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Abstract001

Miscalibration in Large Language Models002
(LLMs) undermines their reliability, highlight-003
ing the need for accurate confidence estimation.004
We introduce CCPS (Calibrating LLM Con-005
fidence by Probing Perturbed Representation006
Stability), a novel method analyzing internal007
representational stability in LLMs. CCPS ap-008
plies targeted adversarial perturbations to final009
hidden states, extracts features reflecting the010
model’s response to these perturbations, and011
uses a lightweight classifier to predict answer012
correctness. CCPS was evaluated on LLMs013
from 8B to 32B parameters (covering Llama,014
Qwen, and Mistral architectures) using MMLU015
and MMLU-Pro benchmarks in both multiple-016
choice and open-ended formats. Our results017
show that CCPS significantly outperforms cur-018
rent approaches. Across four LLMs and three019
MMLU variants, CCPS reduces Expected Cali-020
bration Error by approximately 55% and Brier021
score by 21%, while increasing accuracy by 5022
percentage points, Area Under the Precision-023
Recall Curve by 4 percentage points, and Area024
Under the Receiver Operating Characteristic025
Curve by 6 percentage points, all relative to026
the strongest prior method. CCPS delivers an027
efficient, broadly applicable, and more accu-028
rate solution for estimating LLM confidence,029
thereby improving their trustworthiness.030

1 Introduction031

Despite their impressive performance, large lan-032

guage models (LLMs) consistently struggle with033

confidence calibration (Guo et al., 2017; Geng034

et al., 2024). Their confidence—the model’s in-035

ternally estimated probability that a given response036

is correct—frequently misaligns with actual out-037

comes: LLMs often assign high confidence to038

wrong answers and low confidence to right ones.039

This unreliability is particularly acute in high-040

stakes domains like medicine, finance, and law.041

For example, in a critical medical task like symp-042

tom extraction for cancer toxicity assessment, even043

if an LLM often produces correct information, it 044

might do so with inappropriately low confidence, 045

or conversely, express high confidence for incorrect 046

outputs. If such confidence scores are not depend- 047

able guides to actual correctness, human experts 048

may be forced to meticulously review every LLM- 049

generated instance, significantly diminishing the 050

practical benefits of automation. Accurate confi- 051

dence estimation for each specific response is there- 052

fore essential, as it provides a vital mechanism for 053

managing risk, enabling users to prioritize human 054

oversight, selectively rely on LLM outputs, and ul- 055

timately foster more responsible and effective LLM 056

integration. 057

Existing approaches to LLM confidence esti- 058

mation include direct self-evaluation (Kadavath 059

et al., 2022), post-hoc adjustments (Jiang et al., 060

2021), internal state probing with lightweight clas- 061

sifiers (Azaria and Mitchell, 2023; Liu et al., 2024), 062

and model fine-tuning (Kapoor et al., 2024b). 063

These methods often struggle to consistently de- 064

liver on multiple desirable properties simultane- 065

ously, namely achieving strong calibration (e.g., 066

low Expected Calibration Error (ECE)) and high 067

discriminative power (e.g., high Area Under the 068

Precision-Recall Curve (AUCPR) or Area Under 069

the Receiver Operating Characteristic Curve (AU- 070

ROC)) while maintaining computational efficiency 071

and robust generalizability across the diverse set 072

of LLM architectures and families. Many meth- 073

ods excel in some of these desirable properties but 074

make trade-offs in others; for instance, fine-tuning 075

approaches like Calibration-Tuning (CT) (Kapoor 076

et al., 2024b) often achieve strong calibration in 077

ECE but may not consistently lead in discriminative 078

metrics like AUROC, while lightweight methods 079

such as LitCab (Liu et al., 2024) can demonstrate 080

strong AUROC but sometimes show variable ECE 081

performance across different LLM families. This 082

leaves a need for more holistically effective solu- 083

tions. 084
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In this work, we introduce CCPS (Calibrating085

LLM Confidence by Probing Perturbed Representa-086

tion Stability), a novel method that addresses these087

challenges by assessing LLM confidence through088

the stability of its internal representations. CCPS089

operates on frozen base LLMs, applying targeted090

adversarial perturbations to the final hidden states091

that generate an answer’s tokens. From the LLM’s092

response to these perturbations, we extract a rich093

feature set and train a lightweight classifier to pre-094

dict answer correctness. This model-agnostic prob-095

ing offers an efficient confidence proxy without096

modifying the base LLM.097

Comprehensive evaluations demonstrate CCPS’s098

significant advantages over existing confidence es-099

timation approaches. Tested across four modern100

LLMs (8B to 32B parameters, spanning three ar-101

chitectural families) on MMLU and MMLU-Pro102

benchmarks in both multiple-choice and open-103

ended formats, CCPS consistently achieves supe-104

rior performance across key calibration (e.g., ECE,105

Brier score) and discrimination metrics (e.g., ACC,106

AUCPR, AUROC). Our findings reveal that by107

quantifying LLM representational stability through108

targeted internal perturbations, CCPS achieves sub-109

stantial improvements over other state-of-the-art110

confidence estimation methods; for instance, CCPS111

reduces average ECE by approximately 55% (up to112

88%) and Brier score by 21% (up to 45%), while113

also increasing average Accuracy (ACC) by 5 per-114

centage points (pp) (up to +14 pp), AUCPR by 4115

pp (up to +13 pp), and AUROC by 6 pp (up to +17116

pp), relative to the best performing baseline. The117

key contributions of this work include:118

• A novel, model-agnostic, parameter-efficient,119

and scalable framework (CCPS) offering a120

fresh perspective on LLM confidence estima-121

tion by quantifying it through the stability of122

internal representations under targeted pertur-123

bations.124

• Demonstration of CCPS’s substantial im-125

provements in both key calibration (ECE,126

Brier score) and discrimination (ACC,127

AUCPR, AUROC) metrics.128

• Evidence of CCPS’s generalizability across di-129

verse LLM architectures (Llama, Qwen, Mis-130

tral; 8B to 32B).131

• Extensive benchmarking of confidence estima-132

tion methods on MMLU and MMLU-Pro in133

both multiple-choice and open-ended formats.134

These contributions establish CCPS as an effective 135

method for improving LLM confidence estimation, 136

helping to make LLM applications more trustwor- 137

thy, especially in critical domains where reliability 138

is crucial. 139

2 Related Work 140

Calibration in LLMs A model is considered 141

well-calibrated when its expressed confidence in 142

a prediction aligns with the empirical likelihood 143

of that prediction being correct. In the context of 144

LLMs, calibration efforts broadly diverge into two 145

streams. The first targets calibration of next-token 146

predictions and responses to reduce hallucinations. 147

This direction is exemplified by the work of Zhou 148

et al. (2025), which focuses on hallucination mit- 149

igation through comprehensive model calibration. 150

The second stream, more aligned with the present 151

work, focuses on developing and calibrating ex- 152

plicit confidence estimation mechanisms that assess 153

the correctness of statements generated by LLMs. 154

Confidence Estimation in LLMs Several ap- 155

proaches have been proposed for estimating an 156

LLM’s confidence in its assertions. One vein of re- 157

search explores probing the internal states of LLMs. 158

For instance, Azaria and Mitchell (2023) train an 159

auxiliary linear classifier on hidden layer activa- 160

tions from an LLM to predict the truthfulness of 161

statements. While this can reveal internal knowl- 162

edge, its efficacy depends on identifying the op- 163

timal representational layer and may vary across 164

evaluation metrics. Another approach involves elic- 165

iting the model’s inherent self-assessment. Kada- 166

vath et al. (2022) introduced concepts like P(True), 167

the probability an LLM assigns to its generated 168

answer being correct (often derived from probabili- 169

ties of “True” or “False” tokens when prompted to 170

evaluate its own previous answer), and P(IK), the 171

probability the model assigns to its own ability to 172

answer a given question correctly, estimated before 173

attempting to generate the answer. These methods 174

assess the model’s intrinsic confidence without ex- 175

ternal classifiers but rely on the LLM’s inherent, 176

and often uncalibrated, self-evaluation capabilities. 177

Improving Confidence Calibration in LLMs 178

Other research adapts the LLM or its outputs to 179

produce more reliable confidence scores. Logit 180

Temperature Scaling (LTS) (Jiang et al., 2021) 181

is a post-hoc method that adjusts output logits 182

using a learned temperature parameter; however, 183

its performance can degrade under distributional 184
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shifts between calibration and test data (Kapoor185

et al., 2024b). More intensive methods involve186

fine-tuning. CT (Kapoor et al., 2024a,b) builds187

on the P(True) concept, prompting the LLM to188

assess its own answers and then fine-tuning it on189

this self-evaluation using methods like LoRA. This190

can achieve strong ECE but may face challenges191

in efficient class discrimination (e.g., AUROC) and192

can be computationally demanding. In contrast,193

LitCab (Liu et al., 2024) offers a lightweight ap-194

proach by training a single linear layer to predict a195

bias term added to the LLM’s output logits. While196

LitCab shows strong discrimination, our experi-197

ments reveal variable ECE across LLM families.198

These diverse strategies highlight an ongoing trade-199

off in achieving robust calibration, discriminative200

power, computational efficiency, and generalization201

in LLM confidence estimation.202

3 Method203

Our approach to LLM confidence estimation is204

centered on evaluating the internal stability of the205

model’s representations when its generated answer206

is produced. We hypothesize that an LLM’s confi-207

dence correlates with the robustness of its internal208

states; specifically, the final hidden states that lead209

to the tokens of a high-confidence answer should210

exhibit greater stability when subjected to targeted211

perturbations. This internal probing of represen-212

tational stability offers an efficient alternative to213

methods relying on multiple generation passes for214

consistency checking. Notably, output consistency215

has been identified as a strong indicator of LLM216

reliability (Zhou et al., 2025), but external checks217

involve significant computational overhead, which218

our internal analysis aims to mitigate while lever-219

aging a similar underlying principle of stability.220

The methodology involves three primary stages,221

applied while the base LLM (whose confidence is222

being estimated) remains frozen: (1) token-level223

adversarial perturbation of the LLM’s final hidden224

states along a defined trajectory, (2) extraction of225

features that quantify the impact of these perturba-226

tions, and (3) a classification architecture that maps227

these features to a confidence score, representing228

the answer’s probability of correctness. These three229

stages are illustrated in Figure 1.230

3.1 Probing Internal Stability231

For a given input prompt P (which includes few-232

shot exemplars and the target question) and an an-233

swer A = (t1, t2, . . . , tL) generated by the base 234

LLM, where ti is the i-th token, we analyze each 235

token individually: 236

Original State Identification For each token ti 237

in A, we first identify the original final hidden state 238

H
(i)
0 ∈ Rdh from the LLM’s last transformer layer 239

that immediately led to the generation of ti. This 240

is obtained by feeding P and any preceding gener- 241

ated tokens t<i into the LLM. The corresponding 242

original logits are Z
(i)
0 = LM_Head(H(i)

0 ). 243

Adversarial Perturbation Trajectory Direction 244

To define a systematic perturbation trajectory that 245

challenges the LLM’s generation of the observed 246

token ti, we utilize the gradient of the loss associ- 247

ated with ti with respect to its generating hidden 248

state H(i)
0 . Let P (ti|H(i)

0 ) be the probability of the 249

token ti given H
(i)
0 . We define the loss as the nega- 250

tive log-likelihood: L(i) = − logP (ti|H(i)
0 ). The 251

Jacobian vector J (i) = ∇
H

(i)
0

L(i) then indicates 252

the direction in the hidden state space where this 253

loss L(i) increases most rapidly; equivalently, this 254

is the direction where the probability of token ti 255

decreases most steeply. We normalize this vector 256

to obtain the unit direction d(i) = J (i)/||J (i)||2. If 257

J (i) is a zero vector, d(i) is also set to zero. Perturb- 258

ing along this direction d(i) is an adversarial act1 259

aimed at making the original token ti less likely. 260

This contrasts with standard LLM training where 261

one steps in the negative gradient direction (e.g., 262

−∇L) to reduce loss for a target token. Here, by 263

moving along the positive gradient of L(i), we are 264

adversarially probing the stability of the LLM’s 265

initial choice ti by actively trying to dislodge it. 266

Iterative Adversarial Perturbation We then
explore the stability of H(i)

0 by applying S discrete
adversarial perturbations along the direction d(i).
The maximum extent of this exploration is defined
by a radius ϵmax (in our experiments, ϵmax = 20.0
and S = 5). The s-th perturbation magnitude is
ϵs = s · (ϵmax/S), for s ∈ {1, . . . , S}. The s-th
perturbed hidden state is:

H(i)
s = H

(i)
0 + ϵs · d(i)

For each H
(i)
s , we compute the corresponding per- 267

1Our use of “adversarial” here refers to targeted, gradient-
informed perturbations designed to systematically probe rep-
resentational stability by challenging the generation of token
ti. This is distinct from adversarial attacks aimed at finding
minimal input perturbations to cause misclassification or from
adversarial training regimens.
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Figure 1: Overview of the CCPS method, illustrating its three primary stages. (1) For each token ti (e.g., ’d’ in the
example) from a frozen LLM’s response to an input prompt P , its original final hidden state H

(i)
0 is systematically

perturbed (details in §3.1). This involves moving H
(i)
0 along a derived adversarial direction d(i) with varying

magnitudes ϵs (visually represented by lighter to darker shades for increasing ϵs) to yield a trajectory of perturbed
hidden states H(i)

s and their corresponding logits Z(i)
s via the LM Head. (2) A Df -dimensional feature vector f (i)

is then engineered (§3.2), encompassing original state characteristics, perturbation stability indicators, and trajectory
divergence statistics derived from the original and perturbed representational data. (3) This feature vector f (i) is
subsequently processed by a trainable feature projection network (EMC/OE) and a classification head (C) (§3.3) to
output the final confidence score, P (True), indicating the likelihood of the LLM’s answer being correct.

turbed logits Z(i)
s = LM_Head(H(i)

s ). This creates268

a trajectory of hidden states and their resulting out-269

put distributions under these adversarial nudges.270

3.2 Quantifying Perturbation Impact271

From the original hidden state H
(i)
0 and its corre-272

sponding logits Z(i)
0 , along with the trajectory of S273

perturbed hidden states {H(i)
s }Ss=1 and their respec-274

tive logits {Z(i)
s }Ss=1, we extract a Df -dimensional275

feature vector f (i) for each token ti. These features276

are designed to capture the LLM’s initial output277

characteristics for ti and how these characteristics278

evolve under systematic adversarial perturbation.279

Detailed definitions of all features are provided in280

Appendix B. The primary categories are:281

Original State Features This set quantifies the282

LLM’s baseline predictive characteristics for token283

ti prior to any perturbation, including measures284

of output probabilities, logits, distribution entropy,285

and prediction margins.286

Overall Perturbation Features This category287

comprises scalar metrics reflecting key aspects of288

the perturbation process itself or its integrated ef-289

fects, such as the L2 norm of the Jacobian vector290

J (i), the perturbation magnitude required to change 291

the LLM’s top predicted token from ti (epsilon-to- 292

flip), and the Perturbation Energy Integral (PEI) 293

value which summarizes the impact of perturba- 294

tions on the log-probability of ti. 295

Perturbed State Features These features con- 296

sist of statistical summaries (e.g., mean, standard 297

deviation, min, max, across the S perturbation 298

steps) of the LLM’s output characteristics (such as 299

token probabilities and distribution entropy) evalu- 300

ated after its hidden states have been perturbed. 301

Comparison Features This group includes sta- 302

tistical summaries of metrics that quantify the dif- 303

ferences or relationships (e.g., distributional diver- 304

gences like Kullback–Leibler and Jensen–Shannon, 305

cosine similarities) between the LLM’s original 306

state (hidden states, logits, probability distribu- 307

tions) and its perturbed states across the trajectory. 308

3.3 Confidence Classification Architecture 309

The per-token feature vectors serve as input to a 310

neural network designed to predict the correctness 311

of the entire answer A. This architecture comprises 312

a feature projection network and a classification 313
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head.314

Feature Projection Network The network struc-315

ture adapts to the answer format. For Multiple-316

Choice (MC) answers, which are typically single-317

token responses, the feature vector f (1) is pro-318

cessed by a Multi-Layer Perceptron (MLP), de-319

noted as EMC, to yield an embedding e =320

EMC(f
(1)). In contrast, for Open-Ended (OE) an-321

swers consisting of L tokens, the sequence of fea-322

ture vectors (f (1), . . . , f (L)) is passed through an323

encoder EOE composed of 1D convolutional lay-324

ers and adaptive pooling, resulting in a sequence325

embedding e = EOE(f
(1), . . . , f (L)).326

Both EMC and EOE are pre-trained using a Max-327

Margin contrastive loss. This choice of loss is328

aimed at learning discriminative embeddings, a329

strategy also found effective in other confidence es-330

timation works such as Liu et al. (2024), though our331

feature generation process and overall architecture332

are distinct. The objective of this pre-training is333

to map features from correctly answered questions334

to regions in the embedding space that are separa-335

ble from those associated with incorrect answers,336

supervised by the ground truth correctness of A.337

Classification Head The embedding e is then338

passed to an MLP classification head, C. This head339

outputs a 2-dimensional logit vector, Zconf = C(e).340

This architectural choice for binary correctness pre-341

diction (incorrect vs. correct) is similar to that342

used by Kapoor et al. (2024b). The final confi-343

dence score, P (correct|A), is obtained via a soft-344

max function applied to Zconf.345

Training Procedure Following the contrastive346

pre-training of the projection network, the projec-347

tion network (EMC or EOE) and the classification348

head C are jointly fine-tuned. This stage employs349

a standard cross-entropy loss, again supervised by350

the ground truth correctness of answer A.351

4 Experimental Setup352

We empirically evaluate the effectiveness of our353

proposed confidence estimation method.354

Languge Models Our experiments utilize a355

range of contemporary decoder-only LLMs, with356

parameter sizes from 8B to 32B, encompassing357

three distinct model families to assess broader ap-358

plicability. Specifically, we include: Meta-Llama359

-3.1-8B-Instruct (Grattafiori et al., 2024) (gov-360

erned by the Llama 3.1 Community License Agree-361

ment), Qwen2.5-14B-Instruct (Qwen et al.,362

2025) (Apache License 2.0), Mistral-Small-24B 363

-Instruct-2501 (Apache License 2.0), and Qwen 364

2.5-32B-Instruct (Qwen et al., 2025) (Apache 365

License 2.0). We use the unsloth (Daniel Han and 366

team, 2023) versions of these models to leverage 367

their efficient, non-quantized model handling capa- 368

bilities. All experiments, including hidden state ex- 369

traction and model training, were conducted using 370

bfloat16 precision to ensure manageability across 371

the diverse models and computational tasks. Our 372

implementations rely on the HuggingFace Trans- 373

formers (Wolf et al., 2020) and PyTorch (Paszke 374

et al., 2019) libraries. 375

Datasets For training and validating our confi- 376

dence estimation models, we utilize the CT-CHOICE 377

and CT-OE datasets for multiple-choice and open- 378

ended question-answering formats, respectively. 379

These datasets, generated following the exact 380

methodology detailed by Kapoor et al. (2024b) 381

(Apache License 2.0), comprise a large collection 382

of commonly used question-answering datasets 383

from the literature. To assess generalization and 384

performance, we evaluate on tasks from the Mas- 385

sive Multitask Language Understanding (MMLU) 386

benchmark (Hendrycks et al., 2021) (MIT License). 387

We created multiple-choice and open-ended ver- 388

sions of these tasks, namely MMLU-CHOICE and 389

MMLU-OE, using the same data processing approach 390

as Kapoor et al. (2024b) to ensure consistency. Ad- 391

ditionally, we employ MMLU-PRO-CHOICE (Apache 392

License 2.0), a multiple-choice version of the 393

MMLU-Pro dataset (Wang et al., 2024), for fur- 394

ther rigorous testing. All dataset instances across 395

training, validation, and testing incorporate 5-shot 396

exemplars within the input prompt P to contextu- 397

alize the LLMs. Additional details on the dataset 398

characteristics, response generation process, and 399

labeling procedures are provided in Appendix C. 400

Training Details To ensure fair comparisons, 401

training configurations were kept consistent across 402

all methods, including baselines. The main 403

classification/fine-tuning stage for all models in- 404

volved a total of 10,000 training steps. For our 405

proposed method, the contrastive feature projec- 406

tion network (EMC or EOE) was pre-trained for 407

5,000 steps. Subsequently, the confidence classifi- 408

cation model was trained for an additional 5,000 409

steps. Key hyperparameters for the AdamW op- 410

timizer (Loshchilov and Hutter, 2019), such as a 411

learning rate of 1× 10−4, were aligned with those 412

reported by Kapoor et al. (2024b). Training was 413
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conducted with a batch size of 32. A weight decay414

of 0.1 was uniformly applied across all training415

stages and methods.416

Baselines We compare our method (CCPS)417

against a comprehensive set of established con-418

fidence estimation techniques. These include419

P(True) and P(IK) (Kadavath et al., 2022), Logit420

Temperature Scaling (LTS) (Jiang et al., 2021), In-421

struction Tuning (IT) (Wei et al., 2022) on the un-422

certainty query, SAPLMA (Azaria and Mitchell,423

2023) (with variants SAPLMA-F, SAPLMA-M,424

and SAPLMA-UM corresponding to different layer425

inputs), Calibration Tuning (CT) (Kapoor et al.,426

2024b), and LitCab (Liu et al., 2024). Detailed de-427

scriptions of these baseline methods are provided428

in Appendix D, and the architectural specifics of429

our CCPS model, including details of the hyper-430

parameter search process that determined these431

architectures, are detailed in Appendix E. Infor-432

mation regarding the computational setup and re-433

sources utilized for all methods is available in Ap-434

pendix F. Furthermore, a comparative analysis of435

the additional trainable parameters introduced by436

each method is presented in Appendix G, under-437

scoring the parameter efficiency of our CCPS ap-438

proach.439

Evaluation Metrics We evaluate our confidence440

estimation method using established metrics. For441

assessing calibration, we employ the ECE and the442

Brier Score. We also measure our confidence443

scores’ discriminative performance using ACC,444

AUCPR, and AUROC. Detailed definitions and445

formulations for these metrics are provided in Ap-446

pendix H.447

Scientific Artifacts A detailed discussion regard-448

ing the scientific artifacts utilized and developed449

in this study, including our adherence to their in-450

tended use and the intended applications of our451

created artifacts, can be found in Appendix A.452

5 Results453

The performance of CCPS compared to baseline454

methods across different LLMs and MMLU bench-455

mark variants is presented in Table 1. Our method,456

CCPS, consistently demonstrates notable improve-457

ments in both calibration and discriminative power.458

On the standard multiple-choice benchmark,459

MMLU-CHOICE, CCPS consistently achieves supe-460

rior performance across all four base LLMs. For461

instance, ECE scores for CCPS are typically in462

Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

MMLU-CHOICE
Meta-Llama-3.1-8B-Instruct

LitCab 10.9 18.1 73.2 84.0 77.1
CT 10.7 21.1 67.8 74.2 62.8
CCPS 6.5 17.1 73.4 84.1 77.1

Qwen2.5-14B-Instruct
LitCab 45.6 20.0 78.3 83.7 65.3
CT 12.1 17.0 78.6 84.7 64.8
CCPS 6.3 13.1 80.2 92.1 81.6

Mistral-Small-24B-Instruct-2501
LitCab 13.5 15.1 79.5 91.5 78.2
CT 8.2 15.5 79.6 83.3 56.5
CCPS 5.8 11.5 83.0 93.1 83.3

Qwen2.5-32B-Instruct
LitCab 43.2 15.9 82.6 87.9 67.2
CT 45.2 46.9 37.2 84.3 51.6
CCPS 6.3 10.8 84.1 94.1 82.8

MMLU-PRO-CHOICE
Meta-Llama-3.1-8B-Instruct

LitCab 16.6 24.7 66.1 51.7 63.6
CT 21.5 29.8 50.4 43.7 57.3
CCPS 4.5 20.0 70.4 55.2 67.9

Qwen2.5-14B-Instruct
LitCab 49.7 38.3 55.3 66.2 68.0
CT 20.4 28.7 55.6 59.4 56.6
CCPS 4.2 20.1 69.2 75.8 74.0

Mistral-Small-24B-Instruct-2501
LitCab 32.2 34.6 57.0 66.2 60.1
CT 17.8 27.4 58.2 60.1 54.3
CCPS 4.5 18.6 71.3 79.5 77.2

Qwen2.5-32B-Instruct
LitCab 48.4 33.7 60.8 72.7 70.3
CT 38.0 41.6 44.8 60.5 49.9
CCPS 4.6 18.5 71.8 82.4 77.8

MMLU-OE
Meta-Llama-3.1-8B-Instruct

LitCab 8.8 22.5 65.3 46.2 66.0
CT 8.8 21.1 65.3 48.9 70.9
CCPS 8.0 20.2 69.5 49.4 69.3

Qwen2.5-14B-Instruct
LitCab 34.4 37.0 49.4 56.8 62.5
CT 9.4 22.6 63.4 61.7 69.3
CCPS 6.7 22.5 63.6 59.0 66.6

Mistral-Small-24B-Instruct-2501
LitCab 11.2 24.6 60.2 60.5 66.4
CT 10.8 22.8 62.2 60.7 68.2
CCPS 6.8 20.8 67.6 64.7 71.4

Qwen2.5-32B-Instruct
LitCab 28.4 33.2 52.7 60.2 62.3
CT 22.9 31.1 57.1 52.9 56.3
CCPS 8.7 23.3 62.6 62.0 66.4

Table 1: Average performance on MMLU variants
across tasks per LLM. Arrows indicate whether lower
(↓) or higher (↑) values are better. All values are per-
centages. Best values per method-block are bolded.

the range of 5.8-6.5%, representing substantial re- 463

ductions compared to both LitCab and CT, which 464

often exhibit much higher ECEs (e.g., LitCab’s 465

ECE of 45.6% and CT’s 45.2% on Qwen2.5-14B 466

and Qwen2.5-32B respectively, against CCPS’s 467

6.3% on both). CCPS shows similar gains in Brier 468
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score and discriminative metrics like AUCPR and469

AUROC, often matching or outperforming base-470

lines.471

When evaluated on the more challenging472

MMLU-PRO-CHOICE dataset, CCPS further extends473

its performance advantages, particularly in cali-474

bration. CCPS consistently achieves ECE values475

around 4.5% across all tested LLMs, a significant476

improvement over LitCab (ECEs ranging from477

16.6% to 49.7%) and CT (ECEs from 17.8% to478

38.0%). This strong calibration is paired with top479

scores in Brier, ACC, AUCPR, and AUROC, show-480

ing CCPS’s robustness on more difficult questions.481

For example, with Mistral-24B, CCPS records an482

ECE of 4.5% and an AUROC of 77.2%, compared483

to LitCab’s 32.2% ECE and 60.1% AUROC, and484

CT’s 17.8% ECE and 54.3% AUROC.485

In the open-ended generation setting (MMLU-OE),486

CCPS generally maintains strong calibration, con-487

sistently achieving the best ECE and Brier scores,488

especially with larger models like Mistral-24B489

and Qwen2.5-32B where it leads across all metrics.490

For smaller models on MMLU-OE, while CCPS leads491

in calibration, CT demonstrates competitive dis-492

criminative performance in AUCPR and AUROC493

(e.g., for Llama-3.1-8B, CT’s AUROC is 70.9%494

vs. CCPS’s 69.3%; for Qwen2.5-14B, CT leads495

in AUCPR and AUROC). However, CCPS’s cal-496

ibration advantage remains evident, for example,497

achieving an ECE of 6.7% with Qwen2.5-14B com-498

pared to CT’s 9.4%.499

In summary, CCPS consistently delivers sub-500

stantial improvements in confidence estimation, ex-501

celling in both calibration and the ability to dis-502

criminate between correct and incorrect responses503

across diverse LLMs and task formats, particu-504

larly on challenging multiple-choice benchmarks.505

The findings in Table 1 are further detailed in Ap-506

pendix I, which includes comprehensive results for507

all baselines (mean and standard deviation scores,508

comparative bar charts, per-task breakdowns, and509

feature importance analyses).510

6 Discussion511

CCPS Excels in Both Calibration and Discrim-512

ination. A significant finding is the ability of513

CCPS to simultaneously achieve strong calibration514

(low ECE and Brier scores) and high discriminative515

power (high AUCPR and AUROC), as evidenced516

in Table 1. This contrasts with observations for517

some baselines; for instance, while LitCab often518

demonstrates good discrimination, its ECE can be 519

variable, particularly with certain LLM families 520

(e.g., Qwen models). Conversely, Calibration Tun- 521

ing (CT) generally achieves good ECE but can lag 522

in discriminative metrics compared to CCPS. Our 523

method’s dual strength suggests that the features ex- 524

tracted from internal perturbation trajectories effec- 525

tively capture signals relevant to both the reliability 526

and the correctness of an LLM’s answer. 527

The CCPS Framework Provides an Efficient 528

and Scalable Approach to Confidence Estima- 529

tion. CCPS is designed to be lightweight. Once 530

features are extracted, the confidence estimation 531

model itself consists of relatively small MLPs or 532

CNNs (as detailed in Appendix E), making its train- 533

ing and inference efficient. This contrasts with 534

methods like CT which, despite using LoRA, re- 535

quire fine-tuning larger portions of the base LLM 536

and can be resource-intensive (e.g., CT report- 537

edly takes ∼4 GPU days on an NVIDIA V100). 538

Furthermore, CCPS avoids some scalability con- 539

cerns present in other methods. For example, Lit- 540

Cab’s projection layer size (hidden_dim × vocab- 541

ulary_size) can become very large for LLMs with 542

extensive vocabularies, and its reliance on multiple 543

negative samples per question for its contrastive 544

learning imposes specific data curation require- 545

ments. CCPS, on the other hand, uses more com- 546

pact projection networks and only requires labels 547

of correctness for the LLM’s generated answers. 548

Probing Internal Representational Stability 549

Forms the Core of CCPS’s Mechanism. The 550

methodological foundation of CCPS lies in quan- 551

tifying internal consistency. While prior work has 552

highlighted output consistency (e.g., through mul- 553

tiple sampling of responses) as a strong indicator 554

of LLM reliability (Zhou et al., 2025), such ap- 555

proaches can be computationally expensive. CCPS 556

internalizes this concept by perturbing hidden state 557

representations. The premise is that if an LLM is 558

truly confident, its internal decision-making pro- 559

cess for a token should be stable against relevant 560

adversarial nudges. Our results suggest that fea- 561

tures derived from this internal stability analysis 562

serve as effective proxies for confidence. 563

Perturbation-Derived Features Offer Key In- 564

sights into LLM Confidence Signals. The 565

SHAP value analyses (Appendix I.5) provide in- 566

sights into which features derived from our pertur- 567

bation process are most influential. Consistently 568
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across different LLMs and datasets, the original569

entropy of the LLM’s output distribution for a to-570

ken emerges as an important feature. As expected,571

higher original entropy typically shows a nega-572

tive correlation with the prediction of correctness573

(meaning higher entropy contributes to predicting574

the answer as incorrect), signifying that greater575

initial uncertainty in the LLM’s choice is indica-576

tive of a potentially incorrect answer. More reveal-577

ingly, many of the top-ranking features are those578

derived from the perturbed states. For instance,579

the margin between the logits of the top-ranked580

and second-ranked tokens after perturbation often581

shows a positive correlation with correctness; a582

larger margin, even under adversarial stress, indi-583

cates a more decisive and less ambiguous output584

from the LLM, which CCPS learns as a sign of con-585

fidence. Similarly, a higher epsilon-to-flip value,586

indicating that a larger perturbation magnitude is587

needed to make the LLM change its predicted to-588

ken, consistently contributes positively to the confi-589

dence score. These findings affirm that the dynamic590

response to perturbation, not just the initial state,591

provides critical signals for confidence estimation.592

CCPS Demonstrates Consistent Efficacy Across593

Diverse LLM Architectures. The strong per-594

formance of CCPS is not confined to a specific595

model architecture or size, as it demonstrates effec-596

tiveness across Llama, Qwen, and Mistral families597

(8B to 32B parameters). This consistency, particu-598

larly when compared to methods like LitCab which599

showed variable ECE performance across LLM600

families in our experiments (Table 1), suggests that601

the feature set derived from our internal perturba-602

tion methodology captures fundamental aspects of603

LLM decision-making relevant to confidence, re-604

gardless of the specific base model.605

7 Conclusion606

In this work, we introduced CCPS, a novel method607

for estimating LLM confidence by evaluating the608

stability of their internal representations when sub-609

jected to targeted adversarial perturbations, us-610

ing features derived from this process with a611

lightweight classifier. Our approach demonstrated612

significant improvements over existing methods,613

consistently achieving superior calibration (mea-614

sured by ECE and Brier scores) and discrimina-615

tive ability (evidenced by strong AUCPR and AU-616

ROC results). This effectiveness was observed617

across a diverse range of LLMs, various MMLU618

and MMLU-Pro task formats (including multiple- 619

choice and open-ended question answering), and 620

differing levels of difficulty. The features derived 621

from the LLM’s response to adversarial nudges 622

proved highly indicative of confidence. CCPS of- 623

fers an effective and lightweight way to assess LLM 624

reliability, requiring no changes to generation or 625

extensive fine-tuning, and marks a promising step 626

toward more trustworthy, interpretable systems. 627

Limitations 628

Despite its strong performance, CCPS has limita- 629

tions. Firstly, the pre-processing stage of quanti- 630

fying features from perturbation impacts incurs a 631

computational cost. For each token in an answer, 632

this cost includes an initial Jacobian calculation 633

and subsequently, for each of the S perturbations, 634

processing the perturbed hidden state through the 635

LLM’s head to obtain perturbed logits. Access 636

to model internals is also a prerequisite for this 637

feature extraction phase. Secondly, feature effec- 638

tiveness depends on perturbation hyperparameters 639

(e.g., ϵmax, S), which, though optimized in our ex- 640

periments, may need retuning for different models 641

or tasks. Lastly, the quality of extracted features 642

inherently relies on the meaningfulness of the base 643

LLM’s internal representations; if an LLM’s hid- 644

den states do not systematically encode information 645

related to its certainty, the efficacy of any method 646

probing these states might be constrained. 647

These limitations also highlight opportunities for 648

improvement. One avenue is using the learned sta- 649

bility signals not just for post-hoc estimation but 650

to directly inform and calibrate the generation pro- 651

cess, potentially reducing hallucinations. Addition- 652

ally, while this work perturbs only the final hidden 653

state, exploring perturbations across different trans- 654

former layers may yield richer or complementary 655

indicators of confidence. 656

Ethical Considerations 657

While CCPS is developed with the aim of enhanc- 658

ing the reliability and trustworthiness of LLMs, 659

several ethical considerations are relevant to its ap- 660

plication and interpretation. A primary concern is 661

the potential for over-reliance on the confidence 662

scores produced. Although CCPS demonstrates 663

improved calibration and discrimination, it is cru- 664

cial to recognize that no confidence estimation 665

method is perfect. In high-stakes domains, such as 666

medicine, finance, or law, an uncritical acceptance 667

8



of automated confidence scores without appropri-668

ate human judgment and oversight could lead to669

adverse outcomes if the underlying LLM makes an670

error that is not perfectly flagged by the confidence671

score.672

Secondly, the fairness of CCPS across diverse673

demographic groups and data distributions war-674

rants careful attention during deployment. If the675

base LLMs, from which internal representations676

are extracted, contain inherent biases or exhibit677

differential performance characteristics for certain678

populations, CCPS’s confidence assessments could679

potentially reflect or even inadvertently amplify680

these disparities. This could result in confidence681

scores that are less reliable for some groups than for682

others, potentially leading to inequitable or unfair683

consequences. Therefore, the deployment of any684

confidence estimation method, including CCPS,685

especially in sensitive applications, should be ac-686

companied by rigorous testing for fairness, ongoing687

monitoring of its performance across relevant sub-688

groups, and a clear framework emphasizing its role689

as an assistive tool to augment, not replace, human690

expertise and critical decision-making.691
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A Artifact Usage and Creation 991

Consistency with Intended Use of Existing Arti- 992

facts: All existing scientific artifacts employed in 993

this research, including pre-trained LLMs, bench- 994

mark datasets (MMLU, MMLU-Pro, and the constituent 995

datasets of CT-CHOICE/CT-OE), and software li- 996

braries, were used in a manner consistent with their 997

specified intended uses, primarily for academic 998

research, evaluation, and the development of new 999

methodologies within the field of Natural Language 1000

Processing. The use of proprietary models like 1001

GPT-4o-mini for data labeling was conducted in 1002

accordance with its API terms of service for re- 1003

search applications. 1004

Intended Use of Created Artifacts: The scientific 1005

artifacts created as part of this work—including the 1006

source code for the CCPS method, our trained con- 1007

fidence estimation models, and the derived feature 1008

sets—are primarily intended to support academic 1009

research. Their release aims to ensure the repro- 1010

ducibility of our findings, encourage further investi- 1011

gation into LLM confidence estimation techniques, 1012

and allow the community to build upon our con- 1013

tributions. The use and distribution of any created 1014

artifacts that are derivative of existing datasets or 1015

models will be governed by terms compatible with 1016

the original access conditions and licenses of those 1017

foundational resources, particularly ensuring that 1018

derivatives of artifacts intended for research remain 1019

within research contexts where applicable. 1020

B Feature Set Description 1021

This appendix details the features extracted for ana- 1022

lyzing the language model’s token-level generative 1023

behavior. These features, defined in Table 2, are 1024

derived from the model’s internal states and its 1025

responses to systematic perturbations. The pertur- 1026

bations are applied to a token’s hidden state by 1027
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incrementally moving it along the normalized Ja-1028

cobian vector of the actual observed token’s log-1029

probability, across a predefined number of steps1030

and range of magnitudes.1031

B.1 Original State Features1032

This feature set quantifies the model’s baseline pre-1033

dictive characteristics for each token prior to ex-1034

perimental perturbation. These include measures1035

of output probabilities, logits, distribution entropy,1036

prediction margins, and vector norms of internal1037

representations. These features establish a refer-1038

ence for evaluating perturbation effects.1039

B.2 Overall Perturbation Features1040

This group comprises scalar Features quantifying1041

specific properties related to the perturbation mech-1042

anism itself or its direct consequences. These in-1043

clude the L2 norm of the Jacobian vector, the per-1044

turbation magnitude required to alter the model’s1045

top-1 predicted token (epsilon_to_flip_token),1046

and the integrated effect of perturbations on the log-1047

probability of the token guiding the perturbation1048

direction (PEI value).1049

B.3 Perturbed State Features1050

These features describe the model’s output char-1051

acteristics (e.g., token probabilities, distribution1052

entropy, decision margins, as listed in Table 2) eval-1053

uated after its hidden states are perturbed. The base1054

metrics are calculated at each discrete perturbation1055

step. Statistical summaries (minimum, maximum,1056

mean, standard deviation) of these per-step metrics1057

are then computed across all applied perturbation1058

magnitudes for a given token. This process sum-1059

marizes the model’s output behavior under varying1060

degrees of targeted hidden state modification.1061

B.4 Comparison Features (Original vs.1062

Perturbed)1063

This feature set quantifies the differences between1064

the model’s original state (hidden states, logits,1065

probability distributions) and its state after each1066

perturbation step. Base comparison metrics are de-1067

tailed in Table 2. These metrics, such as changes1068

in log-probabilities, distributional divergences (KL,1069

JS), and vector similarities/distances, are statisti-1070

cally summarized (minimum, maximum, mean,1071

standard deviation) across all perturbation magni-1072

tudes. The summaries indicate the extent of change1073

in model representations and outputs due to the1074

applied perturbations.1075

A total of Df = 75 such features are extracted 1076

per token. 1077

C Datasets 1078

This section provides further details on the datasets 1079

used for training, validation, and evaluation of our 1080

confidence estimation models. All datasets em- 1081

ployed in this study are in English. For comprehen- 1082

sive information regarding the original construc- 1083

tion, specific domain coverage, linguistic charac- 1084

teristics, and any available demographic details 1085

for the underlying public benchmarks (such as 1086

MMLU, MMLU-Pro, and the constituent datasets 1087

of CT-CHOICE and CT-OE), we refer readers to their 1088

respective original publications, which are cited 1089

upon their introduction in the subsequent subsec- 1090

tions. 1091

C.1 Training and Validation Datasets 1092

For training and validating our confidence estima- 1093

tion models, we utilize the CT-CHOICE and CT-OE 1094

datasets, designed for multiple-choice and open- 1095

ended question-answering formats, respectively. 1096

These datasets, generated following the method- 1097

ology of Kapoor et al. (2024b), aggregate a di- 1098

verse collection of commonly used public question- 1099

answering datasets. Instances from these datasets 1100

were formatted to ensure a maximum input se- 1101

quence length of 1,600 tokens during our training 1102

process. The underlying datasets include: 1103

• AI2 Reasoning Challenge (ARC) (Clark et al., 1104

2018) 1105

• Boolean Questions (BoolQ) (Clark et al., 1106

2019) 1107

• CommonsenseQA (Talmor et al., 2019) 1108

• CosmosQA (Huang et al., 2019) 1109

• HellaSwag (Zellers et al., 2019) 1110

• MathQA (Amini et al., 2019) 1111

• Recognizing Textual Entailment (RTE/SNLI) 1112

(Bowman et al., 2015) 1113

• Adversarial NLI (Nie et al., 2020) 1114

• OpenBookQA (Mihaylov et al., 2018) 1115

• PIQA (Bisk et al., 2019) 1116

• SciQ (Welbl et al., 2017) 1117
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• The CommitmentBank (CB) (de Marneffe1118

et al., 2019)1119

• Multi-Sentence Reading Comprehension1120

(MultiRC) (Khashabi et al., 2018)1121

• Choice of Plausible Alternatives (CoPA) (Gor-1122

don et al., 2012)1123

• TREC (Li and Roth, 2002)1124

• Adversarial Winograd (Winogrande) (Sak-1125

aguchi et al., 2021)1126

C.2 Evaluation Datasets1127

Our evaluation suite consists of variants of the Mas-1128

sive Multitask Language Understanding (MMLU)1129

(Hendrycks et al., 2021) and MMLU-Pro (Wang1130

et al., 2024) benchmarks, formatted for both1131

multiple-choice and open-ended evaluation.1132

MMLU-CHOICE and MMLU-OE: These1133

datasets are derived from the standard MMLU1134

benchmark, which covers 57 diverse tasks span-1135

ning STEM, humanities, social sciences, and other1136

areas. We created multiple-choice (MMLU-CHOICE)1137

and open-ended (MMLU-OE) versions following the1138

data processing approach of Kapoor et al. (2024b).1139

The constituent tasks and their respective sample1140

sizes for MMLU are listed in Table 3.1141

MMLU-PRO-CHOICE: This dataset is the1142

multiple-choice version of MMLU-Pro (Wang1143

et al., 2024), which includes 14 tasks designed1144

with more challenging questions that often require1145

deeper domain knowledge. Unlike the standard1146

MMLU, the structure of MMLU-Pro questions of-1147

ten makes the provided choices an indispensable1148

part of the question’s context, meaning it could not1149

be meaningfully converted to an open-ended for-1150

mat without fundamentally altering the nature of1151

the problems. Furthermore, the answer options in1152

MMLU-Pro frequently extend beyond the typical1153

A-D choices, sometimes including E, F, or more.1154

The tasks and their sample sizes for MMLU-Pro1155

are detailed in Table 4.1156

C.3 Response Generation and Labeling1157

For all datasets described above, responses from1158

the base LLMs were first generated to create the1159

instances for our confidence estimation task. The1160

user prompt, which includes the question and any1161

contextual information (such as few-shot exem-1162

plars), was constructed following the methodol-1163

ogy of Kapoor et al. (2024b), to which we refer1164

the reader for further details. We employed spe- 1165

cific system prompts for guiding the base LLMs 1166

during response generation, as detailed in Table 5. 1167

These prompts are similar to those used by Kapoor 1168

et al. (2024b) but were slightly refined for improved 1169

clarity to the LLMs. In line with their approach, 1170

for multiple-choice question-answering datasets 1171

(CT-CHOICE, MMLU-CHOICE, MMLU-PRO-CHOICE), 1172

answers were generated with a maximum token 1173

limit of 1, corresponding to the chosen option let- 1174

ter. For open-ended datasets (CT-OE, MMLU-OE), 1175

responses were generated using greedy decoding 1176

with a maximum length of 30 tokens. 1177

Each generated response was subsequently la- 1178

beled as correct or incorrect. For multiple-choice 1179

questions, correctness was determined by a straight- 1180

forward string match between the LLM’s generated 1181

option letter and the ground truth option. For open- 1182

ended responses, assessing semantic equivalence 1183

requires a more nuanced approach. Kapoor et al. 1184

(2024b) conducted a comparative analysis of differ- 1185

ent grading techniques against human evaluations. 1186

Their study found that GPT-4 assessments exhibited 1187

a low average absolute difference of 4.5% in ac- 1188

curacy estimation compared to human annotators, 1189

while GPT-3.5 Turbo also demonstrated strong 1190

agreement, with an average difference of 8.7%. De- 1191

spite the superior performance of GPT-4, they ulti- 1192

mately employed GPT-3.5 Turbo for their labeling 1193

due to expediency. Leveraging their validation of 1194

advanced LLMs for this task, and given the avail- 1195

ability of even more capable models since their 1196

study, we utilized the more recent GPT-4o-mini 1197

model via its API for assessing the correctness of 1198

open-ended LLM responses. This choice was made 1199

to ensure the highest quality semantic equivalence 1200

judgments. The prompts used for this grading task 1201

are detailed in Table 6. 1202

The distribution of these correct and incorrect 1203

LLM responses across all datasets, for each base 1204

model used in our experiments, is detailed in Table 1205

7. 1206

D Baseline Method Details 1207

This section details the baseline methods imple- 1208

mented for comparison against our proposed CCPS 1209

method. Our selection of baselines was guided 1210

by the aim to provide a comprehensive benchmark 1211

against prominent, recent, and state-of-the-art tech- 1212

niques in LLM confidence estimation, many of 1213

which are established through peer-reviewed publi- 1214
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cations in highly regarded scientific venues. While1215

the work introducing CT by Kapoor et al. (2024b)1216

provided a valuable starting point by evaluating1217

methods such as P(True), Instruction Tuning (IT),1218

Logit Temperature Scaling (LTS), and a specific1219

variant of SAPLMA (SAPLMA-F), our study ex-1220

pands significantly on this comparison. We include1221

P(IK), which was not part of their direct compari-1222

son, and additional SAPLMA variants (SAPLMA-1223

M, SAPLMA-UM) to explore signals from differ-1224

ent representational depths. Furthermore, our eval-1225

uation framework encompasses a broader range1226

of test conditions, including comprehensive train-1227

ing and testing on both multiple-choice and open-1228

ended formats, and performance on datasets like1229

MMLU-PRO-CHOICE, aspects not exhaustively cov-1230

ered for all these prior methods in the context of1231

confidence estimation by Kapoor et al. (2024b). We1232

also incorporate LitCab (Liu et al., 2024), another1233

significant and well-regarded recent contribution in1234

lightweight white-box confidence estimation also1235

originating from a top-tier conference, which pro-1236

vides an important additional point of comparison.1237

For all established baseline methods, we adhered1238

to the architectural descriptions and training con-1239

figurations reported in their original publications.1240

Common training hyperparameters, such as total1241

steps and optimizer settings, are described in Sec-1242

tion 4 (Training Details).1243

D.1 P(True)1244

Introduced by Kadavath et al. (2022), P(True) as-1245

sesses an LLM’s self-evaluation of a generated an-1246

swer. After an LLM generates an answer to an1247

input prompt P , it is presented with the question,1248

"Is the proposed answer correct? a) no b) yes"1249

(referred to as the uncertainty query). The prob-1250

abilities assigned by the original, frozen LLM to1251

options ’a’ and ’b’ are then normalized (e.g., via1252

softmax) to derive the confidence score, represent-1253

ing the probability of correctness. This method1254

requires no additional training.1255

D.2 P(IK)1256

Also from Kadavath et al. (2022), P(IK) (short for1257

"I Know") estimates the LLM’s probability of cor-1258

rectly answering a given question before it gener-1259

ates a specific response. This typically involves1260

training a lightweight classifier head on a hidden1261

state representation from the LLM (e.g., the final1262

hidden state after processing the input prompt P ) to1263

predict correctness. The output probabilities from1264

this classifier serve as the confidence score. 1265

D.3 Logit Temperature Scaling (LTS) 1266

As described by Jiang et al. (2021), LTS is a post- 1267

hoc calibration technique that adjusts a model’s 1268

output probabilities. It introduces a scalar tem- 1269

perature parameter τ > 0 which is applied to 1270

the logits before the LLM’s final softmax func- 1271

tion. In our application, after the LLM responds 1272

to the uncertainty query, the temperature τ is ap- 1273

plied to the logits corresponding to the ’a’ and 1274

’b’ options. The calibrated probability is then 1275

softmax(logitsuncertainty query/τ). The temperature 1276

τ is optimized on a held-out development set. LTS 1277

is computationally very light as it involves learning 1278

only a single parameter. 1279

D.4 Instruction Tuning (IT) 1280

Instruction tuning, as introduced by (Wei et al., 1281

2022), involves fine-tuning language models on a 1282

collection of tasks framed as natural language in- 1283

structions. In our setting, this baseline involves 1284

fine-tuning the base LLM to respond to the uncer- 1285

tainty query more accurately. The model is trained 1286

using Low-Rank Adaptation (LoRA) (Hu et al., 1287

2021), a parameter-efficient fine-tuning technique, 1288

to predict the correct option (’a’ or ’b’) for the 1289

uncertainty query, based on ground-truth labels de- 1290

rived from the answer grading phase. While LoRA 1291

makes this more efficient than full fine-tuning of 1292

all parameters, it remains more resource-intensive 1293

than non-fine-tuning methods. 1294

D.5 SAPLMA 1295

SAPLMA (Statement Accuracy Prediction based 1296

on Language Model Activations) (Azaria and 1297

Mitchell, 2023) trains a lightweight feedforward 1298

classifier on LLM hidden state activations to pre- 1299

dict statement truthfulness, while the LLM itself 1300

remains frozen. SAPLMA’s classifier employs a 1301

feedforward neural network featuring three hidden 1302

layers with decreasing numbers of hidden units 1303

(256, 128, 64), each followed by a ReLU acti- 1304

vation. Their studies suggest that signals related 1305

to an LLM’s internal assessment of truthfulness 1306

or confidence can manifest at different network 1307

depths depending on the model architecture and 1308

task. Therefore, while a common approach is to 1309

use final hidden states (SAPLMA-F), we also im- 1310

plemented variants using activations from the mid- 1311

dle layer (SAPLMA-M) and an upper-middle layer 1312
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(SAPLMA-UM) of the LLM to explore these po-1313

tentially richer representational layers. The output1314

probabilities from these classifiers are used as con-1315

fidence scores.1316

D.6 Calibration-Tuning (CT)1317

Proposed by Kapoor et al. (2024b), CT fine-tunes1318

an LLM (using LoRA) to explicitly predict its an-1319

swer’s correctness in response to the uncertainty1320

query. It uses a classification loss combined with1321

a divergence-based regularizer (such as Jensen-1322

Shannon or KL Divergence) to help maintain the1323

LLM’s original generation capabilities. While1324

LoRA reduces the training burden compared to1325

full fine-tuning, CT can still be resource-intensive,1326

reportedly taking about 4 GPU days on an NVIDIA1327

V100 for their experiments. The divergence term,1328

particularly with longer sequences in open-ended1329

tasks, can also be memory-demanding.1330

D.7 LitCab1331

This lightweight calibration method by Liu et al.1332

(2024) involves a trainable linear layer of size (hid-1333

den_dim × vocabulary_size) that is attached to the1334

LLM’s final hidden states. This layer predicts a1335

bias term which is added to the original output log-1336

its of the LLM. LitCab is trained using a contrastive1337

max-margin loss, which typically requires multiple1338

incorrect answer examples per question. The con-1339

fidence score is then derived from the geometric1340

mean of the adjusted probabilities of the response1341

tokens.1342

E CCPS Architecture Details1343

Our CCPS approach employs a feature projection1344

network (EMC for multiple-choice, EOE for open-1345

ended) followed by a classifier head (C). The spe-1346

cific architectures for these components were deter-1347

mined through a systematic hyperparameter search1348

for both MC and OE formats, aimed at optimizing1349

for the loss on validation data. Key training hyper-1350

parameters such as learning rate (1×10−4), weight1351

decay (0.1), batch size (32), and training steps were1352

kept consistent during this search, aligned with1353

those detailed in Section 4 (Training Details). The1354

finalized best-performing architectures are detailed1355

below.1356

E.1 Multiple-Choice Question Answering1357

For the Multiple-Choice (MC) CCPS model, the1358

hyperparameter search explored various configu-1359

rations for the contrastive encoder (EMC), includ-1360

ing different embedding dimensions, the number 1361

and size of hidden layers, and a range of activa- 1362

tion functions (ReLU, GeLU, SiLU, ELU, Leaky 1363

ReLU). Similarly, various hidden layer structures 1364

and activation functions were evaluated for the 1365

MLP-based classifier head (C). The selected ar- 1366

chitecture, which yielded the optimal balance of 1367

performance metrics, is as follows: the contrastive 1368

encoder (EMC) is an MLP that processes the Df - 1369

dimensional feature vector. It consists of a se- 1370

quence of linear layers with output dimensions 64, 1371

32, 16, and a final 8-dimensional embedding layer. 1372

ELU activation is applied after each layer except 1373

the output embedding layer. The subsequent clas- 1374

sifier head receives the 8-dimensional embedding 1375

and passes it through an MLP with layers having 1376

output dimensions 48, 24, 12, each followed by 1377

ELU activation, and concludes with a final linear 1378

layer producing 2 output logits for classification. 1379

E.2 Open-Ended Question Answering 1380

For the Open-Ended (OE) CCPS model, the hyper- 1381

parameter search for the contrastive encoder (EOE) 1382

covered different embedding dimensions, the num- 1383

ber and size of hidden channels for its 1D convo- 1384

lutional layers, various kernel sizes for these con- 1385

volutional layers, and a range of activation func- 1386

tions (ReLU, GeLU, SiLU, ELU, Leaky ReLU). 1387

The MLP-based classifier head (C) also underwent 1388

a search over its hidden layer structures and acti- 1389

vation functions. The best-performing configura- 1390

tion found is detailed here: the contrastive encoder 1391

(EOE) processes sequences of Df -dimensional to- 1392

ken features. It employs two 1D convolutional 1393

layers; the first maps the input features to 64 chan- 1394

nels (kernel size 3), and the second maps from 64 1395

to 32 channels (kernel size 3). ReLU activation is 1396

applied after each convolutional layer. An adap- 1397

tive max-pooling layer then reduces the sequence 1398

to a fixed-size representation, which is projected 1399

by a linear layer to a 16-dimensional embedding. 1400

The classifier head takes this 16-dimensional em- 1401

bedding, passes it through a linear layer to a 32- 1402

dimensional representation with ReLU activation, 1403

and finally to an output linear layer producing 2 1404

logits for classification. 1405

F Computational Setup and Resources 1406

All computational experiments were conducted 1407

on a GPU cluster equipped with NVIDIA A100- 1408

SXM (48GB VRAM) and NVIDIA H200 (141GB 1409
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VRAM) GPUs. The allocation of GPU resources1410

and specific setup details for the different confi-1411

dence estimation methods are outlined below.1412

F.1 P(True):1413

This method involves no training. Inference1414

to obtain responses to the uncertainty query1415

was performed using a single NVIDIA A1001416

GPU for the Meta-Llama-3.1-8B-Instruct and1417

Qwen2.5-14B-Instruct models, and a single1418

NVIDIA H200 GPU for the Mistral-Small-24B1419

-Instruct-2501 and Qwen2.5-32B-Instruct1420

models.1421

F.2 P(IK), SAPLMA, LitCab, and CCPS:1422

Hidden State / Feature Extraction: For these1423

methods, the initial stage of extracting hidden1424

states or features (including perturbation pro-1425

cesses for CCPS) from the base LLMs was per-1426

formed using a single NVIDIA A100 GPU for1427

the Meta-Llama-3.1-8B-Instruct and Qwen2.51428

-14B-Instruct models. Due to their larger size,1429

a single NVIDIA H200 GPU was used for the1430

Mistral-Small-24B-Instruct-2501 and Qwen1431

2.5-32B-Instruct models. This allocation en-1432

sured that each base LLM could be loaded onto an1433

appropriate GPU.1434

Training of Confidence Modules: The subsequent1435

training of the lightweight confidence modules for1436

P(IK), SAPLMA variants, LitCab, and our CCPS1437

classifiers (which typically comprise fewer than 11438

million trainable parameters) was conducted on a1439

single NVIDIA A100 GPU for all base LLMs.1440

F.3 IT and LTS:1441

For IT, the LoRA-based fine-tuning of the1442

base LLMs on the uncertainty query, and for1443

LTS, the optimization of the temperature pa-1444

rameter, were performed on a single NVIDIA1445

A100 GPU for Meta-Llama-3.1-8B-Instruct1446

and Qwen2.5-14B-Instruct. For the larger1447

Mistral-Small-24B-Instruct-2501 and Qwen1448

2.5-32B-Instruct models, these processes uti-1449

lized a single NVIDIA H200 GPU.1450

F.4 CT1451

The LoRA-based fine-tuning process for CT was1452

conducted using 4 NVIDIA A100 GPUs operating1453

in parallel for each combination of base LLM and1454

dataset. This multi-GPU setup, managed with li-1455

braries such as Hugging Face Accelerate (Gugger1456

et al., 2022) and DeepSpeed (Rasley et al., 2020)1457

(Zero Redundancy Optimizer Stage 2), was imple- 1458

mented in accordance with the original CT method- 1459

ology to handle its more intensive training require- 1460

ments. 1461

G Analysis of Additional Trainable 1462

Parameters 1463

This appendix quantifies and compares the addi- 1464

tional learnable parameters introduced by each 1465

evaluated confidence estimation method, includ- 1466

ing our proposed CCPS, when applied to a base 1467

LLM. We first detail the architectural parameters 1468

of the base LLMs used, then provide the formulas 1469

for calculating additional trainable parameters for 1470

each confidence estimation method, followed by 1471

the exact parameter counts for the specific LLMs 1472

analyzed in our experiments. This analysis sup- 1473

ports our claim regarding the lightweight nature of 1474

CCPS. All parameter counts include biases unless 1475

otherwise specified for asymptotic estimates. 1476

G.1 Base LLM Architectural Parameters 1477

The key architectural dimensions of the base Large 1478

Language Models (LLMs) utilized in this study, 1479

which influence the number of trainable parame- 1480

ters for certain confidence estimation methods, are 1481

provided in Table 8. These include the hidden size 1482

(dh), tokenizer vocabulary size (V ), and the num- 1483

ber of decoder layers (L). 1484

G.2 Formulation of Additional Trainable 1485

Parameters 1486

The number of additional trainable parameters for 1487

each confidence estimation method is determined 1488

as follows (Table 9). We define Df = 75 as the 1489

input feature dimension for CCPS, and r = 8 as 1490

the rank for LoRA implementations. 1491

For CCPS (MC), the encoder EMC layers are 1492

(Df , 64), (64, 32), (32, 16), (16, 8), and classifier 1493

CMC layers are (8, 48), (48, 24), (24, 12), (12, 2). 1494

The sum of hihi+1 (weights) and hi+1 (biases) for 1495

EMC, and gjgj+1 (weights) and gj+1 (biases) for 1496

CMC yields the total. For CCPS (OE), the encoder 1497

EOE consists of two 1D convolutional layers (first: 1498

Df to 64 channels, kernel 3; second: 64 to 32 chan- 1499

nels, kernel 3) and a linear projection layer (32 to 1500

16 dimensions). The classifier head COE is an MLP 1501

(16 to 32 dimensions, then 32 to 2 outputs). The 1502

exact calculation for CCPS (OE), including convo- 1503

lutional layer parameters (weights and biases) and 1504

MLP parameters, results in approximately 22,000 1505

parameters, as detailed in Appendix E. 1506
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G.3 Exact Additional Trainable Parameter1507

Counts1508

Based on the formulations above and the LLM1509

dimensions in Table 8, the exact number of ad-1510

ditional trainable parameters introduced by each1511

method when applied to the different base LLMs1512

is presented in Table 10. For methods like IT and1513

CT, LoRA with rank r = 8 is applied to the Query1514

(Q) and Value (V) matrices within each of the L1515

attention blocks of the base LLMs.1516

G.4 Discussion of Parameter Efficiency1517

The results presented in Table 10 highlight the pa-1518

rameter efficiency of CCPS. Irrespective of the base1519

LLM’s size, our CCPS (MC) method introduces1520

only 9,542 trainable parameters, and the CCPS1521

(OE) variant introduces approximately 22,000 pa-1522

rameters. This contrasts sharply with other meth-1523

ods. For instance, LitCab requires hundreds of mil-1524

lions of parameters (e.g., over 525 million for Meta1525

-Llama-3.1-8B-Instruct) due to its vocabulary-1526

sized projection. LoRA-based fine-tuning (IT/CT1527

with r = 8) adds several million parameters (e.g.,1528

4.2 million to 10.5 million). SAPLMA, with its1529

MLP architecture, introduces a moderate num-1530

ber of parameters (e.g., approximately 1.1 million1531

for Meta-Llama-3.1-8B-Instruct), while sim-1532

pler probes like P(IK) remain very light (e.g., 8,1941533

for the same LLM). CCPS remains significantly1534

more parameter-efficient than SAPLMA, LoRA-1535

based methods, and LitCab.1536

To further illustrate this, Table 11 shows the rel-1537

ative parameter budgets compared to CCPS (MC).1538

CCPS (MC) is approximately 440 to 1,100 times1539

smaller than LoRA-based IT/CT, and 55,000 to1540

81,000 times smaller than LitCab for the LLMs1541

tested. This extreme parameter efficiency, com-1542

bined with CCPS’s strong performance demon-1543

strated in the main paper, underscores its suitability1544

as a highly scalable solution for confidence estima-1545

tion on large, frozen LLMs.1546

H Evaluation Metrics1547

We assess the performance of our confidence esti-1548

mation method using a suite of standard metrics.1549

This comprehensive set allows for a nuanced un-1550

derstanding beyond ECE and ACC, which can be1551

less informative for imbalanced datasets often en-1552

countered in correctness prediction.1553

H.1 Expected Calibration Error (ECE) 1554

A model’s uncertainties are well-calibrated if they
align with empirical probabilities—i.e., an event
assigned probability p occurs at rate p in reality.
Following Kapoor et al. (2024b), we estimate ECE
by binning the predicted confidence score (proba-
bility of correctness) for each of n samples into b
equally-spaced bins B = {Bj}bj=1. The empirical
ECE estimator is given by:

ECE =
b∑

j=1

|Bj |
n

|conf(Bj)− acc(Bj)|

where conf(Bj) is the average predicted confidence 1555

of samples in bin Bj and acc(Bj) is the correspond- 1556

ing ACC (fraction of correct LLM answers) within 1557

that bin. Consistent with common practice, we 1558

use b = 10 bins. An ECE of 0 signifies perfect 1559

calibration. 1560

H.2 Brier Score 1561

This measures the mean squared difference be-
tween the predicted probability of correctness pk
for sample k and its actual binary outcome ok (1
if correct, 0 if incorrect), summed over all N sam-
ples:

Brier Score =
1

N

N∑
k=1

(pk − ok)
2

It provides a measure of both calibration and refine- 1562

ment, with lower scores being better. 1563

H.3 Accuracy (ACC) 1564

Refers to the proportion of the LLM’s answers that 1565

are correct on the given task. While our method 1566

estimates confidence in these answers rather than 1567

altering them, ACC provides context for the diffi- 1568

culty of the underlying task. 1569

H.4 Area Under the Precision-Recall Curve 1570

(AUCPR) 1571

This metric summarizes the trade-off between pre- 1572

cision (the proportion of positively predicted in- 1573

stances that are truly positive, TP/(TP + FP)) and 1574

recall (the proportion of actual positive instances 1575

that are correctly predicted, TP/(TP+FN)) for the 1576

binary correctness classification task. The confi- 1577

dence score is used as the discrimination thresh- 1578

old, varied to plot the curve. AUCPR is particu- 1579

larly informative for imbalanced datasets where the 1580

number of incorrect answers might significantly 1581

outweigh correct ones, or vice-versa. 1582
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H.5 Area Under the Receiver Operating1583

Characteristic Curve (AUROC)1584

This evaluates the discriminative ability of the con-1585

fidence score to distinguish between correct and1586

incorrect answers. It plots the true positive rate (Re-1587

call) against the false positive rate (FP/(FP+TN))1588

at various threshold settings of the confidence score.1589

An AUROC of 1.0 indicates perfect discrimination,1590

while 0.5 suggests random guessing.1591

I Extended Results and Analyses1592

This section provides supplementary results and1593

analyses that further substantiate the findings pre-1594

sented in the main paper. We include comprehen-1595

sive performance comparisons across all baseline1596

methods, detailed per-LLM and per-task break-1597

downs, calibration curve visualizations, and feature1598

importance analyses for our CCPS model.1599

I.1 Per-Dataset Aggregate Performance1600

Tables1601

To offer a comprehensive comparison of all eval-1602

uated methods, including all baselines, Tables 12,1603

13, and 14 present aggregate performance met-1604

rics for the MMLU-CHOICE, MMLU-PRO-CHOICE, and1605

MMLU-OE datasets, respectively. Unlike the main1606

paper’s Table 1 which shows mean scores across1607

tasks for selected methods, these tables detail the1608

mean ± standard deviation for all methods across1609

all evaluated LLMs for each metric, providing in-1610

sight into the consistency of performance.1611

I.2 Per-LLM Performance Bar Charts1612

For a visual comparison of method performance on1613

each specific LLM, Figures 2, 3, 4, and 5 present1614

bar charts. Each figure corresponds to one of the1615

four LLMs used in our experiments, illustrating1616

the performance of every confidence estimation1617

method across the different MMLU variant datasets1618

on all evaluation metrics.1619

I.3 Calibration Curves1620

To visually assess the calibration of the confidence1621

scores produced by different methods, we provide1622

calibration curves. Figure 6 offers an overview,1623

displaying calibration curves across all models and1624

MMLU variants. Additionally, Figures 7, 8, 9, and1625

10 present detailed calibration curves for each spe-1626

cific LLM across the test datasets, allowing for1627

a more granular inspection of calibration perfor-1628

mance.1629

I.4 Per-Task Performance Analysis 1630

For an in-depth understanding of performance at 1631

a finer granularity, this section provides per-task 1632

results. Figures 11 through 30 illustrate the com- 1633

parative performance of all methods on every indi- 1634

vidual task within the MMLU datasets for each of 1635

the four base LLMs, across all evaluation metrics 1636

(ECE, Brier score, ACC, AUCPR, and AUROC). 1637

I.5 Feature Importance Analysis 1638

To elucidate the contributions of various engineered 1639

features to the predictions of our CCPS model, 1640

we employed SHAP (SHapley Additive exPlana- 1641

tions) (Lundberg and Lee, 2017) (MIT License). 1642

This analysis utilized a model wrapper around our 1643

trained CCPS classifiers and a subset of the respec- 1644

tive training data as background references for the 1645

shap.KernelExplainer with a logit link function. 1646

For Multiple-Choice (MC) models, which take a 1647

single feature vector as input, SHAP values directly 1648

indicate the importance of each of the Df features. 1649

The resulting "Feature-SHAP Correlation" plots 1650

(Figures 31 through 34 for MC model results) visu- 1651

alize the Pearson correlation between scaled feature 1652

values and their SHAP values, where colors typi- 1653

cally distinguish positive and negative correlations, 1654

indicating how feature magnitudes influence the 1655

prediction towards correctness. 1656

Due to the sequential nature of inputs (a ma- 1657

trix of feature vectors per token) for Open-Ended 1658

(OE) models, SHAP analysis was adapted to as- 1659

sess feature importance across the initial N tokens 1660

(e.g., N = 10) of an answer. For each feature 1661

type, SHAP values were computed based on its 1662

influence at these initial positions and then aver- 1663

aged across these N positions to derive an overall 1664

impact score. Consequently, the "Feature-SHAP 1665

Correlation" plots for OE models (also presented 1666

in Figures 31 through 34 for the respective LLMs’ 1667

OE results) illustrate the correlation between these 1668

position-averaged feature values and their corre- 1669

sponding position-averaged SHAP values. 1670
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Original State Features

original_log_prob_actual Log-probability of the actual token based on the model’s original
(unperturbed) output distribution, i.e. logPoriginal(actual_token).

original_prob_actual Probability of the actual token based on the model’s original output
distribution, i.e. Poriginal(actual_token).

original_logit_actual Logit value of the actual token from the model’s original output.
original_prob_argmax Highest probability assigned to any token by the original model, i.e.

Poriginal(argmax_token).
original_logit_argmax Highest logit value assigned to any token by the original model.
original_entropy Entropy of the original predictive distribution:

−
∑

i Poriginal(i) logPoriginal(i).
original_margin_logit_top1_top2 Difference between top-1 and top-2 logits in the original output.
original_margin_prob_top1_top2 Difference between top-1 and top-2 probabilities in the original output.
original_norm_logits_L2 L2 norm of the original logit vector.
original_std_logits Standard deviation of the original logit values.
original_norm_hidden_state_L2 L2 norm of the original last hidden state vector.
is_actual_token_original_argmax Indicator (1/0) if the actual token is the argmax under the original

model.

Overall Perturbation Features

jacobian_norm_token L2 norm of the Jacobian of the token’s log-prob w.r.t. the original
hidden state (sensitivity measure).

epsilon_to_flip_token Minimum perturbation magnitude along the Jacobian direction to
change the top-1 token.

pei_value_token Perturbation-Effect Integration (PEI): total normalized drop in log-prob
of the actual token over all perturbation steps.

Perturbed State Features

perturbed_log_prob_actual Log-prob of the actual token after hidden-state perturbation,
logPperturbed(actual_token).

perturbed_prob_actual Probability of the actual token after perturbation,
Pperturbed(actual_token).

perturbed_logit_actual Logit value of the actual token after perturbation.
perturbed_prob_argmax Highest probability assigned after perturbation.
perturbed_logit_argmax Highest logit value assigned after perturbation.
perturbed_entropy Entropy of the perturbed predictive distribution.
perturbed_margin_logit_top1_top2 Difference between top-1 and top-2 logits post-perturbation.
perturbed_norm_logits_L2 L2 norm of the perturbed logit vector.

Comparison Features (Original vs. Perturbed)

delta_log_prob_actual_from_original Change in log-prob: logPoriginal − logPperturbed for the actual token.
did_argmax_change_from_original Indicator (1/0) if the argmax token changed after perturbation.
kl_div_perturbed_from_original KL divergence DKL(Poriginal ∥ Pperturbed).
js_div_perturbed_from_original Jensen-Shannon divergence between original and perturbed distribu-

tions.
cosine_sim_logits_perturbed_to_original Cosine similarity of logit vectors before vs. after perturbation.
cosine_sim_hidden_perturbed_to_original Cosine similarity of hidden-state vectors before vs. after perturbation.
l2_dist_hidden_perturbed_from_original L2 distance between hidden-state vectors before vs. after perturbation.

Table 2: Definitions of features employed in this study, grouped by feature set type.
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Task Name Size Task Name Size

Abstract Algebra 100 High School Statistics 216
Anatomy 135 High School Us History 204
Astronomy 152 High School World History 237
Business Ethics 100 Human Aging 223
Clinical Knowledge 265 Human Sexuality 131
College Biology 144 International Law 121
College Chemistry 100 Jurisprudence 108
College Computer Science 100 Logical Fallacies 163
College Mathematics 100 Machine Learning 112
College Medicine 173 Management 103
College Physics 102 Marketing 234
Computer Security 100 Medical Genetics 100
Conceptual Physics 235 Miscellaneous 783
Econometrics 114 Moral Disputes 346
Electrical Engineering 145 Moral Scenarios 895
Elementary Mathematics 378 Nutrition 306
Formal Logic 126 Philosophy 311
Global Facts 100 Prehistory 324
High School Biology 310 Professional Accounting 282
High School Chemistry 203 Professional Law 1,534
High School Computer Science 100 Professional Medicine 272
High School European History 165 Professional Psychology 612
High School Geography 198 Public Relations 110
High School Government And Politics 193 Security Studies 245
High School Macroeconomics 390 Sociology 201
High School Mathematics 270 US Foreign Policy 100
High School Microeconomics 238 Virology 166
High School Physics 151 World Religions 171
High School Psychology 545

Total 14,042

Table 3: Tasks and sample sizes in the MMLU benchmark.

Task Name Size

Biology 717
Business 789
Chemistry 1,132
Computer Science 410
Economics 844
Engineering 969
Health 818
History 381
Law 1,101
Math 1,351
Other 924
Philosophy 499
Physics 1,299
Psychology 798

Total 12,032

Table 4: Tasks and sample sizes in the MMLU-Pro benchmark.

Format System Prompt

Multiple-Choice You are an expert who responds with concise, correct answers. For
multiple-choice questions, respond only with the letter of the correct option
(e.g., a, b, c, d, ...). Do not include any explanation or additional text.

Open-Ended You are an expert who responds with concise, correct answers. Directly state
the answer without phrases like ’the correct answer is’.

Table 5: System prompts used for base LLM response generation.
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Prompt Type Content

System Prompt You are an automated grading assistant helping a teacher grade student answers.

User Prompt The problem is: "{question}"

The correct answer for this problem is: "{gt_answer}"

A student submitted the answer: "{llm_answer}"

The student’s answer should be semantically equivalent to the correct
answer—that is, it should express the same meaning, even if the wording
or format is slightly different. However, answers that are ambiguous,
incorrect, or include conflicting or multiple answers should not be
considered equivalent. Do not penalize superficial differences (e.g.,
spelling, synonyms, or phrasing), but ensure the core meaning is preserved.

Did the student provide a semantically equivalent answer to the ground
truth? Please answer yes or no without any explanation:

Table 6: Prompts used for GPT-4o-mini-based grading of open-ended responses.

CT-CHOICE

Model Train Validation
Correct Incorrect Total Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 12,654 (67.8%) 5,996 (32.1%) 18,650 1,688 (84.4%) 312 (15.6%) 2,000
Qwen2.5-14B-Instruct 15,116 (81.0%) 3,534 (18.9%) 18,650 1,796 (89.8%) 204 (10.2%) 2,000
Mistral-Small-24B-Instruct-2501 15,255 (81.8%) 3,395 (18.2%) 18,650 1,787 (89.3%) 213 (10.7%) 2,000
Qwen2.5-32B-Instruct 15,724 (84.3%) 2,926 (15.7%) 18,650 1,828 (91.4%) 172 (8.6%) 2,000

CT-OE

Model Train Validation
Correct Incorrect Total Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 9,165 (49.5%) 9,369 (50.5%) 18,534 1,014 (50.7%) 986 (49.3%) 2,000
Qwen2.5-14B-Instruct 11,656 (62.9%) 6,878 (37.1%) 18,534 1,221 (61.0%) 779 (39.0%) 2,000
Mistral-Small-24B-Instruct-2501 10,532 (56.8%) 8,002 (43.2%) 18,534 1,145 (57.2%) 855 (42.8%) 2,000
Qwen2.5-32B-Instruct 12,083 (65.2%) 6,451 (34.8%) 18,534 1,201 (60.0%) 799 (40.0%) 2,000

MMLU-CHOICE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 9,041 (64.4%) 5,001 (35.6%) 14,042
Qwen2.5-14B-Instruct 10,898 (77.6%) 3,144 (22.4%) 14,042
Mistral-Small-24B-Instruct-2501 11,231 (80.0%) 2,811 (20.0%) 14,042
Qwen2.5-32B-Instruct 11,488 (81.8%) 2,554 (18.2%) 14,042

MMLU-PRO-CHOICE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 4,135 (34.4%) 7,897 (65.6%) 12,032
Qwen2.5-14B-Instruct 6,187 (51.4%) 5,845 (48.6%) 12,032
Mistral-Small-24B-Instruct-2501 6,523 (54.2%) 5,509 (45.8%) 12,032
Qwen2.5-32B-Instruct 6,870 (57.1%) 5,162 (42.9%) 12,032

MMLU-OE

Model Test
Correct Incorrect Total

Meta-Llama-3.1-8B-Instruct 4,225 (30.1%) 9,817 (69.9%) 14,042
Qwen2.5-14B-Instruct 6,386 (45.5%) 7,656 (54.5%) 14,042
Mistral-Small-24B-Instruct-2501 6,338 (45.1%) 7,704 (54.9%) 14,042
Qwen2.5-32B-Instruct 6,814 (48.5%) 7,228 (51.5%) 14,042

Table 7: Distribution of correct and incorrect responses across CT-CHOICE, CT-OE, and MMLU variants.
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Table 8: Architectural dimensions for the base LLMs used.

Base LLM dh V L

Meta-Llama-3.1-8B-Instruct 4,096 128,256 32
Qwen2.5-14B-Instruct 5,120 152,064 48
Mistral-Small-24B-Instruct-2501 5,120 131,072 40
Qwen2.5-32B-Instruct 5,120 152,064 64

Table 9: Formulas for additional trainable parameters introduced by each method.

Method Trainable Component(s) Formula for Parameters (incl. Biases)

P(True) None (prompting only) 0
LTS Temperature scalar τ 1
P(IK) Linear layer (dh → 2) 2dh + 2
SAPLMA MLP (dh → 256 → 128 → 64 → 2) 256dh +(256×128+128)+ (128×64+

64) + (64×2 + 2)
= 256dh + 41, 282

IT & CT (LoRA) LoRA layers (adapting Q & V matrices in
all L layers, rank r)

2L · (dhr + rdh) = 4Ldhr

LitCab Linear bias layer (dh → V ) dhV + V
CCPS (MC) Encoder EMC + Head CMC (MLPs)

∑
(hihi+1+hi+1)+

∑
(gjgj+1+gj+1)

EMC widths: (Df , 64, 32, 16, 8)
CMC widths: (8, 48, 24, 12, 2)

CCPS (OE) Encoder EOE + Head COE (See text for detailed breakdown)

Table 10: Additional trainable parameters introduced by each confidence estimation method per base LLM (CCPS
values for MC variant; LoRA rank r = 8 adapting Q and V matrices in all L layers).

Base LLM P(True) LTS P(IK) SAPLMA IT/CT (LoRA-r) LitCab CCPS (MC)

Meta-Llama-3.1-8B-Instruct 0 1 8,194 1,089,858 4,194,304 525,464,832 9,542
Qwen2.5-14B-Instruct 0 1 10,242 1,352,002 7,864,320 778,719,744 9,542
Mistral-Small-24B-Instruct 0 1 10,242 1,352,002 6,553,600 671,219,712 9,542
Qwen2.5-32B-Instruct 0 1 10,242 1,352,002 10,485,760 778,719,744 9,542

Table 11: Relative trainable parameter budgets with respect to CCPS (MC variant; ↓ indicates better/fewer
parameters).

Base LLM LitCab ÷ CCPS IT/CT LoRA-r ÷ CCPS

Meta-Llama-3.1-8B-Instruct 55, 069× 440×
Qwen2.5-14B-Instruct 81, 610× 824×
Mistral-Small-24B-Instruct-2501 70, 344× 687×
Qwen2.5-32B-Instruct 81, 610× 1, 099×
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Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 35.9±5.7 39.4±4.2 45.4±5.9 66.0±14.6 49.2±5.7

P(IK) 18.9±9.6 25.4±2.4 63.9±14.8 65.3±14.9 49.8±1.8

LTS 28.9±6.6 34.5±3.7 44.6±6.9 66.6±14.1 50.1±4.3

IT 33.4±5.3 37.5±3.7 47.2±4.9 66.5±14.7 49.8±5.0

SAPLMA-M 17.9±9.7 24.8±2.7 64.9±15.1 64.9±15.3 49.5±3.1

SAPLMA-UM 18.1±9.8 24.9±2.7 64.9±15.1 64.6±15.4 49.3±3.3

SAPLMA-F 18.2±9.8 24.9±2.6 64.9±15.0 65.0±15.0 49.6±2.3

CT 10.7±6.7 21.1±5.7 67.8±12.2 74.2±15.5 62.8±8.0

LitCab 10.9±4.8 18.1±5.5 73.2±8.7 84.0±13.5 77.1±8.2

CCPS 6.5±3.9 17.1±4.7 73.4±8.5 84.1±13.5 77.1±8.5

Qwen2.5-14B-Instruct

P(True) 47.0±6.2 47.0±4.8 41.3±6.4 79.2±12.5 51.2±5.8

P(IK) 25.1±13.0 24.1±3.1 76.8±12.2 78.3±12.1 49.9±2.4

LTS 41.5±6.5 43.0±4.3 38.6±6.2 78.9±12.6 49.7±5.7

IT 44.7±5.9 44.0±5.2 45.7±7.1 79.4±12.4 50.4±6.7

SAPLMA-M 23.8±13.2 23.0±4.0 78.1±12.1 78.4±12.3 50.5±3.0

SAPLMA-UM 23.7±13.2 23.0±4.0 78.2±12.1 78.4±12.1 50.3±2.4

SAPLMA-F 24.0±12.9 23.0±3.7 78.1±12.1 78.5±12.2 50.3±3.0

CT 12.1±8.1 17.0±8.1 78.6±11.5 84.7±10.9 64.8±9.1

LitCab 45.6±11.3 20.0±10.8 78.3±12.0 83.7±10.2 65.3±5.4

CCPS 6.3±3.7 13.1±5.8 80.2±9.5 92.1±8.1 81.6±7.0

Mistral-Small-24B-Instruct-2501

P(True) 42.1±8.5 43.3±5.7 38.1±7.9 80.5±12.1 49.3±8.0

P(IK) 12.4±9.3 17.8±8.7 73.9±18.8 82.6±12.2 56.3±8.9

LTS 36.2±9.0 38.3±4.7 36.1±8.4 80.2±12.6 49.2±6.2

IT 37.3±7.3 39.4±5.0 42.9±7.7 81.3±12.0 49.8±7.9

SAPLMA-M 24.5±14.0 22.5±4.0 79.8±12.9 79.9±12.8 49.8±2.0

SAPLMA-UM 24.6±14.1 22.5±4.1 79.8±12.9 80.1±12.9 50.6±2.9

SAPLMA-F 25.2±14.3 22.9±4.1 79.8±12.9 79.8±12.9 49.8±2.3

CT 8.2±7.4 15.5±7.8 79.6±13.1 83.3±11.5 56.5±7.6

LitCab 13.5±6.7 15.1±7.4 79.5±9.8 91.5±8.4 78.2±8.0

CCPS 5.8±3.2 11.5±6.0 83.0±10.3 93.1±7.8 83.3±7.6

Qwen2.5-32B-Instruct

P(True) 44.0±7.0 45.7±5.5 41.9±7.4 84.0±10.3 52.1±7.3

P(IK) 28.6±12.7 23.5±4.2 81.7±10.7 82.6±10.4 49.9±2.9

LTS 37.1±6.7 40.2±4.4 41.9±7.4 84.1±10.3 52.2±7.3

IT 41.9±7.6 44.0±6.2 44.6±8.3 84.6±10.5 54.8±7.6

SAPLMA-M 27.3±13.2 22.7±4.7 82.3±10.6 82.4±10.6 49.7±4.2

SAPLMA-UM 27.7±12.8 22.8±4.7 82.3±10.6 82.3±10.7 49.4±3.6

SAPLMA-F 27.2±12.9 22.5±4.5 82.3±10.6 82.4±10.7 49.9±2.8

CT 45.2±7.0 46.9±5.1 37.2±6.1 84.3±10.1 51.6±8.0

LitCab 43.2±11.0 15.9±9.3 82.6±10.4 87.9±7.9 67.2±6.5

CCPS 6.3±3.1 10.8±5.2 84.1±8.9 94.1±5.9 82.8±6.9

Table 12: Complete performance metrics for the MMLU-CHOICE dataset. Arrows indicate whether lower (↓) or
higher (↑) values are better. All values are percentages and show mean ± standard deviation. Best values per model
are bolded.
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Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 25.3±6.7 33.1±4.5 54.8±6.8 37.1±11.7 49.8±2.1

P(IK) 41.7±15.6 44.1±11.5 38.2±11.7 37.3±13.7 49.9±3.2

LTS 17.0±6.7 29.1±3.5 55.4±7.0 36.9±12.3 49.9±2.2

IT 26.8±4.7 33.8±2.9 52.8±4.8 37.7±12.2 50.0±2.7

SAPLMA-M 40.4±14.0 40.3±8.6 36.7±12.7 37.3±13.0 50.1±1.8

SAPLMA-UM 41.0±14.3 41.0±9.1 36.7±12.7 37.5±13.3 50.3±3.0

SAPLMA-F 40.2±14.9 40.7±10.0 36.8±12.7 37.2±12.9 50.3±1.8

CT 21.5±11.5 29.8±5.9 50.4±11.7 43.7±14.4 57.3±4.4

LitCab 16.6±2.9 24.7±2.6 66.1±4.2 51.7±18.4 63.6±9.0

CCPS 4.5±2.1 20.0±2.2 70.4±4.0 55.2±19.4 67.9±8.1

Qwen2.5-14B-Instruct

P(True) 33.7±7.1 38.6±4.8 49.9±6.0 55.4±12.6 51.4±1.3

P(IK) 27.3±11.4 33.9±8.2 53.6±11.5 53.5±13.4 49.1±2.3

LTS 26.7±7.4 34.5±4.5 49.3±6.7 54.6±11.8 50.7±2.2

IT 33.5±6.0 38.3±3.6 50.5±4.2 55.6±12.1 51.1±2.4

SAPLMA-M 28.1±13.2 33.4±8.6 53.4±12.5 54.1±13.3 50.1±3.0

SAPLMA-UM 27.4±13.5 33.0±8.6 53.5±12.5 53.8±13.0 49.9±3.1

SAPLMA-F 25.7±12.3 32.1±7.7 53.4±12.5 53.8±12.5 49.3±2.8

CT 20.4±10.3 28.7±6.3 55.6±11.4 59.4±12.9 56.6±3.5

LitCab 49.7±4.2 38.3±8.8 55.3±11.6 66.2±10.1 68.0±3.7

CCPS 4.2±1.8 20.1±2.9 69.2±5.4 75.8±10.5 74.0±4.8

Mistral-Small-24B-Instruct-2501

P(True) 32.0±8.1 37.2±5.0 46.9±7.3 57.5±12.3 50.2±2.2

P(IK) 32.3±11.4 36.3±9.7 56.1±10.9 57.4±13.4 50.6±2.1

LTS 24.7±7.6 32.7±3.7 46.2±7.2 56.6±12.3 49.2±1.7

IT 31.2±6.7 36.2±3.9 47.0±6.1 58.4±12.0 50.3±2.8

SAPLMA-M 24.5±12.1 30.7±8.0 56.7±12.4 57.0±13.3 49.9±2.8

SAPLMA-UM 24.5±11.7 30.7±8.0 56.7±12.4 57.6±13.4 50.6±3.1

SAPLMA-F 25.1±12.8 31.4±8.5 56.7±12.4 56.8±12.2 49.8±2.2

CT 17.8±9.7 27.4±5.9 58.2±11.6 60.1±13.1 54.3±3.1

LitCab 32.2±3.1 34.6±3.2 57.0±3.7 66.2±12.8 60.1±5.0

CCPS 4.5±1.9 18.6±3.3 71.3±6.4 79.5±9.4 77.2±5.2

Qwen2.5-32B-Instruct

P(True) 34.6±6.8 39.5±4.9 46.1±5.9 60.1±12.2 50.3±2.7

P(IK) 23.6±9.9 30.8±7.7 58.0±10.8 59.5±11.9 50.2±2.5

LTS 27.5±6.7 34.8±3.9 46.1±5.9 60.1±12.2 50.3±2.7

IT 36.6±6.7 40.9±5.3 45.9±5.9 60.1±12.1 51.0±2.7

SAPLMA-M 24.8±12.0 30.5±8.3 59.3±11.8 59.9±12.1 49.9±2.8

SAPLMA-UM 26.9±12.1 31.8±8.9 59.3±11.8 60.2±12.0 49.8±3.3

SAPLMA-F 23.7±11.2 30.0±7.9 59.3±11.8 59.4±11.6 49.5±2.7

CT 38.0±8.5 41.6±6.4 44.8±7.2 60.5±11.3 49.9±2.7

LitCab 48.4±3.5 33.7±8.7 60.8±11.0 72.7±8.8 70.3±4.7

CCPS 4.6±2.1 18.5±3.4 71.8±6.1 82.4±7.7 77.8±4.7

Table 13: Complete performance metrics for the MMLU-PRO-CHOICE dataset. Arrows indicate whether lower (↓)
or higher (↑) values are better. All values are percentages and show mean ± standard deviation. Best values per
model are bolded.
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Model Method ECE ↓ BRIER ↓ ACC ↑ AUCPR ↑ AUROC ↑

Meta-Llama-3.1-8B-Instruct

P(True) 25.9±7.0 32.0±5.2 56.0±7.7 29.9±12.5 46.2±5.8

P(IK) 22.6±12.0 26.6±5.0 30.5±11.8 29.9±11.5 49.8±1.1

LTS 27.9±5.6 34.0±3.5 47.8±4.9 31.5±13.6 47.5±5.9

IT 27.8±5.9 33.2±4.6 53.9±6.1 30.6±13.3 47.2±6.0

SAPLMA-M 23.0±12.5 26.6±5.2 67.0±15.7 29.6±11.3 49.9±0.9

SAPLMA-UM 22.8±11.7 26.2±3.5 29.6±11.3 29.6±11.3 49.9±0.9

SAPLMA-F 22.5±11.5 26.1±3.5 29.7±11.4 29.7±11.4 49.8±1.4

CT 8.8±6.4 21.1±4.9 65.3±11.4 48.9±16.8 70.9±7.5

LitCab 8.8±7.6 22.5±4.8 65.3±9.1 46.2±13.8 66.0±9.6

CCPS 8.0±5.7 20.2±3.8 69.5±8.6 49.4±15.9 69.3±7.8

Qwen2.5-14B-Instruct

P(True) 33.9±7.6 36.9±5.9 54.1±7.4 46.3±12.6 52.6±5.0

P(IK) 14.1±9.9 26.3±4.3 55.8±12.7 42.8±12.2 49.5±1.9

LTS 27.8±5.4 32.8±4.0 55.9±5.6 49.2±13.1 56.5±6.0

IT 33.6±6.1 36.7±4.8 55.0±6.0 47.5±13.9 54.0±5.9

SAPLMA-M 14.9±10.8 26.4±4.2 42.8±12.3 42.8±12.3 49.9±0.9

SAPLMA-UM 14.6±9.9 26.1±3.0 42.8±12.3 42.7±12.3 49.9±0.9

SAPLMA-F 14.7±10.1 26.2±3.3 42.8±12.3 42.8±12.4 49.9±1.0

CT 9.4±5.6 22.6±4.0 63.4±8.4 61.7±14.3 69.3±7.7

LitCab 34.4±10.3 37.0±7.3 49.4±10.1 56.8±13.4 62.5±6.8

CCPS 6.7±3.5 22.5±2.0 63.6±6.8 59.0±12.7 66.6±6.8

Mistral-Small-24B-Instruct-2501

P(True) 28.0±8.9 33.5±6.7 55.5±8.7 44.6±13.3 49.8±4.5

P(IK) 19.9±12.7 29.7±7.4 52.5±11.1 46.3±14.4 52.7±5.2

LTS 19.4±6.3 29.3±4.0 55.2±6.7 46.1±13.8 50.8±5.3

IT 26.2±7.9 32.5±5.6 55.2±7.4 45.5±13.6 50.6±4.5

SAPLMA-M 15.1±10.9 26.2±3.3 42.6±13.0 42.9±12.9 50.2±1.0

SAPLMA-UM 15.2±11.0 26.3±3.5 42.6±13.0 42.8±13.0 50.1±0.8

SAPLMA-F 14.9±10.9 26.2±3.4 42.6±13.0 42.7±13.0 50.0±1.6

CT 10.8±5.4 22.8±3.4 62.2±8.3 60.7±15.8 68.2±8.0

LitCab 11.2±5.0 24.6±3.1 60.2±6.8 60.5±13.3 66.4±6.5

CCPS 6.8±2.6 20.8±2.6 67.6±6.0 64.7±13.2 71.4±6.8

Qwen2.5-32B-Instruct

P(True) 36.3±4.6 38.0±3.7 54.8±4.3 53.8±12.9 57.1±5.5

P(IK) 13.1±10.4 26.3±4.5 52.8±12.5 46.5±12.3 49.9±0.6

LTS 29.5±4.8 34.4±3.4 53.7±4.0 52.7±13.3 55.5±5.5

IT 33.2±7.1 37.3±5.3 52.7±6.8 49.0±12.7 51.6±4.5

SAPLMA-M 13.6±10.0 26.2±3.7 46.2±12.5 46.2±12.6 49.9±0.6

SAPLMA-UM 13.7±10.4 26.3±4.1 46.1±12.5 46.2±12.5 49.8±1.2

SAPLMA-F 13.7±10.2 26.3±3.8 46.1±12.5 46.2±12.5 49.8±0.8

CT 22.9±4.7 31.1±3.5 57.1±5.2 52.9±12.8 56.3±5.7

LitCab 28.4±8.1 33.2±5.5 52.7±8.5 60.2±13.0 62.3±7.6

CCPS 8.7±4.9 23.3±2.1 62.6±6.8 62.0±11.8 66.4±5.8

Table 14: Complete performance metrics for the MMLU-OE dataset. Arrows indicate whether lower (↓) or higher
(↑) values are better. All values are percentages and show mean ± standard deviation. Best values per model are
bolded.
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Figure 2: Performance comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
MMLU variants.
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Figure 3: Performance comparison of confidence estimation methods on Qwen2.5-14B-Instruct across MMLU
variants.
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Figure 4: Performance comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501
across MMLU variants.
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Figure 5: Performance comparison of confidence estimation methods on Qwen2.5-32B-Instruct across MMLU
variants.
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Figure 6: Calibration curves of confidence estimation methods across all models and MMLU variants.
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Figure 7: Calibration curves of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across MMLU
variants.
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Figure 8: Calibration curves of confidence estimation methods on Qwen2.5-14B-Instruct across MMLU variants.
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Figure 9: Calibration curves of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
MMLU variants.
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Figure 10: Calibration curves of confidence estimation methods on Qwen2.5-32B-Instruct across MMLU variants.
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Figure 11: ECE comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across different
tasks of MMLU variants.
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Figure 12: Brier score comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 13: Accuracy (ACC) comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct
across different tasks of MMLU variants.
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Figure 14: AUCPR comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 15: AUROC comparison of confidence estimation methods on Meta-Llama-3.1-8B-Instruct across
different tasks of MMLU variants.
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Figure 16: ECE comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different tasks of
MMLU variants.
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Figure 17: Brier score comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 18: Accuracy (ACC) comparison of confidence estimation methods on Qwen2.5-14B-Instruct across
different tasks of MMLU variants.
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Figure 19: AUCPR comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 20: AUROC comparison of confidence estimation methods on Qwen2.5-14B-Instruct across different
tasks of MMLU variants.
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Figure 21: ECE comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 22: Brier score comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501
across different tasks of MMLU variants.
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Figure 23: Accuracy (ACC) comparison of confidence estimation methods on
Mistral-Small-24B-Instruct-2501 across different tasks of MMLU variants.
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Figure 24: AUCPR comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 25: AUROC comparison of confidence estimation methods on Mistral-Small-24B-Instruct-2501 across
different tasks of MMLU variants.
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Figure 26: ECE comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different tasks of
MMLU variants.
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Figure 27: Brier score comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Figure 28: Accuracy (ACC) comparison of confidence estimation methods on Qwen2.5-32B-Instruct across
different tasks of MMLU variants.
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Figure 29: AUCPR comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Figure 30: AUROC comparison of confidence estimation methods on Qwen2.5-32B-Instruct across different
tasks of MMLU variants.
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Figure 31: Correlations between feature values and SHAP scores in CCPS on Meta-Llama-3.1-8B-Instruct
across all datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red
bars denote negative correlations.
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Figure 32: Correlations between feature values and SHAP scores in CCPS on Qwen2.5-14B-Instruct across all
datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red bars denote
negative correlations.
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Figure 33: Correlations between feature values and SHAP scores in CCPS on Mistral-Small-24B-Instruct-2501
across all datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red
bars denote negative correlations.
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Figure 34: Correlations between feature values and SHAP scores in CCPS on Qwen2.5-32B-Instruct across all
datasets. Blue bars denote positive correlations (higher feature values increase prediction ACC), and red bars denote
negative correlations.
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