, ’sin’, ’cos’]}

AFP-FE 100 trials with random combinations of the following hyperparameter spaces:
popsize: U(100, 1000), g : U(250, 2500), stop_threshold : U(10−10, 10−2),
op_list : {[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’],
[’n’, ’v’, ’+’, ’-’, ’*’, ’/’, ’exp’, ’log’, ’2’, ’3’, ’sqrt’, ’sin’, ’cos’]}

AIF {bftt : 60, epoch: 300, op: ’7ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 300, op: ’10ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 300, op: ’14ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 300, op: ’19ops.txt’, poly_deg : 3},
{bftt : 120, epoch: 300, op: ’14ops.txt’, poly_deg : 4},
{bftt : 120, epoch: 300, op: ’19ops.txt’, poly_deg : 4},
{bftt : 60, epoch: 500, op: ’7ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 500, op: ’10ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 500, op: ’14ops.txt’, poly_deg : 3},
{bftt : 60, epoch: 500, op: ’19ops.txt’, poly_deg : 3}

DSR {seed : 1, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed : 2, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed : 3, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed : 4, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed : 5, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’},
{seed : 1, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed : 2, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed : 3, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed : 4, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]},
{seed : 5, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’]}

E2E We reused the checkpoint of the pretrained model the authors provided.23
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Table 20: Hyperparameter sets for symbolic regression baselines (part 2).

Method Hyperparameter sets

uDSR {seed : 1, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 1000, learning_rate: 0.0005, entropy_weight : 0.03},
{seed : 2, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 1000, learning_rate: 0.0005, entropy_weight : 0.03},
{seed : 3, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 1000, learning_rate: 0.0005, entropy_weight : 0.03},
{seed : 4, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 1000, learning_rate: 0.0005, entropy_weight : 0.03},
{seed : 5, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 1000, learning_rate: 0.0005, entropy_weight : 0.03},
{seed : 6, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 500, learning_rate: 0.0025, entropy_weight : 0.3},
{seed : 7, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 500, learning_rate: 0.0025, entropy_weight : 0.3},
{seed : 8, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 500, learning_rate: 0.0025, entropy_weight : 0.3},
{seed : 9, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 500, learning_rate: 0.0025, entropy_weight : 0.3},
{seed : 10, function_set : [’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’poly’],
batch_size: 500, learning_rate: 0.0025, entropy_weight : 0.3}

PySR procs: 5, populations: 10, population_size: 40, ncyclesperiteration: 500,
niterations: 50000, timeout_in_seconds: 82800, maxsize: 50,
binary_operators: [’*’, ’+’, ’-’, ’/’], unary_operators: [’sin’, ’cos’, ’exp’, ’log’],
nested_constraints: {sin: {sin: 0, cos: 0}, cos: {sin: 0, cos: 0},
exp: {exp: 0}, log: {log: 0}}, progress: False, weight_randomize: 0.1,
precision: 32, warm_start : False, turbo: True, update: False

Appendix D. Qualitative Analysis

This section discusses qualitative analysis for the experimental results in Section 5.3, focused
on the effect of introduced dummy variables on the behaviors of SR baseline methods since
the SRSD-Feynman datasets with dummy variables seems extremely challenging from the
solution rate and NED in Tables 4 and 5. Taking two SRSD problems (I.12.1 and II.27.16) as
examples, Table 21 highlights how the randomly introduced dummy variables made changes in
both the true models (equations) and the SR baseline methods’ predicted equations. For the
SRSD problem I.12.1 in Table 2, all the SR baselines except E2E made the perfect predictions,
which completely match the true model. When introducing a random dummy variable (x2
for this problem) to I.12.1, however, gplearn failed to complete the training process, and AIF,
DSR, E2E, and uDSR produced little bit overcomplex symbolic expressions, including the
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dummy variable (x2). A similar trend can be confirmed for another SRSD problem II.27.16
in Table 9. While AFP, AFP-FE, AIF, uDSR, and PySR produced the correct symbolic
expressions in terms of NED (i.e., NED = 0), randomly introduced dummy variables x0
and x1 worsened the predictions of AFP-FE, AIF, and uDSR. Note that even though the
original SRSD problem II.27.16 contains only one input variable x0, two dummy variables
randomly introduced as the first and second columns of the tabular dataset reindexed the
original input variable x0 as x2 in this specific dataset due to the dummy variables.

Appendix E. Injecting Noise to Target Variables

Following SRBench (La Cava et al., 2021), we introduce Gaussian noise with a parameter of
noise level γ to the target variables in our SRSD datasets. We inject the noise to each of the
datasets separately (Eq. (5)):

ynoise
j = ftrue (Xj) + ϵ, ϵ ∼ N

0, γ

√√√√ 1

N

N∑
k=1

ftrue (Xk)

 , (5)

where 1 ≤ j ≤ N and N indicates the number of samples in the dataset.
Table 22 shows normalized edit distances of our baselines for noise-injected SRSD (Easy),

reusing the set of noise levels in SRBench (La Cava et al., 2021) i.e., γ ∈ {0, 10−3, 10−2, 10−1}.
Overall, the more the injected noise is, the more difficult it would be for the baseline models
to (re-)discover the physical law in the data.

Appendix F. Solution Rate Comparison - FSRD vs. SRSD -

Table 23 compares the solution rates of the five common baselines for the FSRD and our
SRSD datasets. We can confirm that the overall solution rates for our SRSD are significantly
degraded compared to those for the FSRD datasets reported in SRBench (La Cava et al.,
2021) except for DSR.24 The results indicate that our SRSD datasets are more challenging
than the FSRD datasets in terms of solution rate.

Appendix G. Limitations

G.1 Implicit Functions

Symbolic regression generally has a limitation in inferring implicit functions, as the model
infers a trivial constant function if there are no restrictions on variables. For example,
f(x, y) = 0 is inferred as 0 = 0 ∀x, y. This problem can be solved by applying the constraint
that an inferred function should depend on at least two variables e.g., inferring f(x, y) = 0
with ∂f

∂x ̸= 0 and ∂f
∂y ̸= 0, or by converting the function to an explicit form e.g., y = g(x).

We converted some functions in the datasets into explicit forms and avoided the inverse
trigonometric functions as described in Section 3.1.

24. Chi-squared tests showed p-values of 4.30× 10−5, 1.05× 10−4, 1.61× 10−6, 1.99× 10−21, and 0.479 for
gplearn, AFP, AFP-FE, AIF, and DSR respectively.

36



Matsubara, Chiba, Igarashi and Ushiku

Table 21: Examples: SRSD problems I.12.1 (top) and II.27.16 (bottom) from SRSD-Feynman
(Easy set) to highlight how introduced dummy variables affected behaviors of the
SR baselines. Coefficients are rounded for better presentation. N/A: No prediction
obtained as the training process did not complete.

Dummy var(s). ? No x2

True model x0 · x1 x0 · x1

gplearn x0 · x1 N/A
AFP x0 · x1 x0 · x1

AFP-FE x0 · x1 x0 · x1
AIF x0 · x1 0.999 · x0 · x1 + 0.159 · x2

DSR x0 · x1
x0 · x1 · exp

(
−x22/ (x1 + x2)

)
·

cos (x0 · x2)

E2E 1.02 · (x0 − 1.16e-3) ·
(x1 − 6.88e-3)

1.32e+17 · (x1 − 4.89e-3) ·
(7.38e-18 · x0 + x2 + 1.11e-20)

uDSR x0 · x1
x1 · (x0 − sin(x2 · exp(x2)/(x0 −
x2)))

PySR x0 · x1 x0 · x1

Dummy var(s). ? No x0, x1

True model 2.65e-3 · x20 2.65e-3 · x22

gplearn N/A N/A
AFP 2.68e-3 · x20 2.66e-3 · x22

AFP-FE 2.65e-3 · x20 2.10e-3 · x22 − 0.0161

AIF 2.65e-3 · x20 N/A
DSR N/A 4.91e-3 · x22 · cos (exp (x0))

E2E (0.191 ·x0− 0.0375) · (tan(0.0137 ·
x0 + 3.21e-3)− 7.05e-5)

(2.60e-3·x2+4.75e-5)·(x2−0.0104·
sin(1.84e+21 ·x0− 2.40e-11 ·x1−
9.12e+26 · x3 + 1.36) + 0.0398)

uDSR 2.65e-3 · x20 2.65e-3 · x1 · x22/(x1 − x2)

PySR 2.65e-3 · x20 2.65e-3 · x20

G.2 Noise Injection

When applying machine learning to real-world problems, it is often true that the observed
values contain some noise. While we follow La Cava et al. (2021) and show experimental
results for our SRSD datasets with noise-injected target variables in Appendix E, these
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Table 22: Normalized edit distances of baselines for noise-injected SRSD (Easy) datasets
with different noise levels.

Noise Level (γ) \ Method gplearn AFP AFP-FE AIF DSR

0 0.876 0.703 0.712 0.646 0.551
10−3 0.928 0.799 0.814 0.797 0.820
10−2 0.940 0.824 0.880 0.870 0.793
10−1 0.948 0.823 0.960 0.882 0.841

Table 23: Solution rates of the common baselines between FSRD and SRSD-Feynman
datasets.

Dataset \ Method gplearn AFP AFP-FE AIF DSR

FSRD (Udrescu and Tegmark, 2020) 15.7% 20.41% 26.08% 53.0% 19.1%
SRSD (Ours) 1.67% 5.83% 6.67% 9.17% 15.8%

aspects are not thoroughly discussed in this study, such discussions can be a separate paper
built on this work and further engage studies of symbolic regression for scientific discovery.

G.3 Dependency on sympy

Similar to SRBench (La Cava et al., 2021), the implementation of our evaluation pipeline has
a significant dependency on sympy. Specifically, when computing edit distance between the
predicted and true expressions and solution rate, our evaluation pipeline builds equation trees
based on the tree structure of the expressions used in sympy after converting the expressions
to floating-point approximations. Our use of edit distance and solution rate is based on our
observation and an assumption that sympy consistently maps a given equation to the unique
equation tree, handling algebraic properties so that we can compute edit distance between
the true and estimated equation trees consistently. We also acknowledge that sympy may
fail to process too complex expressions, and some symbolic regression methods may produce
such solutions. However, since the interpretability of the prediction is a key property of
symbolic regression, such overcomplex expressions should not be desired by non-ML users
and will result in NED = 1 for SRSD problems considered in this study.
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