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Abstract

Remote photoplethysmography (rPPG) enables non-invasive extraction of blood
volume pulse signals through imaging, transforming spatial-temporal data into time
series signals. Advances in end-to-end rPPG approaches have focused on this trans-
formation where attention mechanisms are crucial for feature extraction. However,
existing methods compute attention disjointly across spatial, temporal, and channel
dimensions. Here, we propose the Factorized Self-Attention Module (FSAM),
which jointly computes multidimensional attention from voxel embeddings using
nonnegative matrix factorization. To demonstrate FSAM’s effectiveness, we de-
veloped FactorizePhys, an end-to-end 3D-CNN architecture for estimating blood
volume pulse signals from raw video frames. Our approach adeptly factorizes
voxel embeddings to achieve comprehensive spatial, temporal, and channel atten-
tion, enhancing performance of generic signal extraction tasks. Furthermore, we
deploy FSAM within an existing 2D-CNN-based rPPG architecture to illustrate its
versatility. FSAM and FactorizePhys are thoroughly evaluated against state-of-the-
art rPPG methods, each representing different types of architecture and attention
mechanism. We perform ablation studies to investigate the architectural decisions
and hyperparameters of FSAM. Experiments on four publicly available datasets
and intuitive visualization of learned spatial-temporal features substantiate the ef-
fectiveness of FSAM and enhanced cross-dataset generalization in estimating rPPG
signals, suggesting its broader potential as a multidimensional attention mechanism.
The code is accessible at https://github.com/PhysiologicAILab/FactorizePhys.

1 Introduction

Attention mechanisms in computer vision are inspired by the human ability to identify salient
regions in complex scenes. Such mechanisms can be interpreted as a dynamic weight adjustment
process that selects useful features and disregards irrelevant ones in a multidimensional feature space.
Recent surveys [20, 23] provide a comprehensive overview of attention mechanisms and distinctly
categorize existing attention mechanisms. Amidst a spectrum of research from convolution block
attention [66] to computationally intensive multi-head attention [58], an effective, yet computation
and memory efficient, attention mechanism has remained desirable for real-world applications.
Matrix decomposition [12, 19, 31], a dimensionality reduction technique, has captured the interest of
researchers and has been explored in deep learning research for different objectives [57, 60, 17, 18].
This work investigates nonnegative matrix factorization (NMF), a matrix decomposition technique,
for its potential to efficiently perform multidimensional attention and evaluates its effectiveness in the
spatial-temporal context of estimating rPPG signal from video frames.
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Verkruysse [59]’s pioneering investigation on extracting photoplethysmography (PPG) or blood
volume pulse (BVP) signals from RGB cameras in a contactless manner led to an exciting research
field of imaging-based physiological sensing. There exist several potential applications and contexts
of noninvasive and contactless measurement techniques, such as stress and mental workload recogni-
tion [8, 9, 7], driver drowsiness monitoring [71] and social biofeedback interaction [43]. The seminal
works on unsupervised rPPG methods [59, 48, 11] either used video frames acquired under stationary
conditions or performed skin segmentation [62] or region of interest (RoI) tracking as a preprocessing
step. This preprocessing step can be considered as a basic form of attention mechanism that enables
the unsupervised models to process only the relevant regions. Some of the supervised rPPG methods,
including HR-CNN [54], RhythmNet [45], NAS-HR [40], PulseGAN [51], and Dual-GAN [41] also
relied on extracting spatial-temporal features from the tracked RoIs as a preprocessing step.

As end-to-end rPPG methods, such as DeepPhys [6], and MTTS-CAN [36] among several others,
take whole facial frames as input, they rely on attention mechanisms that enable models to empha-
size the relevant spatial-temporal features. Estimating BVP signal from raw facial video frames
in an end-to-end manner is therefore an interesting downstream task to investigate the attention
mechanism in multidimensional feature space. This requires networks to learn to pick the spatial
features having the desired temporal signature, while discarding the variance related to head-motion,
illumination, and skin-tones, thus representing one of the challenging spatial-temporal tasks. Few
other notable end-to-end rPPG methods include PhysNet [83], 3DCNN [4], SAM-rPPGNet [26],
RTrPPG [3], and transformer-network-based methods such as PhysFormer [77], PhysFormer++ [76],
EfficientPhys [37], JAMSNet [79], and GLISNet [80]. A recent survey article on visual contactless
physiological monitoring in clinical settings [27] highlights susceptibility to disturbance, such as
head movement, as one of the key challenges, among others. Some of the recent end-to-end rPPG
methods [79, 80] further highlight the need for multidimensional attention, as squeezing features in
selective dimensions for deriving attention reduces the feature space to a single dimension and is
therefore not well suited for the task of signal extraction.

To address this, our work draws inspiration from the seminal work on NMF [31] which a recent
work formulated as an approach to design the global information block, referred to as Hamburger
[18]. Hamburger [18] implements NMF to derive low-rank embeddings, which serve as a global
context block. Despite the low computational complexity of O(n), Hamburger [18] outperformed
various attention modules in the semantic segmentation [68] and image generation tasks. In addition,
researchers have combined matrix factorization with deep architectures in several ways for different
applications such as layer-wise learning of dictionary for classification and clustering [57], adaptive
learning of dictionary for image denoising [81], multi-attention model for recommendation systems
[60], and linearly scalable approach to context modeling for medical image segmentation [1] among
several others. Drawing inspiration from these studies, especially those that use matrix factorization
to model global context [18, 1] in vision tasks, we investigate the application of NMF as a multidi-
mensional attention block. Although matrix factorization in deep learning has remained a topic of
significant interest, it has not been investigated in the realm of rPPG, which stands to gain from joint
spatial, temporal, and channel attention.

We introduce the Factorized Self-Attention Module (FSAM), which implements NMF to jointly
compute spatial-temporal attention and describe an appropriate formulation for the low-rank recovery
problem. To investigate the relevance and effectiveness of FSAM in computing multidimensional
attention, we build a 3D-CNN architecture FactorizePhys that implements FSAM. We further adapt
FSAM for EfficientPhys [37], an end-to-end rPPG architecture that builds on the Temporal Shift
Module (TSM) [34], to uniquely learn spatial-temporal features using 2D-CNN layers. Evaluation of
FactorizePhys and EfficientPhys [37] with FSAM, against existing SOTA rPPG methods, demon-
strates the versatility of FSAM as multidimensional attention along with its effectiveness for the
downstream task of estimating time series from spatial-temporal data. In summary, we make the
following contributions.

• Factorized Self-Attention Module (FSAM): NMF [31]-based novel approach that jointly computes
multidimensional attention within voxel embeddings.

• FactorizePhys: an end-to-end 3D-CNN architecture that integrates FSAM for robust estimation of
rPPG from spatial-temporal facial video frames.

• Thorough assessment of FactorizePhys and FSAM with multiple evaluation metrics and the
corresponding measure of standard errors to compare cross-dataset generalization performance
with SOTA rPPG methods, using four benchmarking rPPG datasets.
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2 Related Work

2.1 Attention Mechanisms in Vision

Varied forms of attention mechanisms have been successful in different visual tasks such as image
classification [70, 25, 66], object detection [5, 82], semantic segmentation [78, 16, 18, 28], video
understanding [63, 15, 33, 21], 3D vision [69, 24], and multimodal tasks [73, 56] among others [20,
23]. The most widely used attention mechanisms are channel attention [35, 75], spatial attention [66,
63], temporal attention [72, 74], self-attention or transformer-based approaches [58, 14], multimodal
attention [56, 73], graph-based approaches [32], as well as different combinations of these types
[66, 16, 53]. In addition, researchers have proposed attention mechanisms for video understanding
[63, 15, 33, 21] as well as 3D vision [69, 24]. Despite notable advances in different forms of attention
mechanisms, some of the existing challenges include the requirement for high computational costs,
large training data, the overall efficiency of the model, and a cost-benefit analysis of performance
improvement [23]. Additionally, for rPPG research, the impact of attention mechanisms on an ability
of models to generalize on unseen datasets is not systematically studied, which we address in this
work.

2.2 Attention Mechanisms in rPPG Methods

End-to-end rPPG methods can be categorized into convolution neural networks (CNN) architectures
such as PhysNet [83], EfficientPhys-C [37], 3DCNN [4], SAM-rPPGNet [26], and RTrPPG [3],
and transformer-network-based architectures such as PhysFormer [77], PhysFormer++ [76], and
EfficientPhys-T [37]. Among end-to-end rPPG methods, DeepPhys [6] first implemented a novel
convolutional attention mechanism in an architecture that comprised separate motion and appearance
branches, with the latter intended to compute attention for the main motion branch. Inspired by
the CBAM attention mechanism [66], originally validated for classification and detection tasks, ST-
Attention [46] was proposed to filter salient information from spatial-temporal maps, thus improving
remote HR estimation. The similar dual attention mechanism was also found to be effective in the
SMP-Net framework [13], which jointly learned the features of RGB and infrared spatial-temporal
maps to estimate multiple physiological signals.

Recently, EfficientPhys [37], an end-to-end network, presented an efficient single-branch approach
with a gated attention mechanism. The Swin-Transformer [39] based version of EfficientPhys [37]
insightfully added the TSM [34] module to the Swin transformer [39], enabling the architecture to
perform efficient spatial-temporal modeling and compute attention by combining shifting window
partitions spatially and shifting frames temporally. It should be noted that the convolution-based
version of EfficientPhys [37], which combined the TSM [34] module and a convolutional attention
mechanism [6] showed superior accuracy along with significantly low latency, making it highly
suitable for deployment on mobile devices. Recently, there has been an upsurge in transformer-based
rPPG architectures, some of which include PhysFormer [77], PhysFormer++ [76], TransPhys [61],
and RADIANT [22].

Unlike other transformer-based architectures that rely on spatial-temporal maps as input, PhysFormer
[77] and PhysFormer++ [76] are end-to-end video transformer-based architectures, which adaptively
aggregate both local and global spatial-temporal features. PhysFormer++ [76] extends PhysFormer
[77] by better exploiting temporal contextual and periodic rPPG clues, as it extracts and fuses atten-
tional features from slow and fast pathways. In addition, both architectures [77, 76] are trained using
label distribution learning and a curriculum learning-inspired dynamic constraint in the frequency
domain, which helps to alleviate overfitting. Although unlike convolution-based EfficientPhys [37],
transformer architectures require significantly higher computational resources.

Most of the light-weight convolutional attention mechanisms require attention to be separately derived
in spatial, temporal, and channel dimensions, which is later merged [46, 13]. Although 3D-CNN
architectures such as PhysNet [83] and iBVPNet [29] have shown promising performances, they
have not explored attention mechanisms that can potentially enhance performance in unseen datasets.
JAMSNet [79] and GLISNet [80] are recent 3D-CNN architectures that benefit significantly from
channel-temporal joint attention (CTJA) and spatial-temporal joint attention (STJA). However, unlike
CTJA and STJA [79, 80], we jointly derive attention in temporal, spatial, and channel dimensions,
without squeezing any dimension of multidimensional features.
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3 Method

3.1 Primer: Nonnegative Matrix Factorization

Nonnegative matrix factorization is a dimensionality reduction paradigm that decomposes M ×N
matrix V = [v1, v2, ..., vN ] ∈ RM×N

≥0 into nonnegativeM×L basis matrixW = [w1, w2, ..., wL] ∈
RM×L

≥0 and nonnegative L × N coefficient matrix H = [h1, h2, ..., hN ] ∈ RL×N
≥0 , as depicted in

fig. 1 and expressed as:

Figure 1: Formulation of Nonnegative Matrix Factorization (NMF)

V =WH + E = V̂ + E (1)

where V̂ = [v̂1, v̂2, ..., v̂N ] ∈ RM×N
≥0 is reconstructed low-rank matrix and E ∈ RM×N

≥0 is an error
matrix, which is discarded. RM×N

≥0 stands for the set of M ×N element-wise nonnegative matrices.
Equivalent vector formulation for this approximation can be expressed as:

vj ≈ v̂j =

L∑
i

wiHij (2)

The objective to represent high-dimensional matrix with fewer basis can be achieved only when L
is chosen such that L ≪ min(M,N), while when L is larger than M , it results in over-complete
basis. An optimization in W and H to achieve the optimal approximation effectively results in the
discovery of inherent correlations between the basis vectors in W and the corresponding coefficients
in H [31, 64]. The optimization objective is formulated as:

minW,H∥V −WH∥2F ∋Wml ≥ 0, Hln ≥ 0 (3)
Further, the imposed non-negativity constraints on W and H enable parts-based representations,
where activation of one or many of the coefficients in H together with the basis vectors in W can
reconstruct different interpretable parts of V . For a detailed primer on NMF, we refer the reader to the
seminal work [31] and a survey article [64] that summarizes different NMF models and algorithms.

The factorization of deeper layer embeddings can be elucidated as the squeeze of information without
reducing the dimensions of the embeddings, unlike the existing attention mechanisms [25]. Therefore,
exciting or multiplying with the resultant low-rank (information squeezed) embeddings can potentially
serve as an attention mechanism. While factorization is formulated for two-dimensional matrix,
high-dimensional embeddings can be mapped to two-dimensional matrix. In PyTorch [47], this is
achieved with the ‘view’ operation.

3.2 Factorized Self-Attention Module (FSAM)

For the downstream task of estimating rPPG from video frames, spatial-temporal input data can be
expressed as I ∈ RT×C×H×W , where T,C,H, andW represents total frames (temporal dimension),
channels in a frame (e.g., for RGB frames, C = 3), height and width of pixels in a frame, respectively.
I is passed through a feature extractor that generates voxel embeddings ε ∈ Rτ×κ×α×β , with
temporal (τ ), channel (κ) and spatial (α, β) dimensions.

The goal is to jointly derive the attention in the multidimensional space of ε, without squeezing
individual dimensions. For this, we deploy NMF-based matrix factorization to compute low-rank ε̂
by reconstructing it from the factorized basis matrix W and a coefficient matrix H . It is essential to
factorize ε in a way that ε̂ approximated through the computed basis and coefficient matrices serves
as an effective self-attention. Among several parameters that govern factorization, here we delve into
the ones most relevant for the time series estimation task. These include: i) the transformation of the
voxel embeddings that maps ε ∈ Rτ×κ×α×β to the factorization matrix V st ∈ RM×N and ii) the
rank of the factorization.
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Figure 2: Factorized Self-Attention Module (FSAM) illustrated for a 3D-CNN architecture for rPPG
estimation.

For a 2D-CNN architecture with κ channels and α×β spatial features, the transformation (Γκαβ 7→MN )
implemented in the Hamburger module [18] is expressed as:

V s ∈ RM×N = Γκαβ 7→MN (ε ∈ Rκ×α×β) ∋ κ 7→M,α× β 7→ N (4)
where κ channels are mapped to M and α× β spatial features are mapped to N , with an underlying
assumption that spatial features are inherently correlated due to learnt CNN kernels. However, for
3D-CNN architectures, as ε ∈ Rτ×κ×α×β encodes temporal, channel, and spatial features, it is
required to revisit these mappings. While it can be argued that similar to 2D-CNN architectures,
as 3D-CNN architectures have 3D kernels, the spatial-temporal features are inherently correlated.
However, it should be noted that the scales of spatial and temporal dimensions are very distinct, owing
to which the spatial-temporal patterns to be learned may not be uniformly captured through typical
convolutional kernels (e.g. 3× 3× 3). Adjusting the spatial-temporal kernel sizes can be heuristic
task, and does not guarantee the extraction of desired features, while drastically increasing the model
complexity (since for time series estimation, τ >> α, β). Also, κ channels are not inherently
correlated, and therefore it is crucial to devise a multidimensional attention that jointly computes the
spatial-temporal and channel attention. To address this, we first consider negative Pearson correlation,
a loss function that is commonly deployed to optimize end-to-end rPPG methods, expressed as:

ηp = 1−
∑T

i (r
ppg
i − rppg)(gppgi − gppg)√∑T

i (r
ppg
i − rppg)2

√∑T
i (g

ppg
i − gppg)2

(5)

where, rppg ∈ R1×T is an estimated rPPG signal and gppg ∈ R1×T corresponds to the ground-truth
BVP signal. The optimization of end-to-end model to estimate a vector in temporal dimension
(rppg ∈ R1×T ) can be leveraged by establishing the correlation of features in spatial and channel
dimensions with the features in temporal dimension. Factorization of a matrix that consists of vectors
in temporal domain and spatial and channel dimension as the features of the vectors, uniquely offers
an opportunity to design the requisite attention. Prior to transforming ε to V st ∈ RM×N , it is
pre-processed through a convolution layer (with 1× 1× 1 kernels), and a ReLU activation to ensure
non-negativity of the embeddings. Following this preprocessing, the temporal features of ε are
mapped to the vector dimension (M ) in V st, while spatial and channel dimensions are mapped to the
feature dimension (N ) of V st. This transformation of ε as depicted in fig. 2, can be expressed as:

V st ∈ RM×N = Γτκαβ 7→MN (ξpre(ε ∈ Rτ×κ×α×β)) ∋ τ 7→M,κ× α× β 7→ N (6)
where, ξpre represents preprocessing operation. Factorization of thus formed matrix V st with
temporal vectors shall result in a low-rank matrix ˆV st which is approximated based on the latent
structure that establishes correlation of temporal features with spatial and channel features.

ˆV st = ϕ(V st) (7)

5



where ϕ represents factorization operation. ˆV st is transformed back to the embedding space, resulting
in an approximated voxel embeddings ε̂ that selectively retains the spatial and channel features that
contribute towards the recovery of salient temporal features in ε. The resultant ε̂ can be expressed as:

ε̂ = ΓMN 7→τκαβ( ˆV st ∈ RM×N ) (8)
where ΓMN 7→τκαβ represents matrix transformation operations. We use the one-step gradient
optimization based approach [18] to factorize V st. This approach is a linear approximation of the
conventional back-propagation through time algorithm (for time t→ ∞) [65], as proposed with the
Hamburger module [18]. Approximated low-rank matrix ˆV st is transformed back to the embedding
space through ΓMN 7→τκαβ , resulting in ε̂ that can potentially serve as the requisite attention. ε̂ is
post-processed with a convolution layer (with 1× 1× 1 kernels), and a ReLU activation, followed by
element-wise multiplication with ε. This multiplication operation serves as an excitation operation,
which can be distinctly effective as ε̂ retains the dimension of ε while computing the attention. The
product is instance-normalized, and added with ε that serves as residual connection as depicted in
fig. 2. It is to be noted that for each single forward pass through the model, approximation of ˆV st

requires 4-8 steps, however, FSAM implements NMF within “no_grad” block, that does not require
back-propagation through the NMF for model optimization. Representing the network head as ω,
ξpost as post-processing operation and IN as instance normalization, the estimated rppg signal can
be expressed as:

rppg = ω(ε+ IN (ε⊙ ξpost(ε̂))) (9)

Next, we look at the rank of the factorization that affects the approximation of V st. The primary
consideration for the rank L ≪ min(M,N) as mentioned in §3.1 ensures that ˆV st is of low
rank. Although the choice of L is generally governed by the downstream task, it is often derived
empirically. In the context of rPPGestimation, we revisit the formulation of factorization matrix
through Γτκαβ 7→MN that maps temporal features along the M dimension. As we expect only a
single signal underlying source of BVP signal across all facial regions, single vector estimation
v̂st0 corresponding to rank-1 (i.e., L = 1) shall be sufficient to capture the spatial, temporal, and
channel features that contribute to the rPPG estimation. Experimentation with rank-1 and higher rank
factorization (appendix A.3) shows that for the higher ranks, the performance remains at par with
that of the network without the FSAM, indicating that for rPPG estimation task, rank-1 factorization
offers the optimal multidimensional attention, confirming our understanding.

3.3 Deployment of FSAM in 3D-CNN and 2D-CNN Architectures

We deploy FSAM in our proposed 3D-CNN model, FactorizePhys and integrate it in an existing
2D-CNN architecture, EfficientPhys [37] to assess its versatility.

FactorizePhys Architecture: FactorizePhys, as depicted in fig. 3[A], is an end-to-end 3D-CNN
architecture for estimating rPPG signal from raw video frames. Skin reflection models [62, 6]
discuss the presence of several unrelated stationary and time-varying temporal components, and a
relatively weaker pulsatile component of interest. To eliminate stationary components, FactorizePhys
implements a Diff as first layer, inspired by existing rPPG architectures [6, 36, 37]. The resultant
Diff frames are normalized with IN , unlike existing architectures that use BatchNorm. The size

Figure 3: (A) Proposed FactorizePhys with FSAM; (B) FSAM Adapted for EfficientPhys [37]
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of the kernel and the strides of each convolution layer are depicted in fig. 3[A]. For each layer, we
use TanH activation followed by IN . Spatial features are gradually aggregated by not padding the
features, while we deploy spatial convolution strides only on the 3rd and 6th layers. For temporal
features, same padding retains the input temporal dimension throughout the network, as depicted
in fig. 3[A]. Downsizing of temporal features may result in high-amplitude unrelated time-varying
components to outweigh the weaker rPPG related pulsatile component. To provide a clearer overview
of the architecture of FactorizePhys, only the spatial and temporal dimensions of the features at
multiple layers are shown in fig. 3[A], while the channel dimension is skipped. FSAM, as elaborated
in §3.2, is deployed to jointly compute multidimensional attention, at the layer where the spatial
dimension is reduced to 7× 7, as reported as the optimal spatial dimension in a recent work [3].

Adaptation of FSAM for 2D-CNN Architecture: Several SOTA rPPG methods [36, 37] leverage
the TSM [34] that efficiently models spatial-temporal features using 2D-CNN architectures. The
parameter called ‘Frame Depth’ (ψ ∋ ψ ≪ κ channels) controls the number of channels that
are shifted along the temporal dimension for modeling temporal features. We investigated the
effectiveness of the proposed FSAM with a more recent TSM-based SOTA rPPG architecture,
EfficientPhys [37], which also deploys the Self-Attention Shifted Network (SASN) as the attention
module. As ψ controls the amount of temporal information that is learned, we use this to formulate
the mapping for the factorization matrix. Equation (6) can be adapted for TSM based architectures to
appropriately transform the embeddings to factorization matrix as:

V tsm ∈ RM×N = Γκαβ 7→MN (εtsm ∈ Rκ×α×β) ∋ ψ 7→M,κ× α× β 7→ N (10)
Figure 3[B] shows modified EfficientPhys [37] architecture, in which we drop SASN blocks [37] and
add a single FSAM. Unlike SASN [37], FSAM derives attention without squeezing any individual
dimension, which in turn can strengthen the correlation between temporal, channel and spatial
features. This adaption critically evaluates the proposed FSAM against its counterpart in the SOTA
architecture, addressing the recommendations of a recent survey article [23] on visual attention
methods.

4 Experiments

We perform an evaluation with carefully selected end-to-end SOTA rPPG methods that include Phys-
Net [83], a 3D-CNN architecture without the attention mechanism, EfficientPhys [37], a 2D-CNN
architecture with self-attention, and PhysFormer [77], a transformer-based 3D-CNN architecture with
multi-head self-attention. Comparison of FactorizePhys and PhysNet [83] can indicate the importance
of the attention mechanism in 3D-CNN rPPG architectures, while comparison of EfficientPhys with
SASN [37] and EfficientPhys [37] with FSAM allows evaluating the effectiveness of the proposed
FSAM in 2D-CNN architectures, and thus allows assessing the versatility of FSAM. Similarly, the
comparison of FactorizePhys and PhysFormer [77] offers a thorough evaluation of the proposed
FSAM against multi-head self-attention in 3D-CNN architectures.

Each model was trained on one of the four existing datasets that include iBVP [29], PURE [55],
UBFC-rPPG [2] and SCAMPS [42] and evaluated on the other three. Appendix A.1 provides our
detailed description of these datasets. Our code is based on the rPPG-Toolbox [38], with specific
adaptations described in appendix A.2. We train all models uniformly with 10 epochs [79] on iBVP
[29], PURE [55], and UBFC-rPPG [2] datasets, and with one epoch on SCAMPS [42] dataset. For fair
evaluation, all model-specific hyperparameters were maintained as provided by the respective SOTA
rPPG methods, while the training pipeline related hyperparameters, which include preprocessing
steps for images and labels, batch size, number of epochs, learning rate, scheduler, and optimizer
were kept consistent for training all the models.

5 Results and Discussion

Ablation Study: First, we train FactorizePhys on UBFC-rPPG [2] dataset and test on PURE [55]
and iBVP [29] datasets, to compare different transformations of ε ∈ Rτ×κ×α×β with temporal,
channel and spatial features to factorization matrix V st ∈ RM×N as tabulated in table 1. Superior
cross-dataset generalization can be observed when the temporal dimension, τ is mapped to M , as
described in §3.2. We assess contribution of FSAM over base FactorizePhys model and observe
consistent performance gains with FSAM, as reported in table 3 in appendix A. We then investigate
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Table 1: Ablation Study for Different Mapping of Voxel Embeddings to Factorization Matrix

Training
Dataset

Testing
Dataset

Mapping of
Voxel Embeddings MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR) ↓ Corr (HR) ↑ SNR (BVP) ↑ MACC (BVP) ↑

M N

UBFC-rPPG

PURE
κ τ × α× β 0.77 ± 0.42 3.29 ± 1.11 1.34 ± 0.82 0.99 ± 0.01 13.84 ± 0.82 0.77 ± 0.02

τ × κ α× β 0.71 ± 0.39 3.05 ± 1.03 1.21 ± 0.76 0.99 ± 0.01 13.60 ± 0.81 0.77 ± 0.02

τ α× β × κ 0.48 ± 0.17 1.39 ± 0.35 0.72 ± 0.28 1.00 ± 0.01 14.16 ± 0.83 0.78 ± 0.02

iBVP
κ τ × α× β 2.05 ± 0.40 4.65 ± 0.91 2.87 ± 0.59 0.88 ± 0.04 5.99 ± 0.58 0.55 ± 0.01

τ × κ α× β 2.17 ± 0.46 5.23 ± 1.11 3.13 ± 0.68 0.86 ± 0.05 5.83 ± 0.57 0.54 ± 0.01

τ α× β × κ 1.73 ± 0.39 4.38 ± 1.06 2.40 ± 0.57 0.90 ± 0.04 6.61 ± 0.58 0.56 ± 0.01

residual connection in table 3, and observe it to contribute positively. We also observed that the
base FactorizePhys model trained with FSAM retains the performance gains in-spite when FSAM is
skipped during the inference. As this eliminates the computational overhead during inference, we
report our main results of FactorizePhys trained with FSAM, by running inference without the FSAM.
On contrary, in case of TSM [34] based EfficientPhys [37] model trained with FSAM, we observed
performance drop when FSAM was skipped during inference, and therefore for EfficientPhys with
FSAM, we do not drop FSAM during inference. Evaluation for factorization ranks and optimization
steps to solve NMF shows consistent superiority of rank-1 factorization in table 4 in appendix A.

FactorizePhys vs. State-of-the-Art: We use heart rate (HR) [67] along with BVP metrics
that include signal-to-noise ratio (SNR) and maximum amplitude of cross-correlation (MACC)
[29, 10] for evaluation. SNR and MACC are direct measures to compare estimated rPPG signals
with ground-truth BVP signals. The HR metrics reported are the mean absolute error (MAE), the
square root of the mean square error (RMSE), the mean absolute percentage error (MAPE), and
Pearson’s correlation coefficient (Corr) [67] of the estimated HR. Uncertainty estimates quantifying
the variability associated with signal estimation have been shown to be strongly correlated with the
absolute error of the estimated HR [52]. In addition, for each metrics, we report the standard error
to estimate the variability of each model. As most SOTA end-to-end models show robust within-
dataset performance, we present cross-dataset performance in table 2, while reporting within-dataset
performance in table 6 in appendix A.

First, we observe that for all the evaluation metrics reported, the proposed FactorizePhys with FSAM
outperforms the SOTA methods on PURE [55] and iBVP [29] datasets, across all training datasets.
This suggests a consistent and superior generalization achieved by the proposed method. Cross-
dataset evaluation on the UBFC-rPPG [2] dataset further highlights the performance gains of the
proposed FactorizePhys model when trained with the iBVP [29] and the SCAMPS [42] datasets, and
at-par performance when trained with the PURE dataset. When models are trained with SCAMPS
[42] (synthesized dataset), FactorizePhys uniquely outperforms the SOTA methods on all testing
datasets further indicating the superior cross-dataset generalization. The performance of EfficientPhys
[37] with FSAM exceeds in most cases and remains at par in the rest, compared to the EfficientPhys
model with SASN [37], suggesting the versatility of FSAM as an attention module. As 3D CNN
kernels in FactorizePhys can learn spatial-temporal patterns better than the TSM [34] based 2D-CNN
model (EfficientPhys [37]), FactorizePhys with FSAM outperforms EfficientPhys [37] with FSAM
across all datasets. Lastly, the proposed method consistently achieves superior SNR and MACC for
the estimated rPPG signals, highlighting the enhanced reliability of the extracted signals.

Computation Cost and Latency: We compare computational complexity and latency for all the
models in fig. 4[A], and provide further details in table 9 in appendix A. The cumulative MAE is
computed by averaging cross-dataset performance for respective models across all combinations of
training and testing datasets reported in table 2. The proposed FactorizePhys with FSAM not only
shows the best performance, it has significantly less number of model parameters and performs at par
in terms of latency as the 2D-CNN SOTA rPPG method, EfficientPhys [37]. Specifically, dropping
FSAM during inference does not result in loss of performance for FactorizePhys, while reducing
latency considerably, making it highly suitable for real-time and resource-constrained deployment. In
contrast, when FSAM was dropped after training EfficientPhys [37] with FSAM, it did not retain
the performance (results not shown). We interpret that while FSAM effectively influences the 3D
convolutional kernels in FactorizePhys to increase the saliency of relevant spatial-temporal features,
2D convolutional kernels cannot benefit adequately due to the limited ability to model spatial-temporal
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Table 2: Cross-dataset Performance Evaluation for rPPG Estimation

Training Dataset Model Attention

Module
MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) † ↑ SNR ( dB, BVP) ↑ MACC (BVP) ↑

Performance Evaluation on PURE Dataset

iBVP

PhysNet - 7.78 ± 2.27 19.12 ± 3.93 8.94 ± 2.71 0.59 ± 0.11 9.90 ± 1.49 0.70 ± 0.03

PhysFormer TD-MHSA* 6.58 ± 1.98 16.55 ± 3.60 6.93 ± 1.90 0.76 ± 0.09 9.75 ± 1.96 0.71 ± 0.03

EfficientPhys SASN 0.56 ± 0.17 1.40 ± 0.33 0.87 ± 0.28 0.998 ± 0.01 11.96 ± 0.84 0.73 ± 0.02

EfficientPhys FSAM (Ours) 0.44 ± 0.14 1.19 ± 0.30 0.64 ± 0.22 0.999 ± 0.01 12.64 ± 0.78 0.75 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 0.60 ± 0.21 1.70 ± 0.42 0.87 ± 0.30 0.997 ± 0.01 15.19 ± 0.91 0.77 ± 0.02

SCAMPS

PhysNet - 26.74 ± 3.17 36.19 ± 5.18 46.73 ± 5.66 0.45 ± 0.12 -2.21 ± 0.66 0.31 ± 0.02

PhysFormer TD-MHSA* 16.64 ± 2.95 28.13 ± 5.00 30.58 ± 5.72 0.51 ± 0.11 0.84 ± 1.00 0.42 ± 0.02

EfficientPhys SASN 6.21 ± 2.26 18.45 ± 4.54 12.16 ± 4.57 0.74 ± 0.09 4.39 ± 0.78 0.51 ± 0.02

EfficientPhys FSAM (Ours) 8.03 ± 2.25 19.09 ± 4.27 15.12 ± 4.44 0.73 ± 0.09 3.81 ± 0.79 0.48 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 5.43 ± 1.93 15.80 ± 3.58 11.10 ± 4.05 0.80 ± 0.08 11.40 ± 0.76 0.67 ± 0.02

UBFC-rPPG

PhysNet - 10.38 ± 2.40 21.14 ± 3.90 20.91 ± 4.97 0.66 ± 0.10 11.01 ± 0.97 0.72 ± 0.02

PhysFormer TD-MHSA* 8.90 ± 2.15 18.77 ± 3.67 17.68 ± 4.52 0.71 ± 0.09 8.73 ± 1.02 0.66 ± 0.02

EfficientPhys SASN 4.71 ± 1.79 14.52 ± 3.65 7.63 ± 2.97 0.80 ± 0.08 8.77 ± 1.00 0.66 ± 0.02

EfficientPhys FSAM (Ours) 3.69 ± 1.66 13.27 ± 3.55 5.85 ± 2.63 0.83 ± 0.07 9.65 ± 0.90 0.68 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 0.48 ± 0.17 1.39 ± 0.35 0.72 ± 0.28 0.998 ± 0.01 14.16 ± 0.83 0.78 ± 0.02

Performance Evaluation on UBFC-rPPG Dataset

iBVP

PhysNet - 3.09 ± 1.79 10.72 ± 4.24 2.83 ± 1.44 0.81 ± 0.10 7.13 ± 1.53 0.81 ± 0.02

PhysFormer TD-MHSA* 9.88 ± 2.95 19.59 ± 5.35 8.72 ± 2.42 0.44 ± 0.16 2.80 ± 2.21 0.70 ± 0.03

EfficientPhys SASN 1.14 ± 0.45 2.85 ± 0.88 1.42 ± 0.58 0.987 ± 0.03 8.71 ± 1.23 0.84 ± 0.01

EfficientPhys FSAM (Ours) 1.17 ± 0.46 2.87 ± 0.88 1.31 ± 0.53 0.987 ± 0.03 8.54 ± 1.26 0.85 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 1.04 ± 0.38 2.40 ± 0.69 1.23 ± 0.48 0.990 ± 0.03 8.84 ± 1.31 0.86 ± 0.01

PURE

PhysNet - 1.23 ± 0.41 2.65 ± 0.70 1.42 ± 0.50 0.988 ± 0.03 8.34 ± 1.22 0.85 ± 0.01

PhysFormer TD-MHSA* 1.01 ± 0.38 2.40 ± 0.69 1.21 ± 0.48 0.990 ± 0.03 8.42 ± 1.24 0.85 ± 0.01

EfficientPhys SASN 1.41 ± 0.49 3.16 ± 0.93 1.68 ± 0.64 0.982 ± 0.03 6.87 ± 1.15 0.79 ± 0.02

EfficientPhys FSAM (Ours) 1.20 ± 0.46 2.92 ± 0.92 1.50 ± 0.63 0.986 ± 0.03 7.37 ± 1.20 0.79 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 1.04 ± 0.38 2.44 ± 0.69 1.23 ± 0.48 0.989 ± 0.03 8.88 ± 1.30 0.87 ± 0.01

SCAMPS

PhysNet - 11.24 ± 2.63 18.81 ± 4.71 13.55 ± 3.81 0.38 ± 0.17 -0.09 ± 1.02 0.48 ± 0.03

PhysFormer TD-MHSA* 8.42 ± 2.72 17.73 ± 5.09 11.27 ± 4.24 0.49 ± 0.16 2.29 ± 1.33 0.61 ± 0.03

EfficientPhys SASN 2.18 ± 0.75 4.82 ± 1.43 2.35 ± 0.76 0.96 ± 0.05 4.40 ± 1.03 0.67 ± 0.01

EfficientPhys FSAM (Ours) 2.69 ± 0.77 5.20 ± 1.39 3.16 ± 0.95 0.95 ± 0.06 3.74 ± 1.16 0.63 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 1.17 ± 0.40 2.56 ± 0.70 1.35 ± 0.49 0.989 ± 0.03 8.41 ± 1.19 0.82 ± 0.01

Performance Evaluation on iBVP Dataset

PURE

PhysNet - 1.63 ± 0.33 3.77 ± 0.73 2.17 ± 0.42 0.92 ± 0.04 6.08 ± 0.62 0.55 ± 0.01

PhysFormer TD-MHSA* 2.50 ± 0.64 7.09 ± 1.50 3.39 ± 0.82 0.79 ± 0.06 5.21 ± 0.60 0.52 ± 0.01

EfficientPhys SASN 3.80 ± 1.38 14.82 ± 3.74 5.15 ± 1.87 0.56 ± 0.08 2.93 ± 0.48 0.45 ± 0.01

EfficientPhys FSAM (Ours) 2.10 ± 0.33 4.00 ± 0.64 2.94 ± 0.49 0.91 ± 0.04 4.19 ± 0.54 0.49 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 1.66 ± 0.30 3.55 ± 0.65 2.31 ± 0.46 0.93 ± 0.04 6.78 ± 0.57 0.58 ± 0.01

SCAMPS

PhysNet - 31.85 ± 1.89 37.40 ± 3.38 45.62 ± 2.96 -0.10 ± 0.10 -6.11 ± 0.22 0.16 ± 0.00

PhysFormer TD-MHSA* 41.73 ± 1.31 43.89 ± 3.11 58.56 ± 2.36 0.15 ± 0.10 -9.13 ± 0.53 0.14 ± 0.00

EfficientPhys SASN 26.19 ± 3.47 44.55 ± 6.18 38.11 ± 5.21 -0.12 ± 0.10 -2.36 ± 0.38 0.30 ± 0.01

EfficientPhys FSAM (Ours) 13.40 ± 1.69 22.10 ± 3.00 19.93 ± 2.67 0.05 ± 0.10 -3.46 ± 0.26 0.24 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 2.71 ± 0.54 6.22 ± 1.38 3.87 ± 0.80 0.81 ± 0.06 2.36 ± 0.47 0.43 ± 0.01

UBFC-rPPG

PhysNet - 3.18 ± 0.67 7.65 ± 1.46 4.84 ± 1.14 0.70 ± 0.07 5.54 ± 0.61 0.56 ± 0.01

PhysFormer TD-MHSA* 7.86 ± 1.46 17.13 ± 2.69 11.44 ± 2.25 0.38 ± 0.09 1.71 ± 0.56 0.43 ± 0.01

EfficientPhys SASN 2.74 ± 0.63 7.07 ± 1.81 4.02 ± 1.08 0.74 ± 0.07 4.03 ± 0.55 0.49 ± 0.01

EfficientPhys FSAM (Ours) 2.56 ± 0.54 6.13 ± 1.32 3.71 ± 0.92 0.79 ± 0.06 4.65 ± 0.56 0.50 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 1.74 ± 0.39 4.39 ± 1.06 2.42 ± 0.57 0.90 ± 0.04 6.59 ± 0.57 0.56 ± 0.01

TD-MHSA*: Temporal Difference Multi-Head Self-Attention [77]; SASN: Self-Attention Shifted Network [37]; FSAM: Proposed Factorized Self-Attention Module.

† All metrics are shown with two decimal places, except those correlation measures that range between 0.99 and 1.0
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Figure 4: (A) Cumulative cross-dataset performance (MAE) v/s latency† plot. The size of the sphere
corresponds to the number of model parameters; (B) Visualization of learned spatial-temporal features
from the base 3D-CNN model trained without and with FSAM; † System specs: Ubuntu 22.04 OS,
NVIDIA GeForce RTX 3070 Laptop GPU, Intel® Core™ i7-10870H CPU @ 2.20GHz, 16 GB RAM.

features. It should also be noted that the higher latency of FactorizePhys compared to EfficientPhys
[37], although it has fewer model parameters, can be attributed to the difference in floating-point
operations (FLOPS) between the 3D-CNN and 2D-CNN architectures.

Visualization of Learned Attention: We compute absolute cosine similarity between the temporal
dimension of 4D embeddings (with temporal, spatial, and channel dimensions) and the ground-truth
signal to visualize the learned attention for FactorizePhys trained without and with FSAM in fig. 4[B],
where each tile represents a channel of the embedding layer. A higher cosine similarity score between
the temporal dimension of the embeddings and the ground-truth PPG signal, which is observed for
FactorizePhys trained with FSAM, indicates a higher saliency of temporal features. The spatial
spread of high cosine similarity scores in different channels for FactorizePhys trained with FSAM,
highlights selectivity of the learned attention, providing clearer evidence that the FactorizePhys model
trained with FSAM can effectively pick the spatial features having the strong presence of the rPPG
signal (i.e., facial regions with visible skin surface). Figure 4[B] not only suggests the effectiveness
of the joint computation of multidimensional attention, but also offers more intuitive visualization of
learned spatial-temporal features than existing visualization approaches [79, 37].

6 Conclusion

We present FactorizePhys, a 3D-CNN model utilizing the Factorized Self-Attention Module, FSAM,
to concurrently extract multidimensional (spatial, temporal, and channel) attention for the downstream
task of rPPG estimation from video frames. The assessment performed utilizing various rPPG
datasets demonstrates that our proposed method possesses superior generalization capabilities across
different datasets, compared to current state-of-the-art methods. Moreover, when adjusted to the
2D-CNN architecture, FSAM achieves performance on par with the established SASN [37] attention,
underscoring its adaptability across diverse network architectures.

Broader Impacts and Limitations: The superior performance of FactorizePhys equipped with
FSAM to estimate rPPG indicates its potential utility in various healthcare applications that require
the estimation of physiological signals through noncontact imaging. Although FSAM has shown
efficacy as a multidimensional attention mechanism specifically for the extraction of rPPG signals,
more research is needed to determine the efficacy of the proposed method in extracting heart rate
variability metrics as well as other physiological signals. Despite the state-of-the-art performance of
the proposed rPPG method, signal peaks can still be susceptible to challenging real-world scenarios,
such as active head movements, occlusions, and dynamic changes in ambient lighting conditions,
an issue that is qualitatively illustrated in the waveforms depicted in appendix A.11. Moreover, it is
imperative to conduct additional research to evaluate the effectiveness of FSAM across other spatial-
temporal domains, including video understanding, video object tracking, and video segmentation,
along with several other downstream tasks that depend on multi-dimensional input data. In the
context of signal estimation tasks, the utilization of NMF variants that integrate temporal or frequency
constraints on time series vectors may offer enhanced attention capabilities. These constraints are
congruent with the characteristics of the ground truth and present avenues for future investigation.
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A Appendix / Supplemental Material

A.1 Datasets

All datasets provide video recordings with a resolution of 640×480, and frame rate of 30 FPS. Below
we provide data-specific details.

iBVP [29]: The iBVP dataset consists of 124 synchronized RGB and thermal infrared videos from
31 subjects, acquired under controlled conditions. Each video is 3 minutes in duration, and the ground
truth BVP signals were acquired from the ear using PhysioKit [30]. Data were acquired under 4
different conditions that include controlled breathing, math tasks, and head movements. BVP signals
are marked with the signal quality, enabling the use of the video frames only where the quality of
ground-truth BVP signal is high. In this work, we use only RGB frames to train the models.

PURE [55]: This data set comprises video recordings from 10 subjects, with the ground-truth BVP
and SpO2 signals acquired from the subject’s finger. For each participant, six recordings are acquired
under varied motion conditions, offering a range of data reflecting different physical states.

UBFC-rPPG [2]: This data set contains video recordings of 43 subjects acquired under indoor
conditions with a combination of natural sunlight and artificial illumination.

SCAMPS [42]: This dataset comprises 2800 videos of synthetic avatars that were generated through
high-fidelity, quasi-photorealistic renderings. Although the videos introduce various conditions such
as head motions, facial expressions, and changes in ambient illumination, they are often used as a
training set rather than a validation or test set.

A.2 Implementation Overview

The preprocessing steps for video frames include face detection using the YOLO5Face [49] face
detector at an interval of 30 frames and using the detected facial bounding box to crop 30 subsequent
frames, prior to performing the next face detection. The cropped facial frames are resized to a
resolution of 72× 72, which has been shown to be sufficient to estimate the rPPG. Additionally, to
ensure uniform input data for all models, we add Diff layer to the PhysNet [83] and PhysFormer
[77] architectures, as implemented by EfficientPhys [37] and the proposed FactorizePhys models,
and train all the models from scratch using uniformly preprocessed video frames.

The number of frames in a video chunk is maintained as 161, which after the Diff layer becomes
160, making the spatial-temporal input data size 160 × 72 × 72. Ground-truth BVP signals are
also uniformly standardized for training all models. This is different from some of the recent work
[37] that applies Diff in addition to standardization. We empirically found that all models perform
significantly better when trained with the standardized BVP signals, although when the Diff is
applied to the video frames.

All models were trained with 10 epochs on, following a recent work [79], as a higher number of
epochs, e.g. 30 epochs as used in rPPG-Toolbox [38] resulted in poor generalization for all models.
However, we used only one epoch for all models to train on the SCAMPS [42] dataset, since this
dataset is a synthesized dataset with generated BVP signals that are easier for models to learn, unlike
real-world datasets. Training beyond one epoch resulted in poorer cross-dataset performance for all
the models. The batch size of 4 was used consistently throughout the training and the maximum
learning rate was set to 1 × 10−3 with 1 cycle learning rate scheduler [50] for all CNN models.

In addition, CNN models were optimized using negative Pearson correlation as a loss function. The
learning rate for PhysFormer [77] was set to 1 × 10−4 and it was optimized using a dynamic loss
composed of several hyperparameters, a negative Pearson loss, a frequency cross-entropy loss and
a label distribution loss as used by the authors and implemented in the rPPG-Toolbox [38]. Before
computing HR for performance evaluation, both ground truth and estimated BVP signals were filtered
using a bandpass filter (low cutoff = 0.60 Hz, high cutoff = 3.30 Hz) to accommodate HR ranges
of 36 to 198 BPM. HR was then computed using the FFT-peaks-based approach as implemented in
rPPG-Toolbox [38].
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A.3 Ablation Studies for FactorizePhys

We conduct ablation studies to evaluate optimal architectural choices and hyperparameters for the pro-
posed FactorizePhys and FSAM. In table 3, we compare base FactorizePhys without FSAM and with
FSAM and observe consistent performance gains with FSAM. Evaluation with and without residual
connection indicates performance gains when residual connection around FSAM is implemented.

Table 3: Ablation study to assess residual connection to FSAM Module, and to compare the models
trained with FSAM, for their inferences without FSAM

Training

Dataset

Testing

Dataset
Training Inference MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR) ↓ Corr (HR) ↑ SNR (BVP) ↑ MACC (BVP) ↑

UBFC-rPPG

PURE

Base Base 1.37 ± 1.02 7.97 ± 2.84 2.55 ± 2.07 0.94 ± 0.04 13.74 ± 0.81 0.77 ± 0.02

Base + FSAM Base + FSAM 0.71 ± 0.39 3.05 ± 1.02 1.20 ± 0.76 0.99 ± 0.02 13.78 ± 0.81 0.77 ± 0.02

Base 0.71 ± 0.39 3.05 ± 1.02 1.20 ± 0.76 0.99 ± 0.02 13.78 ± 0.81 0.77 ± 0.02

Base + FSAM + Res Base + FSAM + Res 0.48 ± 0.17 1.39 ± 0.35 0.72 ± 0.28 1.00 ± 0.01 14.16 ± 0.83 0.78 ± 0.02

Base 0.48 ± 0.17 1.39 ± 0.35 0.72 ± 0.28 1.00 ± 0.01 14.16 ± 0.83 0.78 ± 0.02

iBVP

Base Base 1.99 ± 0.42 4.82 ± 1.03 2.89 ± 0.69 0.87 ± 0.05 5.88 ± 0.57 0.54 ± 0.01

Base + FSAM Base + FSAM 1.90 ± 0.34 3.99 ± 0.76 2.66 ± 0.50 0.91 ± 0.04 5.82 ± 0.57 0.54 ± 0.01

Base 1.85 ± 0.33 3.89 ± 0.75 2.59 ± 0.49 0.91 ± 0.04 5.80 ± 0.57 0.54 ± 0.01

Base + FSAM + Res Base + FSAM + Res 1.73 ± 0.39 4.38 ± 1.06 2.40 ± 0.57 0.90 ± 0.04 6.61 ± 0.58 0.56 ± 0.01

Base 1.74 ± 0.39 4.39 ± 1.06 2.42 ± 0.57 0.90 ± 0.04 6.59 ± 0.57 0.56 ± 0.01

Retention of performance gains despite FSAM being skipped during inference, for FactorizePhys
trained with FSAM offers insight into the mechanics of how FSAM functions. This can be interpreted
as follows: Optimization of a network having FSAM implemented as an attention mechanism
influences the network to increase the saliency of the most relevant features, so that a factorized
approximation of embeddings retains these features, while discarding the less important features.
Due to the increased saliency of relevant features and the presence of residual connection, FSAM can
be skipped during inference, significantly reducing computational overhead.

Table 4: Performance Evaluation of Models on PURE Dataset [55], Trained with UBFC-rPPG Dataset
[2], using Different Ranks and Optimization Steps for Factorization

MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) ↑ SNR ( dB, BVP) ↑ MACC (BVP) ↑Optimization Steps

for Matrix Factorization
Rank

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Base 1.37 1.02 7.97 2.84 2.55 2.07 0.94 0.04 13.74 0.81 0.77 0.02

1 0.48 0.17 1.39 0.35 0.72 0.28 1.00 0.01 14.16 0.83 0.78 0.02

2 1.40 1.02 7.98 2.84 2.59 2.07 0.94 0.04 13.71 0.81 0.77 0.02

4 2.25 1.30 10.23 3.09 4.36 2.66 0.91 0.05 13.50 0.82 0.77 0.02

8 1.44 1.02 7.98 2.84 2.64 2.07 0.94 0.04 13.70 0.83 0.77 0.02

4

16 2.20 1.30 10.22 3.09 4.26 2.66 0.91 0.05 13.55 0.82 0.77 0.02

1 0.80 0.39 3.11 1.03 1.33 0.77 0.99 0.02 13.60 0.81 0.77 0.02

2 1.31 0.84 6.55 2.30 2.45 1.72 0.96 0.04 13.42 0.81 0.76 0.02

4 1.53 0.90 7.10 2.32 2.91 1.86 0.96 0.04 13.54 0.82 0.77 0.02

8 2.22 1.30 10.23 3.09 4.29 2.66 0.91 0.05 13.75 0.82 0.77 0.02

6

16 1.43 1.02 7.98 2.84 2.65 2.07 0.94 0.04 13.62 0.81 0.77 0.02

1 0.73 0.39 3.06 1.02 1.24 0.77 0.99 0.02 13.67 0.81 0.77 0.02

2 1.44 1.02 7.98 2.84 2.64 2.07 0.94 0.04 13.35 0.82 0.77 0.02

4 0.78 0.39 3.10 1.03 1.30 0.77 0.99 0.02 13.77 0.80 0.77 0.02

8 0.73 0.39 3.06 1.02 1.24 0.77 0.99 0.02 13.50 0.82 0.77 0.02

8

16 0.73 0.39 3.06 1.02 1.24 0.77 0.99 0.02 13.55 0.83 0.77 0.02
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In table 4, we present results to compare the performance obtained for different ranks L, as well as
the optimization steps used to solve factorization. For all experiments, FactorizePhys is trained with
the UBFC-rPPG dataset [2] and the performance is presented for the PURE dataset [55]. We can
observe that the best performance was achieved for rank L = 1 for the different steps used to solve
the factorization. For higher ranks, performance remains on par with that of the network without
the FSAM, indicating that for the rPPG estimation task, the rank-1 factorization offers the optimal
spatial-temporal attention. These results align with the expected single source of the underlying BVP
signals in different facial regions.

A.4 Statistical Significance of the Main Results

We performed repeated experiments with 10 different random seed values between 1 and 1000 to
compare the proposed FactorizePhys trained with FSAM with the best performing SOTA rPPG
method. For the cross-dataset generalization results reported in table 2, EfficientPhys with SASN
[37] was found to perform the best among the existing SOTA methods.

Table 5: Performance Evaluation of Models on PURE Dataset, Trained with UBFC-rPPG Dataset,
using Different Random Seed Values

MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) ↑ SNR ( dB, BVP) ↑ MACC (BVP) ↑Model Random Seed Value
Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

10 3.75 1.62 12.97 3.53 5.69 2.52 0.84 0.07 8.60 0.99 0.65 0.02

38 4.46 1.74 14.09 3.59 7.18 2.88 0.81 0.08 8.69 1.01 0.66 0.02

55 4.67 1.79 14.55 3.65 7.50 2.97 0.80 0.08 8.69 1.01 0.66 0.02

100 4.71 1.79 14.52 3.65 7.63 2.97 0.80 0.08 8.77 1.00 0.66 0.02

128 4.74 1.79 14.52 3.65 7.68 2.97 0.80 0.08 8.84 0.99 0.66 0.02

138 4.36 1.79 14.41 3.65 7.01 2.97 0.80 0.08 8.81 0.99 0.66 0.02

212 4.52 1.78 14.42 3.65 7.37 2.96 0.80 0.08 8.64 0.99 0.66 0.02

308 4.70 1.79 14.52 3.65 7.61 2.97 0.80 0.08 8.84 1.03 0.66 0.02

319 4.70 1.79 14.55 3.65 7.55 2.97 0.80 0.08 8.96 1.00 0.66 0.02

900 4.63 1.79 14.51 3.65 7.48 2.97 0.80 0.08 8.65 0.99 0.66 0.02

EfficientPhys with

SASN Attention Module

Average 4.52 1.77 14.31 3.63 7.27 2.92 0.81 0.08 8.75 1.00 0.66 0.02

10 1.38 0.98 7.64 2.71 2.52 1.98 0.95 0.04 13.40 0.82 0.75 0.02

38 4.31 1.86 14.93 3.79 7.11 3.18 0.79 0.08 12.52 0.84 0.75 0.02

55 2.17 1.30 10.22 3.09 4.22 2.66 0.91 0.05 13.71 0.83 0.77 0.02

100 0.48 0.17 1.39 0.35 0.72 0.28 1.00 0.01 14.16 0.83 0.78 0.02

128 0.78 0.39 3.08 1.03 1.31 0.77 0.99 0.02 13.23 0.81 0.76 0.02

138 0.52 0.19 1.56 0.40 0.72 0.27 1.00 0.01 13.03 0.80 0.76 0.02

212 2.15 1.22 9.63 2.88 4.19 2.50 0.92 0.05 13.58 0.81 0.77 0.02

308 1.50 0.98 7.70 2.71 2.79 1.99 0.95 0.04 13.39 0.82 0.77 0.02

319 1.38 0.84 6.61 2.30 2.60 1.73 0.96 0.04 13.54 0.81 0.77 0.02

900 3.34 1.70 13.46 3.69 5.21 2.78 0.83 0.07 12.76 0.83 0.76 0.02

Proposed FactorizePhys

with FSAM Attention Module

Average 1.80 0.96 7.62 2.30 3.14 1.81 0.93 0.04 13.33 0.82 0.76 0.02

Paired T Test 0.0001 0.0014 0.0001 0.0004 0.0000 0.0000

For each random seed value, we trained the proposed FactorizePhys with FSAM and EfficientPhys
with SASN [37] on the UBFC-rPPG [2] dataset and evaluated them on the PURE dataset [55]. Paired
T tests for each reported evaluation metrics suggest that the performance gains achieved with the
proposed method are statistically significant compared against the best performing SOTA rPPG
method, highlighting its effectiveness and thereby highlighting contributions of this work in the
research field of end-to-end rPPG estimation from video frames.

A.5 Within Dataset Performance

In this work, we primarily focus on comparing rPPG methods for their cross-dataset generalization,
which offers more critical evaluation and reliable estimates of how models perform on unseen or
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out-of-distribution data. Within-dataset performance signifies an representation ability of model
to fit the data, derived from the same distribution, serving as an essential criteria. Therefore, for
completeness, in table 6, we report within-dataset evaluation on iBVP [29], [55], and UBFC-rPPG
[2] datasets, where we observe at-par performance of FactorizePhys as compared with the SOTA
rPPG methods.

Table 6: Within Dataset Performance Evaluation

Model Attention

Module

MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) ↑ SNR ( dB, BVP) ↑ MACC (BVP) ↑

Performance Evaluation on iBVP Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)

PhysNet - 1.18 ± 0.29 2.10 ± 0.51 1.64 ± 0.42 0.98 ± 0.03 10.63 ± 1.05 0.68 ± 0.02

PhysFormer TD-MHSA* 1.96 ± 0.63 4.22 ± 1.47 2.49 ± 0.72 0.91 ± 0.07 10.72 ± 1.04 0.66 ± 0.03

EfficientPhys SASN 2.74 ± 0.96 6.28 ± 2.14 3.56 ± 1.13 0.81 ± 0.10 7.01 ± 1.03 0.58 ± 0.03

EfficientPhys FSAM (Ours) 1.30 ± 0.33 2.34 ± 0.60 1.75 ± 0.46 0.98 ± 0.04 7.83 ± 0.96 0.59 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 1.13 ± 0.36 2.42 ± 0.77 1.52 ± 0.50 0.97 ± 0.04 9.75 ± 1.05 0.65 ± 0.02

Performance Evaluation on PURE Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)

PhysNet - 0.59 ± 0.27 1.28 ± 0.46 0.92 ± 0.44 1.00 ± 0.02 19.66 ± 1.18 0.90 ± 0.01

PhysFormer TD-MHSA* 0.68 ± 0.26 1.31 ± 0.46 1.08 ± 0.43 1.00 ± 0.02 19.05 ± 1.07 0.87 ± 0.01

EfficientPhys SASN 0.49 ± 0.26 1.21 ± 0.46 0.73 ± 0.42 1.00 ± 0.02 15.25 ± 1.20 0.80 ± 0.02

EfficientPhys FSAM (Ours) 0.59 ± 0.27 1.28 ± 0.46 0.92 ± 0.44 1.00 ± 0.02 15.42 ± 1.25 0.80 ± 0.02

FactorizePhys (Ours) FSAM (Ours) 0.49 ± 0.26 1.21 ± 0.46 0.73 ± 0.42 1.00 ± 0.02 19.63 ± 1.40 0.86 ± 0.01

Performance Evaluation on UBFC-rPPG Dataset, Subject-wise Split: Training (0.0 - 0.7), Test (0.7 - 1.0)

PhysNet - 1.62 ± 0.73 3.08 ± 1.16 1.46 ± 0.68 0.98 ± 0.06 5.21 ± 1.97 0.90 ± 0.01

PhysFormer TD-MHSA* 1.76 ± 0.79 3.36 ± 1.30 1.60 ± 0.74 0.96 ± 0.08 6.10 ± 1.86 0.90 ± 0.01

EfficientPhys SASN 2.30 ± 1.40 5.54 ± 2.53 2.28 ± 1.44 0.90 ± 0.13 6.75 ± 1.76 0.87 ± 0.01

EfficientPhys FSAM (Ours) 2.91 ± 1.42 5.88 ± 2.52 2.79 ± 1.45 0.88 ± 0.14 6.79 ± 1.82 0.87 ± 0.01

FactorizePhys (Ours) FSAM (Ours) 2.84 ± 1.42 5.87 ± 2.52 2.73 ± 1.46 0.88 ± 0.14 6.33 ± 2.00 0.91 ± 0.01

TD-MHSA*: Temporal Difference Multi-Head Self-Attention [77];

SASN: Self-Attention Shifted Network [37]; FSAM: Proposed Factorized Self-Attention Module

A.6 Scalability Assessment of FSAM

We further investigate FSAM for its scalability to higher spatial-temporal resolution. For this, we
perform within-dataset evaluation on the UBFC-rPPG dataset [2], which is pre-processed with the
regular input dimension of 160× 72× 72 as well as with a higher spatial and temporal dimension of
240× 128× 128. Repeatable experiments are conducted with 10 different random seeds between 1
and 1000 to compare the performance of FactorizePhys with FSAM for each spatial-temporal input
dimension.

Comparable performance, as observed in table 7, for both spatial-temporal input dimensions, suggests
that FSAM can be easily deployed for different spatial-temporal scales. It should also be noted that the
higher spatial dimension of video frames (i.e., 128× 128) does not produce improved performance,
indicating that the spatial dimension of 72× 72 is sufficient to extract rPPG signals with end-to-end
methods.
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Table 7: Scalability Assessment of FSAM for Higher Spatial and Temporal Dimensions

MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) ↑ SNR ( dB, BVP) ↑ MACC (BVP) ↑Input

Dimension

Random

Seed Value Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

10 2.84 1.43 5.87 2.52 2.73 1.45 0.88 0.14 6.49 2.03 0.90 0.01

38 2.84 1.43 5.87 2.52 2.73 1.45 0.88 0.14 6.68 2.00 0.91 0.01

55 2.97 1.41 5.89 2.52 2.84 1.44 0.88 0.14 6.52 1.98 0.91 0.01

100 2.84 1.43 5.87 2.52 2.73 1.45 0.88 0.14 6.32 2.01 0.91 0.01

128 2.97 1.41 5.89 2.52 2.84 1.44 0.88 0.14 6.42 1.99 0.91 0.01

138 2.84 1.43 5.87 2.52 2.73 1.45 0.88 0.14 6.48 1.96 0.91 0.01

212 2.91 1.42 5.88 2.52 2.79 1.45 0.88 0.14 6.40 1.99 0.91 0.01

308 2.84 1.43 5.87 2.52 2.73 1.45 0.88 0.14 6.51 1.98 0.91 0.01

319 2.91 1.42 5.88 2.52 2.79 1.45 0.88 0.14 6.44 2.03 0.91 0.01

900 2.91 1.42 5.88 2.52 2.79 1.45 0.88 0.14 6.55 2.01 0.91 0.01

160x72x72

Mean 2.89 1.42 5.88 2.52 2.77 1.45 0.88 0.14 6.48 2.00 0.91 0.01

10 3.04 1.92 7.56 3.64 3.22 2.18 0.83 0.17 6.68 1.93 0.90 0.01

38 2.91 1.93 7.54 3.64 3.10 2.19 0.84 0.16 6.86 1.93 0.90 0.01

55 2.97 1.92 7.54 3.64 3.16 2.18 0.84 0.16 6.63 1.91 0.91 0.01

100 2.91 1.93 7.54 3.64 3.10 2.19 0.84 0.16 6.87 1.91 0.90 0.01

128 3.11 1.91 7.56 3.64 3.28 2.17 0.84 0.17 6.71 1.87 0.90 0.01

138 2.91 1.93 7.54 3.64 3.10 2.19 0.84 0.16 6.63 1.95 0.91 0.01

212 3.04 1.92 7.56 3.64 3.22 2.18 0.83 0.17 6.81 1.93 0.90 0.01

308 2.91 1.93 7.54 3.64 3.10 2.19 0.84 0.16 6.71 1.92 0.90 0.01

319 3.04 1.92 7.56 3.64 3.22 2.18 0.83 0.17 6.83 1.93 0.91 0.01

900 3.04 1.92 7.56 3.64 3.22 2.18 0.83 0.17 6.69 1.91 0.90 0.01

240x128x128

Mean 2.99 1.92 7.55 3.64 3.17 2.18 0.84 0.17 6.74 1.92 0.90 0.01

A.7 Multimodal rPPG Extraction

As iBVP dataset offers synchronized RGB and thermal infrared video frames, we conducted a
brief experiment using FactorizePhys with FSAM to investigate whether combining both modalities
can result in performance gains for the estimation of rPPG. For this, we also individually trained
FactorizePhys on RGB and thermal frames keeping the identical data split of 70%-30%. Results

Table 8: Performance Evaluation on iBVP Dataset, Subject-wise Split: Train (70%), Test (30%)
MAE (HR) ↓ RMSE (HR) ↓ MAPE (HR)↓ Corr (HR) ↑ SNR (dB, BVP) ↑ MACC (BVP) ↑Modality of

Input Frames Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

T 6.40 0.97 8.58 2.11 8.66 1.26 0.84 0.09 -3.27 0.40 0.20 0.01

RGB 1.13 0.36 2.42 0.77 1.52 0.50 0.97 0.04 9.75 1.05 0.65 0.02

RGBT 1.10 0.36 2.42 0.77 1.49 0.50 0.97 0.04 9.65 1.04 0.64 0.02

in table 8 suggest weaker presence of rPPG signal in thermal infrared frames, leading to poorer
performance when FactorizePhys is trained only on thermal frames, while not showing significant
performance gains when jointly trained with RGB and thermal frames.

A.8 Visual Overview of Cross-Dataset Generalization and Latency

Figure 5 offers a quick visual summary of the cross-dataset generalization performance on different
evaluation metrics, their respective standard error, and latency for the proposed and existing SOTA
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methods. The performance reported on Y-axis of each plot is cumulative cross-dataset performance

Figure 5: Cross-dataset performance comparison between SOTA and the proposed method reported
with cumulative evaluation metrics, their standard error (SE) and latency

for respective models, averaged over different training and testing datasets. The proposed method
outperforms existing state-of-the-art methods in all evaluation metrics by a significant margin, while
achieving at-par latency.

A.9 Computational Cost and Latency

Table 9 compares model parameters, latency on GPU and CPU, and model size of the proposed
FactorizePhys with FSAM with that of the existing SOTA rPPG methods. Considering the identical
inference time performance of the base FactorizePhys, when trained using the proposed FSAM,
the proposed method uses an order of magnitude fewer parameters and achieves a par latency on
both CPU and GPU systems. Relatively higher latency compared to the EfficientPhys [37] model,
despite the fewer model parameters, is due to the difference in the number of floating point operations
(FLOPS). FactorizePhys, being a 3D-CNN architecture, requires more FLOPS to compute 3D features
at each layer compared to the fewer FLOPS for EfficientPhys [37] which implements the 2D-CNN
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architecture. It should be noted that the FLOPS are also dependent on the input dimension, which
is kept consistent for all the models. For resource critical deployment, FLOPS can be significantly
reduced by decreasing the spatial dimension of input from 72 × 72 to 8 × 8 as found optimal for
RTrPPG [3] or to 9× 9 as used in the small branch of the Bigsmall model [44] for rPPG estimation.

Table 9: Comparison of FactorizePhys based on Model Parameters, Latency and Model Size

Model Model
Parameters

Inference Time
on CPU (ms)†

Inference Time
on GPU (ms)‡

Model
Size (MB)

PhysFormer 7380871 450.47 26.86 29.80

PhysNet 768583 272.89 1.36 3.10

EfficientPhys with SASN 2163081 371.08 1.31 8.70

EfficientPhys with FSAM (ours) 140655 82.19 5.62 0.57

FactorizePhys Base (ours) 51840 96.80 1.94 0.22

FactorizePhys with FSAM (ours) 52168 95.75 8.97 0.22

†CPU Specs: Intel® Core™ i7-10870H CPU @ 2.20GHz × 16 GB RAM.

‡GPU Specs: NVIDIA GeForce RTX 3070 Laptop GPU (CUDA cores = 5120).

A.10 Visualization of Learned Attention

In fig. 6, we present additional samples of learned spatial-temporal features. For FactorizePhys
trained with FSAM, we can observe superior cosine similarity and more relevant spatial distribution
specifically under challenging scenarios with occlusions such as arising from hairs, eye-glasses and
beard.

A.11 Qualitative Comparison with Estimated rPPG Signals

Qualitative comparison of the estimated rPPG signals between the proposed method and the best
performing SOTA method (i.e., EfficientPhys [37] is presented for different test datasets - iBVP [29]
(fig. 7) , PURE [55] (fig. 8), and UBFC-rPPG [2] (fig. 9).

A.12 Safeguards

We intend to release our rPPG estimation code only for academic purposes, with Responsible AI
license (RAIL). Research areas that will benefit directly from this work include human-computer
interaction and contactless health tracking or vital signs monitoring. Although the methods presented
in this work may potentially benefit certain clinical scenarios, thorough validation studies, with
appropriate ethics approval, are required to critically assess performance in such settings.

In addition, in some recent work, rPPG methods have been indicated as effective in detecting deep-
fake videos. In this context, we would like to caution such a use, considering the main results
presented for the models trained using the SCAMPS [42] dataset, consisting of synthesized avatars.
We argue that the rPPG signal can be embedded in the synthesized (or deep-fake) videos, with a
similar approach as used for generating the SCAMPS [42] dataset. In such scenarios, in spite of
high accuracy in estimating rPPG signals, such methods can be fooled by the synthesized videos that
embed BVP signals. Therefore, we highlight that it is necessary to use the rPPG signal estimation
methods in this context with great caution.
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Figure 6: Visualization of Learned Spatial-Temporal Features
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Figure 7: Comparison of Estimated rPPG Signals on iBVP Dataset for Models Trained with PURE,
SCAMPS and UBFC-rPPG Datasets

24



Figure 8: Comparison of Estimated rPPG Signals on PURE Dataset for Models Trained with iBVP,
SCAMPS and UBFC-rPPG Datasets
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Figure 9: Comparison of Estimated rPPG Signals on UBFC-rPPG Dataset for Models Trained with
iBVP, PURE and SCAMPS Datasets
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B NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make thorough evaluation of the claims and results support the claims,
which are appropriately highlighted in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section, we have dedicated a paragraph to mention the
broader impact and discuss the limitations and future directions that can be investigated.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not propose a new theory, as it focuses on adapting estab-
lished foundational algorithm for low-rank recovery using nonnegative matrix factorization
into deep learning architecture to jointly compute spatial-temporal attention. We present
empirical results of thoroughly conducted experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In sections §4, appendix A.1, and appendix A.2, we provide a detailed
description necessary to reproduce the main experimental results. In addition, we make our
code available at https://github.com/PhysiologicAILab/FactorizePhys.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Although this paper does not present new data, we provide access to our code at
https://github.com/PhysiologicAILab/FactorizePhys, accompanied by comprehensive usage
instructions. Our code extends the rPPG-Toolbox [38], a widely embraced tool by the rPPG
research community, and includes exhaustive guidelines to allow replication of our main
results. Furthermore, we urge researchers who encounter any difficulties in reproducing the
results to report them through issue tracker on our repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Through §4 and appendix A.2, we specify data-splits as well as hy-
perparameters. We provide results from the ablation study in §5 and appendix A.3
for key hyperparameters that we use in this work. In addition, the code released at
https://github.com/PhysiologicAILab/FactorizePhys includes config files used to train and
test all models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We conduct a rigorous assessment of the proposed models by means of an
fair comparison with SOTA rPPG methods, and report standard error for all evaluation
metrics. This examination is further supplemented with a statistical significance analysis
of the principal results, as detailed in table 5 in appendix A. Our evaluation encompasses
the most effective SOTA rPPG method and includes a paired T-test result derived from 10
experiments that use distinct random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these details in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work is in accordance with the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Although we briefly highlight the potential positive impacts in §6, to prevent
any negative societal impact, we have safeguarded our code with Responsible AI License,
specifying the appropriate restrictions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We have mentioned safeguard measures in appendix A.12.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We cite all the code, data and models used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have prepared ReadMe for the code repository, as well as we have added
code comments where applicable to provide the needed documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve direct collection of data from human subjects, as it
uses existing datasets, which have been cited.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Although this work did not require working with human subjects, we have
institutional ethics covered for this research, which is approved by the Ethics Committee of
the University College London Interaction Center (ID Number: UCLIC/1920/006/Staff/Cho,
Approval date: 20 May 2020).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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