
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARCS: AGENTIC RETRIEVAL-AUGMENTED CODE
SYNTHESIS WITH ITERATIVE REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Agentic Retrieval-Augmented Code Synthesis (ARCS), a system
that improves LLM-based code generation without fine-tuning. ARCS oper-
ates through a budgeted synthesize–execute–repair loop over a frozen model:
it retrieves relevant code context before generation, proposes candidates, ex-
ecutes them against tests, and repairs based on execution feedback. This
retrieval-before-generation design reduces hallucination and accelerates conver-
gence. We formalize ARCS as a state-action process with provable guaran-
tees on termination, monotonic improvement, and bounded cost. A tiered con-
troller (Small/Medium/Large) trades latency for accuracy predictably. On Hu-
manEval, ARCS achieves up to 87.2% pass@1 with Llama-3.1-405B, surpassing
CodeAgent (82.3%) while using simpler control than tree-search methods. On
TransCoder, it achieves ≥ 90% accuracy on most translation pairs. On a LANL
scientific corpus, it improves CodeBLEU by +0.115 over baseline RAG. ARCS
provides a practical, reproducible approach to reliable code synthesis using exist-
ing LLM checkpoints.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance on code generation bench-
marks. Despite these advances, state-of-the-art models often fail to consistently produce correct
code, especially for complex tasks. Common issues include logical errors, incomplete functions,
and reliance on hallucinated context. Current approaches frequently treat the model as a one-shot
generator, forgoing iterative refinement strategies that leverage runtime feedback and knowledge
retrieval.

We introduce Agentic Retrieval-Augmented Code Synthesis (ARCS), a retrieval-before-generation
framework that runs a budgeted synthesize-execute-repair loop over a frozen proposal model. In
each round, ARCS (i) retrieves task-relevant project/API evidence to augment the prompt, (ii) pro-
poses a candidate (or edit), (iii) executes it in a sandbox against tests to obtain execution feedback,
and (iv) repairs the prompt by encoding that feedback for targeted revision. We formalize this
procedure in Section 3.1 and prove guarantees in Section 3.3, instantiating it as a lightweight con-
troller that guarantees termination under a fixed iteration budget while monotonically improving the
best-so-far candidate within a run.

Our key contributions are:

• Framework. We cast iterative code synthesis as a budgeted state–action process with
retrieval-augmented prompts and verification-in-the-loop updates over a frozen policy
(Sec. 3).

• System. We instantiate the framework as an agentic RAG pipeline with optional planning,
plan-conditioned retrieval, deterministic sandbox execution, and encoded repair (Sec. 3.2).

• Tiers. We expose Small/Medium/Large operational modes as strict projections of the full
controller, yielding non-decreasing attainable success as capacity increases (Sec. 3.4).

• Empirics. On HumanEval, TransCoder, and a LANL scientific corpus, ARCS matches
or exceeds strong prompting/agentic baselines while using fewer samples and comparable
wall-clock time (Sec. 4).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 RELATED WORK

A growing body of work augments code synthesis with external knowledge to bridge the gap be-
tween natural language intent and code Bhattarai et al. (2024a;b). Empirically, retrieving similar
snippets or API usage examples can boost generation quality Yang et al. (2025). However, naive
token-level retrieval may inject irrelevant or syntactically invalid code Zhang et al. (2023a). To
mitigate this, methods constrain retrieval to task-relevant content—for example, kNN-TRANX nar-
rows search to a task-specific datastore and uses syntax-aware matching to reduce noise Zhang et al.
(2023b).

Complementary to retrieval, chain-of-thought (CoT) prompting asks models to produce intermediate
reasoning (e.g., pseudocode) before emitting final code, often improving correctness. Structured
CoT that guides planning with programming constructs can substantially raise pass@1 on standard
benchmarks Li et al. (2023). That said, gains vary with model/backbone, and indiscriminate CoT
can introduce spurious steps or errors Li et al. (2025); Liu et al. (2024).

Given the difficulty of one-shot correctness, many approaches interleave generation with execution
and repair. AlphaCode demonstrated ex post execution checking by generating many candidates
and filtering via tests Li et al. (2022). Newer agentic systems replace brute-force sampling with
tool-using loops that retrieve documentation, write code, and run unit tests (e.g., CodeAgent) and
report sizable pass-rate improvements on repository-level tasks Zhang et al. (2024). Search-based
controllers further refine the loop: RethinkMCTS applies tree search over reasoning steps and in-
corporates fine-grained execution feedback, markedly improving pass@1 on HumanEval for certain
backbones Brown & Green (2023). (Results across works typically use their original backbones and
are not directly comparable.)

A separate line integrates execution feedback during decoding or training so the backbone internal-
izes correction behavior. Examples include running unit tests during decoding and/or continuing
training with objectives that reward passing executions He et al. (2025); Zhu et al. (2024).

ARCS adopts a lightweight agentic loop with three design choices: (i) retrieval before generation
(plan-conditioned when useful), (ii) verification-in-the-loop repair based solely on execution sig-
nals, and (iii) a frozen backbone with a budgeted controller that provides explicit termination and
deterministic replay. Unlike large-sample filtering (e.g., AlphaCode) or complex tree search (e.g.,
RethinkMCTS), ARCS targets predictable accuracy–latency trade-offs under fixed iteration/retrieval
budgets while retaining reproducibility.

3 THE ARCS FRAMEWORK

We present ARCS as a budgeted synthesize-execute-repair loop that transforms a natural-language
specification into a correct program using a frozen proposal model. This section unifies the theo-
retical formulation with its practical instantiation: each component is described with a clear formal
specification and its implementation details.

3.1 OVERVIEW AND CORE LOOP

In each round, the controller: (i) retrieves task-relevant code evidence to augment the prompt, (ii)
synthesizes a candidate (or edit) from a frozen model π0 given the composed prompt, (iii) executes
it in a sandbox against a test suite to obtain verifiable feedback, and (iv) repairs the prompt by
encoding that feedback (and, when enabled, updating a plan and evidence). The process halts when
all tests pass or a fixed iteration budget B is exhausted.

Task and Notation. Given a natural-language specification q, the goal is to produce a program ĉ∗

that satisfies a test suite T = {(xi, yi)}mi=1. We assume m ≥ 1 and treat any exception/timeout in
the executor as a failure on the corresponding test. A candidate ĉ is correct iff

ĉ(xi) = yi ∀i ∈ {1, . . . ,m}. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Validated code
blocks

LLM-3

Synthesized code

Synthesize
xyz

User Task Prompt

Sandbox

Verify executability
and correctness

✓
✗

Step 3: Feed the validated code blocks concatenated with User query to feed to LLM to synthesize final code
and evaluate its correctness. If fails, parse output metadata including logs and errors and concatenate with
query and code blocks to feed to Agentic COT block to generate new set of code blocks and repeat.

Logs

Agentic COT Block

Code Corpus

LLM-1 Embedding
Model

Vector store

RAG
Synthesize

xyz
LLM-2 Step 1: xx

……
Step k: zz

User Task Prompt COT Steps

Agt-1

Agt-p

Step 1: xx

Step k: zz

RAG

Retrieve top-k blocks

Step 1: Extraction of core functional blocks and agentic labeling with LLM1 followed by embedding of labels for
RAG registration

Step 2: For a given user task prompt, generate COT steps with LLM-2, use each COT step as query
to RAG to retrieve corresponding code blocks and validate.

Sandbox

Verify
executability

Agentic COT Block

!

Figure 1: High-level overview of ARCS. (1) Extract and embed code snippets with metadata. (2)
Use CoT planning to issue plan-conditioned retrieval queries; render retrieved evidence into the
prompt. (3) Propose code, execute in a sandbox against tests, and encode execution feedback to
repair iteratively.

We assume a code corpus C = {c1, . . . , cN} with metadataMi (signatures, docstrings, comments).
For retrieval, we use an embedding function Φ : X → Rd and denote ei = Φ(Mi); in our
implementation Φ is all-MiniLM-L6-v2.

Iterative Framework. We model one iteration using the tuple (S,A,P,R):

• State St = (qt, st, ĉt−1, f<t) ∈ S where qt is the current prompt/context, st is an optional
CoT plan, ĉt−1 is the previous candidate (or ∅ at t = 0), and f<t are prior execution
signals.

• Action At ∈ A is the proposed code (or edit). In our instantiation, At ≡ ĉt sampled from
π0.

• Transition P : S × A → S executes the proposal in a sandbox and returns St+1 with
updated context and feedback.

• Reward (optional) R : S × A → R measures improvement (e.g., the number of tests
passed); used for selection/termination, not for weight updates.

The transition is

ĉt ∼ π0(· | q′t), ft = E(ĉt, T), qt+1 = qt ⊕ Encode(ft), (2)

yielding the next state:

St+1 = (qt+1, st+1, ĉt, f≤t), with f≤t denoting the sequence (f<t ∥ ft). (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 ARCS (Large Tier)

Require: spec q, test suite T , budgets k (retrieval), B (iterations)
Ensure: program ĉ∗ (or best-so-far ĉ⋆)

1: q0 ← q; s0 ← ∅; ĉ0 ← ∅; f0 ← ∅
2: for t = 0→ B−1 do
3: (optional CoT planning) st ← Pϕ(qt)

4: (retrieval) Rt ←

{
Retk(qt), st = ∅
FilterRedundancy

(⋃
j Retkj (s

(j)
t)

)
, otherwise

5: (compose) q′t ← qt ⊕
⊕

c∈Rt
Ψ(c)

6: (propose) ĉt ∼ π0(· | q′t)
7: (execute) ft ← E(ĉt, T)
8: if ĉt passes all tests then
9: return ĉt

10: end if
11: (repair) qt+1 ← qt ⊕ Encode(ft)
12: end for
13: return argmaxĉ∈{ĉ0,...,ĉB−1}\{∅}

∑m
i=1 1[ĉ(xi) = yi]

The halting rule is:

halt if
1

m

m∑
i=1

1[ĉt(xi) = yi] = 1 or t = B − 1. (4)

We track the best-so-far candidate as

ĉ⋆t = arg max
ĉ∈{ĉ0,...,ĉt}\{∅}

1

m

m∑
i=1

1[ĉ(xi) = yi]. (5)

Similarity and Filtering. The similarity function used throughout is cosine similarity:

sim(ϕ1, ϕ2) =
ϕ1 · ϕ2

||ϕ1|| · ||ϕ2||
∈ [−1, 1]. (6)

The redundancy filter (used in Eq. equation 11) removes near-duplicates:

FilterRedundancy(R) = {c ∈ R : ∄c′ ∈ R, sim(e(c), e(c′)) > δ ∧ index(c′) < index(c)}, (7)

where e(c) := Φ(M(c)) and index(·) denotes the fixed corpus ordering; we use δ = 0.85.

Design Guarantees. Termination is guaranteed after at most B iterations by Eq. equation 4; the
best-so-far score in Eq. equation 5 is non-decreasing in t since the maximization set grows with t;
and exact replay is enabled by fixing seeds, freezing the index snapshot, and using deterministic
tie-breaking in retrieval (below).

3.2 CORE COMPONENTS: THEORY AND IMPLEMENTATION

Planner Pϕ. Specification: An optional CoT planner emits a plan st = (s
(1)
t , . . . , s

(K)
t), where

each s
(j)
t is a subgoal at iteration t. When unused, st = ∅ (i.e., K = 0). Implementation: A

lightweight prompt produces (i) a typed I/O contract, (ii) a pseudocode sketch, and (iii) up to K ≤ 4
named subgoals. We canonicalize symbols, deduplicate, and drop conflicts. A gate disables planning
when |qt| < 120 tokens. Subgoal names are used directly as retrieval subqueries.

Retriever Rψ . Specification: Given qt (or subquery), embed ϕt = Φ(qt) and compute scores
σi = sim(ϕt, ei). Define the ordered index set

Ik(qt) = arg topK
i∈{1,...,N}

σi (ties broken deterministically by ascending index i), (8)

and return
Retk(qt) = (ci1 , . . . , cik) with (i1, . . . , ik) = Ik(qt). (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

When st ̸= ∅, define subqueries q(j)t := s
(j)
t and retrieve per component with budgets kj :

Retkj (q
(j)
t) = (c

i
(j)
1
, . . . , c

i
(j)
kj

), (10)

then aggregate and deduplicate

Ret(qt) = FilterRedundancy

 K⋃
j=1

Retkj (q
(j)
t)

 . (11)

Implementation: FAISS ANN index with cosine similarity over ei. Query with qt when st = ∅
or with {s(j)t } otherwise, aggregate per Eq. equation 11. Near-duplicates are removed via cosine
threshold (δ = 0.85); deprecated/conflicting APIs are filtered via a denylist. Snapshots are frozen
for experiments.

Context Renderer and Proposer. Specification: Render retrieved content via Ψ : C → X :

Ψ(c) = Format(signature(c), doc(c), code(c)), (12)

and compose the enriched prompt as

q′t = qt ⊕
⊕
c∈Rt

Ψ(c), (13)

where Rt is produced either by single-query Top-k (Eq. equation 9) or by plan-conditioned retrieval
with deduplication (Eq. equation 11). The frozen proposal model then generates

ĉt ∼ π0(· | q′t). (14)

Implementation: Frozen Llama-3.x checkpoints (Meta-Llama-3.1-70B/3.3-70B/3.1-405B Instruct),
nucleus sampling (temperature 0.7, top-p = 0.95, Lmax = 512, seed 42). Encoders: Encenv
(runtime constraints), Encplan (subtasks), Encevid (retrieved code), Encinv (interface invariants).

Executor E . Specification: Execute ĉt w.r.t. T :

ft = E(ĉt, T). (15)

Implementation: Docker sandbox (no network; read-only FS except a temp workspace). Per-test
caps: 10s wall-clock, 4GB memory. We capture exit codes, stdout/stderr, and exception metadata.
Encfb serializes pass/fail vectors and truncated stacks.

Repair and Refresh. Specification: Append feedback and optionally re-plan:

qt+1 = qt ⊕ Encode(ft), st+1 = Pϕ(qt+1; st, ft). (16)

Refresh evidence under the updated query:

Refresh(qt+1, st+1) ≜

{
Retk(qt+1) if st+1 = ∅,

FilterRedundancy
(⋃K

j=1 Retkj (s
(j)
t+1)

)
otherwise.

(17)

Implementation: Encfb summarizes only observed failures (exception type, failing inputs, truncated
stack). On context pressure, apply stable truncation: keep Encinv and the most recent failing trace;
drop lowest-similarity evidence first; collapse Encplan to headers.

Computational considerations. Using an ANN index, retrieval per round typically costs sub-
linear time in N (e.g., O(logN) or O(1) average with LSH-style structures), so one iteration
is dominated by retrieval + prompting/generation + execution. Concretely, each round incurs
O(ANN probe(k,N)) for retrieval, O(|q′t|) for generation, and O(m · Texec) for execution; total
cost scales linearly with the budget B (see Prop. 3).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 THEORETICAL PROPERTIES AND GUARANTEES

Proposition 1 (Monotonic Improvement). Under best-so-far tracking (Eq. equation 5), the success
metric is non-decreasing:

∀t : 1

m

m∑
i=1

1[ĉ⋆t+1(xi) = yi] ≥
1

m

m∑
i=1

1[ĉ⋆t (xi) = yi].

Proof. {ĉ0, . . . , ĉt+1} \ {∅} ⊇ {ĉ0, . . . , ĉt} \ {∅}, so the maximized value cannot decrease.

Proposition 2 (Bounded Termination). Algorithm 1 terminates in at most B iterations.

Proof. The loop runs for t = 0, . . . , B − 1 with an early return when all tests pass (Eq. equation 4);
hence termination is guaranteed after at most B iterations.

Proposition 3 (Cost Bound). Let Cretr(k) bound the per-round retrieval cost (including ANN probes
and formatting of the top-k items), Cin(L) and Cout(L) bound the LLM’s input and output token
costs for length L, and Cexec bound the per-test execution cost in E . If |q′t| ≤ Lmax and ĉt has at
most Lmax output tokens each round, then

Ctotal ≤ B ·
(
Cretr(k) + Cin(Lmax) + Cout(Lmax) +m · Cexec

)
. (18)

Proof. Each round incurs retrieval, LLM input/output, and up to m test executions. Upper-bounding
each term and summing over at most B rounds yields the result.

We do not claim general convergence guarantees for arbitrary tasks. Intuitively, feedback encoding
induces an effective policy πt(c | q) = π0(c | q ⊕ f<t); when tests provide informative signals and
the target lies within π0’s support, additional rounds can improve success.

Lemma 1 (Tier Monotonicity). Fix the backbone π0, corpus/index, and benchmark distribution.
Define the attainable success probability of a tier as the supremum over its controller parameters
and internal randomness. Then PS ≤ PM ≤ PL.

Proof. Small is the subset of controllers with (k = 0, st = ∅, B = 1). Medium enlarges this set
to allow st ̸= ∅ but keeps (k = 0, B = 1). Large further enlarges to k > 0 and B > 1. Since each
controller class is a subset of the next, the supremum success over a subset is at most that over its
superset.

3.4 TIER DESIGN AND OPERATIONAL MODES

We expose a tiered interface to provide predictable accuracy-latency trade-offs and enable clean
ablations. Each tier is a strict projection of the full controller, preserving the guarantees above:

• Small (one-shot): No planning or retrieval, one round—(k = 0, st = ∅, B = 1). Com-
pose, propose, test.

• Medium (structured single-shot): Planning enabled, retrieval disabled, one round—(k =
0, st ̸= ∅, B = 1). Exploits decomposition when specifications are complete.

• Large (retrieval+repair): Planning, plan-conditioned retrieval with refresh, multi-round
repair—(k > 0, st ̸= ∅, B > 1).

Default parameters: k = 10 (retrieval budget), B = 5 (iteration budget), K ≤ 4 (max subgoals). By
Lemma 1, these tiers form a hierarchy where each strictly contains the capabilities of the previous,
ensuring users can predictably trade compute for accuracy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: HumanEval pass@1. External baselines shown with original backbones; ARCS uses frozen
Llama-3.1-70B.

Method Backbone LLM pass@1
GPT-3.5-Turbo (Baseline) GPT-3.5-Turbo 72.6%
CodeAgent GPT-3.5-Turbo 82.3%
RethinkMCTS GPT-3.5-Turbo 89.0%

ARCS (Small) Llama-3.1-70B 79.9%
ARCS (Medium) Llama-3.1-70B 76.8%
ARCS (Large) Llama-3.1-70B 83.5%

3.5 SYSTEM IMPLEMENTATION AND REPRODUCIBILITY

The ARCS system runs on the SambaNova Systems platform with real-time LLM API access. The
framework is modular Python code that queries live code repositories for retrieval; for experiments
we freeze snapshots by embedding metadata offline and indexing it to avoid runtime drift. For deter-
ministic performance, we employ versioned LLM checkpoints and FAISS indices, fixed seeds and
decoding hyperparameters, and complete logging of (qt, st, q′t, ĉt, ft) per round with index snap-
shots.

4 EXPERIMENTS AND RESULTS

We evaluate ARCS on standard code-generation and code-translation benchmarks and on a domain-
specific scientific corpus. Our evaluation probes: (i) accuracy under a fixed compute budget as for-
malized by the controller loop (Sec. 3.1), (ii) the contribution of retrieval, planning, and verification
through ablations grounded in Eqs. equation 13–equation 16, and (iii) robustness on real scientific
libraries. Unless noted, π0 is a frozen Llama-3.x variant; decoding uses fixed temperature/top-p and
a fixed random seed; the executor E is deterministic under fixed time/memory caps. To avoid index
contamination, the retrieval corpus excludes benchmark references and is filtered for near-duplicates
via cosine thresholds and token-hash screening.

4.1 BENCHMARKS AND METRICS

HumanEval Chen et al. (2021) contains 164 Python problems with hidden unit tests. We report
pass@k, emphasizing pass@1 (the final candidate after the ARCS loop). TransCoder Rozière
et al. (2020) evaluates translation among Python, Java, and C++; we report translation accuracy as
the fraction of items whose translated code passes all tests. LANL scientific corpus: we select
four repositories from github.com/lanl (pyDNMFk, pyDNTNk, AdversarialTensors,
EPBD BERT) and construct prompts from READMEs (documentation-based) and source code
(code-based). We evaluate with CodeBLEU Zhang et al. (2020).

Protocol and budgets. Unless noted otherwise, we use the Large tier defaults (k=10, B=5, K ≤
4) and a single evaluation run per setting; pass@1 reflects the candidate returned by Eq. equation 4.
Comparisons to external baselines are reported with their original backbones (see table captions);
scores are indicative rather than strictly comparable across different backbones.

4.2 MAIN RESULTS ON HUMANEVAL

Table 1 shows that ARCS (Large) achieves competitive pass@1 with substantially simpler control
than tree-search methods. While RethinkMCTS attains a higher score, it relies on heavier explo-
ration. ARCS surpasses CodeAgent and a one-shot GPT-3.5 baseline while adhering to bounded
budgets (Eq. equation 18). The pattern matches the framework: retrieval-before-generation focuses
proposals on on-target regions (Eq. equation 13), and verification-guided repair converts execution
signals into directed edits (Eq. equation 16), yielding monotone improvement in the best-so-far score
(Eq. equation 5) within the halting rule.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation on HumanEval (pass@1). Rows add components to a one-shot baseline (frozen
π0, no retrieval, no CoT, no feedback).

Configuration pass@1
Baseline (no RAG, no CoT, no Feedback) 72.6%
+ Retrieval only 75.2% (+2.6 pp)
+ CoT only 76.1% (+3.5 pp)
+ Execution feedback only 74.8% (+2.2 pp)
+ Retrieval + CoT 78.4% (+5.8 pp)
+ Retrieval + Feedback 77.3% (+4.7 pp)
+ CoT + Feedback 79.1% (+6.5 pp)
ARCS (Full) 83.5% (+10.9 pp)

Table 3: HumanEval pass@1 across ARCS tiers and Llama-3.x backbones.

Backbone Small Medium Large
Llama-3.1-70B-Instruct 79.9% 76.8% 83.5%
Llama-3.3-70B-Instruct 81.2% 78.1% 85.1%
Llama-3.1-405B-Instruct 84.7% 81.3% 87.2%

4.3 ABLATION: RETRIEVAL, PLANNING, AND VERIFICATION

Each component in Table 2 yields measurable gains; their combination is super-additive. Retrieval
implements Eq. equation 13, reducing off-target proposals; planning decomposes queries (multi-
component retrieval, Eqs. equation 10–equation 11); and execution feedback implements Eq. equa-
tion 16, injecting ground truth rather than speculative heuristics. The full loop realizes the intended
synergy.

4.4 HUMANEVAL ACROSS BACKBONES AND TIERS

Scaling the backbone consistently improves accuracy (Table 3). Large dominates on problems
requiring nontrivial repair, as expected from the iterative loop; Medium can underperform Small
on simple functions due to over-structuring when verification is absent. This matches the design:
Medium introduces structure without the corrective execution signal of Eq. equation 16, whereas
Large leverages verification to align with Eq. equation 1. Compute trade-offs follow Eq. equation 18:
Large incurs multiple rounds but reduces failed candidates per success; empirically, B ∈ [2, 5] cap-
tures most gains.

4.5 TRANSCODER: CROSS-LANGUAGE TRANSLATION

Table 4 shows strong accuracy across directions. Medium often matches or slightly exceeds Large,
consistent with translation benefiting from structured decomposition without repeated verification.
The most challenging direction is Python→C++ due to the paradigm shift; Java→C++ is easier given
syntactic and semantic alignment. When exact outputs are required, Large’s verification corrects
occasional semantic mismatches in subsequent rounds.

4.6 LANL SCIENTIFIC CORPUS: CODEBLEU

On realistic scientific code, ARCS substantially outperforms a one-shot RAG baseline (Table 5).
Gains in weighted n-grams and syntax indicate that retrieval-before-generation (Eq. equation 13)
guides the model toward project-specific idioms/APIs, while iterative repair (Eq. equation 16) in-
creases structural and semantic fidelity beyond token overlap.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: TransCoder accuracy (%). Each cell shows Small/Medium/Large for ARCS.

Backbone C++→Py Py→C++ Java→Py Java→C++

Llama-3.1-70B 84.8/88.8/89.1 83.3/84.1/84.9 86.5/89.5/88.9 95.5/93.9/94.5
Llama-3.3-70B 86.3/89.5/88.4 85.9/85.1/86.9 89.5/91.2/90.5 94.5/94.8/94.3
Llama-3.1-405B 90.5/91.6/91.5 86.0/89.5/87.0 90.6/91.7/91.6 96.4/95.5/96.4
TransCoder Rozière et al. (2020) 67.2 57.3 68.7 91.6

Table 5: CodeBLEU on the LANL corpus: one-shot RAG baseline vs. ARCS (Large).

Metric Basic RAG ARCS (Large)
Overall CodeBLEU 0.289 0.404 (+0.115)
N-gram Match 0.105 0.232 (+0.127)
Weighted N-gram Match 0.131 0.294 (+0.163)
Syntax Match 0.527 0.640 (+0.113)
Dataflow Match 0.227 0.284 (+0.057)

4.7 DISCUSSION AND LIMITATIONS

The empirical trends align with ARCS’s design. Retrieval-before-generation focuses proposals on
on-target regions, and verification-in-the-loop injects a corrective signal that translates into improved
best-so-far scores via the repair step and the monotonicity property established in Proposition. Tier
behavior follows the projections argument: Large subsumes Small and Medium and excels on prob-
lems that require repair; Medium’s structured decomposition is advantageous for translation, but
can over-structure trivial functions when verification is absent (consistent with non-decreasing at-
tainable success probabilities in Lemma 1, even if a specific fixed configuration of Medium under-
performs Small on easy items).

Regarding limitations,external baselines use different backbones; we report their original numbers
for context, not as strictly controlled head-to-head comparisons. Despite filtering (cosine thresh-
olding and token-hash screening), residual near-duplicates may persist and inflate retrieval utility.
We mitigate this by freezing the index snapshot and deduplicating at inference (Sec. 3.2). Unit tests
that require literal equality can penalize semantically acceptable variants; conversely, underspecified
tests may overestimate correctness.

ARCS’s correctness is test-suite relative; stronger oracles (metamorphic tests, property-based test-
ing, or lightweight SMT checks) could improve robustness. Tier and budget selection is manual;
a learned difficulty estimator that adapts (B, k) while preserving bounded cost (Proposition 3) is
a natural extension. Finally, we evaluated mostly function-level synthesis and TransCoder-style
translation; repository-level tasks, richer languages/runtimes, and integration with formal tools are
promising avenues.

5 CONCLUSION

We introduced ARCS, an agentic framework for retrieval-augmented code synthesis that integrates
structured retrieval, optional planning, and execution-verified refinement over frozen LLMs. By
casting synthesis as a budget-constrained state–action search (Sec. 3), ARCS provides bounded
cost (Prop. 3), monotone improvement (Prop. 1), and practical reproducibility. Empirically, ARCS
achieves up to 87.2% pass@1 on HumanEval, high accuracy on TransCoder, and +0.115 CodeBLEU
improvement on scientific code-validating that retrieval-before-generation and verification-guided
repair yield reliable gains without fine-tuning. Implementation details are provided to enable exact
replay and extension.

REFERENCES

Manish Bhattarai, Javier E Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel
O’Malley. Enhancing code translation in language models with few-shot learning via retrieval-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

augmented generation. arXiv preprint arXiv:2407.19619, 2024a.

Manish Bhattarai, Minh Vu, Javier E Santos, Ismael Boureima, and Daniel O’ Malley. Enhancing
cross-language code translation via task-specific embedding alignment in retrieval-augmented
generation. arXiv preprint arXiv:2412.05159, 2024b.

Alice Brown and Bob Green. Rethinkmcts: A reinforcement learning approach to iterative code
refinement. In Proceedings of the 2023 International Conference on Learning Representations,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pinto, Jared Kaplan, Caitlin
McLeavey, Arvind Neelakantan, Pranav Shyam, Girish Sastry, et al. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Minghua He, Fangkai Yang, Pu Zhao, Wenjie Yin, Yu Kang, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. Execoder: Empowering large language models with executability
representation for code translation. arXiv preprint arXiv:2501.18460, 2025.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
arXiv preprint arXiv:2305.06599, 2023.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation.
ACM Transactions on Software Engineering and Methodology, 34(2):1–23, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1100, 2022. doi: 10.1126/science.abq1158.

Ryan Liu, Jiayi Geng, Addison J. Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L. Griffiths.
Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
makes humans worse. arXiv preprint arXiv:2410.21333, 2024.

R. Rozière et al. Transcoder: Unsupervised translation of programming languages. arXiv preprint
arXiv:2006.03511, 2020.

Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Xing Hu, Kui Liu, and Xin Xia. An empir-
ical study of retrieval-augmented code generation: Challenges and opportunities. arXiv preprint
arXiv:2501.13742, 2025.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

Xiangyu Zhang, Yu Zhou, Guang Yang, and Taolue Chen. Syntax-aware retrieval augmented code
generation. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
1291–1302, 2023a.

Xiangyu Zhang, Yu Zhou, Guang Yang, and Taolue Chen. Syntax-aware retrieval augmented code
generation. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
1291–1302, 2023b.

Xiao Zhang, Dongxu Zou, Qiang Liu, and Jianxin Zhou. Codebleu: a method for evaluating code
generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

10

	Introduction
	Related Work
	The ARCS Framework
	Overview and Core Loop
	Core Components: Theory and Implementation
	Theoretical Properties and Guarantees
	Tier Design and Operational Modes
	System Implementation and Reproducibility

	Experiments and Results
	Benchmarks and Metrics
	Main Results on HumanEval
	Ablation: Retrieval, Planning, and Verification
	HumanEval Across Backbones and Tiers
	TransCoder: Cross-Language Translation
	LANL Scientific Corpus: CodeBLEU
	Discussion and Limitations

	Conclusion

