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ABSTRACT

We present Agentic Retrieval-Augmented Code Synthesis (ARCS), a system
that improves LLM-based code generation without fine-tuning. ARCS oper-
ates through a budgeted synthesize–execute–repair loop over a frozen model:
it retrieves relevant code context before generation, proposes candidates, ex-
ecutes them against tests, and repairs based on execution feedback. This
retrieval-before-generation design reduces hallucination and accelerates conver-
gence. We formalize ARCS as a state-action process with provable guaran-
tees on termination, monotonic improvement, and bounded cost. A tiered con-
troller (Small/Medium/Large) trades latency for accuracy predictably. On Hu-
manEval, ARCS achieves up to 87.2% pass@1 with Llama-3.1-405B, surpassing
CodeAgent (82.3%) while using simpler control than tree-search methods. On
TransCoder, it achieves ≥ 90% accuracy on most translation pairs. On a LANL
scientific corpus, it improves CodeBLEU by +0.115 over baseline RAG. ARCS
provides a practical, reproducible approach to reliable code synthesis using exist-
ing LLM checkpoints.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance on code generation bench-
marks. Despite these advances, state-of-the-art models often fail to consistently produce correct
code, especially for complex tasks. Common issues include logical errors, incomplete functions,
and reliance on hallucinated context. Current approaches frequently treat the model as a one-shot
generator, forgoing iterative refinement strategies that leverage runtime feedback and knowledge
retrieval.

We introduce Agentic Retrieval-Augmented Code Synthesis (ARCS), a retrieval-before-generation
framework that runs a budgeted synthesize-execute-repair loop over a frozen proposal model. In
each round, ARCS (i) retrieves task-relevant project/API evidence to augment the prompt, (ii) pro-
poses a candidate (or edit), (iii) executes it in a sandbox against tests to obtain execution feedback,
and (iv) repairs the prompt by encoding that feedback for targeted revision. We formalize this
procedure in Section 3.1 and prove guarantees in Section 3.3, instantiating it as a lightweight con-
troller that guarantees termination under a fixed iteration budget while monotonically improving the
best-so-far candidate within a run.

Our key contributions are:

• Framework. We cast iterative code synthesis as a budgeted state–action process with
retrieval-augmented prompts and verification-in-the-loop updates over a frozen policy
(Sec. 3).

• System. We instantiate the framework as an agentic RAG pipeline with optional planning,
plan-conditioned retrieval, deterministic sandbox execution, and encoded repair (Sec. 3.2).

• Tiers. We expose Small/Medium/Large operational modes as strict projections of the full
controller, yielding non-decreasing attainable success as capacity increases (Sec. 3.4).

• Empirics. On HumanEval, TransCoder, and a LANL scientific corpus, ARCS matches
or exceeds strong prompting/agentic baselines while using fewer samples and comparable
wall-clock time (Sec. 4).
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2 RELATED WORK

A growing body of work augments code synthesis with external knowledge to bridge the gap be-
tween natural language intent and code Bhattarai et al. (2024a;b). Empirically, retrieving similar
snippets or API usage examples can boost generation quality Yang et al. (2025). However, naive
token-level retrieval may inject irrelevant or syntactically invalid code Zhang et al. (2023a). To
mitigate this, methods constrain retrieval to task-relevant content—for example, kNN-TRANX nar-
rows search to a task-specific datastore and uses syntax-aware matching to reduce noise Zhang et al.
(2023b).

Complementary to retrieval, chain-of-thought (CoT) prompting asks models to produce intermediate
reasoning (e.g., pseudocode) before emitting final code, often improving correctness. Structured
CoT that guides planning with programming constructs can substantially raise pass@1 on standard
benchmarks Li et al. (2023). That said, gains vary with model/backbone, and indiscriminate CoT
can introduce spurious steps or errors Li et al. (2025); Liu et al. (2024).

Given the difficulty of one-shot correctness, many approaches interleave generation with execution
and repair. AlphaCode demonstrated ex post execution checking by generating many candidates
and filtering via tests Li et al. (2022). Newer agentic systems replace brute-force sampling with
tool-using loops that retrieve documentation, write code, and run unit tests (e.g., CodeAgent) and
report sizable pass-rate improvements on repository-level tasks Zhang et al. (2024). Search-based
controllers further refine the loop: RethinkMCTS applies tree search over reasoning steps and in-
corporates fine-grained execution feedback, markedly improving pass@1 on HumanEval for certain
backbones Brown & Green (2023). (Results across works typically use their original backbones and
are not directly comparable.)

A separate line integrates execution feedback during decoding or training so the backbone internal-
izes correction behavior. Examples include running unit tests during decoding and/or continuing
training with objectives that reward passing executions He et al. (2025); Zhu et al. (2024).

ARCS adopts a lightweight agentic loop with three design choices: (i) retrieval before generation
(plan-conditioned when useful), (ii) verification-in-the-loop repair based solely on execution sig-
nals, and (iii) a frozen backbone with a budgeted controller that provides explicit termination and
deterministic replay. Unlike large-sample filtering (e.g., AlphaCode) or complex tree search (e.g.,
RethinkMCTS), ARCS targets predictable accuracy–latency trade-offs under fixed iteration/retrieval
budgets while retaining reproducibility.

3 THE ARCS FRAMEWORK

We present ARCS as a budgeted synthesize-execute-repair loop that transforms a natural-language
specification into a correct program using a frozen proposal model. This section unifies the theo-
retical formulation with its practical instantiation: each component is described with a clear formal
specification and its implementation details.

3.1 OVERVIEW AND CORE LOOP

In each round, the controller: (i) retrieves task-relevant code evidence to augment the prompt, (ii)
synthesizes a candidate (or edit) from a frozen model π0 given the composed prompt, (iii) executes
it in a sandbox against a test suite to obtain verifiable feedback, and (iv) repairs the prompt by
encoding that feedback (and, when enabled, updating a plan and evidence). The process halts when
all tests pass or a fixed iteration budget B is exhausted.

Task and Notation. Given a natural-language specification q, the goal is to produce a program ĉ∗

that satisfies a test suite T = {(xi, yi)}mi=1. We assume m ≥ 1 and treat any exception/timeout in
the executor as a failure on the corresponding test. A candidate ĉ is correct iff

ĉ(xi) = yi ∀i ∈ {1, . . . ,m}. (1)
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Step 3: Feed the validated code blocks concatenated with User query to feed to LLM to synthesize final code 
and evaluate its correctness. If fails, parse output metadata including logs and errors and concatenate with 
query and code blocks to feed to Agentic COT block to generate new set of code blocks and repeat.
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Sandbox

Verify
executability
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Figure 1: High-level overview of ARCS. (1) Extract and embed code snippets with metadata. (2)
Use CoT planning to issue plan-conditioned retrieval queries; render retrieved evidence into the
prompt. (3) Propose code, execute in a sandbox against tests, and encode execution feedback to
repair iteratively.

We assume a code corpus C = {c1, . . . , cN} with metadataMi (signatures, docstrings, comments).
For retrieval, we use an embedding function Φ : X → Rd and denote ei = Φ(Mi); in our
implementation Φ is all-MiniLM-L6-v2.

Iterative Framework. We model one iteration using the tuple (S,A,P,R):

• State St = (qt, st, ĉt−1, f<t) ∈ S where qt is the current prompt/context, st is an optional
CoT plan, ĉt−1 is the previous candidate (or ∅ at t = 0), and f<t are prior execution
signals.

• Action At ∈ A is the proposed code (or edit). In our instantiation, At ≡ ĉt sampled from
π0.

• Transition P : S × A → S executes the proposal in a sandbox and returns St+1 with
updated context and feedback.

• Reward (optional) R : S × A → R measures improvement (e.g., the number of tests
passed); used for selection/termination, not for weight updates.

The transition is

ĉt ∼ π0(· | q′t), ft = E(ĉt, T ), qt+1 = qt ⊕ Encode(ft), (2)

yielding the next state:

St+1 = (qt+1, st+1, ĉt, f≤t), with f≤t denoting the sequence (f<t ∥ ft). (3)

3
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Algorithm 1 ARCS (Large Tier)

Require: spec q, test suite T , budgets k (retrieval), B (iterations)
Ensure: program ĉ∗ (or best-so-far ĉ⋆)

1: q0 ← q; s0 ← ∅; ĉ0 ← ∅; f0 ← ∅
2: for t = 0→ B−1 do
3: (optional CoT planning) st ← Pϕ(qt)

4: (retrieval) Rt ←

{
Retk(qt), st = ∅
FilterRedundancy

(⋃
j Retkj (s

(j)
t )

)
, otherwise

5: (compose) q′t ← qt ⊕
⊕

c∈Rt
Ψ(c)

6: (propose) ĉt ∼ π0(· | q′t)
7: (execute) ft ← E(ĉt, T )
8: if ĉt passes all tests then
9: return ĉt

10: end if
11: (repair) qt+1 ← qt ⊕ Encode(ft)
12: end for
13: return argmaxĉ∈{ĉ0,...,ĉB−1}\{∅}

∑m
i=1 1[ĉ(xi) = yi]

The halting rule is:

halt if
1

m

m∑
i=1

1[ĉt(xi) = yi] = 1 or t = B − 1. (4)

We track the best-so-far candidate as

ĉ⋆t = arg max
ĉ∈{ĉ0,...,ĉt}\{∅}

1

m

m∑
i=1

1[ĉ(xi) = yi]. (5)

Similarity and Filtering. The similarity function used throughout is cosine similarity:

sim(ϕ1, ϕ2) =
ϕ1 · ϕ2

||ϕ1|| · ||ϕ2||
∈ [−1, 1]. (6)

The redundancy filter (used in Eq. equation 11) removes near-duplicates:

FilterRedundancy(R) = {c ∈ R : ∄c′ ∈ R, sim(e(c), e(c′)) > δ ∧ index(c′) < index(c)}, (7)

where e(c) := Φ(M(c)) and index(·) denotes the fixed corpus ordering; we use δ = 0.85.

Design Guarantees. Termination is guaranteed after at most B iterations by Eq. equation 4; the
best-so-far score in Eq. equation 5 is non-decreasing in t since the maximization set grows with t;
and exact replay is enabled by fixing seeds, freezing the index snapshot, and using deterministic
tie-breaking in retrieval (below).

3.2 CORE COMPONENTS: THEORY AND IMPLEMENTATION

Planner Pϕ. Specification: An optional CoT planner emits a plan st = (s
(1)
t , . . . , s

(K)
t ), where

each s
(j)
t is a subgoal at iteration t. When unused, st = ∅ (i.e., K = 0). Implementation: A

lightweight prompt produces (i) a typed I/O contract, (ii) a pseudocode sketch, and (iii) up to K ≤ 4
named subgoals. We canonicalize symbols, deduplicate, and drop conflicts. A gate disables planning
when |qt| < 120 tokens. Subgoal names are used directly as retrieval subqueries.

Retriever Rψ . Specification: Given qt (or subquery), embed ϕt = Φ(qt) and compute scores
σi = sim(ϕt, ei). Define the ordered index set

Ik(qt) = arg topK
i∈{1,...,N}

σi (ties broken deterministically by ascending index i), (8)

and return
Retk(qt) = (ci1 , . . . , cik) with (i1, . . . , ik) = Ik(qt). (9)
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When st ̸= ∅, define subqueries q(j)t := s
(j)
t and retrieve per component with budgets kj :

Retkj (q
(j)
t ) = (c

i
(j)
1
, . . . , c

i
(j)
kj

), (10)

then aggregate and deduplicate

Ret(qt) = FilterRedundancy

 K⋃
j=1

Retkj (q
(j)
t )

 . (11)

Implementation: FAISS ANN index with cosine similarity over ei. Query with qt when st = ∅
or with {s(j)t } otherwise, aggregate per Eq. equation 11. Near-duplicates are removed via cosine
threshold (δ = 0.85); deprecated/conflicting APIs are filtered via a denylist. Snapshots are frozen
for experiments.

Context Renderer and Proposer. Specification: Render retrieved content via Ψ : C → X :

Ψ(c) = Format(signature(c), doc(c), code(c)), (12)

and compose the enriched prompt as

q′t = qt ⊕
⊕
c∈Rt

Ψ(c), (13)

where Rt is produced either by single-query Top-k (Eq. equation 9) or by plan-conditioned retrieval
with deduplication (Eq. equation 11). The frozen proposal model then generates

ĉt ∼ π0(· | q′t). (14)

Implementation: Frozen Llama-3.x checkpoints (Meta-Llama-3.1-70B/3.3-70B/3.1-405B Instruct),
nucleus sampling (temperature 0.7, top-p = 0.95, Lmax = 512, seed 42). Encoders: Encenv
(runtime constraints), Encplan (subtasks), Encevid (retrieved code), Encinv (interface invariants).

Executor E . Specification: Execute ĉt w.r.t. T :

ft = E(ĉt, T ). (15)

Implementation: Docker sandbox (no network; read-only FS except a temp workspace). Per-test
caps: 10s wall-clock, 4GB memory. We capture exit codes, stdout/stderr, and exception metadata.
Encfb serializes pass/fail vectors and truncated stacks.

Repair and Refresh. Specification: Append feedback and optionally re-plan:

qt+1 = qt ⊕ Encode(ft), st+1 = Pϕ(qt+1; st, ft). (16)

Refresh evidence under the updated query:

Refresh(qt+1, st+1) ≜

{
Retk(qt+1) if st+1 = ∅,

FilterRedundancy
(⋃K

j=1 Retkj (s
(j)
t+1)

)
otherwise.

(17)

Implementation: Encfb summarizes only observed failures (exception type, failing inputs, truncated
stack). On context pressure, apply stable truncation: keep Encinv and the most recent failing trace;
drop lowest-similarity evidence first; collapse Encplan to headers.

Computational considerations. Using an ANN index, retrieval per round typically costs sub-
linear time in N (e.g., O(logN) or O(1) average with LSH-style structures), so one iteration
is dominated by retrieval + prompting/generation + execution. Concretely, each round incurs
O(ANN probe(k,N)) for retrieval, O(|q′t|) for generation, and O(m · Texec) for execution; total
cost scales linearly with the budget B (see Prop. 3).
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3.3 THEORETICAL PROPERTIES AND GUARANTEES

Proposition 1 (Monotonic Improvement). Under best-so-far tracking (Eq. equation 5), the success
metric is non-decreasing:

∀t : 1

m

m∑
i=1

1[ĉ⋆t+1(xi) = yi] ≥
1

m

m∑
i=1

1[ĉ⋆t (xi) = yi].

Proof. {ĉ0, . . . , ĉt+1} \ {∅} ⊇ {ĉ0, . . . , ĉt} \ {∅}, so the maximized value cannot decrease.

Proposition 2 (Bounded Termination). Algorithm 1 terminates in at most B iterations.

Proof. The loop runs for t = 0, . . . , B − 1 with an early return when all tests pass (Eq. equation 4);
hence termination is guaranteed after at most B iterations.

Proposition 3 (Cost Bound). Let Cretr(k) bound the per-round retrieval cost (including ANN probes
and formatting of the top-k items), Cin(L) and Cout(L) bound the LLM’s input and output token
costs for length L, and Cexec bound the per-test execution cost in E . If |q′t| ≤ Lmax and ĉt has at
most Lmax output tokens each round, then

Ctotal ≤ B ·
(
Cretr(k) + Cin(Lmax) + Cout(Lmax) +m · Cexec

)
. (18)

Proof. Each round incurs retrieval, LLM input/output, and up to m test executions. Upper-bounding
each term and summing over at most B rounds yields the result.

We do not claim general convergence guarantees for arbitrary tasks. Intuitively, feedback encoding
induces an effective policy πt(c | q) = π0(c | q ⊕ f<t); when tests provide informative signals and
the target lies within π0’s support, additional rounds can improve success.

Lemma 1 (Tier Monotonicity). Fix the backbone π0, corpus/index, and benchmark distribution.
Define the attainable success probability of a tier as the supremum over its controller parameters
and internal randomness. Then PS ≤ PM ≤ PL.

Proof. Small is the subset of controllers with (k = 0, st = ∅, B = 1). Medium enlarges this set
to allow st ̸= ∅ but keeps (k = 0, B = 1). Large further enlarges to k > 0 and B > 1. Since each
controller class is a subset of the next, the supremum success over a subset is at most that over its
superset.

3.4 TIER DESIGN AND OPERATIONAL MODES

We expose a tiered interface to provide predictable accuracy-latency trade-offs and enable clean
ablations. Each tier is a strict projection of the full controller, preserving the guarantees above:

• Small (one-shot): No planning or retrieval, one round—(k = 0, st = ∅, B = 1). Com-
pose, propose, test.

• Medium (structured single-shot): Planning enabled, retrieval disabled, one round—(k =
0, st ̸= ∅, B = 1). Exploits decomposition when specifications are complete.

• Large (retrieval+repair): Planning, plan-conditioned retrieval with refresh, multi-round
repair—(k > 0, st ̸= ∅, B > 1).

Default parameters: k = 10 (retrieval budget), B = 5 (iteration budget), K ≤ 4 (max subgoals). By
Lemma 1, these tiers form a hierarchy where each strictly contains the capabilities of the previous,
ensuring users can predictably trade compute for accuracy.
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Table 1: HumanEval pass@1. External baselines shown with original backbones; ARCS uses frozen
Llama-3.1-70B.

Method Backbone LLM pass@1
GPT-3.5-Turbo (Baseline) GPT-3.5-Turbo 72.6%
CodeAgent GPT-3.5-Turbo 82.3%
RethinkMCTS GPT-3.5-Turbo 89.0%

ARCS (Small) Llama-3.1-70B 79.9%
ARCS (Medium) Llama-3.1-70B 76.8%
ARCS (Large) Llama-3.1-70B 83.5%

3.5 SYSTEM IMPLEMENTATION AND REPRODUCIBILITY

The ARCS system runs on the SambaNova Systems platform with real-time LLM API access. The
framework is modular Python code that queries live code repositories for retrieval; for experiments
we freeze snapshots by embedding metadata offline and indexing it to avoid runtime drift. For deter-
ministic performance, we employ versioned LLM checkpoints and FAISS indices, fixed seeds and
decoding hyperparameters, and complete logging of (qt, st, q′t, ĉt, ft) per round with index snap-
shots.

4 EXPERIMENTS AND RESULTS

We evaluate ARCS on standard code-generation and code-translation benchmarks and on a domain-
specific scientific corpus. Our evaluation probes: (i) accuracy under a fixed compute budget as for-
malized by the controller loop (Sec. 3.1), (ii) the contribution of retrieval, planning, and verification
through ablations grounded in Eqs. equation 13–equation 16, and (iii) robustness on real scientific
libraries. Unless noted, π0 is a frozen Llama-3.x variant; decoding uses fixed temperature/top-p and
a fixed random seed; the executor E is deterministic under fixed time/memory caps. To avoid index
contamination, the retrieval corpus excludes benchmark references and is filtered for near-duplicates
via cosine thresholds and token-hash screening.

4.1 BENCHMARKS AND METRICS

HumanEval Chen et al. (2021) contains 164 Python problems with hidden unit tests. We report
pass@k, emphasizing pass@1 (the final candidate after the ARCS loop). TransCoder Rozière
et al. (2020) evaluates translation among Python, Java, and C++; we report translation accuracy as
the fraction of items whose translated code passes all tests. LANL scientific corpus: we select
four repositories from github.com/lanl (pyDNMFk, pyDNTNk, AdversarialTensors,
EPBD BERT) and construct prompts from READMEs (documentation-based) and source code
(code-based). We evaluate with CodeBLEU Zhang et al. (2020).

Protocol and budgets. Unless noted otherwise, we use the Large tier defaults (k=10, B=5, K ≤
4) and a single evaluation run per setting; pass@1 reflects the candidate returned by Eq. equation 4.
Comparisons to external baselines are reported with their original backbones (see table captions);
scores are indicative rather than strictly comparable across different backbones.

4.2 MAIN RESULTS ON HUMANEVAL

Table 1 shows that ARCS (Large) achieves competitive pass@1 with substantially simpler control
than tree-search methods. While RethinkMCTS attains a higher score, it relies on heavier explo-
ration. ARCS surpasses CodeAgent and a one-shot GPT-3.5 baseline while adhering to bounded
budgets (Eq. equation 18). The pattern matches the framework: retrieval-before-generation focuses
proposals on on-target regions (Eq. equation 13), and verification-guided repair converts execution
signals into directed edits (Eq. equation 16), yielding monotone improvement in the best-so-far score
(Eq. equation 5) within the halting rule.

7
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Table 2: Ablation on HumanEval (pass@1). Rows add components to a one-shot baseline (frozen
π0, no retrieval, no CoT, no feedback).

Configuration pass@1
Baseline (no RAG, no CoT, no Feedback) 72.6%
+ Retrieval only 75.2% (+2.6 pp)
+ CoT only 76.1% (+3.5 pp)
+ Execution feedback only 74.8% (+2.2 pp)
+ Retrieval + CoT 78.4% (+5.8 pp)
+ Retrieval + Feedback 77.3% (+4.7 pp)
+ CoT + Feedback 79.1% (+6.5 pp)
ARCS (Full) 83.5% (+10.9 pp)

Table 3: HumanEval pass@1 across ARCS tiers and Llama-3.x backbones.

Backbone Small Medium Large
Llama-3.1-70B-Instruct 79.9% 76.8% 83.5%
Llama-3.3-70B-Instruct 81.2% 78.1% 85.1%
Llama-3.1-405B-Instruct 84.7% 81.3% 87.2%

4.3 ABLATION: RETRIEVAL, PLANNING, AND VERIFICATION

Each component in Table 2 yields measurable gains; their combination is super-additive. Retrieval
implements Eq. equation 13, reducing off-target proposals; planning decomposes queries (multi-
component retrieval, Eqs. equation 10–equation 11); and execution feedback implements Eq. equa-
tion 16, injecting ground truth rather than speculative heuristics. The full loop realizes the intended
synergy.

4.4 HUMANEVAL ACROSS BACKBONES AND TIERS

Scaling the backbone consistently improves accuracy (Table 3). Large dominates on problems
requiring nontrivial repair, as expected from the iterative loop; Medium can underperform Small
on simple functions due to over-structuring when verification is absent. This matches the design:
Medium introduces structure without the corrective execution signal of Eq. equation 16, whereas
Large leverages verification to align with Eq. equation 1. Compute trade-offs follow Eq. equation 18:
Large incurs multiple rounds but reduces failed candidates per success; empirically, B ∈ [2, 5] cap-
tures most gains.

4.5 TRANSCODER: CROSS-LANGUAGE TRANSLATION

Table 4 shows strong accuracy across directions. Medium often matches or slightly exceeds Large,
consistent with translation benefiting from structured decomposition without repeated verification.
The most challenging direction is Python→C++ due to the paradigm shift; Java→C++ is easier given
syntactic and semantic alignment. When exact outputs are required, Large’s verification corrects
occasional semantic mismatches in subsequent rounds.

4.6 LANL SCIENTIFIC CORPUS: CODEBLEU

On realistic scientific code, ARCS substantially outperforms a one-shot RAG baseline (Table 5).
Gains in weighted n-grams and syntax indicate that retrieval-before-generation (Eq. equation 13)
guides the model toward project-specific idioms/APIs, while iterative repair (Eq. equation 16) in-
creases structural and semantic fidelity beyond token overlap.

8
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Table 4: TransCoder accuracy (%). Each cell shows Small/Medium/Large for ARCS.

Backbone C++→Py Py→C++ Java→Py Java→C++

Llama-3.1-70B 84.8/88.8/89.1 83.3/84.1/84.9 86.5/89.5/88.9 95.5/93.9/94.5
Llama-3.3-70B 86.3/89.5/88.4 85.9/85.1/86.9 89.5/91.2/90.5 94.5/94.8/94.3
Llama-3.1-405B 90.5/91.6/91.5 86.0/89.5/87.0 90.6/91.7/91.6 96.4/95.5/96.4
TransCoder Rozière et al. (2020) 67.2 57.3 68.7 91.6

Table 5: CodeBLEU on the LANL corpus: one-shot RAG baseline vs. ARCS (Large).

Metric Basic RAG ARCS (Large)
Overall CodeBLEU 0.289 0.404 (+0.115)
N-gram Match 0.105 0.232 (+0.127)
Weighted N-gram Match 0.131 0.294 (+0.163)
Syntax Match 0.527 0.640 (+0.113)
Dataflow Match 0.227 0.284 (+0.057)

4.7 DISCUSSION AND LIMITATIONS

The empirical trends align with ARCS’s design. Retrieval-before-generation focuses proposals on
on-target regions, and verification-in-the-loop injects a corrective signal that translates into improved
best-so-far scores via the repair step and the monotonicity property established in Proposition. Tier
behavior follows the projections argument: Large subsumes Small and Medium and excels on prob-
lems that require repair; Medium’s structured decomposition is advantageous for translation, but
can over-structure trivial functions when verification is absent (consistent with non-decreasing at-
tainable success probabilities in Lemma 1, even if a specific fixed configuration of Medium under-
performs Small on easy items).

Regarding limitations,external baselines use different backbones; we report their original numbers
for context, not as strictly controlled head-to-head comparisons. Despite filtering (cosine thresh-
olding and token-hash screening), residual near-duplicates may persist and inflate retrieval utility.
We mitigate this by freezing the index snapshot and deduplicating at inference (Sec. 3.2). Unit tests
that require literal equality can penalize semantically acceptable variants; conversely, underspecified
tests may overestimate correctness.

ARCS’s correctness is test-suite relative; stronger oracles (metamorphic tests, property-based test-
ing, or lightweight SMT checks) could improve robustness. Tier and budget selection is manual;
a learned difficulty estimator that adapts (B, k) while preserving bounded cost (Proposition 3) is
a natural extension. Finally, we evaluated mostly function-level synthesis and TransCoder-style
translation; repository-level tasks, richer languages/runtimes, and integration with formal tools are
promising avenues.

5 CONCLUSION

We introduced ARCS, an agentic framework for retrieval-augmented code synthesis that integrates
structured retrieval, optional planning, and execution-verified refinement over frozen LLMs. By
casting synthesis as a budget-constrained state–action search (Sec. 3), ARCS provides bounded
cost (Prop. 3), monotone improvement (Prop. 1), and practical reproducibility. Empirically, ARCS
achieves up to 87.2% pass@1 on HumanEval, high accuracy on TransCoder, and +0.115 CodeBLEU
improvement on scientific code-validating that retrieval-before-generation and verification-guided
repair yield reliable gains without fine-tuning. Implementation details are provided to enable exact
replay and extension.
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