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ABSTRACT

Neural fields (NeFs) have recently emerged as a state-of-the-art method for en-
coding spatio-temporal signals of various modalities. Despite the success of NeFs
in reconstructing individual signals, their use as representations in downstream
tasks, such as classification or segmentation, is hindered by the complexity of the
parameter space and its underlying symmetries, in addition to the lack of powerful
and scalable conditioning mechanisms. In this work, we draw inspiration from the
principles of connectionism to design a new architecture based on MLPs, which
we term NeoMLP. We start from an MLP, viewed as a graph, and transform it
from a multi-partite graph to a complete graph of input, hidden, and output nodes,
equipped with high-dimensional features. We perform message passing on this
graph and employ weight-sharing via self-attention among all the nodes. NeoMLP
has a built-in mechanism for conditioning through the hidden and output nodes,
which function as a set of latent codes, and as such, NeoMLP can be used straight-
forwardly as a conditional neural field. We demonstrate the effectiveness of our
method by fitting high-resolution signals, including multi-modal audio-visual data.
Furthermore, we fit datasets of neural representations, by learning instance-specific
sets of latent codes using a single backbone architecture, and then use them for
downstream tasks, outperforming recent state-of-the-art methods.

1 INTRODUCTION

The omnipresence of neural networks in the last decade has recently given rise to neural fields
(NeFs) (cf. Xie et al. (2022)) as a powerful and scalable method to encode continuous signals of
various modalities. These range from shapes (Park et al., 2019), scenes (Mildenhall et al., 2020),
and images, (Sitzmann et al., 2020), to physical fields (Kofinas et al., 2023), CT scans (Papa et al.,
2023; de Vries et al., 2024), and partial differential equations (Yin et al., 2022; Knigge et al., 2024).
Consequently, the popularity of NeFs has spurred interest in neural representations, i.e. using NeFs
as representations for downstream tasks.

Existing neural representations, however, suffer from notable drawbacks. Representations based on
unconditional neural fields, i.e. independent multi-layer perceptrons (MLPs) fitted on each signal, are
subject to parameter symmetries (Hecht-Nielsen, 1990), which lead to extremely poor performance
in downstream tasks if left unattended (Navon et al., 2023). Many recent works (Navon et al.,
2023; Zhou et al., 2023; Kofinas et al., 2024; Lim et al., 2024a; Papa et al., 2024) have proposed
architectures that respect the underlying symmetries; the performance, however, leaves much to be
desired. Another line of works (Park et al., 2019; Dupont et al., 2022) has proposed conditional
neural fields with a single latent code per signal that modulates the activations of a shared MLP
through concatenation, FiLM (Perez et al., 2018), or hypernetworks (Ha et al., 2016), while, recently,
other works (Sajjadi et al., 2022; Wessels et al., 2024) have proposed set-latent conditional neural
fields—conditional neural fields with a set of latent codes—that condition the signal through attention
(Vaswani et al., 2017). Whilst the study of Rebain et al. (2022) showed that set-latent neural fields
outperform single latent code methods as conditioning mechanisms, existing set-latent neural fields
are based on cross-attention, which limits their scalability and expressivity: coordinates are only used
as queries in attention, and cross-attention is limited to a single layer.

We argue that many of these drawbacks stem from the lack of a unified native architecture that
integrates the necessary properties of neural representations and eliminates the shortcomings of
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current approaches. To address these concerns, we draw inspiration from connectionism and the
long history of MLPs to design a new architecture that functions as a standard machine learning
model—akin to an MLP—as well as a conditional neural field. The paradigm of neural networks,
from the early days of Perceptron (McCulloch & Pitts, 1943), to MLPs with hidden neurons trained
with backpropagation (Rumelhart et al., 1986), to modern transformers (Vaswani et al., 2017), shares
the connectionist principle: cognitive processes can be described by interconnected networks of
simple and often uniform units.

This principle is lacking from current conditional neural field architectures, since conditioning is
added to the network as an ad-hoc mechanism. In contrast, motivated by this principle, we take a
closer look at MLPs; more specifically, we look at MLPs as a graph— similar to a few recent works
(Kofinas et al., 2024; Lim et al., 2024a; Nikolentzos et al., 2024)— and design a novel architecture
that operates on this graph using message passing. First, we convert the graph from a multi-partite
graph to a fully-connected graph with self-edges. Instead of using edge-specific weights, we employ
weight-sharing via self-attention among all the nodes. We initialize the hidden and output nodes with
noise and optimize their values with backpropagation. Finally, we use high-dimensional features for
all nodes to make self-attention and the network as a whole more scalable.

We make the following contributions. First, we propose a new architecture, which we term NeoMLP,
by viewing MLPs as a graph, and convert this graph to a complete graph of input, hidden, and
output nodes with high-dimensional features. We employ message passing on that graph through
self-attention among the input, hidden, and output nodes. The hidden and output nodes can be used
as a learnable set of latent codes, and thus, our method can function as a conditional neural field.
We introduce new neural representations that use sets of latent codes for each signal, which we
term ν-reps, as well as datasets of neural representations, which we term ν-sets. We fit datasets of
signals using a single backbone architecture, and then use the latent codes for downstream tasks,
outperforming recent state-of-the-art methods. We also demonstrate the effectiveness of our method
by fitting high-resolution audio and video signals, as well as multi-modal audio-visual data.

1.1 BACKGROUND ON NEURAL FIELDS

Neural fields (NeFs), often referred to as Implicit Neural Representations (INRs), are a class of neural
networks that parameterize fields using neural networks (cf. Xie et al. (2022)). In their simplest form,
they are MLPs that take as input a single coordinate (e.g. an x− y coordinate) and output the field
value for that coordinate (e.g. an RGB value). By feeding batches of coordinates to the network, and
training to reconstruct the target values with backpropagation, the neural field learns to encode the
target signal, without being bound to a specific resolution.

Conditional neural fields introduce a conditioning mechanism to neural fields through latent variables,
often referred to as latent codes. This conditioning mechanism can be used to encode instance-specific
information (e.g. encode a single image) and disentangle it from the backbone architecture, which
now carries dataset-wide information.

2 NEOMLP

2.1 FROM MLP TO NEOMLP

We begin the exposition of our method with MLPs, since our architecture is influenced by MLPs
and builds on them. Without loss of generality, a multi-layer perceptron takes as input a set of scalar
variables {xi}Ii=1, xi ∈ R, coalesced into a single high-dimensional array x ∈ RI . Through a series
of non-linear transformations, the input array is progressively transformed into intermediate (hidden)
representations, with the final transformation leading to the output array y ∈ RO.

Akin to other recent works (Kofinas et al., 2024; Lim et al., 2024b; Nikolentzos et al., 2024), we look
at an MLP as a graph; an MLP is an L+ 1-partite graph, where L is the number of layers. The nodes
represent the input, hidden, and output neurons, and have scalar features that correspond to individual
inputs, the hidden features at each layer, and the individual outputs, respectively. We perform message
passing on that graph, after making it more amenable for learning. First, we convert the connectivity
graph from an L + 1-partite graph to a fully-connected graph with self-edges. Since the forward
pass now includes message passing from all nodes to all nodes at each step, we create learnable
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Figure 1: The connectivity graphs of MLP and NeoMLP. NeoMLP performs message passing on the
MLP graph. Going from MLP to NeoMLP, we use a fully connected graph and high-dimensional
node features. In NeoMLP, the traditional notion of layers of neurons, as well as the asynchronous
layer-wise propagation, cease to exist. Instead, we use synchronous message passing with weight-
sharing via self-attention among all the nodes. NeoMLP has three types of nodes: input, hidden, and
output nodes. The input is fed to NeoMLP through the input nodes, while the output nodes capture
the output of the network.

parameters for the initial values of the hidden and output node features. We initialize them with
Gaussian noise, and optimize their values with backpropagation, simultaneously with the network
parameters. Next, we observe that having dedicated edge-specific weights for all node pairs would
result in an intractable spatial complexity. As such, in order to reduce the memory footprint, we follow
the standard practice of graph neural networks and Transformers (Vaswani et al., 2017), and employ
weight-sharing between the nodes, specifically via self-attention. In other words, the weights for each
node pair are computed as a function of the incoming and outgoing node features, in conjunction
with weights that are shared across nodes. As a by-product of the self-attention mechanism, which
is permutation invariant, we use node-specific embeddings that allow us to differentiate between
different nodes. Finally, instead of having scalar node features, we increase the dimensionality of
node features, which makes self-attention more scalable and expressive.

We show the connectivity graph of NeoMLP and its conversion from a standard MLP in Figure 1. We
also show the equations of the forward pass for a single layer of an MLP and a simplified version of
NeoMLP (without softmax normalization, scaling, or multi-head attention) in Equation (1).

MLP: h
(l)
i =

∑
j W

(l)
ij h

(l−1)
j

NeoMLP: h
(l)
i =

∑
j

︷ ︸︸ ︷(
W

(l)
Q h

(l−1)
i

)⊤
W

(l)
K h

(l−1)
j W

(l)
V h

(l−1)
j

(1)

We note that throughout this work, we retain the nomenclature of input, hidden, and output nodes,
but repurpose them for NeoMLP. More specifically, these nodes refer to the connectivity graph
of NeoMLP, i.e. the graph on which we perform message passing, shown in Figure 1, and not its
computational graph, which would include layers of all the nodes. The input is fed to NeoMLP
through the input nodes before any information propagation, while the output nodes are the ones that
will capture the output of the network, after a number of message passing layers. Every other node
that is not used for input or output is a hidden node. The number of hidden nodes in NeoMLP does
not need to correspond one-to-one to the MLP hidden nodes.

2.2 NEOMLP ARCHITECTURE

After establishing the connection with MLPs, we now discuss the architecture of our method in
detail. The inputs comprise a set of scalar variables {xi}Ii=1, xi ∈ R. We employ random Fourier
features (Tancik et al., 2020) as a non-learnable method to project each scalar input (each dimension
separately) to a high-dimensional space RDRFF . This is followed by a linear layer that projects it to
RD. We then add learnable positional embeddings to the inputs. These embeddings are required
for the model to differentiate between input variables, since self-attention is a permutation invariant
operation. We use similar learnable embeddings for each scalar output dimension (referred to as
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Figure 2: The architecture of NeoMLP. We pass each input dimension through an RFF layer followed
by a linear layer, and then add individual input embeddings to each input. The transformed inputs,
alongside the embeddings for the hidden and output nodes, comprise the inputs to NeoMLP. NeoMLP
has L layers of residual self-attention and non-linear transformations. We capture the output that
corresponds to the output nodes and pass it through a linear layer to get the final output of the network.

output embeddings), as well as H learnable embeddings for each hidden node (referred to as hidden
embeddings), where H is chosen as a hyperparameter. We concatenate the transformed inputs
with the hidden and output embeddings along the node (token) dimension, before feeding them to
NeoMLP. We denote the concatenated tokens as T(0) ∈ R(I+H+O)×D, where O is the number of
output dimensions. The input, hidden, and output embeddings are initialized with Gaussian noise.
We use a variance σ2

i for the input embeddings and σ2
o for the hidden and output embeddings; both

are chosen as hyperparameters.

Each NeoMLP layer comprises a multi-head self-attention layer among the tokens, and a feed-forward
network that non-linearly transforms each token independently. The output of each layer consists
of the transformed tokens T(l) ∈ R(I+H+O)×D. We use pre-LN transformer blocks (Xiong et al.,
2020), but omit LayerNorm (Ba et al., 2016), since we observed it does not lead to better performance
or faster convergence. This also makes our method conceptually simpler. Thus, a NeoMLP layer is
defined as follows:

T̃(l) = T(l−1) + SelfAttention
(
T(l−1)

)
(2)

T(l) = T̃(l) + FeedForwardNetwork
(
T̃(l)

)
(3)

We explore different variants of self-attention and find that linear attention (Katharopoulos et al.,
2020; Shen et al., 2021) performs slightly better and results in a faster model, while simultaneously
requiring fewer parameters. Specifically, we use the version of Shen et al. (2021) from a publicly
available implementation of linear attention1.

After L NeoMLP layers, we only keep the final tokens that correspond to the output embeddings, and
pass them through a linear layer that projects them back to scalars. We then concatenate all outputs
together, which gives us the final output array y ∈ RO. The full pipeline of our method is shown in

1https://github.com/lucidrains/linear-attention-transformer
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Figure 2, while the forward pass is mathematically described as follows:

ii = Linear(RFF(xi)) + InputEmbedding(i), i ∈ {1, . . . , I}, ii ∈ RD (4)

hj = HiddenEmbedding(j), j ∈ {1, . . . ,H}, hj ∈ RD (5)

ok = OutputEmbedding(k), k ∈ {1, . . . , O}, ok ∈ RO×D (6)

T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
, T(0) ∈ R(I+H+O)×D (7)

T(l) = NeoMLPLayer
(
T(l−1)

)
, l ∈ {1, . . . , L}, T(l) ∈ R(I+H+O)×D (8)

y = Linear
(
T

(L)
I+H:I+H+O

)
, y ∈ RO×1 (9)

2.3 NEOMLP AS AN AUTO-DECODING CONDITIONAL NEURAL FIELD

One of the advantages of our method is its adaptability, since it has a built-in mechanism for
conditioning, through the hidden and output embeddings. In the context of neural fields, this
mechanism enables our method to function as an auto-decoding conditional neural field (Park et al.,
2019), while the embeddings can be used as neural representations for downstream tasks, shown
schematically in Figure 3. We refer to these representations as ν-reps (nu-reps), and similarly, we
refer to the datasets of neural representations obtained with our method as ν-sets (nu-sets).

Figure 3: The hidden and output embeddings consti-
tute a set of latent codes for each signal, and can be
used as neural representations for downstream tasks.
We term these neural representations as ν-reps, and
the datasets of neural representations as ν-sets.

As a conditional neural field, the NeoMLP
backbone encodes the neural field parame-
ters, while the latent variables, i.e. the hid-
den and output embeddings, encode instance-
specific information. Each instance (e.g.
each image in an image dataset) is repre-
sented with its own set of latent codes Zn =[{

hn
j

}H

j=1
, {on

k}
O
k=1

]
. We optimize the latent

codes for a particular signal by feeding them
to the network as inputs alongside a coordinate
x
(n)
p , compute the field value ŷ

(n)
p and the re-

construction loss, and backpropagate the loss
to Zn to take one optimization step.

Our method operates in two distinct stages: fitting and finetuning. During fitting, our goal is to
optimize the backbone architecture, i.e. the parameters of the model. We sample latent codes for
all the signals of a fitting dataset and optimize them simultaneously with the backbone architecture.
When the fitting stage is complete, after a predetermined set of epochs, we freeze the parameters of
the backbone architecture and discard the latent codes. Then, during finetuning, given a new signal,
we sample new latent codes for it and optimize them to minimize the reconstruction error for a number
of epochs. We finetune the training, validation, and test sets of the downstream task from scratch,
even if we used the training set to fit the model, in order to make the distance of representations
between splits as small as possible.

In both the fitting and the finetuning stage, we sample completely random points from random signals.
This ensures i.i.d. samples, and speeds up the training of our method. During the fitting stage, we
also sample points with replacement, as we observed a spiky behaviour in the training loss otherwise.
We provide the detailed algorithms of the fitting and the finetuning stage in Algorithms 1 and 2 in
Appendix A, respectively. We provide further implementation details in Appendix D.

2.4 USING ν-REPS FOR DOWNSTREAM TASKS

After finetuning neural representations, our goal is to use them in downstream tasks, e.g. to train a
downstream model for classification or segmentation. Our ν-reps comprise a set of latent codes for
each signal, corresponding to the finetuned hidden and output embeddings. While the space of ν-reps
is subject to permutation symmetries, which we discuss in Appendix B, we use a simple downstream
model that first concatenates and flattens the hidden and output embeddings in a single vector, and
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then process it with an MLP. We leave more elaborate methods that exploit the inductive biases
present in ν-reps for future work.

3 EXPERIMENTS

We gauge the effectiveness of our approach by fitting individual high-resolution signals, as well as
datasets of signals. We also evaluate our method on downstream tasks on the fitted datasets. We refer
to the appendix for more details. The code is included in the supplementary material and will be
open-sourced to facilitate reproduction of the results.

3.1 FITTING HIGH-RESOLUTION SIGNALS

First, we evaluate our method at fitting high-resolution signals. We compare our method against Siren
(Sitzmann et al., 2020), an MLP with sinusoidal activations, RFFNet (Tancik et al., 2020), an MLP
with random Fourier features and ReLU activations, and SPDER (Shah & Sitawarin, 2024), an MLP
with sublinear damping activations combined with sinusoids. Our goal is to assess the effectiveness
of our method in signals of various modalities, and especially in multimodal signals, which have been
underexplored in the context of neural fields. Hence, we choose signals that belong to two different
modalities, namely an audio clip and a video clip, as well as a multi-modal signal, namely video with
audio.

For audio, we follow Siren (Sitzmann et al., 2020) and use the first 7 seconds from Bach’s cello
suite No. 1 in G Major: Prelude. The audio clip is sampled at 44.1 kHz, resulting in 308,700 points.
For video, we use the “bikes” video from the scikit-video Python library, available online2.
This video clip lasts for 10 seconds and is sampled at 25 fps, with a spatial resolution of 272× 640,
resulting in 43,520,000 points. Finally, we explore multimodality using the “Big Buck Bunny” video
from scikit-video. This clip lasts for 5.3 seconds. The audio is sampled at 48 kHz and has 6
channels. The original spatial resolution is 1280× 720 at 25 fps. We subsample the spatial resolution
by 2, which results in a resolution of 640× 360. Overall, this results in 30,667,776 points (254,976
from audio and 30,412,800 from video).

Training details For audio, we follow Siren (Sitzmann et al., 2020) and scale the time domain
to t ∈ [−100, 100] instead of [−1, 1], to account for the high sampling rate of the signal. For the
audio-visual data, we model the signal as f : R3 → R9, i.e. we have 3 input dimensions (x, y, t),
and 9 output dimensions: 3 from video (RGB) and 6 from audio (6 audio channels). Similar to the
audio clip, we also scale the time domain, which is now used as the time coordinate for both the
audio and the video points. For the points corresponding to audio, we fill their xy coordinates with
zeros. Furthermore, since all points come from either the video or the audio modality, we fill the
output dimensions that correspond to the other modality with zeros. Finally, during training, we mask
these placeholder output dimensions, i.e. we compute the loss for the video coordinates using only
the RGB outputs, and the loss for the audio coordinates using only the 6-channel audio outputs.

To ensure fairness, for every signal, NeoMLP has approximately the same number of parameters
as the baselines. We describe the architecture details for each experiment in Appendix E. We show
the results in Table 1, measuring the reconstruction PSNR. We observe that NeoMLP comfortably
outperforms the baselines in all three signals. Interestingly, the performance gap is increased in the
more difficult setup of multimodal data, which suggests the suitability of our method for multimodal
signals. We hypothesize that this can be attributed to our method’s ability to learn faster from
minibatches with i.i.d. elements, which is something we observed empirically during training and
hyperparameter tuning. We visualize example frames for the video clips in Figure 4, and in Figure 6
in Appendix G. We provide further qualitative results in Appendix G and include reconstructions of
all signals in the supplementary material.

3.2 FITTING ν-SETS & DOWNSTREAM TASKS ON ν-SETS

Next, we evaluate our method on fitting ν-sets, i.e. fitting datasets of neural representations of signals
with NeoMLP, as well as performing downstream tasks on ν-sets. We compare our method against

2https://www.scikit-video.org/stable/datasets.html
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Figure 4: Examples frames from fitting the “bikes” video clip. The first row shows the groundtruth,
while the second and the third row show the reconstructions obtained using NeoMLP and Siren,
respectively. We observe that NeoMLP learns to reconstruct the video with much greater fidelity.

Table 1: Performance on fitting high resolution signals. We report the PSNR (higher is better).

Method Dataset

Bach Bikes Big Buck Bunny

Audio Video

RFFNet (Tancik et al., 2020) 54.62 27.00 32.88 24.59
Siren (Sitzmann et al., 2020) 51.65 37.02 31.55 24.82

SPDER (Shah & Sitawarin, 2024) 48.06 33.82 28.45 20.90
NeoMLP (ours) 54.71 39.06 39.00 34.17

Functa (Dupont et al., 2022), DWSNet (Navon et al., 2023), Neural Graphs (Kofinas et al., 2024),
and Fit-a-NeF (Papa et al., 2024). Functa is a conditional neural field that uses an MLP backbone and
conditioning by bias modulation. DWSNet, Neural Graphs, and Fit-a-NeF, on the other hand, are
equivariant downstream models for processing datasets of unconditional neural fields. For these three
methods, the process of creating datasets of neural representations corresponds to fitting separate
MLPs for each signal in a dataset, a process that is independent of the downstream models themselves.
Since these methods have the step of generating the neural datasets in common, we use shared
datasets for these methods, provided by Fit-a-NeF.

We consider three datasets, namely MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009),
and ShapeNet10 (Chang et al., 2015). We evaluate reconstruction quality for MNIST and CIFAR10
with PSNR, and for ShapeNet with IoU. For CIFAR10, we follow the setup of Functa (Dupont
et al., 2022), and use 50 augmentations for all training and validation images during finetuning. For
all datasets, we only use the training set as a fitting set, since this closely mimics the real-world
conditions for auto-decoding neural fields, namely that test set data can appear after the backbone is
frozen, and should be finetuned without changing the backbone.

After fitting the neural datasets, we optimize the downstream model for the downstream tasks, which
corresponds to classification for MNIST, CIFAR10, and ShapeNet10. We perform a hyperparameter
search for NeoMLP to find the best downstream model. Specifically, we use Bayesian hyperparameter
search from Wandb (Biewald, 2020) to find the best performing hyperparameters for CIFAR10, and
reuse these hyperparameters for all datasets.

While neural datasets can easily reach excellent reconstruction quality, it is often at the expense of
representation power. This was shown in the case of unconditional neural fields by Papa et al. (2024),
where optimal downstream performance was often achieved with medium quality reconstructions.
Since our goal in this experiment is to optimize the performance of neural representations in
downstream tasks, we report the reconstruction quality of the models that achieved the best
downstream performance.

We report the results in Table 2. We observe that NeoMLP comfortably outperforms DWSNet (Navon
et al., 2023), Neural Graphs (Kofinas et al., 2024) and Fit-a-NeF (Papa et al., 2024), i.e. all methods
that process unconditional neural fields, both in terms of representation quality and downstream
performance. Further, these two quantities seem to be positively correlated for NeoMLP, in contrast to
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Table 2: Performance on fitting neural datasets and downstream classification for neural datasets.
Experiments on MNIST, CIFAR10, and ShapeNet10. Results from methods marked with † were
taken from Fit-a-NeF (Papa et al., 2024). The | symbols that appear above and below a number denote
that this number is shared for these three methods. For classification, we run the experiments for 3
random seeds and report the mean and standard deviation.

Method MNIST CIFAR10 ShapeNet

PSNR (↑) Accuracy (%) PSNR (↑) Accuracy (%) IoU (↑) Accuracy (%)

Functa (Dupont et al., 2022) 33.07 98.73±0.05 31.90 68.30±0.00 0.434 95.23±0.13

DWSNet (Navon et al., 2023) † | 85.70±0.60 | 44.01±0.48 | 91.06±0.25

Neural Graphs (Kofinas et al., 2024) † 14.66 92.40±0.30 20.45 44.11±0.20 0.559 90.31±0.15

Fit-a-NeF (Papa et al., 2024) † | 96.40±0.11 | 39.83±1.70 | 82.96±0.02

NeoMLP (ours) 33.98 98.78±0.04 33.16 73.40±0.12 0.934 95.30±0.08

the findings of Papa et al. (2024) for unconditional neural fields. Our method also outperforms Functa
(Dupont et al., 2022) on all three datasets regarding the classification accuracy, while maintaining an
excellent reconstruction quality.

3.3 ABLATION STUDIES

Importance of hyperparameters We perform a large ablation study to assess the importance of the
latent codes, and the impact of the duration of fitting and finetuning to the quality of reconstruction
and representation power. Specifically, we run two studies on CIFAR10; the first study monitors the
number and the dimensionality of the latent codes, as well as the number of finetuning epochs. The
second study monitors the number and the dimensionality of the latent codes, as well as the number
of fitting epochs. In both studies, all other hyperparameters are fixed. We report the fitting PSNR, the
test PSNR and the downstream accuracy. We summarize our findings in Tables 3 and 4.

In both studies, we observe that increasing the number of latents and their dimensionality also
increases the reconstruction quality. However, the higher number of latents seems to lead to decreased
downstream performance. Furthermore, we notice that increasing the number of finetuning epochs
also increases the test PSNR and accuracy. Finally, somewhat surprisingly, while fitting for more
epochs leads to noticeably better fitting PSNR, this translates to negligible gain in the test PSNR and
accuracy, and even degrades performance in some cases.

Table 3: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of finetuning epochs. The backbone is fitted for 50 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit PSNR (↑) Finetune for 5 epochs Finetune for 10 epochs

Test PSNR (↑) Accuracy (%) Test PSNR (↑) Accuracy (%)

6 64 27.04 24.67 51.23 26.00 50.86
128 30.01 26.46 53.30 28.41 53.25
256 33.10 28.17 53.76 30.82 54.52
512 37.49 30.89 54.66 34.98 56.23

14 64 30.58 26.28 49.36 28.58 49.69
128 34.59 28.34 50.74 31.52 51.28
256 37.65 29.63 53.35 33.70 54.06
512 39.30 30.77 53.26 33.99 53.65

Further ablations We perform more ablation experiments regarding the number of layers and hid-
den latents, and the importance of RFF and layer normalization. We report the results in Appendix J.

4 RELATED WORK

Neural representations An increasingly large body of works (Navon et al., 2023; Zhou et al., 2023;
Kofinas et al., 2024; Lim et al., 2024a; Papa et al., 2024; Tran et al., 2024; Kalogeropoulos et al.,
2024) has proposed downstream methods that process datasets of unconditional neural fields, i.e. the
parameters and the architectures of MLPs. They are all addressing the parameter symmetries present
in MLPs, and while the performance of such methods is constantly increasing, it still leaves much
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Table 4: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of fitting epochs. The latents are finetuned for 5 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit 20 epochs Fit 50 epochs

Fit PSNR (↑) Test PSNR (↑) Accuracy (%) Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

6 64 25.68 24.68 51.03 27.04 24.67 51.23
128 28.05 26.40 52.67 30.01 26.46 53.30
256 30.04 28.17 54.56 33.10 28.17 53.76
512 33.91 30.84 55.14 37.49 30.89 54.66

14 64 28.34 26.18 49.67 30.58 26.28 49.36
128 31.63 28.03 52.12 34.59 28.34 50.74
256 33.02 29.24 53.52 37.65 29.63 53.35
512 31.94 30.54 54.42 39.30 30.77 53.26

to be desired. Closer to our work is another body of works (Park et al., 2019; Dupont et al., 2022;
Sajjadi et al., 2022; Chen & Wang, 2022; Zhang et al., 2023; 2024; Wessels et al., 2024) that proposes
neural representations through conditional neural fields. Of those, Sajjadi et al. (2022); Zhang et al.
(2023); Wessels et al. (2024) have proposed set-latent conditional neural fields that condition the
signal through attention (Vaswani et al., 2017). Zhang et al. (2023) proposed 3DShape2VecSet, an
architecture that employs cross-attention and self-attention to encode shapes into sets of latent vectors
and decode them. Our method differs from this method, since it does not rely on cross-attention to
fully encode a coordinate in a set of latents. Instead, it employs self-attention, which allows for better
information propagation and enables the model to scale to multiple layers.

MLPs as graphs A few recent works (Kofinas et al., 2024; Lim et al., 2024a;b; Nikolentzos et al.,
2024; Kalogeropoulos et al., 2024) have viewed neural networks as graphs and proposed methods
that leverage the graph structure. Kofinas et al. (2024) focus on the task of processing the parameters
of neural networks and represent neural networks as computational graphs of parameters. Their
method includes applications to downstream tasks on neural fields. Lim et al. (2024b) investigate the
impact of parameter symmetries, and introduce new neural network architectures that have reduced
parameter space symmetries. Nikolentzos et al. (2024) show that MLPs can be formalized as GNNs
with asynchronous message passing, and propose a model that employs synchronous message passing
on a nearly complete graph. Similar to this work, we use a complete graph and employ a synchronous
message passing scheme. In contrast to this work, we employ weight-sharing via self-attention and
high-dimensional node features. Further, we focus on NeF applications instead of tabular data, and
explore conditioning via the hidden and output embeddings.

5 CONCLUSION

In this work, we presented NeoMLP, a novel architecture inspired by the principles of connectionism
and the graph perspective of MLPs. We perform message passing on the graph of MLPs, after
transforming it to a complete graph of input, hidden, and output nodes equipped with high-dimensional
features. We also employ weight-sharing through self-attention among all the nodes. NeoMLP is
a transformer architecture that uses individual input and output dimensions as tokens, along with
a number of hidden tokens. We also introduced new neural representations based on the hidden
and output embeddings, as well as datasets of neural representations. Our method achieves state-of-
the-art performance in fitting high-resolution signals, including multimodal audio-visual data, and
outperforms state-of-the-art methods in downstream tasks on neural representations.

Limitations Our ν-reps are subject to permutation symmetries, indicating that inductive biases can
be leveraged to increase downstream performance. Namely, while the output embeddings are already
ordered, as they correspond to individual outputs, the hidden embeddings are subject to permutation
symmetries. Future work can explore more elaborate methods based on set neural networks, such as
Deep Sets (Zaheer et al., 2017), that exploit the inductive biases present in ν-reps. Further, the latent
codes used in ν-reps, namely the hidden and output embeddings, carry global information. Instilling
locality in latent codes can be useful for fine-grained downstream tasks, such as segmentation. Future
work can explore equivariant neural fields (Wessels et al., 2024), which would localize the latent
codes by augmenting them with positions or orientations.
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REPRODUCIBILITY STATEMENT

We use publicly available data and datasets, which are described in Section 3. The code is included in
the supplementary material. Equations (2) and (4) mathematically describe our method. Further, we
describe the algorithms for fitting and finetuning NeoMLP in Algorithms 1 and 2, respectively. We
report details regarding the implementation in Appendix D, dataset details in Appendix F, and details
about the hyperparameters used in each experiment in Appendix E.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. arXiv preprint arXiv:1607.06450,
2016. 4, 20

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com. 7, 18

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax. 16

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-
Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton
University — Toyota Technological Institute at Chicago, 2015. 7, 18, 19

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. Nerv: Neural representa-
tions for videos. In Advances in Neural Information Processing Systems 34 (NeurIPS), 2021.

Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations. In European
Conference on Computer Vision. Springer, 2022. 9

Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, and
Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2047–2057, 2022.

Lucas de Vries, Rudolf Leonardus Mirjam Van Herten, Jan W. Hoving, Ivana Isgum, Bart Emmer, Charles B.
Majoie, Henk Marquering, and Efstratios Gavves. Accelerating physics-informed neural fields for fast CT
perfusion analysis in acute ischemic stroke. In Medical Imaging with Deep Learning, 2024. 1

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to functa: Your
data point is a function and you can treat it like one. In Proceedings of the 39th International Conference on
Machine Learning (ICML), 2022. 1, 7, 8, 9, 16, 17, 19

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016. 1

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced Neural
Computers, pp. 129–135. Elsevier, 1990. 1

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda
Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture for
structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver:
General perception with iterative attention. In International conference on machine learning, pp. 4651–4664.
PMLR, 2021b.

Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivariant graph metanetworks. In
Advances in Neural Information Processing Systems 37 (NeurIPS), 2024. 8, 9

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020. 4

10

https://www.wandb.com/
http://github.com/jax-ml/jax


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations (ICLR), 2015. 14, 15, 19

David M Knigge, David R Wessels, Riccardo Valperga, Samuele Papa, Jan-Jakob Sonke, Efstratios Gavves,
and Erik J Bekkers. Space-time continuous pde forecasting using equivariant neural fields. arXiv preprint
arXiv:2406.06660, 2024. 1

Miltiadis Kofinas, Erik J Bekkers, Naveen Shankar Nagaraja, and Efstratios Gavves. Latent Field Discovery in
Interacting Dynamical Systems with Neural Fields. In Advances in Neural Information Processing Systems
36 (NeurIPS), 2023. 1

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves, Cees G. M.
Snoek, and David W. Zhang. Graph Neural Networks for Learning Equivariant Representations of Neural
Networks. In 12th International Conference on Learning Representations (ICLR), 2024. 1, 2, 7, 8, 9

Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images, 2009. 7, 19
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A FITTING AND FINETUNING ν-SETS

Algorithm 1 Fit NeoMLP as a conditional neural field

Require: Randomly initialized backbone network fΘ

Require: Fitting dataset: Dfit =

{{
x
(n)
p ,y

(n)
p

}Pn

p=1

}Nfit

n=1

▷ Nfit signals, Coordinate x
(n)
p ∈ RI

▷ Field value y
(n)
p ∈ RO

Require: Randomly initialized latents: Zfit = {Zn}Nfit
n=1

Require: Initialized optimizer: Ofit ▷ Adam (Kingma & Ba, 2015)
Require: Number of fitting epochs E
Require: Fitting minibatch size B ▷ Number of points per minibatch
P ←

∑Nfit
n=1 Pn ▷ Total number of points in the dataset

M ← ⌊PB ⌋ ▷ Number of iterations per epoch. We drop incomplete minibatches
function FITNEOMLP

for epoch ∈ {1, . . . , E} do
for iteration ∈ {1, . . . ,M} do

Sample point indices P = {pb}Bb=1

Sample signal indices S = {nb}Bb=1 ▷ Sample P and S with replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B}

L ← 1
B

∑B
b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Θ← Θ−Ofit(∇ΘL)
Znb
← Znb

−Ofit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B}
end for

end for
Freeze Θ
Discard Zfit
return Θ

end function

B NEOMLP SYMMETRIES

Our ν-reps, and more specifically, the hidden embeddings, are subject to permutation symmetries.
Intuitively, when we permute two hidden embeddings from a randomly initialized or a trained
model, we expect the behaviour of the network to remain the same. In this section, we formalize
the permutation symmetries present in our method. NeoMLP is a function f : R(I+H+O)×D →
R(I+H+O)×D that comprises self-attention and feed-forward networks applied interchangeably
for a number of layers, following Equations (2) and (3). As a transformer architecture, it is a
permutation equivariant function. Thus, the following property holds: f(PX) = Pf(X), where P
is a permutation matrix, and X is a set of tokens fed as input to the transformer.

Now consider the input to NeoMLP: T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
,T(0) ∈ R(I+H+O)×D.

We look at two cases of permutations, namely permuting only the hidden neurons, and permuting only
the output neurons. The permutation matrix for the first case, i.e. permuting only the hidden neurons,
is P1 = II×I ⊕PH×H ⊕ IO×O, where I is the identity matrix, PH×H is a permutation matrix, and
⊕ denotes the direct sum operator, i.e. stacking matrix blocks diagonally, with zero matrices in the
off-diagonal blocks. Each P1 corresponds to a permutation π1 ∈ SH .

Applying this permutation to T(0) permutes only the hidden neurons:

P1T
(0) =

[
{ii}Ii=1,

{
hπ−1

1 (j)

}H

j=1
, {ok}Ok=1

]
(10)
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Algorithm 2 Finetune NeoMLP as a conditional neural field

Require: Frozen backbone network fΘ
Require: Train, validation, test datasets: Dtrain,Dvalidation,Dtest
Require: Randomly initialized latents: Ztrain,Zvalidation,Ztest
Require: Initialized optimizers: Otrain, Ovalidation, Otest ▷ Adam (Kingma & Ba, 2015)
Require: Number of finetuning epochs E′

Require: Finetuning minibatch size B′

function FINETUNENEOMLP
for split ∈ {train, validation, test} do

Msplit ← ⌈
∑Nsplit

n=1 Pn

B′ ⌉
for epoch ∈ {1, . . . , E′} do

for iteration ∈ {1, . . . ,Msplit} do
Sample point indices P = {pb}B

′

b=1

Sample signal indices S = {nb}B
′

b=1 ▷ Sample P and S without replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B′

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B′}

L ← 1
B′

∑B′

b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Znb
← Znb

−Osplit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B′}
end for

end for
end for
return Ztrain,Zvalidation,Ztest

end function

Next, we apply NeoMLP on the permuted inputs. Making use of the equivariance property, the output
of the function applied to the permuted inputs is equivalent to the permutation of the output of the
function applied to the original inputs.

f
(
P1T

(0)
)
= P1f

(
T(0)

)
(11)

Since the network is only using the output tokens in the final step as an output of the network, the
overall behaviour of NeoMLP is invariant to the permutations of the hidden nodes.

We can follow the same principle to show that permuting the output nodes results in different outputs.
The permutation matrix in this case is P2 = II×I ⊕ IH×H ⊕PO×O. The equivariance property still
holds, namely f

(
P2T

(0)
)
= P2f

(
T(0)

)
. However, the output tokens are now used as the output

of the network. This means that permuting the output tokens would result in permuting the output
dimensions of a signal, which is clearly not equivalent to the original signal.

A corollary of the permutation symmetries is that if we start with a randomly initialized model,
apply a permutation on the hidden nodes to create another model, and then train the two models
independently, these two trained models would be identical up to the permutation of the hidden nodes.
This observation is important for downstream tasks, as it shows the existence of equivalence classes
that should be taken into account by the downstream models.

C COMPUTATIONAL COMPLEXITY

While NeoMLP comfortably outperforms Siren in the task of fitting high-resolution signals, it is
also more computationally expensive. We quantitatively measure the computational complexity
of our method using the fvcore library3. We evaluate on the “bikes” video signal, and use the
hyperparameters described in Appendix E. We report the FLOPs for 1 input (i.e. 1 coordinate) in
the forward pass. NeoMLP has 51.479 MFLOPs, out of which 17.83 MFLOPs correspond to the

3https://github.com/facebookresearch/fvcore
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attention itself and 33.55 MFLOPs correspond to the FFNs. In the same setup, Siren (Sitzmann et al.,
2020) has 3.15 MFLOPs.

Despite having a higher computational complexity compared to the baselines, NeoMLP can actually
fit high resolution signals faster, and does so while having a smaller memory footprint, since it can
make use of small batch sizes. Figure 5 shows the runtime of NeoMLP for fitting high-resolution
signals, compared to the baselines. The x-axis represents wall time in seconds and the y-axis
represents the reconstruction quality (PSNR). Table 5 shows the corresponding GPU memory and
batch size, along with the total runtime for fitting high resolution signals.

Finally, despite the large difference in FLOPs, the forward pass of NeoMLP is almost as fast as the
forward pass of Siren, considering the same batch size. Namely, we ran a full evaluation on the “bikes”
signal, on an Nvidia H100 GPU, using a batch size of 32,768. NeoMLP takes 139.74 seconds, while
Siren takes 131.01 seconds. NeoMLP, however, cannot fit larger batch sizes in memory, while Siren
can fit as big as 1,048,576. With this batch size, Siren requires 79.18 seconds for a full evaluation.

(a) Bach (b) Bikes (c) BigBuckBunny

Figure 5: Runtime for fitting high-resolution signals. The x-axis represents wall time in seconds and
the y-axis represents the reconstruction quality (PSNR). NeoMLP fits signals faster and with better
reconstruction quality.

Table 5: Runtime, GPU memory, and batch size on fitting high resolution signals. For each dataset,
we trained all methods for the same amount of time for fair comparison.

(a) Bach

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 3.7 308,207 2.33
Siren (Sitzmann et al., 2020) 3.9 308,207 |

SPDER (Shah & Sitawarin, 2024) 6.0 308,207 |
NeoMLP (ours) 2.2 4,096 |

(b) Bikes

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 11.2 262,144 19.07
Siren (Sitzmann et al., 2020) 16.8 262,144 |

SPDER (Shah & Sitawarin, 2024) 37.3 262,144 |
NeoMLP (ours) 11.1 4,096 |

(c) BigBuckBunny

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 13.9 262,144 24.73
Siren (Sitzmann et al., 2020) 18.7 262,144 |

SPDER (Shah & Sitawarin, 2024) 39.2 262,144 |
NeoMLP (ours) 13.2 4,096 |

We also monitor the runtime of NeoMLP on fitting datasets of signals, and compare against Functa
(Dupont et al., 2022). We report the results in Table 6. NeoMLP consistently exhibits lower runtimes
for the fitting stage, while Functa is much faster during the finetuning stage, which can be attributed
to the meta-learning employed for finetuning, and the highly efficient JAX (Bradbury et al., 2018)
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implementation. As noted by Dupont et al. (2022), however, meta-learning may come at the expense
of limiting reconstruction accuracy for more complex datasets, since the latent codes lie within a few
gradient steps from the initialization.

Table 6: Runtime on fitting datasets of signals. The finetuning runtime is measured on the test set
only. The runtime for fitting is measured in minutes, while the runtime for finetuning is measured in
seconds.

(a) MNIST

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 192 240 3 16
NeoMLP (ours) 20 63 10 318

(b) CIFAR10

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 213 418 3 16
NeoMLP (ours) 50 305 10 646

(c) ShapeNet

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 20 1002 3 250
NeoMLP (ours) 20 713 2 1680

D IMPLEMENTATION DETAILS

D.1 EMBEDDING INITIALIZATION

Fitting high-resolution signals We initialize input embeddings by sampling from a normal distri-
bution with variance σ2

i = 1. For hidden and output embeddings, we use a variance σ2
o = 1e− 3.

Fitting ν-sets During fitting, we initialize the input, hidden, and output embeddings by sampling a
normal distribution with variance σ2

i = σ2
o = 1e− 3. During finetuning, we sample embeddings for

new signals from a normal distribution with variance σ2
o = 1e− 3.

D.2 WEIGHT INITIALIZATION

We initialize the bias of the final output linear layer to zeros, as we observe this leads to faster
convergence and better stability at the beginning of training. Further, we initialize the weights of
the linear projection following the random Fourier features by sampling from a normal distribution
N
(
0, 2

DRFF

)
. This results in a unit normal distribution of the inputs after the linear projection.

E EXPERIMENT DETAILS

E.1 HIGH-RESOLUTION SIGNALS

In Table 7 we provide the hyperparameters for NeoMLP.

For the audio fitting, Siren (Sitzmann et al., 2020) has 198,145 parameters. It is a 5-layer MLP, with
a hidden dimension of 256, and it is trained with full batch training and a learning rate of 5 · 10−5.
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Table 7: Training and backbone hyperparameters for fitting high-resolution signals.

Hyperparameter Audio (Bach) Video (Bikes) Video+Audio (Big Buck Bunny)

Number of parameters 182,017 3,189,249 3,189,249

FFN hidden dim 256 1,024 1,024
Token dimensionality D 64 256 256

Self-attention heads 4 8 8
Number of layers 3 4 4

RFF dimensionality DRFF 512 128 128
RFF standard deviation σ 20 20 20

Total number of nodes 8 16 16

Number of epochs 5,000 200 400
Minibatch size 4,096 4,096 4,096

Learning rate 0.005 0.0005 0.0005

For the video fitting, Siren has 3,155,971 parameters, and for the audio-visual data, Siren has
3,162,121 parameters. It both settings, it is using the exact same architecture with 5 layers and a
hidden dimension of 1024. We train it with a learning rate of 10−4 and a batch size of 262,144.

E.2 FITTING ν-SETS

For ShapeNet10 (Chang et al., 2015), we fit the dataset for 20 epochs. In each epoch, we stop when
we have used 10% of the available points, which effectively results in 2 epochs in total. We finetune
for 2 epochs, and use the 20% of the available points. We use a minibatch size of 32,768 points, and
a learning rate of 0.005. The hyperparameters of the backbone are listed in Table 8.

For MNIST, we fit the dataset for 20 epochs and finetune for 10 epochs. We use a minibatch of
12,288 points (the equivalent of 16 images), and a learning rate of 0.005. The hyperparameters of the
backbone are listed in Table 8.

For CIFAR10, we fit the dataset for 50 epochs and finetune for 20 epochs. We use a minibatch of
16,384 points (the equivalent of 16 images), and a learning rate of 0.005. The hyperparameters of the
backbone are listed in Table 8.

Table 8: Training and backbone hyperparameters for ShapeNet10, MNIST, and CIFAR10

Hyperparameter ShapeNet10 MNIST CIFAR10

Training Hyperparameters

Minibatch size 32,768 12,288 (16 images) 16,384 (16 images)
Learning rate 0.005 0.005 0.005

Backbone Hyperparameters

FFN hidden dim 512 512 128
Token dimensionality D 256 256 512

Number of self-attention heads 4 4 4
Number of layers 3 3 3

RFF dimensionality DRFF 512 512 128
RFF standard deviation σ 20 20 20

Total number of nodes 8 8 8

E.3 DOWNSTREAM TASKS ON ν-SETS

We perform a hyperparameter search for NeoMLP to find the best downstream model. Specifically,
we use Bayesian hyperparameter search from Wandb (Biewald, 2020) to find the best performing
hyperparameters for CIFAR10, and reuse these hyperparameters for all datasets. We perform our
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search over the choice of Mixup (Zhang, 2017), batch size, learning rate, noise added to the data,
data dropout, hidden dimension and model dropout (Srivastava et al., 2014).

Our downstream model is a 3 layer MLP with SiLU activations (Ramachandran et al., 2018), a hidden
dimension of 2048, and dropout of 0.3. We train the model with a learning rate of 8e− 3, and batch
size of 256. We use Mixup, weight decay with λ = 0.05, and add noise to the data with scale 0.05.
Finally, we use weight averaging with exponential moving average (EMA).

For CIFAR10 (Krizhevsky et al., 2009), the model takes as input 6 embeddings (the NeoMLP had 8
nodes in total). We train for 100 epochs.

For ShapeNet10 (Chang et al., 2015), the model takes as input 13 embeddings (the NeoMLP had 16
nodes in total). We use a higher weight decay λ = 0.25 to further prevent overfitting, and train for
500 epochs.

For MNIST (LeCun et al., 1998), the model takes as input 6 embeddings (the NeoMLP had 8 nodes
in total). We use a higher weight decay λ = 0.2 and train for 500 epochs.

F DATASET DETAILS

F.1 SHAPENET10

We use the following 10 classes for ShapeNet10 classification: loudspeaker, bench, watercraft, lamp,
rifle, sofa, cap, airplane, chair, table.

The dataset comprises 35,984 shapes. We use 29,000 shapes for training, 2,000 as a validation set,
and 4,984 as a test set.

For CIFAR10, following Functa (Dupont et al., 2022), we use 50 augmentations per training and
validation image. This results in a total of 2,500,000 training and validation images. We use 5,000 of
those for validation.

G QUALITATIVE RESULTS

We show example frames for the “BigBuckBunny” video clip in Figure 6.

We show the reconstructions for the “Bach” audio clip in Figure 7, and the errors between the
groundtruth signal and reconstructions in Figure 8.

H VISUALIZATIONS

I LATENT SPACE

We visualize the learned MNIST data manifold for a two-dimensional latent space (with a single
embedding) in Figure 10, following Kingma & Ba (2015); Park et al. (2019). We assume that the
latent space is Gaussian, with a sample mean and variance estimated from the latents of the training
set. We sample linearly spaced coordinates on the unit square and transform them through the Percent
Point Function (PPF) of the Gaussian to produce the values of the latent variables.

We also visualize random samples from the latent space of NeoMLP across hyperparameter configu-
rations varying in the number of embeddings and dimensionality of the latents in Figure 11, as well
as the corresponding reconstruction quality and downstream performance in Table 9.

J MORE ABLATION STUDIES

We report further ablation studies on CIFAR10 (Krizhevsky et al., 2009) to examine the importance
of various hyperparameters in NeoMLP; namely, we perform ablation studies on the number of layers,
the number of hidden latents, and using different layer normalization strategies. In all ablation studies,
we fit the dataset for 20 epochs and finetune for 5 epochs. The remaining hyperparameters (except for
the target variable in each study) are identical to the CIFAR10 column in Table 8 in Appendix E.2.
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Table 9: Reconstruction quality and downstream performance for the configurations corresponding to
Figure 11.

Num. latents Latent dim. Fit PSNR (↑) Accuracy (%)

1 2 15.61 23.7
1 8 20.47 48.2
2 4 20.19 49.3
1 32 24.75 76.2
4 8 24.44 72.5

Table 10: Ablation study on the importance of the number of layers on CIFAR10. Using 4 layers
results in the best test reconstruction quality as well as the best downstream performance. Increasing
the number of layers to 8 marginally increases the fitting PSNR, while negligibly reduces the test
PSNR and the test accuracy.

Num. layers Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

1 23.10 24.04 53.92
2 29.54 28.76 57.36

3 (default) 30.54 29.15 58.82
4 33.51 31.15 59.09
8 34.67 31.05 58.96

Table 11: Ablation study on the importance of layer normalization on CIFAR10. Our choice of
removing the Layer Norm (Ba et al., 2016) is backed by this ablation study, since it results in the best
test PSNR and accuracy. Both Layer Norm and RMS Norm (Zhang & Sennrich, 2019) achieve good
fitting PSNR, but fail to generalize in the test set.

Normalization type Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

No normalization (default) 30.54 29.15 58.82
Layer Norm (Ba et al., 2016) 30.82 26.76 46.51

RMS Norm (Zhang & Sennrich, 2019) 29.96 26.16 44.11

Table 12: Ablation study on the importance of the number of hidden latents (H) on CIFAR10. The
total number of latents is the sum of the hidden and output latents. Increasing the number of latents
results in increasing reconstruction quality, at the expense of lower downstream performance. Perhaps
surprisingly, the best downstream performance is acquired without hidden latents; we hypothesize
that this can be attributed this to the lack of permutation symmetries that stems from using output
latents only.

H Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

0 30.49 29.40 60.64
3 30.54 29.15 58.82

11 40.05 35.40 57.60
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(a) Ground truth

(b) NeoMLP

(c) RFFNet

(d) SIREN

(e) SPDER

Figure 6: Examples frames from fitting the “BigBuckBunny” video clip. The first row shows the
groundtruth, while the following rows show the reconstructions obtained using NeoMLP, RFFNet,
Siren, and SPDER, respectively. We observe that NeoMLP learns to reconstruct the video with much
greater fidelity.

Figure 7: Predictions for the “Bach” audio clip. The first row shows the groundtruth signal, while the
second and third row show the reconstructions from NeoMLP and Siren, respectively.

Importance of RFF As shown by Rahaman et al. (2019), neural networks suffer from spectral bias,
i.e. they prioritize learning low frequency components, and have difficulties learning high frequency
functions. We expect that these spectral biases would also be present in NeoMLP if left unattended.
To that end, we employed Random Fourier Features (RFF) (Tancik et al., 2020) to project our scalar
inputs to higher dimensions. Compared to alternatives like sinusoidal activations (Sitzmann et al.,
2020), RFFs allow our architecture to use a standard transformer.

To examine the spectral bias hypothesis, we train NeoMLP without RFF, using a learnable linear
layer instead. We train this new model on the “bikes” video, and on MNIST. We present the results in
Table 13. The study shows that RFFs clearly help with reconstruction quality, both in reconstructing
a high-resolution video signal, and on a dataset of images. Interestingly, the reconstruction quality
drop from removing RFFs does not translate to downstream performance drop, where, in fact, the
model without Fourier features is marginally better than the original.
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Figure 8: Errors ϵ = y − ŷ between predictions y and groundtruth ŷ. The top row shows the error
for NeoMLP, while the bottom row shows the error for Siren. Both the x-axis and the y-axis are
shared in this figure, but the y-axis is different from Figure 7 . We see that the errors from Siren have
a much larger amplitude, and still seem to capture signal components.

Figure 9: Test accuracy vs. reconstruction quality (PSNR). Experiments on CIFAR10, with different
hyperparameters, without augmentations.

Table 13: Ablation study on the importance of random Fourier features on (a) the bikes video, (b) on
MNIST.

(a) “Bikes” video

Method PSNR (↑)
NeoMLP (without RFF) 35.92

NeoMLP 39.06

(b) MNIST

Method PSNR (↑) Accuracy (%)

NeoMLP (without RFF) 30.33 98.81±0.03

NeoMLP 33.98 98.78±0.04
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(a) Epoch 1 (b) Epoch 10 (c) Epoch 20

Figure 10: The data manifold of NeoMLP with a 2D latent space and a single embedding, i.e.
O = 1, H = 0, D = 2. We visualize the manifold as the fitting stage progresses.

(a) H = 0, O = 1, D = 2

(b) H = 0, O = 1, D = 8

(c) H = 1, O = 1, D = 4

(d) H = 0, O = 1, D = 32

Epoch 1

(e) H = 3, O = 1, D = 8

Epoch 10 Epoch 20

Figure 11: Random samples from the latent space of NeoMLP, as the fitting stage progresses. We
visualize various configurations of the number of embeddings and the dimension of the latents.
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