
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FROM MLP TO NEOMLP:
LEVERAGING SELF-ATTENTION FOR NEURAL FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural fields (NeFs) have recently emerged as a state-of-the-art method for en-
coding spatio-temporal signals of various modalities. Despite the success of NeFs
in reconstructing individual signals, their use as representations in downstream
tasks, such as classification or segmentation, is hindered by the complexity of the
parameter space and its underlying symmetries, in addition to the lack of powerful
and scalable conditioning mechanisms. In this work, we draw inspiration from the
principles of connectionism to design a new architecture based on MLPs, which
we term NeoMLP. We start from an MLP, viewed as a graph, and transform it
from a multi-partite graph to a complete graph of input, hidden, and output nodes,
equipped with high-dimensional features. We perform message passing on this
graph and employ weight-sharing via self-attention among all the nodes. NeoMLP
has a built-in mechanism for conditioning through the hidden and output nodes,
which function as a set of latent codes, and as such, NeoMLP can be used straight-
forwardly as a conditional neural field. We demonstrate the effectiveness of our
method by fitting high-resolution signals, including multi-modal audio-visual data.
Furthermore, we fit datasets of neural representations, by learning instance-specific
sets of latent codes using a single backbone architecture, and then use them for
downstream tasks, outperforming recent state-of-the-art methods.

1 INTRODUCTION

The omnipresence of neural networks in the last decade has recently given rise to neural fields
(NeFs) (cf. Xie et al. (2022)) as a powerful and scalable method to encode continuous signals of
various modalities. These range from shapes (Park et al., 2019), scenes (Mildenhall et al., 2020),
and images, (Sitzmann et al., 2020), to physical fields (Kofinas et al., 2023), CT scans (Papa et al.,
2023; de Vries et al., 2024), and partial differential equations (Yin et al., 2022; Knigge et al., 2024).
Consequently, the popularity of NeFs has spurred interest in neural representations, i.e. using NeFs
as representations for downstream tasks.

Existing neural representations, however, suffer from notable drawbacks. Representations based on
unconditional neural fields, i.e. independent multi-layer perceptrons (MLPs) fitted on each signal, are
subject to parameter symmetries (Hecht-Nielsen, 1990), which lead to extremely poor performance
in downstream tasks if left unattended (Navon et al., 2023). Many recent works (Navon et al.,
2023; Zhou et al., 2023; Kofinas et al., 2024; Lim et al., 2024a; Papa et al., 2024) have proposed
architectures that respect the underlying symmetries; the performance, however, leaves much to be
desired. Another line of works (Park et al., 2019; Dupont et al., 2022) has proposed conditional
neural fields with a single latent code per signal that modulates the activations of a shared MLP
through concatenation, FiLM (Perez et al., 2018), or hypernetworks (Ha et al., 2016), while, recently,
other works (Sajjadi et al., 2022; Wessels et al., 2024) have proposed set-latent conditional neural
fields—conditional neural fields with a set of latent codes—that condition the signal through attention
(Vaswani et al., 2017). Whilst the study of Rebain et al. (2022) showed that set-latent neural fields
outperform single latent code methods as conditioning mechanisms, existing set-latent neural fields
are based on cross-attention, which limits their scalability and expressivity: coordinates are only used
as queries in attention, and cross-attention is limited to a single layer.

We argue that many of these drawbacks stem from the lack of a unified native architecture that
integrates the necessary properties of neural representations and eliminates the shortcomings of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

current approaches. To address these concerns, we draw inspiration from connectionism and the
long history of MLPs to design a new architecture that functions as a standard machine learning
model—akin to an MLP—as well as a conditional neural field. The paradigm of neural networks,
from the early days of Perceptron (McCulloch & Pitts, 1943), to MLPs with hidden neurons trained
with backpropagation (Rumelhart et al., 1986), to modern transformers (Vaswani et al., 2017), shares
the connectionist principle: cognitive processes can be described by interconnected networks of
simple and often uniform units.

This principle is lacking from current conditional neural field architectures, since conditioning is
added to the network as an ad-hoc mechanism. In contrast, motivated by this principle, we take a
closer look at MLPs; more specifically, we look at MLPs as a graph— similar to a few recent works
(Kofinas et al., 2024; Lim et al., 2024a; Nikolentzos et al., 2024)— and design a novel architecture
that operates on this graph using message passing. First, we convert the graph from a multi-partite
graph to a fully-connected graph with self-edges. Instead of using edge-specific weights, we employ
weight-sharing via self-attention among all the nodes. We initialize the hidden and output nodes with
noise and optimize their values with backpropagation. Finally, we use high-dimensional features for
all nodes to make self-attention and the network as a whole more scalable.

We make the following contributions. First, we propose a new architecture, which we term NeoMLP,
by viewing MLPs as a graph, and convert this graph to a complete graph of input, hidden, and
output nodes with high-dimensional features. We employ message passing on that graph through
self-attention among the input, hidden, and output nodes. The hidden and output nodes can be used
as a learnable set of latent codes, and thus, our method can function as a conditional neural field.
We introduce new neural representations that use sets of latent codes for each signal, which we
term ν-reps, as well as datasets of neural representations, which we term ν-sets. We fit datasets of
signals using a single backbone architecture, and then use the latent codes for downstream tasks,
outperforming recent state-of-the-art methods. We also demonstrate the effectiveness of our method
by fitting high-resolution audio and video signals, as well as multi-modal audio-visual data.

1.1 BACKGROUND ON NEURAL FIELDS

Neural fields (NeFs), often referred to as Implicit Neural Representations (INRs), are a class of neural
networks that parameterize fields using neural networks (cf. Xie et al. (2022)). In their simplest form,
they are MLPs that take as input a single coordinate (e.g. an x− y coordinate) and output the field
value for that coordinate (e.g. an RGB value). By feeding batches of coordinates to the network, and
training to reconstruct the target values with backpropagation, the neural field learns to encode the
target signal, without being bound to a specific resolution.

Conditional neural fields introduce a conditioning mechanism to neural fields through latent variables,
often referred to as latent codes. This conditioning mechanism can be used to encode instance-specific
information (e.g. encode a single image) and disentangle it from the backbone architecture, which
now carries dataset-wide information.

2 NEOMLP

2.1 FROM MLP TO NEOMLP

We begin the exposition of our method with MLPs, since our architecture is influenced by MLPs
and builds on them. Without loss of generality, a multi-layer perceptron takes as input a set of scalar
variables {xi}Ii=1, xi ∈ R, coalesced into a single high-dimensional array x ∈ RI . Through a series
of non-linear transformations, the input array is progressively transformed into intermediate (hidden)
representations, with the final transformation leading to the output array y ∈ RO.

Akin to other recent works (Kofinas et al., 2024; Lim et al., 2024b; Nikolentzos et al., 2024), we look
at an MLP as a graph; an MLP is an L+ 1-partite graph, where L is the number of layers. The nodes
represent the input, hidden, and output neurons, and have scalar features that correspond to individual
inputs, the hidden features at each layer, and the individual outputs, respectively. We perform message
passing on that graph, after making it more amenable for learning. First, we convert the connectivity
graph from an L + 1-partite graph to a fully-connected graph with self-edges. Since the forward
pass now includes message passing from all nodes to all nodes at each step, we create learnable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: The connectivity graphs of MLP and NeoMLP. NeoMLP performs message passing on the
MLP graph. Going from MLP to NeoMLP, we use a fully connected graph and high-dimensional
node features. In NeoMLP, the traditional notion of layers of neurons, as well as the asynchronous
layer-wise propagation, cease to exist. Instead, we use synchronous message passing with weight-
sharing via self-attention among all the nodes. NeoMLP has three types of nodes: input, hidden, and
output nodes. The input is fed to NeoMLP through the input nodes, while the output nodes capture
the output of the network.

parameters for the initial values of the hidden and output node features. We initialize them with
Gaussian noise, and optimize their values with backpropagation, simultaneously with the network
parameters. Next, we observe that having dedicated edge-specific weights for all node pairs would
result in an intractable spatial complexity. As such, in order to reduce the memory footprint, we follow
the standard practice of graph neural networks and Transformers (Vaswani et al., 2017), and employ
weight-sharing between the nodes, specifically via self-attention. In other words, the weights for each
node pair are computed as a function of the incoming and outgoing node features, in conjunction
with weights that are shared across nodes. As a by-product of the self-attention mechanism, which
is permutation invariant, we use node-specific embeddings that allow us to differentiate between
different nodes. Finally, instead of having scalar node features, we increase the dimensionality of
node features, which makes self-attention more scalable and expressive.

We show the connectivity graph of NeoMLP and its conversion from a standard MLP in Figure 1. We
also show the equations of the forward pass for a single layer of an MLP and a simplified version of
NeoMLP (without softmax normalization, scaling, or multi-head attention) in Equation (1).

MLP: h
(l)
i =

∑
j W

(l)
ij h

(l−1)
j

NeoMLP: h
(l)
i =

∑
j

︷ ︸︸ ︷(
W

(l)
Q h

(l−1)
i

)⊤
W

(l)
K h

(l−1)
j W

(l)
V h

(l−1)
j

(1)

We note that throughout this work, we retain the nomenclature of input, hidden, and output nodes,
but repurpose them for NeoMLP. More specifically, these nodes refer to the connectivity graph
of NeoMLP, i.e. the graph on which we perform message passing, shown in Figure 1, and not its
computational graph, which would include layers of all the nodes. The input is fed to NeoMLP
through the input nodes before any information propagation, while the output nodes are the ones that
will capture the output of the network, after a number of message passing layers. Every other node
that is not used for input or output is a hidden node. The number of hidden nodes in NeoMLP does
not need to correspond one-to-one to the MLP hidden nodes.

2.2 NEOMLP ARCHITECTURE

After establishing the connection with MLPs, we now discuss the architecture of our method in
detail. The inputs comprise a set of scalar variables {xi}Ii=1, xi ∈ R. We employ random Fourier
features (Tancik et al., 2020) as a non-learnable method to project each scalar input (each dimension
separately) to a high-dimensional space RDRFF . This is followed by a linear layer that projects it to
RD. We then add learnable positional embeddings to the inputs. These embeddings are required
for the model to differentiate between input variables, since self-attention is a permutation invariant
operation. We use similar learnable embeddings for each scalar output dimension (referred to as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: The architecture of NeoMLP. We pass each input dimension through an RFF layer followed
by a linear layer, and then add individual input embeddings to each input. The transformed inputs,
alongside the embeddings for the hidden and output nodes, comprise the inputs to NeoMLP. NeoMLP
has L layers of residual self-attention and non-linear transformations. We capture the output that
corresponds to the output nodes and pass it through a linear layer to get the final output of the network.

output embeddings), as well as H learnable embeddings for each hidden node (referred to as hidden
embeddings), where H is chosen as a hyperparameter. We concatenate the transformed inputs
with the hidden and output embeddings along the node (token) dimension, before feeding them to
NeoMLP. We denote the concatenated tokens as T(0) ∈ R(I+H+O)×D, where O is the number of
output dimensions. The input, hidden, and output embeddings are initialized with Gaussian noise.
We use a variance σ2

i for the input embeddings and σ2
o for the hidden and output embeddings; both

are chosen as hyperparameters.

Each NeoMLP layer comprises a multi-head self-attention layer among the tokens, and a feed-forward
network that non-linearly transforms each token independently. The output of each layer consists
of the transformed tokens T(l) ∈ R(I+H+O)×D. We use pre-LN transformer blocks (Xiong et al.,
2020), but omit LayerNorm (Ba et al., 2016), since we observed it does not lead to better performance
or faster convergence. This also makes our method conceptually simpler. Thus, a NeoMLP layer is
defined as follows:

T̃(l) = T(l−1) + SelfAttention
(
T(l−1)

)
(2)

T(l) = T̃(l) + FeedForwardNetwork
(
T̃(l)

)
(3)

We explore different variants of self-attention and find that linear attention (Katharopoulos et al.,
2020; Shen et al., 2021) performs slightly better and results in a faster model, while simultaneously
requiring fewer parameters. Specifically, we use the version of Shen et al. (2021) from a publicly
available implementation of linear attention1.

After L NeoMLP layers, we only keep the final tokens that correspond to the output embeddings, and
pass them through a linear layer that projects them back to scalars. We then concatenate all outputs
together, which gives us the final output array y ∈ RO. The full pipeline of our method is shown in

1https://github.com/lucidrains/linear-attention-transformer

4

https://github.com/lucidrains/linear-attention-transformer

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2, while the forward pass is mathematically described as follows:

ii = Linear(RFF(xi)) + InputEmbedding(i), i ∈ {1, . . . , I}, ii ∈ RD (4)

hj = HiddenEmbedding(j), j ∈ {1, . . . ,H}, hj ∈ RD (5)

ok = OutputEmbedding(k), k ∈ {1, . . . , O}, ok ∈ RO×D (6)

T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
, T(0) ∈ R(I+H+O)×D (7)

T(l) = NeoMLPLayer
(
T(l−1)

)
, l ∈ {1, . . . , L}, T(l) ∈ R(I+H+O)×D (8)

y = Linear
(
T

(L)
I+H:I+H+O

)
, y ∈ RO×1 (9)

2.3 NEOMLP AS AN AUTO-DECODING CONDITIONAL NEURAL FIELD

One of the advantages of our method is its adaptability, since it has a built-in mechanism for
conditioning, through the hidden and output embeddings. In the context of neural fields, this
mechanism enables our method to function as an auto-decoding conditional neural field (Park et al.,
2019), while the embeddings can be used as neural representations for downstream tasks, shown
schematically in Figure 3. We refer to these representations as ν-reps (nu-reps), and similarly, we
refer to the datasets of neural representations obtained with our method as ν-sets (nu-sets).

Figure 3: The hidden and output embeddings consti-
tute a set of latent codes for each signal, and can be
used as neural representations for downstream tasks.
We term these neural representations as ν-reps, and
the datasets of neural representations as ν-sets.

As a conditional neural field, the NeoMLP
backbone encodes the neural field parame-
ters, while the latent variables, i.e. the hid-
den and output embeddings, encode instance-
specific information. Each instance (e.g.
each image in an image dataset) is repre-
sented with its own set of latent codes Zn =[{

hn
j

}H

j=1
, {on

k}
O
k=1

]
. We optimize the latent

codes for a particular signal by feeding them
to the network as inputs alongside a coordinate
x
(n)
p , compute the field value ŷ

(n)
p and the re-

construction loss, and backpropagate the loss
to Zn to take one optimization step.

Our method operates in two distinct stages: fitting and finetuning. During fitting, our goal is to
optimize the backbone architecture, i.e. the parameters of the model. We sample latent codes for
all the signals of a fitting dataset and optimize them simultaneously with the backbone architecture.
When the fitting stage is complete, after a predetermined set of epochs, we freeze the parameters of
the backbone architecture and discard the latent codes. Then, during finetuning, given a new signal,
we sample new latent codes for it and optimize them to minimize the reconstruction error for a number
of epochs. We finetune the training, validation, and test sets of the downstream task from scratch,
even if we used the training set to fit the model, in order to make the distance of representations
between splits as small as possible.

In both the fitting and the finetuning stage, we sample completely random points from random signals.
This ensures i.i.d. samples, and speeds up the training of our method. During the fitting stage, we
also sample points with replacement, as we observed a spiky behaviour in the training loss otherwise.
We provide the detailed algorithms of the fitting and the finetuning stage in Algorithms 1 and 2 in
Appendix A, respectively. We provide further implementation details in Appendix D.

2.4 USING ν-REPS FOR DOWNSTREAM TASKS

After finetuning neural representations, our goal is to use them in downstream tasks, e.g. to train a
downstream model for classification or segmentation. Our ν-reps comprise a set of latent codes for
each signal, corresponding to the finetuned hidden and output embeddings. While the space of ν-reps
is subject to permutation symmetries, which we discuss in Appendix B, we use a simple downstream
model that first concatenates and flattens the hidden and output embeddings in a single vector, and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

then process it with an MLP. We leave more elaborate methods that exploit the inductive biases
present in ν-reps for future work.

3 EXPERIMENTS

We gauge the effectiveness of our approach by fitting individual high-resolution signals, as well as
datasets of signals. We also evaluate our method on downstream tasks on the fitted datasets. We refer
to the appendix for more details. The code is included in the supplementary material and will be
open-sourced to facilitate reproduction of the results.

3.1 FITTING HIGH-RESOLUTION SIGNALS

First, we evaluate our method at fitting high-resolution signals. We compare our method against Siren
(Sitzmann et al., 2020), an MLP with sinusoidal activations, RFFNet (Tancik et al., 2020), an MLP
with random Fourier features and ReLU activations, and SPDER (Shah & Sitawarin, 2024), an MLP
with sublinear damping activations combined with sinusoids. Our goal is to assess the effectiveness
of our method in signals of various modalities, and especially in multimodal signals, which have been
underexplored in the context of neural fields. Hence, we choose signals that belong to two different
modalities, namely an audio clip and a video clip, as well as a multi-modal signal, namely video with
audio.

For audio, we follow Siren (Sitzmann et al., 2020) and use the first 7 seconds from Bach’s cello
suite No. 1 in G Major: Prelude. The audio clip is sampled at 44.1 kHz, resulting in 308,700 points.
For video, we use the “bikes” video from the scikit-video Python library, available online2.
This video clip lasts for 10 seconds and is sampled at 25 fps, with a spatial resolution of 272× 640,
resulting in 43,520,000 points. Finally, we explore multimodality using the “Big Buck Bunny” video
from scikit-video. This clip lasts for 5.3 seconds. The audio is sampled at 48 kHz and has 6
channels. The original spatial resolution is 1280× 720 at 25 fps. We subsample the spatial resolution
by 2, which results in a resolution of 640× 360. Overall, this results in 30,667,776 points (254,976
from audio and 30,412,800 from video).

Training details For audio, we follow Siren (Sitzmann et al., 2020) and scale the time domain
to t ∈ [−100, 100] instead of [−1, 1], to account for the high sampling rate of the signal. For the
audio-visual data, we model the signal as f : R3 → R9, i.e. we have 3 input dimensions (x, y, t),
and 9 output dimensions: 3 from video (RGB) and 6 from audio (6 audio channels). Similar to the
audio clip, we also scale the time domain, which is now used as the time coordinate for both the
audio and the video points. For the points corresponding to audio, we fill their xy coordinates with
zeros. Furthermore, since all points come from either the video or the audio modality, we fill the
output dimensions that correspond to the other modality with zeros. Finally, during training, we mask
these placeholder output dimensions, i.e. we compute the loss for the video coordinates using only
the RGB outputs, and the loss for the audio coordinates using only the 6-channel audio outputs.

To ensure fairness, for every signal, NeoMLP has approximately the same number of parameters
as the baselines. We describe the architecture details for each experiment in Appendix E. We show
the results in Table 1, measuring the reconstruction PSNR. We observe that NeoMLP comfortably
outperforms the baselines in all three signals. Interestingly, the performance gap is increased in the
more difficult setup of multimodal data, which suggests the suitability of our method for multimodal
signals. We hypothesize that this can be attributed to our method’s ability to learn faster from
minibatches with i.i.d. elements, which is something we observed empirically during training and
hyperparameter tuning. We visualize example frames for the video clips in Figure 4, and in Figure 6
in Appendix G. We provide further qualitative results in Appendix G and include reconstructions of
all signals in the supplementary material.

3.2 FITTING ν-SETS & DOWNSTREAM TASKS ON ν-SETS

Next, we evaluate our method on fitting ν-sets, i.e. fitting datasets of neural representations of signals
with NeoMLP, as well as performing downstream tasks on ν-sets. We compare our method against

2https://www.scikit-video.org/stable/datasets.html

6

https://www.scikit-video.org/stable/datasets.html

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: Examples frames from fitting the “bikes” video clip. The first row shows the groundtruth,
while the second and the third row show the reconstructions obtained using NeoMLP and Siren,
respectively. We observe that NeoMLP learns to reconstruct the video with much greater fidelity.

Table 1: Performance on fitting high resolution signals. We report the PSNR (higher is better).

Method Dataset

Bach Bikes Big Buck Bunny

Audio Video

RFFNet (Tancik et al., 2020) 54.62 27.00 32.88 24.59
Siren (Sitzmann et al., 2020) 51.65 37.02 31.55 24.82

SPDER (Shah & Sitawarin, 2024) 48.06 33.82 28.45 20.90
NeoMLP (ours) 54.71 39.06 39.00 34.17

Functa (Dupont et al., 2022), DWSNet (Navon et al., 2023), Neural Graphs (Kofinas et al., 2024),
and Fit-a-NeF (Papa et al., 2024). Functa is a conditional neural field that uses an MLP backbone and
conditioning by bias modulation. DWSNet, Neural Graphs, and Fit-a-NeF, on the other hand, are
equivariant downstream models for processing datasets of unconditional neural fields. For these three
methods, the process of creating datasets of neural representations corresponds to fitting separate
MLPs for each signal in a dataset, a process that is independent of the downstream models themselves.
Since these methods have the step of generating the neural datasets in common, we use shared
datasets for these methods, provided by Fit-a-NeF.

We consider three datasets, namely MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009),
and ShapeNet10 (Chang et al., 2015). We evaluate reconstruction quality for MNIST and CIFAR10
with PSNR, and for ShapeNet with IoU. For CIFAR10, we follow the setup of Functa (Dupont
et al., 2022), and use 50 augmentations for all training and validation images during finetuning. For
all datasets, we only use the training set as a fitting set, since this closely mimics the real-world
conditions for auto-decoding neural fields, namely that test set data can appear after the backbone is
frozen, and should be finetuned without changing the backbone.

After fitting the neural datasets, we optimize the downstream model for the downstream tasks, which
corresponds to classification for MNIST, CIFAR10, and ShapeNet10. We perform a hyperparameter
search for NeoMLP to find the best downstream model. Specifically, we use Bayesian hyperparameter
search from Wandb (Biewald, 2020) to find the best performing hyperparameters for CIFAR10, and
reuse these hyperparameters for all datasets.

While neural datasets can easily reach excellent reconstruction quality, it is often at the expense of
representation power. This was shown in the case of unconditional neural fields by Papa et al. (2024),
where optimal downstream performance was often achieved with medium quality reconstructions.
Since our goal in this experiment is to optimize the performance of neural representations in
downstream tasks, we report the reconstruction quality of the models that achieved the best
downstream performance.

We report the results in Table 2. We observe that NeoMLP comfortably outperforms DWSNet (Navon
et al., 2023), Neural Graphs (Kofinas et al., 2024) and Fit-a-NeF (Papa et al., 2024), i.e. all methods
that process unconditional neural fields, both in terms of representation quality and downstream
performance. Further, these two quantities seem to be positively correlated for NeoMLP, in contrast to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Performance on fitting neural datasets and downstream classification for neural datasets.
Experiments on MNIST, CIFAR10, and ShapeNet10. Results from methods marked with † were
taken from Fit-a-NeF (Papa et al., 2024). The | symbols that appear above and below a number denote
that this number is shared for these three methods. For classification, we run the experiments for 3
random seeds and report the mean and standard deviation.

Method MNIST CIFAR10 ShapeNet

PSNR (↑) Accuracy (%) PSNR (↑) Accuracy (%) IoU (↑) Accuracy (%)

Functa (Dupont et al., 2022) 33.07 98.73±0.05 31.90 68.30±0.00 0.434 95.23±0.13

DWSNet (Navon et al., 2023) † | 85.70±0.60 | 44.01±0.48 | 91.06±0.25

Neural Graphs (Kofinas et al., 2024) † 14.66 92.40±0.30 20.45 44.11±0.20 0.559 90.31±0.15

Fit-a-NeF (Papa et al., 2024) † | 96.40±0.11 | 39.83±1.70 | 82.96±0.02

NeoMLP (ours) 33.98 98.78±0.04 33.16 73.40±0.12 0.934 95.30±0.08

the findings of Papa et al. (2024) for unconditional neural fields. Our method also outperforms Functa
(Dupont et al., 2022) on all three datasets regarding the classification accuracy, while maintaining an
excellent reconstruction quality.

3.3 ABLATION STUDIES

Importance of hyperparameters We perform a large ablation study to assess the importance of the
latent codes, and the impact of the duration of fitting and finetuning to the quality of reconstruction
and representation power. Specifically, we run two studies on CIFAR10; the first study monitors the
number and the dimensionality of the latent codes, as well as the number of finetuning epochs. The
second study monitors the number and the dimensionality of the latent codes, as well as the number
of fitting epochs. In both studies, all other hyperparameters are fixed. We report the fitting PSNR, the
test PSNR and the downstream accuracy. We summarize our findings in Tables 3 and 4.

In both studies, we observe that increasing the number of latents and their dimensionality also
increases the reconstruction quality. However, the higher number of latents seems to lead to decreased
downstream performance. Furthermore, we notice that increasing the number of finetuning epochs
also increases the test PSNR and accuracy. Finally, somewhat surprisingly, while fitting for more
epochs leads to noticeably better fitting PSNR, this translates to negligible gain in the test PSNR and
accuracy, and even degrades performance in some cases.

Table 3: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of finetuning epochs. The backbone is fitted for 50 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit PSNR (↑) Finetune for 5 epochs Finetune for 10 epochs

Test PSNR (↑) Accuracy (%) Test PSNR (↑) Accuracy (%)

6 64 27.04 24.67 51.23 26.00 50.86
128 30.01 26.46 53.30 28.41 53.25
256 33.10 28.17 53.76 30.82 54.52
512 37.49 30.89 54.66 34.98 56.23

14 64 30.58 26.28 49.36 28.58 49.69
128 34.59 28.34 50.74 31.52 51.28
256 37.65 29.63 53.35 33.70 54.06
512 39.30 30.77 53.26 33.99 53.65

Further ablations We perform more ablation experiments regarding the number of layers and hid-
den latents, and the importance of RFF and layer normalization. We report the results in Appendix J.

4 RELATED WORK

Neural representations An increasingly large body of works (Navon et al., 2023; Zhou et al., 2023;
Kofinas et al., 2024; Lim et al., 2024a; Papa et al., 2024; Tran et al., 2024; Kalogeropoulos et al.,
2024) has proposed downstream methods that process datasets of unconditional neural fields, i.e. the
parameters and the architectures of MLPs. They are all addressing the parameter symmetries present
in MLPs, and while the performance of such methods is constantly increasing, it still leaves much

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of fitting epochs. The latents are finetuned for 5 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit 20 epochs Fit 50 epochs

Fit PSNR (↑) Test PSNR (↑) Accuracy (%) Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

6 64 25.68 24.68 51.03 27.04 24.67 51.23
128 28.05 26.40 52.67 30.01 26.46 53.30
256 30.04 28.17 54.56 33.10 28.17 53.76
512 33.91 30.84 55.14 37.49 30.89 54.66

14 64 28.34 26.18 49.67 30.58 26.28 49.36
128 31.63 28.03 52.12 34.59 28.34 50.74
256 33.02 29.24 53.52 37.65 29.63 53.35
512 31.94 30.54 54.42 39.30 30.77 53.26

to be desired. Closer to our work is another body of works (Park et al., 2019; Dupont et al., 2022;
Sajjadi et al., 2022; Chen & Wang, 2022; Zhang et al., 2023; 2024; Wessels et al., 2024) that proposes
neural representations through conditional neural fields. Of those, Sajjadi et al. (2022); Zhang et al.
(2023); Wessels et al. (2024) have proposed set-latent conditional neural fields that condition the
signal through attention (Vaswani et al., 2017). Zhang et al. (2023) proposed 3DShape2VecSet, an
architecture that employs cross-attention and self-attention to encode shapes into sets of latent vectors
and decode them. Our method differs from this method, since it does not rely on cross-attention to
fully encode a coordinate in a set of latents. Instead, it employs self-attention, which allows for better
information propagation and enables the model to scale to multiple layers.

MLPs as graphs A few recent works (Kofinas et al., 2024; Lim et al., 2024a;b; Nikolentzos et al.,
2024; Kalogeropoulos et al., 2024) have viewed neural networks as graphs and proposed methods
that leverage the graph structure. Kofinas et al. (2024) focus on the task of processing the parameters
of neural networks and represent neural networks as computational graphs of parameters. Their
method includes applications to downstream tasks on neural fields. Lim et al. (2024b) investigate the
impact of parameter symmetries, and introduce new neural network architectures that have reduced
parameter space symmetries. Nikolentzos et al. (2024) show that MLPs can be formalized as GNNs
with asynchronous message passing, and propose a model that employs synchronous message passing
on a nearly complete graph. Similar to this work, we use a complete graph and employ a synchronous
message passing scheme. In contrast to this work, we employ weight-sharing via self-attention and
high-dimensional node features. Further, we focus on NeF applications instead of tabular data, and
explore conditioning via the hidden and output embeddings.

5 CONCLUSION

In this work, we presented NeoMLP, a novel architecture inspired by the principles of connectionism
and the graph perspective of MLPs. We perform message passing on the graph of MLPs, after
transforming it to a complete graph of input, hidden, and output nodes equipped with high-dimensional
features. We also employ weight-sharing through self-attention among all the nodes. NeoMLP is
a transformer architecture that uses individual input and output dimensions as tokens, along with
a number of hidden tokens. We also introduced new neural representations based on the hidden
and output embeddings, as well as datasets of neural representations. Our method achieves state-of-
the-art performance in fitting high-resolution signals, including multimodal audio-visual data, and
outperforms state-of-the-art methods in downstream tasks on neural representations.

Limitations Our ν-reps are subject to permutation symmetries, indicating that inductive biases can
be leveraged to increase downstream performance. Namely, while the output embeddings are already
ordered, as they correspond to individual outputs, the hidden embeddings are subject to permutation
symmetries. Future work can explore more elaborate methods based on set neural networks, such as
Deep Sets (Zaheer et al., 2017), that exploit the inductive biases present in ν-reps. Further, the latent
codes used in ν-reps, namely the hidden and output embeddings, carry global information. Instilling
locality in latent codes can be useful for fine-grained downstream tasks, such as segmentation. Future
work can explore equivariant neural fields (Wessels et al., 2024), which would localize the latent
codes by augmenting them with positions or orientations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

We use publicly available data and datasets, which are described in Section 3. The code is included in
the supplementary material. Equations (2) and (4) mathematically describe our method. Further, we
describe the algorithms for fitting and finetuning NeoMLP in Algorithms 1 and 2, respectively. We
report details regarding the implementation in Appendix D, dataset details in Appendix F, and details
about the hyperparameters used in each experiment in Appendix E.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. arXiv preprint arXiv:1607.06450,
2016. 4, 20

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com. 7, 18

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax. 16

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-
Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton
University — Toyota Technological Institute at Chicago, 2015. 7, 18, 19

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. Nerv: Neural representa-
tions for videos. In Advances in Neural Information Processing Systems 34 (NeurIPS), 2021.

Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations. In European
Conference on Computer Vision. Springer, 2022. 9

Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, and
Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2047–2057, 2022.

Lucas de Vries, Rudolf Leonardus Mirjam Van Herten, Jan W. Hoving, Ivana Isgum, Bart Emmer, Charles B.
Majoie, Henk Marquering, and Efstratios Gavves. Accelerating physics-informed neural fields for fast CT
perfusion analysis in acute ischemic stroke. In Medical Imaging with Deep Learning, 2024. 1

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to functa: Your
data point is a function and you can treat it like one. In Proceedings of the 39th International Conference on
Machine Learning (ICML), 2022. 1, 7, 8, 9, 16, 17, 19

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016. 1

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced Neural
Computers, pp. 129–135. Elsevier, 1990. 1

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda
Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture for
structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver:
General perception with iterative attention. In International conference on machine learning, pp. 4651–4664.
PMLR, 2021b.

Ioannis Kalogeropoulos, Giorgos Bouritsas, and Yannis Panagakis. Scale equivariant graph metanetworks. In
Advances in Neural Information Processing Systems 37 (NeurIPS), 2024. 8, 9

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020. 4

10

https://www.wandb.com/
http://github.com/jax-ml/jax

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations (ICLR), 2015. 14, 15, 19

David M Knigge, David R Wessels, Riccardo Valperga, Samuele Papa, Jan-Jakob Sonke, Efstratios Gavves,
and Erik J Bekkers. Space-time continuous pde forecasting using equivariant neural fields. arXiv preprint
arXiv:2406.06660, 2024. 1

Miltiadis Kofinas, Erik J Bekkers, Naveen Shankar Nagaraja, and Efstratios Gavves. Latent Field Discovery in
Interacting Dynamical Systems with Neural Fields. In Advances in Neural Information Processing Systems
36 (NeurIPS), 2023. 1

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves, Cees G. M.
Snoek, and David W. Zhang. Graph Neural Networks for Learning Equivariant Representations of Neural
Networks. In 12th International Conference on Learning Representations (ICLR), 2024. 1, 2, 7, 8, 9

Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images, 2009. 7, 19

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 7, 19

Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks for
processing diverse neural architectures. In 12th International Conference on Learning Representations
(ICLR), 2024a. 1, 2, 8, 9

Derek Lim, Moe Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The empirical impact of neural
parameter symmetries, or lack thereof. arXiv preprint arXiv:2405.20231, 2024b. 2, 9

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5:115–133, 1943. 2

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In European Conference on
Computer Vision (ECCV), 2020. 1

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant
Architectures for Learning in Deep Weight Spaces. In Proceedings of the 40th International Conference on
Machine Learning (ICML), 2023. 1, 7, 8

Giannis Nikolentzos, Siyun Wang, Johannes Lutzeyer, and Michalis Vazirgiannis. Graph neural machine: A new
model for learning with tabular data. arXiv preprint arXiv:2402.02862, 2024. 2, 9

Samuele Papa, David M. Knigge, Riccardo Valperga, Nikita Moriakov, Miltiadis Kofinas, Jan-Jakob Sonke,
and Efstratios Gavves. Neural modulation fields for conditional cone beam neural tomography. In ICML
Workshop on the Synergy of Scientific and Machine Learning Modeling, 2023. 1

Samuele Papa, Riccardo Valperga, David M. Knigge, Miltiadis Kofinas, Phillip Lippe, Jan-jakob Sonke, and
Efstratios Gavves. How to Train Neural Field Representations: A Comprehensive Study and Benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. 1, 7, 8

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 165–174, 2019. 1, 5, 9, 19

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual Reasoning
with a General Conditioning Layer. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2018. 1

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the Spectral Bias of Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019. 21

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. In 6th International
Conference on Learning Representations, (ICLR), 2018. 19

Daniel Rebain, Mark J Matthews, Kwang Moo Yi, Gopal Sharma, Dmitry Lagun, and Andrea Tagliasacchi.
Attention beats concatenation for conditioning neural fields. arXiv preprint arXiv:2209.10684, 2022. 1

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986. 2

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani Vora,
Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation transformer: Geometry-free
novel view synthesis through set-latent scene representations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6229–6238, 2022. 1, 9

Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraraghavan. Miner:
Multiscale implicit neural representation. In European Conference on Computer Vision, 2022.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan, and Richard G
Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023.

Kathan Shah and Chawin Sitawarin. Spder: Semiperiodic damping-enabled object representation. In 12th
International Conference on Learning Representations (ICLR), 2024. 6, 7, 16

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Attention with
linear complexities. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 3531–3539, 2021. 4

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit Neural
Representations with Periodic Activation Functions. In Advances in Neural Information Processing Systems
33 (NeurIPS), 2020. 1, 6, 7, 16, 17, 21

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014. 19

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi
Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains. In Advances in Neural Information Processing Systems 33 (NeurIPS), 2020.
3, 6, 7, 16, 21

Hoang V Tran, Thieu N Vo, Tho H Tran, An T Nguyen, and Tan M Nguyen. Monomial matrix group equivariant
neural functional networks. In Advances in Neural Information Processing Systems 37 (NeurIPS), 2024. 8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. In Advances in Neural Information Processing Systems 30
(NeurIPS), 2017. 1, 2, 3, 9

David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves,
and Erik J Bekkers. Grounding continuous representations in geometry: Equivariant neural fields. arXiv
preprint arXiv:2406.05753, 2024. 1, 9

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James
Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural Fields in Visual Computing and Beyond. In
Computer Graphics Forum, 2022. 1, 2

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. 4

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Gallinari. Continuous
pde dynamics forecasting with implicit neural representations. arXiv preprint arXiv:2209.14855, 2022. 1

Tackgeun You, Mijeong Kim, Jungtaek Kim, and Bohyung Han. Generative neural fields by mixtures of neural
implicit functions. In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Are transformers
universal approximators of sequence-to-sequence functions? In 8th International Conference on Learning
Representations (ICLR), 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. Advances in neural information processing systems, 30, 2017. 9

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural Information
Processing Systems 32 (NeurIPS), 2019. 20

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape representation for
neural fields and generative diffusion models. ACM Transactions on Graphics (TOG), 42(4):1–16, 2023. 9

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 19

Shuyi Zhang, Ke Liu, Jingjun Gu, Xiaoxu Cai, Zhihua Wang, Jiajun Bu, and Haishuai Wang. Attention beats
linear for fast implicit neural representation generation. arXiv preprint arXiv:2407.15355, 2024. 9

Allan Zhou, Kaien Yang, Kaylee Burns, Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea Finn.
Permutation Equivariant Neural Functionals. In Advances in Neural Information Processing Systems 36
(NeurIPS), 2023. 1, 8

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A FITTING AND FINETUNING ν-SETS

Algorithm 1 Fit NeoMLP as a conditional neural field

Require: Randomly initialized backbone network fΘ

Require: Fitting dataset: Dfit =

{{
x
(n)
p ,y

(n)
p

}Pn

p=1

}Nfit

n=1

▷ Nfit signals, Coordinate x
(n)
p ∈ RI

▷ Field value y
(n)
p ∈ RO

Require: Randomly initialized latents: Zfit = {Zn}Nfit
n=1

Require: Initialized optimizer: Ofit ▷ Adam (Kingma & Ba, 2015)
Require: Number of fitting epochs E
Require: Fitting minibatch size B ▷ Number of points per minibatch
P ←

∑Nfit
n=1 Pn ▷ Total number of points in the dataset

M ← ⌊PB ⌋ ▷ Number of iterations per epoch. We drop incomplete minibatches
function FITNEOMLP

for epoch ∈ {1, . . . , E} do
for iteration ∈ {1, . . . ,M} do

Sample point indices P = {pb}Bb=1

Sample signal indices S = {nb}Bb=1 ▷ Sample P and S with replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B}

L ← 1
B

∑B
b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Θ← Θ−Ofit(∇ΘL)
Znb
← Znb

−Ofit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B}
end for

end for
Freeze Θ
Discard Zfit
return Θ

end function

B NEOMLP SYMMETRIES

Our ν-reps, and more specifically, the hidden embeddings, are subject to permutation symmetries.
Intuitively, when we permute two hidden embeddings from a randomly initialized or a trained
model, we expect the behaviour of the network to remain the same. In this section, we formalize
the permutation symmetries present in our method. NeoMLP is a function f : R(I+H+O)×D →
R(I+H+O)×D that comprises self-attention and feed-forward networks applied interchangeably
for a number of layers, following Equations (2) and (3). As a transformer architecture, it is a
permutation equivariant function. Thus, the following property holds: f(PX) = Pf(X), where P
is a permutation matrix, and X is a set of tokens fed as input to the transformer.

Now consider the input to NeoMLP: T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
,T(0) ∈ R(I+H+O)×D.

We look at two cases of permutations, namely permuting only the hidden neurons, and permuting only
the output neurons. The permutation matrix for the first case, i.e. permuting only the hidden neurons,
is P1 = II×I ⊕PH×H ⊕ IO×O, where I is the identity matrix, PH×H is a permutation matrix, and
⊕ denotes the direct sum operator, i.e. stacking matrix blocks diagonally, with zero matrices in the
off-diagonal blocks. Each P1 corresponds to a permutation π1 ∈ SH .

Applying this permutation to T(0) permutes only the hidden neurons:

P1T
(0) =

[
{ii}Ii=1,

{
hπ−1

1 (j)

}H

j=1
, {ok}Ok=1

]
(10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 2 Finetune NeoMLP as a conditional neural field

Require: Frozen backbone network fΘ
Require: Train, validation, test datasets: Dtrain,Dvalidation,Dtest
Require: Randomly initialized latents: Ztrain,Zvalidation,Ztest
Require: Initialized optimizers: Otrain, Ovalidation, Otest ▷ Adam (Kingma & Ba, 2015)
Require: Number of finetuning epochs E′

Require: Finetuning minibatch size B′

function FINETUNENEOMLP
for split ∈ {train, validation, test} do

Msplit ← ⌈
∑Nsplit

n=1 Pn

B′ ⌉
for epoch ∈ {1, . . . , E′} do

for iteration ∈ {1, . . . ,Msplit} do
Sample point indices P = {pb}B

′

b=1

Sample signal indices S = {nb}B
′

b=1 ▷ Sample P and S without replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B′

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B′}

L ← 1
B′

∑B′

b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Znb
← Znb

−Osplit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B′}
end for

end for
end for
return Ztrain,Zvalidation,Ztest

end function

Next, we apply NeoMLP on the permuted inputs. Making use of the equivariance property, the output
of the function applied to the permuted inputs is equivalent to the permutation of the output of the
function applied to the original inputs.

f
(
P1T

(0)
)
= P1f

(
T(0)

)
(11)

Since the network is only using the output tokens in the final step as an output of the network, the
overall behaviour of NeoMLP is invariant to the permutations of the hidden nodes.

We can follow the same principle to show that permuting the output nodes results in different outputs.
The permutation matrix in this case is P2 = II×I ⊕ IH×H ⊕PO×O. The equivariance property still
holds, namely f

(
P2T

(0)
)
= P2f

(
T(0)

)
. However, the output tokens are now used as the output

of the network. This means that permuting the output tokens would result in permuting the output
dimensions of a signal, which is clearly not equivalent to the original signal.

A corollary of the permutation symmetries is that if we start with a randomly initialized model,
apply a permutation on the hidden nodes to create another model, and then train the two models
independently, these two trained models would be identical up to the permutation of the hidden nodes.
This observation is important for downstream tasks, as it shows the existence of equivalence classes
that should be taken into account by the downstream models.

C COMPUTATIONAL COMPLEXITY

While NeoMLP comfortably outperforms Siren in the task of fitting high-resolution signals, it is
also more computationally expensive. We quantitatively measure the computational complexity
of our method using the fvcore library3. We evaluate on the “bikes” video signal, and use the
hyperparameters described in Appendix E. We report the FLOPs for 1 input (i.e. 1 coordinate) in
the forward pass. NeoMLP has 51.479 MFLOPs, out of which 17.83 MFLOPs correspond to the

3https://github.com/facebookresearch/fvcore

15

https://github.com/facebookresearch/fvcore

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

attention itself and 33.55 MFLOPs correspond to the FFNs. In the same setup, Siren (Sitzmann et al.,
2020) has 3.15 MFLOPs.

Despite having a higher computational complexity compared to the baselines, NeoMLP can actually
fit high resolution signals faster, and does so while having a smaller memory footprint, since it can
make use of small batch sizes. Figure 5 shows the runtime of NeoMLP for fitting high-resolution
signals, compared to the baselines. The x-axis represents wall time in seconds and the y-axis
represents the reconstruction quality (PSNR). Table 5 shows the corresponding GPU memory and
batch size, along with the total runtime for fitting high resolution signals.

Finally, despite the large difference in FLOPs, the forward pass of NeoMLP is almost as fast as the
forward pass of Siren, considering the same batch size. Namely, we ran a full evaluation on the “bikes”
signal, on an Nvidia H100 GPU, using a batch size of 32,768. NeoMLP takes 139.74 seconds, while
Siren takes 131.01 seconds. NeoMLP, however, cannot fit larger batch sizes in memory, while Siren
can fit as big as 1,048,576. With this batch size, Siren requires 79.18 seconds for a full evaluation.

(a) Bach (b) Bikes (c) BigBuckBunny

Figure 5: Runtime for fitting high-resolution signals. The x-axis represents wall time in seconds and
the y-axis represents the reconstruction quality (PSNR). NeoMLP fits signals faster and with better
reconstruction quality.

Table 5: Runtime, GPU memory, and batch size on fitting high resolution signals. For each dataset,
we trained all methods for the same amount of time for fair comparison.

(a) Bach

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 3.7 308,207 2.33
Siren (Sitzmann et al., 2020) 3.9 308,207 |

SPDER (Shah & Sitawarin, 2024) 6.0 308,207 |
NeoMLP (ours) 2.2 4,096 |

(b) Bikes

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 11.2 262,144 19.07
Siren (Sitzmann et al., 2020) 16.8 262,144 |

SPDER (Shah & Sitawarin, 2024) 37.3 262,144 |
NeoMLP (ours) 11.1 4,096 |

(c) BigBuckBunny

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet (Tancik et al., 2020) 13.9 262,144 24.73
Siren (Sitzmann et al., 2020) 18.7 262,144 |

SPDER (Shah & Sitawarin, 2024) 39.2 262,144 |
NeoMLP (ours) 13.2 4,096 |

We also monitor the runtime of NeoMLP on fitting datasets of signals, and compare against Functa
(Dupont et al., 2022). We report the results in Table 6. NeoMLP consistently exhibits lower runtimes
for the fitting stage, while Functa is much faster during the finetuning stage, which can be attributed
to the meta-learning employed for finetuning, and the highly efficient JAX (Bradbury et al., 2018)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

implementation. As noted by Dupont et al. (2022), however, meta-learning may come at the expense
of limiting reconstruction accuracy for more complex datasets, since the latent codes lie within a few
gradient steps from the initialization.

Table 6: Runtime on fitting datasets of signals. The finetuning runtime is measured on the test set
only. The runtime for fitting is measured in minutes, while the runtime for finetuning is measured in
seconds.

(a) MNIST

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 192 240 3 16
NeoMLP (ours) 20 63 10 318

(b) CIFAR10

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 213 418 3 16
NeoMLP (ours) 50 305 10 646

(c) ShapeNet

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa (Dupont et al., 2022) 20 1002 3 250
NeoMLP (ours) 20 713 2 1680

D IMPLEMENTATION DETAILS

D.1 EMBEDDING INITIALIZATION

Fitting high-resolution signals We initialize input embeddings by sampling from a normal distri-
bution with variance σ2

i = 1. For hidden and output embeddings, we use a variance σ2
o = 1e− 3.

Fitting ν-sets During fitting, we initialize the input, hidden, and output embeddings by sampling a
normal distribution with variance σ2

i = σ2
o = 1e− 3. During finetuning, we sample embeddings for

new signals from a normal distribution with variance σ2
o = 1e− 3.

D.2 WEIGHT INITIALIZATION

We initialize the bias of the final output linear layer to zeros, as we observe this leads to faster
convergence and better stability at the beginning of training. Further, we initialize the weights of
the linear projection following the random Fourier features by sampling from a normal distribution
N
(
0, 2

DRFF

)
. This results in a unit normal distribution of the inputs after the linear projection.

E EXPERIMENT DETAILS

E.1 HIGH-RESOLUTION SIGNALS

In Table 7 we provide the hyperparameters for NeoMLP.

For the audio fitting, Siren (Sitzmann et al., 2020) has 198,145 parameters. It is a 5-layer MLP, with
a hidden dimension of 256, and it is trained with full batch training and a learning rate of 5 · 10−5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 7: Training and backbone hyperparameters for fitting high-resolution signals.

Hyperparameter Audio (Bach) Video (Bikes) Video+Audio (Big Buck Bunny)

Number of parameters 182,017 3,189,249 3,189,249

FFN hidden dim 256 1,024 1,024
Token dimensionality D 64 256 256

Self-attention heads 4 8 8
Number of layers 3 4 4

RFF dimensionality DRFF 512 128 128
RFF standard deviation σ 20 20 20

Total number of nodes 8 16 16

Number of epochs 5,000 200 400
Minibatch size 4,096 4,096 4,096

Learning rate 0.005 0.0005 0.0005

For the video fitting, Siren has 3,155,971 parameters, and for the audio-visual data, Siren has
3,162,121 parameters. It both settings, it is using the exact same architecture with 5 layers and a
hidden dimension of 1024. We train it with a learning rate of 10−4 and a batch size of 262,144.

E.2 FITTING ν-SETS

For ShapeNet10 (Chang et al., 2015), we fit the dataset for 20 epochs. In each epoch, we stop when
we have used 10% of the available points, which effectively results in 2 epochs in total. We finetune
for 2 epochs, and use the 20% of the available points. We use a minibatch size of 32,768 points, and
a learning rate of 0.005. The hyperparameters of the backbone are listed in Table 8.

For MNIST, we fit the dataset for 20 epochs and finetune for 10 epochs. We use a minibatch of
12,288 points (the equivalent of 16 images), and a learning rate of 0.005. The hyperparameters of the
backbone are listed in Table 8.

For CIFAR10, we fit the dataset for 50 epochs and finetune for 20 epochs. We use a minibatch of
16,384 points (the equivalent of 16 images), and a learning rate of 0.005. The hyperparameters of the
backbone are listed in Table 8.

Table 8: Training and backbone hyperparameters for ShapeNet10, MNIST, and CIFAR10

Hyperparameter ShapeNet10 MNIST CIFAR10

Training Hyperparameters

Minibatch size 32,768 12,288 (16 images) 16,384 (16 images)
Learning rate 0.005 0.005 0.005

Backbone Hyperparameters

FFN hidden dim 512 512 128
Token dimensionality D 256 256 512

Number of self-attention heads 4 4 4
Number of layers 3 3 3

RFF dimensionality DRFF 512 512 128
RFF standard deviation σ 20 20 20

Total number of nodes 8 8 8

E.3 DOWNSTREAM TASKS ON ν-SETS

We perform a hyperparameter search for NeoMLP to find the best downstream model. Specifically,
we use Bayesian hyperparameter search from Wandb (Biewald, 2020) to find the best performing
hyperparameters for CIFAR10, and reuse these hyperparameters for all datasets. We perform our

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

search over the choice of Mixup (Zhang, 2017), batch size, learning rate, noise added to the data,
data dropout, hidden dimension and model dropout (Srivastava et al., 2014).

Our downstream model is a 3 layer MLP with SiLU activations (Ramachandran et al., 2018), a hidden
dimension of 2048, and dropout of 0.3. We train the model with a learning rate of 8e− 3, and batch
size of 256. We use Mixup, weight decay with λ = 0.05, and add noise to the data with scale 0.05.
Finally, we use weight averaging with exponential moving average (EMA).

For CIFAR10 (Krizhevsky et al., 2009), the model takes as input 6 embeddings (the NeoMLP had 8
nodes in total). We train for 100 epochs.

For ShapeNet10 (Chang et al., 2015), the model takes as input 13 embeddings (the NeoMLP had 16
nodes in total). We use a higher weight decay λ = 0.25 to further prevent overfitting, and train for
500 epochs.

For MNIST (LeCun et al., 1998), the model takes as input 6 embeddings (the NeoMLP had 8 nodes
in total). We use a higher weight decay λ = 0.2 and train for 500 epochs.

F DATASET DETAILS

F.1 SHAPENET10

We use the following 10 classes for ShapeNet10 classification: loudspeaker, bench, watercraft, lamp,
rifle, sofa, cap, airplane, chair, table.

The dataset comprises 35,984 shapes. We use 29,000 shapes for training, 2,000 as a validation set,
and 4,984 as a test set.

For CIFAR10, following Functa (Dupont et al., 2022), we use 50 augmentations per training and
validation image. This results in a total of 2,500,000 training and validation images. We use 5,000 of
those for validation.

G QUALITATIVE RESULTS

We show example frames for the “BigBuckBunny” video clip in Figure 6.

We show the reconstructions for the “Bach” audio clip in Figure 7, and the errors between the
groundtruth signal and reconstructions in Figure 8.

H VISUALIZATIONS

I LATENT SPACE

We visualize the learned MNIST data manifold for a two-dimensional latent space (with a single
embedding) in Figure 10, following Kingma & Ba (2015); Park et al. (2019). We assume that the
latent space is Gaussian, with a sample mean and variance estimated from the latents of the training
set. We sample linearly spaced coordinates on the unit square and transform them through the Percent
Point Function (PPF) of the Gaussian to produce the values of the latent variables.

We also visualize random samples from the latent space of NeoMLP across hyperparameter configu-
rations varying in the number of embeddings and dimensionality of the latents in Figure 11, as well
as the corresponding reconstruction quality and downstream performance in Table 9.

J MORE ABLATION STUDIES

We report further ablation studies on CIFAR10 (Krizhevsky et al., 2009) to examine the importance
of various hyperparameters in NeoMLP; namely, we perform ablation studies on the number of layers,
the number of hidden latents, and using different layer normalization strategies. In all ablation studies,
we fit the dataset for 20 epochs and finetune for 5 epochs. The remaining hyperparameters (except for
the target variable in each study) are identical to the CIFAR10 column in Table 8 in Appendix E.2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 9: Reconstruction quality and downstream performance for the configurations corresponding to
Figure 11.

Num. latents Latent dim. Fit PSNR (↑) Accuracy (%)

1 2 15.61 23.7
1 8 20.47 48.2
2 4 20.19 49.3
1 32 24.75 76.2
4 8 24.44 72.5

Table 10: Ablation study on the importance of the number of layers on CIFAR10. Using 4 layers
results in the best test reconstruction quality as well as the best downstream performance. Increasing
the number of layers to 8 marginally increases the fitting PSNR, while negligibly reduces the test
PSNR and the test accuracy.

Num. layers Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

1 23.10 24.04 53.92
2 29.54 28.76 57.36

3 (default) 30.54 29.15 58.82
4 33.51 31.15 59.09
8 34.67 31.05 58.96

Table 11: Ablation study on the importance of layer normalization on CIFAR10. Our choice of
removing the Layer Norm (Ba et al., 2016) is backed by this ablation study, since it results in the best
test PSNR and accuracy. Both Layer Norm and RMS Norm (Zhang & Sennrich, 2019) achieve good
fitting PSNR, but fail to generalize in the test set.

Normalization type Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

No normalization (default) 30.54 29.15 58.82
Layer Norm (Ba et al., 2016) 30.82 26.76 46.51

RMS Norm (Zhang & Sennrich, 2019) 29.96 26.16 44.11

Table 12: Ablation study on the importance of the number of hidden latents (H) on CIFAR10. The
total number of latents is the sum of the hidden and output latents. Increasing the number of latents
results in increasing reconstruction quality, at the expense of lower downstream performance. Perhaps
surprisingly, the best downstream performance is acquired without hidden latents; we hypothesize
that this can be attributed this to the lack of permutation symmetries that stems from using output
latents only.

H Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

0 30.49 29.40 60.64
3 30.54 29.15 58.82

11 40.05 35.40 57.60

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(a) Ground truth

(b) NeoMLP

(c) RFFNet

(d) SIREN

(e) SPDER

Figure 6: Examples frames from fitting the “BigBuckBunny” video clip. The first row shows the
groundtruth, while the following rows show the reconstructions obtained using NeoMLP, RFFNet,
Siren, and SPDER, respectively. We observe that NeoMLP learns to reconstruct the video with much
greater fidelity.

Figure 7: Predictions for the “Bach” audio clip. The first row shows the groundtruth signal, while the
second and third row show the reconstructions from NeoMLP and Siren, respectively.

Importance of RFF As shown by Rahaman et al. (2019), neural networks suffer from spectral bias,
i.e. they prioritize learning low frequency components, and have difficulties learning high frequency
functions. We expect that these spectral biases would also be present in NeoMLP if left unattended.
To that end, we employed Random Fourier Features (RFF) (Tancik et al., 2020) to project our scalar
inputs to higher dimensions. Compared to alternatives like sinusoidal activations (Sitzmann et al.,
2020), RFFs allow our architecture to use a standard transformer.

To examine the spectral bias hypothesis, we train NeoMLP without RFF, using a learnable linear
layer instead. We train this new model on the “bikes” video, and on MNIST. We present the results in
Table 13. The study shows that RFFs clearly help with reconstruction quality, both in reconstructing
a high-resolution video signal, and on a dataset of images. Interestingly, the reconstruction quality
drop from removing RFFs does not translate to downstream performance drop, where, in fact, the
model without Fourier features is marginally better than the original.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 8: Errors ϵ = y − ŷ between predictions y and groundtruth ŷ. The top row shows the error
for NeoMLP, while the bottom row shows the error for Siren. Both the x-axis and the y-axis are
shared in this figure, but the y-axis is different from Figure 7 . We see that the errors from Siren have
a much larger amplitude, and still seem to capture signal components.

Figure 9: Test accuracy vs. reconstruction quality (PSNR). Experiments on CIFAR10, with different
hyperparameters, without augmentations.

Table 13: Ablation study on the importance of random Fourier features on (a) the bikes video, (b) on
MNIST.

(a) “Bikes” video

Method PSNR (↑)
NeoMLP (without RFF) 35.92

NeoMLP 39.06

(b) MNIST

Method PSNR (↑) Accuracy (%)

NeoMLP (without RFF) 30.33 98.81±0.03

NeoMLP 33.98 98.78±0.04

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(a) Epoch 1 (b) Epoch 10 (c) Epoch 20

Figure 10: The data manifold of NeoMLP with a 2D latent space and a single embedding, i.e.
O = 1, H = 0, D = 2. We visualize the manifold as the fitting stage progresses.

(a) H = 0, O = 1, D = 2

(b) H = 0, O = 1, D = 8

(c) H = 1, O = 1, D = 4

(d) H = 0, O = 1, D = 32

Epoch 1

(e) H = 3, O = 1, D = 8

Epoch 10 Epoch 20

Figure 11: Random samples from the latent space of NeoMLP, as the fitting stage progresses. We
visualize various configurations of the number of embeddings and the dimension of the latents.

23

	Introduction
	Background on Neural Fields

	NeoMLP
	From MLP to NeoMLP
	NeoMLP Architecture
	NeoMLP as an auto-decoding conditional neural field
	Using nu-reps for downstream tasks

	Experiments
	Fitting high-resolution signals
	Fitting nu-sets & Downstream tasks on nu-sets
	Ablation studies

	Related work
	Conclusion
	Fitting and finetuning nu-sets
	NeoMLP symmetries
	Computational complexity
	Implementation details
	Embedding initialization
	Weight initialization

	Experiment details
	High-resolution signals
	Fitting nu-sets
	Downstream tasks on nu-sets

	Dataset details
	ShapeNet10

	Qualitative results
	Visualizations
	Latent space
	More ablation studies

