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Abstract: Dynamic obstacle avoidance (DOA) is critical for quadrupedal robots
operating in environments with moving obstacles or humans. Existing approaches
typically rely on navigation-based trajectory replanning, which assumes sufficient
reaction time and leading to fails when obstacles approach rapidly. In such sce-
narios, quadrupedal robots require reflexive evasion capabilities to perform instan-
taneous, low-latency maneuvers. This paper introduces Reflexive Evasion Robot
(REBot), a control framework that enables quadrupedal robots to achieve real-time
reflexive obstacle avoidance. REBot integrates an avoidance policy and a recov-
ery policy within a finite-state machine. With carefully designed learning curricula
and by incorporating regularization and adaptive rewards, REBot achieves robust
evasion and rapid stabilization in instantaneous DOA tasks. We validate REBot
through extensive simulations and real-world experiments, demonstrating notable
improvements in avoidance success rates, energy efficiency, and robustness to fast-
moving obstacles. Videos are available on https://rebot-2025.github.io/.
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Figure 1: The Reflexive Evasion Robot (REBot) system achieves instantaneous dynamic obstacle
avoidance. When the fast-moving obstacles approach the quadrupedal robots (reaction time<1.5s),
REBot switches to the avoidance policy and performs reflexive evasion maneuvers. In (a) and (b), the
robot is poked on the frontal and dorsal sides using a stick; in (c) and (d), a ball is launched toward
the robot from both frontal and lateral directions; in (e), to evaluate robustness, the quadrupedal
robot was subjected to intentional kicks from multiple directions. Experimental results demonstrate
that the REBot system successfully controlled the quadrupedal robot to avoid all obstacles.
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1 Introduction
Ensuring the safety of a robot is essential during task execution [1]. For instance, a mobile robot
must not only perform its primary tasks but also perceive surrounding obstacles and take appropriate
evasive actions [2, 3, 4]. When encountering slow-moving obstacles (reaction time >2s), the robot
typically has sufficient time to stop its current actions and replan a new trajectory using a decision-
making model to avoid collisions [5, 6]. This type of behavior is commonly referred to as dynamic
obstacle avoidance (DOA) via navigation-based trajectory replanning [7]. For legged robots, such
as quadrupedal robots, DOA involves both high-level navigation decision-making and low-level
locomotion control [8]. For example, in the Agile but Safe (ABS) framework [9], a quadrupedal
robot encountering a quasi-static obstacle during high-speed locomotion can reduce its speed and
replan a navigation trajectory to safely bypass the obstacle (Additional related works are provided
in the appendix).

However, when obstacles approach at high speeds, the robot is left with extremely limited reaction
time (<1.5s), necessitating immediate evasive maneuvers [10]. Due to limitations in mechanical
structure and motor power, the robot often fails to generate sufficient velocity within the available
time to accurately track a replanned navigation trajectory [11]. To achieve instantaneous DOA, we
draw inspiration from the spinal reflex systems of vertebrates. Unlike decision-making processes
governed by the brain, spinal reflexes enable rapid, localized decisions through neural circuits in the
spinal cord, allowing animals to execute unconventional evasive actions instantaneously [12]. For
example, an antelope might execute a sudden backward leap to evade an ambush from an underwater
crocodile while drinking, relying entirely on reflexive evasion.

In this paper, we propose the Reflexive Evasion Robot (REBot) system for instantaneous dynamic
obstacle avoidance. Using the quadrupedal robot Unitree Go2 as an example platform [13, 14],
REBot demonstrates real-time evasion of high-speed obstacles with a reaction time of less than 1.5
seconds. The REBot system is structured as a finite-state machine with three behavioral stages.
During the normal stage, the robot performs its primary functional tasks. When an approaching ob-
stacle is detected, REBot transitions to the avoidance stage, executing reflexive evasion maneuvers.
During evasion, a PPO [15, 16, 17] reinforcement learning policy enables rapid avoidance while
preserving the robot’s safety, balance, and energy efficiency. After an evasive maneuver, the robot
may become unstable. REBot then enters the recovery stage, during which a policy stabilizes the
robot and restores normal function.

We trained the REBot system for quadrupedal robots in Isaac Gym simulator [18], evaluated its per-
formance, and deployed it on a real robot for demonstration. REBot achieved the highest avoidance
and recovery success rates in both static and dynamic obstacle scenarios, while reducing maximum
joint power and avoidance distance. We observed that the robot’s reflexive evasion performance var-
ied with obstacle direction and speed; it performed best when avoiding frontal obstacles due to its
structural advantages in backward maneuvers. Ablation studies confirmed that the recovery policy,
curriculum learning, and adaptive reward design significantly improved avoidance success rates.
Finally, real-world experiments (Fig. 1) validated REBot’s capability for real-time, instantaneous
dynamic obstacle avoidance, offering insights into robot safety system design.

In summary, the contributions of this paper are as follows:
• We formally identify and formulate the reflexive evasion problem for dynamic obstacle avoid-

ance in quadrupedal robots.

• We design the REBot system as a finite-state machine integrating avoidance and recovery poli-
cies to achieve robust, real-time reflexive evasion.

• We conduct comprehensive simulations and real-world experiments with thorough analysis to
validate REBot’s effectiveness across various obstacle scenarios.

2 Preliminary
Problem formulation. Fig. 2 shows that the dynamic obstacle avoidance (DOA) system has two
entities: dynamic obstacles and quadruped robots. The dynamic obstacles O are modeled as a rigid
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sphere with states (rO, pOt , v
O
t ) of radius, position, velocity and acceleration in 3D space. The

quadruped robot R is a high-dimensional articulated system with a robot base and four indepen-
dently actuated legs. The states sRt consist of base position pRt ∈ R3, linear velocity vRt ∈ R3,
angular velocity ωR

t ∈ R3, joint position qRt ∈ R12, joint velocity q̇Rt ∈ R12, joint torque τRt ∈ R12,
contact force fR

t ∈ R4×3 and orientation angle θRt ∈ R3. The robot is driven by servo motors on
the joints to move on the ground via action aRt , where aRt ∈ R12 denotes the joint target angles.
In this work, we utilize the Unitree Go2 robot to conduct experiments. We define a successful dy-
namic obstacle avoidance (DOA) as the robot maintaining collision-free motion throughout the task
duration. A collision is considered to occur if the signed distance function (SDF) from the obstacle
center pOt to the robot’s oriented bounding box (OBB), denoted as BR, is smaller than the obstacle’s
radius rO; that is, if d(pOt ,BR) < rO.
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Figure 2: Robot dynamic obstacle avoidance.
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action (aRt ), enabling the robot to avoid ap-
proaching obstacles while maintaining balance.
When faced with static or slow-moving obsta-
cles, the robot can temporarily stop and replan
its trajectory, a behavior classified as naviga-
tion avoidance [9]. However, when the obsta-
cles approach instantaneously, the robot must
react immediately. We categorize such behav-
ior as reflexive evasion (Fig. 2). The reaction time Treact determines the reaction of navigation or
reflex, and we distinguish these two behaviors by the maximum joint power of the robot. In the
following sections, we design the REBot system to achieve the reflexive DOA and analyze the be-
haviors in both simulation and real-world experiments.

3 Method: Reflexive Evasion Robot

In this section, we design the reflexive evasion robot (REBot) system to achieve DOA in Fig. 3(a).
As shown in Fig. 3, the REBot system consists of three behavioral stages organized as a finite state
machine (FSM). In the following sections, we introduce the FSM stages and transition criteria (Sec.
3.1), the training strategies of the avoidance policy (Sec. 3.2) and the recovery policy (Sec. 3.3).
Finally, we delineate the training and deployment of the REBot system in simulation and on real
quadruped robots, respectively (Sec. 3.4).

3.1 REBot Stages and Transition Criteria

The robot initially stays in the normal stage with functional behaviors such as standing, walking, or
trotting. During this stage, the robot continuously observes the environment and potential obstacles.
In this work, we define the normal behavior as standing still while maintaining balance via the PD
controller. When the obstacle is approaching the robot, (i.e., ⟨vOt , pRt − pOt ⟩ > 0), REBot switches
to the avoidance stage to execute reflexive evasion, in which the avoidance policy performs reactive
maneuvers under constrained reaction time.

However, severe evasion may cause the robots’ instability. Therefore, the REBot correspondingly
switches to the recovery stage, where a recovery policy drives the robot back to normal functions.
REBot judges the instability with three criteria: (i) body orientation exceeds a safe range ∥θRt ∥ >
θRth ; (ii) joint velocity surpasses a stability limit ∥q̇Rt ∥ > q̇Rth ; (iii) base height drops below a threshold
value hR

t < hR
th . Here, θRt , q̇Rt , and hR

t ∈ R denote the robot’s orientation, joint velocity, and base
height, respectively. The corresponding thresholds are θRth , q̇Rth , and hR

th .

3.2 Avoidance Policy

The avoidance policy is trained via RL to achieve reflexive evasion under constrained reaction time.
The objective is to avoid collisions while maintaining postural stability and minimizing energy con-
sumption. The reward function consists of three parts: r = ravoidance + rregularization + radaptive.
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Figure 3: (a) REBot Framework: A finite-state machine (FSM) governs transitions between the
Normal, Avoidance, and Recovery stages. The quadrupedal robot performs reflexive evasion to
avoid obstacles (red balls). (b) Policy Design: The avoidance policy is trained not only for success-
ful obstacle avoidance but also incorporates regulation rewards for state stabilization and adaptive
rewards to encourage diverse evasive behaviors. (c) Training and Deployment: REBot is trained
in Isaac Gym using a two-stage curriculum from static to dynamic obstacles, and deployed on a real
Unitree Go2 robot.

Avoidance reward is composed of ravoidance = rdistance + rcollision. The distance reward is defined
as rdistance = − exp(−(d(pOt ,BR) − rO)) to encourage the robot to maintain a safe distance from
the moving obstacle throughout the entire task. The collision penalty is defined as rcollision = 1(c =
0) − 1(c = 1) to penalize any contact event, where c ∈ {0, 1} denotes the collision. We adopt
a two-stage curriculum to improve policy training efficiency. In the first stage, a static obstacle
appears instantaneously in a random location near the robot at a predefined activation time. In the
second stage, the obstacle follows a directed trajectory toward the robot at varying speeds, simulating
realistic dynamic threats.

Regularization reward consists of three terms rregularization = rwalk + renergy + rcontact. It is designed
to ensure the learned evasive maneuvers remain both stable and natural (Fig. 3(b)). To promote
natural and coordinated motion, we encourage symmetric limb phasing consistent with a trot gait.
The term rwalk = 1

2 (1(cFL = cRR) + 1(cFR = cRL)) rewards synchronized contact patterns between
diagonal leg pairs, where ci,j denotes different contact leg. We penalize the product of joint torque
and joint velocity across all actuated degrees of freedom to reduce excessive power consumption
through renergy = −

∑
i |τ

R,i
t · q̇R,i

t |, where τR,i
t and q̇R,i

t represent the torque and angular velocity
of each joint respectively. We also penalize the temporal fluctuation of vertical foot contact forces

to reduce instability via rcontact = −
∑

i

(
fR,i,z
t − fR,i,z

t−1

)2

, where fR,i,z
t denotes the vertical foot

contact force of each leg.

Adaptive reward is designed as radaptive = rdiversity + rthreat + rdirection to encourage motion diversity,
speed modulation, and direction efficiency [19]. RL policy tends to converge toward a single locally
optimal behavior (Fig. 3(b)). In this task, it manifests as the robot repeatedly using a fixed evasion
gait regardless of obstacle state. We defined a diversity reward to encourage the policy to appropriate
behaviors rdiversity = VarsR∼DsR

[
π(aRt |sRt )

]
. We define the threat level of the obstacle through the

reaction time and the robot learns to adapt its speed in response to the levels of perceived threat as
rthreat = −∥vR

t − vR,safe
t ∥, vR,safe

t = vR,cmd
t + λ exp(−ηTreaction), where vR,cmd

t denotes the com-
mand velocity, λ and η denote the hyperparameters. To discourage evasive movements that deviate
unnecessarily from the ideal escape direction, we penalize wrong the robot movement direction via
rdirection = −⟨vRt , pOt − pRt ⟩.
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3.3 Recovery Policy
The recovery policy ensures a smooth transition from the avoidance stage back to the normal stage,
allowing the robot to regain balance (Fig. 3(b)). Therefore, the reward function r = rorientation +
rstable+rposition+radditional is designed corresponding to the instability criteria. The orientation reward
defined as rorientation = −

∑
i(θ

R,i
t − θR,i

0 )2 penalizes excessive tilt of the robot, where θR,i
0 ∈ R

denotes the default orientation angles. The stable reward rstable =
∑

i exp(−|q̇R,i
t |) encourages low

joint velocities via exponential decay. And the position term rposition = −∥pRt − pR0 ∥2 penalizes
too slow base height, where pR0 denotes the default position. The additional reward term radditional
includes penalties on large joint torque and action discontinuities. These components are designed
to reduce abrupt joint movements and encourage smoother transitions during recovery.

3.4 Training in Simulation and Real-Robot Deployment
We implement the REBot system on the Unitree Go2 quadrupedal robot (Fig. 3(c)). We train the
avoidance and recovery policies in the Isaac gym simulator [20] with PPO algorithm [21, 22, 23].
Specifically, the avoidance policy is trained in two curricula. First, a stationary obstacle is randomly
placed around the robot and activates after a delay; Go2 must react within the available response
time. Second, a moving obstacle approaches with fixed velocity from a random direction, requiring
real-time evasion. Both curricula randomize obstacle parameters to prevent overfitting and encour-
age generalization across planning-based and reflexive behaviors. Then we deploy the REBot system
to the real Unitree Go2 robot. A motion capture system was used to provide real-time ground truth
position data for both the robot and the dynamic obstacle. To emulate dynamic obstacles, we used
a rigid rod with a lightweight ball attached to its tip, serving as a physical proxy for an incoming
object. The obstacle’s position was continuously tracked via reflective markers.

4 Simulation Experiments
We validate and estimate the performance of REBot in the simulation system. In this section, we
answer three questions: Q1 Can REBot achieve successful evasion under instantaneous DOA?
(Sec. 4.2) Q2 What are the robots’ reactions under different obstacle conditions? (Sec. 4.3) Q3
How can the rewards’ design and recovery stage influence DOA performance? (Sec. 4.4)

4.1 Experiment Settings
Tasks. We conducted simulation experiments in the Isaac gym [20] to evaluate the DOA ability of
the REBot system. During testing, the obstacle approaches from diverse directions within a 180° arc
in the XZ, YZ, and XY planes of the robot’s body frame (Fig. 6), covering frontal, lateral, overhead,
and ground-level threats. The response time is expanded beyond training, with Treact ∈ [0.1, 4.0] s,
allowing evaluation across both immediate reaction and delayed planning scenarios.

Metrics. The systems are evaluated with five metrics. The avoidance success rate (ASR):
Navoid/Ntotal; the recovery stability rate (RSR): Nrecover/Navoid, indicating the proportion of trials
where the robot successfully stabilizes after avoidance; maximum joint power (MJP); avoidance
moving distance (AMD): the base displacement between the robot’s initial and final positions; and
gait diversity index (GDI): EsR∼D(sR)

[
VaraR∼π(aR|sR)[a

R]
]

the expected action variance under the
learned policy, where π(aR|sR) denotes the policy distribution over actions at state sR, and D(sR)
is the state distribution collected during execution.

Baselines. 1) Agile But Safe (ABS) [9] achieved robust static obstacle avoidance with high-speed
navigation motions, without the capability for dynamic obstacles. 2) Reactive RL (RRL) [24] is
developed for dynamic obstacle avoidance in the UAV system. The avoidance strategy is based on
simplified rigid-body dynamics, which do not generalize to legged whole-body systems.

4.2 Main Experimental Results
The REBot system is trained in static obstacle and dynamic obstacle avoidance curricula. Fig. 4
visualizes the simulation experimental results with different obstacle conditions and avoidance be-
haviors. When obstacles appear in front or on the sides, the robot tends to jump away for evasion
(Fig. 4(a)(b)(e)). When obstacles appear on top, the robot will crouch down (Fig. 4(c)(d)(f)). These
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Curriculum 1: static obstacle Curriculum 2: moving obstacle

Figure 4: Illustration of simulation experiments. Curriculum 1: Static obstacle appears with a
delayed time.  robot in normal stage;  robot avoiding the obstacle;  the obstacle appears and
the robot evades the forbidden region. Curriculum 2: The robot avoids the red fast-moving obstacle
at all times.

Table 1: Simulation Experiment Results

Treact / s Metric ABS⋄ RRL⋄ REbot

0.1 ∼ 0.5

ASR↑∗ 0.00 0.00 0.05
RSR↑∗ 0.00 0.00 0.03
MJP↓∗ 0.51 0.52 0.50
AMD↓∗ 0.84 0.85 0.82

0.5 ∼ 1.5

ASR↑ 0.11 0.09 0.65
RSR↑ 0.06 0.05 0.59
MJP↓ 0.52 0.51 0.49
AMD↓ 0.80 0.86 0.47

1.5 ∼ 4.0

ASR↑ 0.51 0.41 0.81
RSR↑ 0.42 0.32 0.74
MJP↓ 0.40 0.45 0.34
AMD↓ 0.60 0.70 0.26

* ASR: avoidance success rate; RSR: recovery success
rate; MJP: maximum joint power; AMD: avoidance mov-
ing distance. ⋄ ABS: Agile But Safe method [9]; RRL:
Reactive RL policy [24].

Figure 5: Performances over Reaction Time
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results demonstrate that REBot enables the robot to select appropriate avoidance strategies based on
the obstacle state.

We categorize the reaction time range into three intervals (Tab. 1 and Fig. 5(a)(b)): 0.1 ∼ 0.5s, 0.5
∼ 1.5s and 1.5 ∼ 4.0s. In the first interval, REBot and both baselines obtain nearly 0 success rates
due to insufficient reaction time. In the second interval with moderately short reaction times, REBot
exhibits reflexive evasion behaviors, while the two baselines still take low-speed gaits for navigation.
This difference leads to much higher ASR and RSR of REBot compared to both baselines. In the
third interval, REBot remains high ASR and RSR. ABS and RRL also improve their performance
due to the longer reaction time, but still fall short of REBot because they are not specialized for
active DOA. The overall trend, as illustrated in Fig 5, indicates that REBot effectively addresses
instantaneous DOA challenges.

We also explore the relationship between MJP, AMD and reaction time (Fig. 5(c)(d)). When the
reaction time is extremely short (e.g., below 0.5s), we observe a high MJP over 500 W and a large
AMD, caused by intense evasion behaviors such as jumping away. In the moderately short reaction
time interval, both MJP and AMD decrease, where REBot can adopt more appropriate avoidance
behaviors such as crouching down. With longer reaction time, both MJP and AMD converge to
lower values, as REBot has enough time to execute smoother navigation-based avoidance behaviors.
The trends show that REBot adapts avoidance behaviors based on time constraints and avoidance
efficiency.

4.3 Analysis of Avoidance Ability
We evaluate the effect of the obstacle direction on the robot’s avoidance ability by applying impacts
from different angles within the X-Z, Y-Z and X-Y planes of the robot’s body frame (Fig. 6). Based
on ASR and MJD, we divide the robot’s avoidance behavior space into three regions: region I, where
the robot fails to avoid; region II, where the robot adopts reflexive evasion; and region III, where the
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Figure 6: Robot avoids obstacles in various directions and reaction time. Top row shows the ob-
stacles’ approaching directions in three planes. Bottom row figures indicate the different avoidance
behaviors. Region I: avoidance failure, II: reflexive evasion, III: navigation avoidance.
Table 2: Ablation Performances of REBot

Treact / s Metric w/o rcv.1 w/o curr.2 w/o adp.3 REBot

0.5∼1.5
ASR↑∗ 0.63 0.48 0.59 0.65
RSR↑∗ 0.31 0.39 0.51 0.59
GDI↑∗ 2.46 2.41 1.43 2.51

1.5∼4.0
ASR 0.80 0.71 0.78 0.81
RSR 0.63 0.60 0.69 0.74
GDI 2.06 2.24 1.36 2.13

* ASR: avoidance success rate; RSR: recovery success rate; GDI:
gait diversity index. 1 w/o recovery stage; 2 w/o curriculum one
learning; 3 w/o adaptive reward in avoidance policy.

Figure 7: Success Rate of Ablation Studies
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robot adopts navigation-based avoidance. The boundary between region I and II is defined by ASR
over 30%, while the boundary between region II and III is defined by MJD below 300 W.

In the X-Z and X-Y planes (Fig. 6(a)(c)), we observe that obstacles appearing in front of the robot
are easier to avoid, and navigation-based avoidance can be achieved with shorter reaction time. In
contrast, obstacles approaching from the back require longer reaction time and make navigation-
based avoidance more difficult. This asymmetry is attributed to the mechanical design of Unitree
Go2, where the leg structure facilitates faster backward motion but makes forward jumping more
challenging. In the Y-Z plane (Fig. 6(b)), we find that obstacles approaching from the sides are easier
to avoid compared to those from the top or bottom, with a shorter transition time from reflexive
evasion to navigation-based avoidance. These results highlight the robot’s avoidance capability
varies significantly depending on the obstacle direction.

4.4 Ablation Studies of REBot System
The recovery stage ensures a stable standing posture after rapid reflexive evasion. To validate
its effectiveness, we compare the performance of the REBot system with and without the recovery
policy. As shown in Table 2 and Fig. 7(a), removing the recovery stage leads to a drop (20%) in the
success rate within the reflex region. Additionally, as reaction time increases, avoidance behaviors
shift from reflex to navigation, reducing the influence of the recovery stage on robot stabilization.

Curriculum learning enables a smooth transition from normal stage to fast-moving reflexive
evasion. In the first stage, the robot learns to avoid obstacles that appear suddenly at varying po-
sitions; in the second stage, it generalizes to obstacles approaching from different directions. An
ablation study reveals the importance of this progressive training: when policies are trained directly
on the second curriculum (bypassing the first), Table 2 and Fig. 7(b) show removing the first curricu-
lum causes a 5% decline in both ASR and RSR for both reflexive evasion and navigation avoidance.
This performance gap stems from the more moderate and diverse gaits learned during static obstacle
avoidance, which prove beneficial for a stabilized start when facing fast-moving obstacles.
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Figure 8: REBot system real-robot demonstrations on Unitree Go2 Robot. (See video)

The adaptive reward encourages diversified avoidance gaits that improve avoidance robust-
ness. Without this term, the reinforcement learning algorithm converges to a single avoidance
behavior (e.g., consistently jumping backward) regardless of obstacle variations. We conduct an
ablation study to evaluate the adaptive reward’s effectiveness. As shown in Tab. 2, removing the
adaptive reward results in: (1) a significant 40% decrease in gait diversity index (GDI), demonstrat-
ing reduced behavioral diversity, and (2) moderate declines in both ASR and RSR. These findings
indicate that the gait diversity promoted by the adaptive reward contributes directly to improved
avoidance performance.

5 Real-Robot Demonstration
We deploy the REBot system on a Unitree Go2 robot to demonstrate its reflexive evasion capabilities
in real-world scenarios. The robot and obstacles are tracked using an OptiTrack motion capture
system to provide accurate position information. To generate diverse dynamic obstacles, we test
three interaction types: poking with a stick (Fig. 8(a)), throwing a ball (Fig. 8(b)), and kicking
(Fig. 8(c)), each targeting the robot from different directions, including front, left, right, left-front,
and right-front.

When an obstacle approaches, the robot triggers the avoidance mode to perform reflexive evasion.
The primary avoidance actions include jumping away from the obstacle and crouching down. After
completing the avoidance maneuver, the robot switches to the recovery mode to regain a stable
standing posture. Additionally, we observe that when the poking motion is relatively slow, the
robot tends to adopt navigation-based avoidance strategies instead of reflexive actions, leveraging the
longer available reaction time to perform smoother behaviors.Under the real-world test conditions,
the REBot system achieves an ASR of 56% and an RSR of 53%. The performance gap compared
to simulation is mainly attributed to Sim2Real challenges such as unmodeled actuator dynamics,
latency in control execution, and surface friction variability, which particularly affect fast reflexive
responses requiring precise torque delivery.

6 Conclusion
We initiate the study of reflexive evasion as a critical capability for dynamic obstacle avoidance in
quadrupedal robots, where traditional navigation-based methods fall short under tight reaction con-
straints. To address this challenge, we develop REBot, a unified control system that couples rapid
avoidance and stability recovery through reinforcement learning and structured training strategies.
Extensive experiments in simulation and on real hardware confirm REBot’s ability to perform re-
liable, adaptive evasive maneuvers, while revealing important characteristics of reflexive responses
shaped by robot morphology and obstacle dynamics. Our results point toward new directions for
building more agile, resilient, and safety-aware legged robotic systems in dynamic environments.
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Limitation

The REBot system now has three limitations.

1. While we focus on the reflexive evasion policy, we leave precise obstacle position perception as
an assumption. The real robot relies on the motion capture system to sense the obstacles, which
provides accurate centimeter-level position observation and a 10-millisecond-level delay. We are
actively implementing the ego-centric observation system via RGBD cameras and Lidar, which
enables independent measuring and avoidance.

2. The Unitree Go2 robots have limitations in certain avoiding directions. As observed in both
simulation and real-robot experiments, the REBot prefers to avoid by jumping backwards rather
than forwards. Even if the obstacles approach the hip of the quadruped robot, the REBot system
frequently drives the robot to move backwards. This might be because of the hardware config-
uration of the Go2 robot. Since the elbow’s direction of all four legs is backwards, the robot is
inherently suitable to jump backward, especially in high-speed reflex evasion. We will conduct
more in-depth studies on such perspective of reflexive behaviors of quadrupedal robots.

3. An important Sim2Real gap in the REBot system is the servo motor control. In the simulation,
the actions are the joints’ angular velocity, while the direct control of the servo motors is the
electric current and torque. Although the servo can internally address this gap, it is indeed influ-
ential in the very high-speed reflexive behaviors happening within 1 second, especially when the
motors start from zero speed. In the future, we will study better preparation states for reflexive
avoidance (e.g., active trot).
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A Related Works

A.1 Quadrupedal Robot Locomotion

Quadrupedal robots have achieved significant breakthroughs over the past decade [25, 26], enabled
by advances in both model-based and learning-based control frameworks. Model-based methods,
such as zero-moment point (ZMP) planning [27, 28], centroidal dynamics optimization [29, 30], and
Model Predictive Control (MPC) [31, 32], allow precise trajectory tracking and robust locomotion
over structured terrains. By leveraging accurate physical models, these approaches enable real-
time foot placement adjustments and stability control [33, 34], supporting dynamic maneuvers like
trotting, galloping, and bounding under known conditions.

In parallel, reinforcement learning has emerged as a key enabler for quadrupedal locomotion [16],
demonstrating impressive adaptability across diverse environments and tasks [35, 36]. RL-trained
policies have successfully produced a wide range of gaits [37], robustly traversed rough terrains [38],
and even adapted to changes in morphology or sensory conditions [39]. By learning directly from
trial-and-error interactions, these methods can capture complex, nonlinear locomotion behaviors that
are difficult to design analytically [40, 41]. Several works have also explored RL-based static ob-
stacle avoidance, integrating navigation strategies to enable quadrupeds to plan collision-free paths
around known obstacles [9].

Recent developments in differentiable simulation (DiffSim) [42] further enhance locomotion re-
search by providing sample-efficient learning through differentiable physics engines [43]. While
promising, most applications of DiffSim currently focus on improving locomotion in structured or
semi-structured environments.

A.2 Dynamic Obstacle Avoidance

Dynamic obstacle avoidance has been actively explored across UAVs [44], mobile robots [45], hu-
manoid robots [46] and manipulators [47], each leveraging platform-specific capabilities to achieve
rapid and adaptive reactions. For UAVs, Falanga et al. [4] combined event cameras with model pre-
dictive control to enable fast evasive maneuvers in cluttered, dynamic environments. Lu et al. [10]
proposed a fast and adaptive perception-planning framework that integrates global and local maps
for high-frequency collision avoidance, while Fan et al. [24] introduced a lidar-driven deep rl system
capable of avoiding highly dynamic obstacles without explicit mapping, even at high relative speeds.

For mobile robots, Tao et al. [2] developed a deep rl framework with embedded motion constraints,
enabling wheeled robots to navigate dynamic, dense environments using onboard RGB-D cameras,
outperforming traditional velocity obstacle or MPC-based methods. For humanoid robots and ma-
nipulators, Zhang et al. [48] designed a rl approach that coordinates base and arm motion to intercept
and avoid moving objects, while the SPARK benchmark [3] introduced a modular evaluation frame-
work for assessing the generalization and robustness of humanoid locomotion controllers under
diverse tasks and disturbances.

Despite these advances, quadrupedal robots currently lack general-purpose frameworks for dynamic
obstacle avoidance. Existing approaches often rely on predefined motion primitives such as sidestep-
ping or jumping, without the adaptive, reflexive strategies seen in other platforms. Bridging this gap
remains an open challenge and is critical for deploying legged robots in fast-changing environments.

A.3 Reflexive Neural System

In biological systems, reflexes are rapid, involuntary responses triggered by local sensory inputs, al-
lowing animals to react instantly to sudden stimuli without engaging central decision-making path-
ways [49]. These reflexive pathways, often described as part of a master-slave system, assign the
“slave” or subordinate system to handle immediate, protective reactions—such as limb withdrawal
or postural correction—while the “master” system, typically the brain, focuses on slower, deliber-
ate processing and higher-order decision-making. This hierarchical division ensures survival under
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Table 3: Summary of PPO hyperparameters used for training
Hyperparameter Value

Actor hidden layers [512, 256, 128]
Critic hidden layers [512, 256, 128]
Activation ELU
Learning rate (α) 1× 10−3

Clip parameter (ϵ) 0.2
Value loss coefficient (c1) 1.0
Entropy coefficient (c2) 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Desired KL divergence 0.01
Max gradient norm 1.0
Steps per env per iter 24
Mini-batches per iter 4
Learning epochs per iter 5
Max iterations 5000
Parallel environments 4096

unexpected disturbances [50], enabling organisms to balance fast, reactive control with complex,
goal-directed behaviors.

B Experiment Details

B.1 RL Policy Training Details

We trained two separate RL policies using PPO: an avoidance policy focused on dynamic obstacle
evasion and a recovery policy responsible for post-disturbance stabilization. Both policies used
actor-critic architectures implemented as multilayer perceptrons (MLPs) with hidden layers of 512,
256, and 128 units, using ELU activations.

For optimization, we applied a clipped surrogate objective with a clip parameter ϵ = 0.2 (Tab. 3), an
entropy coefficient c2 = 0.01, and a value loss coefficient c1 = 1.0. We used the Adam optimizer
with an initial learning rate α = 1 × 10−3, combined with adaptive learning rate scheduling. The
discount factor was set to γ = 0.99, and the generalized advantage estimation (GAE) parameter
was set to λ = 0.95. Each PPO iteration collected 24 steps per environment across 4096 parallel
environments, followed by 5 learning epochs over 4 mini-batches. The maximum gradient norm
was clipped at 1.0, and the desired KL divergence threshold was set to 0.01. Training was conducted
using Isaac Gym on an NVIDIA RTX 4090 GPU.

Building on the PPO optimization framework, the avoidance policy is guided by a reward structure
that combines three main components: avoidance rewards that encourage maintaining safe distances
from dynamic obstacles and penalize collisions, regularization rewards that promote stable, sym-
metric, and energy-efficient gait patterns, and adaptive rewards that foster motion diversity, speed
adaptation, and directional efficiency under varying threat levels. This combination ensures that the
robot can execute timely evasive maneuvers while maintaining locomotion stability and natural gait
coordination.

In parallel, the recovery policy employs a dedicated reward design focused on regaining upright
posture, minimizing joint velocities, returning to the nominal base position, and ensuring smooth,
low-torque recovery transitions after disturbances. This structure enables the robot to rapidly restore
balance and seamlessly transition back to its default locomotion behaviors after a disturbance or
evasive event.
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Table 4: Summary of auxiliary regularization terms
Term Purpose

|vR,z
t |2 Penalize vertical velocity

∥θ̇R,xy
t ∥ Penalize horizontal angular velocity

∥θR,xy
t ∥ Penalize non-flat orientation∑

i(a
R,i
t − aR,i

t−1)
2 Penalize abrupt action changes∑

i 1
i
c Penalize body collisions

||vR,xy
t − vR,xy,cmd

t || Track command linear velocity
|ωR,z

t − ωR,z,cmd
t | Track command angular velocity∑

i

(
tiair − 0.5

)
Reward long foot swing phases

1
(
maxi

(∥∥∥fR,xy,i
t

∥∥∥ / ∣∣∣fR,z,i
t

∣∣∣) > 5
)

Penalize stumbling events∑
i ∥f

R,i
t − fR,i

th ∥2 Penalize excessive foot contact forces

Table 5: Domain Randomization Settings for Policy Training
Term Value
Observation

Joint position noise U(−0.01, 0.01) rad
Joint velocity noise U(−1.5, 1.5) rad/s
Angular velocity noise U(−0.2, 0.2) rad/s
Projected gravity noise U(−0.05, 0.05) m/s2

Height measure noise U(−0.1, 0.1) m
Dynamics

Friction factor U(0.5, 1.25)
Added base mass U(−1.0, 1.0) kg
Obstacle position (per axis) U(−0.4, 0.4) m
Obstacle radius U(0.05, 0.3) m
Obstacle velocity U(1.0, 6.0) m/s
Reaction time U(0.1, 4.0) s

Episode
Episode length U(8.0, 10.0) s
Command robot yaw U(−1.0, 1.0) rad
Command robot velocity U(−1.0, 1.0) m/s
Command robot heading U(−π, π) rad

In addition to these task-specific rewards, we incorporate a set of auxiliary regularization terms
to enforce physical plausibility, smoothness, and mechanical safety. These terms play a critical
role in constraining the robot’s low-level dynamics, preventing unrealistic or unsafe behaviors, and
improving the overall robustness and hardware transferability of the learned policies. The complete
set of these auxiliary terms is summarized in Tab. 4.

B.2 Domain Randomization & Curricula

To enhance policy generalization and robustness, we applied domain randomization and a staged
curriculum strategy during training. Domain randomization (Tab. 5) introduces variability across
observation parameters (e.g., joint position and velocity noise), dynamics parameters (e.g., ground
friction, added base mass, and obstacle velocity), and episode-level parameters (e.g., commanded
yaw and episode duration). By sampling these parameters uniformly within predefined ranges at
the start of each episode, the policy is exposed to a diverse set of conditions, improving its ability
to handle modeling uncertainties, mitigate overfitting to narrow simulation settings, and transfer
reliably to real-world deployment.

The curriculum learning strategy is implemented to gradually increase task complexity. Initially,
the policy learns to avoid static obstacles that suddenly appear at specific positions near the robot,
without any external perturbations. In the next stage, dynamic obstacles with varying speeds and
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Curriculum 1: static obstacle Curriculum 2: moving obstacle

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Additional results of simulation experiments. (a) and (d) show the obstacle hits from the
back; (b) and (e) hit from the right; (c) and (f) hit from the bottom.

trajectories are introduced, requiring the robot to perform rapid, adaptive avoidance maneuvers. Fi-
nally, disturbances and environmental uncertainties are incorporated to ensure the policy remains
stable and robust under real-world deployment conditions. Additional experimental results are pro-
vided in Fig. 9.

B.3 Real-Robot Experiment Settings

Isaac Gym

Mujoco

OptiTrack

Go2
Ball

Stick

Sim2Sim

Sim2Real

Validate

Figure 10: Transfer pathways from Isaac Gym
to MuJoCo (sim2sim) and to the real robot
(sim2real). Real-robot experiments involve dy-
namic obstacles including a ball, a stick, and a hu-
man foot, representing diverse scenarios.

To evaluate the real-world feasibility of the
proposed avoidance-recovery strategy, exper-
iments were conducted on a Unitree Go2
quadrupedal robot. Prior to deployment, the
learned policies were validated through sim-
to-sim transfer from Isaac Gym to MuJoCo to
ensure robustness under a higher-fidelity sim-
ulation environment (Fig.10). Only after pass-
ing these intermediate robustness tests were the
policies transferred to the real robot.

For the real-robot setup, we employed an Op-
tiTrack motion capture system to provide pre-
cise localization of both the robot and the dy-
namic obstacles (Fig. 10). The system offers
sub-millimeter positioning accuracy, enabling
high-fidelity state tracking without relying on
onboard perception (e.g., cameras or LiDAR).
This design ensures that the robot directly receives ground truth position and velocity information
for both itself and the obstacles at each control step.

To simulate various dynamic threats, we used three types of physical obstacles: a rigid ball, a stick
with a marker-attached tip, and a human foot. Marker points were affixed to each obstacle, allowing
their motion to be tracked and fed into the robot’s control pipeline. During experiments, the Go2
executed the trained avoidance and recovery policies in real time, responding to incoming obstacles
by performing reflexive evasion and subsequent stabilization maneuvers.

B.4 Additional Experiment Results

We present additional qualitative results to illustrate the effectiveness and versatility of the proposed
avoidance-recovery strategy across diverse scenarios. Figure 11 shows an example where the robot
employs navigation-based avoidance strategies, relying on trajectory adjustment rather than reflexive
maneuvers. This is feasible because the approaching obstacles are slow, providing sufficient reaction
time for planned avoidance.
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(b)

(a)

Figure 11: Navigation-based avoidance under slow-moving stick disturbances, providing sufficient
reaction time. (a) Poking from the front; (b) poking from the left.

(a)

(b)

(c)

(d)

(e)

Figure 12: Reflexive evasion under fast stick disturbances with short reaction time. (a) From the
front; (b) from the left; (c) from the left front; (d) from the right; (e) from the right front.

Figure 12 demonstrates the robot’s reflexive response under stick-induced prodding attacks from
various directions, showcasing its ability to rapidly adjust posture and evade external physical dis-
turbances.

Figure 13 presents results where a ball is thrown toward the robot from multiple angles, testing the
policy’s capacity to execute fast evasive maneuvers under short reaction times.

Finally, Figure 14 highlights experiments where the robot faces unexpected kicks from a human
foot at different approach angles, demonstrating the policy’s robustness in handling unstructured,
real-world disturbances.
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(a)

(b)

(c)

(d)

(e)

Figure 13: Reflexive evasion under ball-throw impacts from different directions. (a) From the front;
(b) from the left; (c) from the left front; (d) from the right; (e) from the right front.

(a)

(b)

(c)

(d)

(e)

Figure 14: Reflexive evasion under foot-kick disturbances from different directions. (a) From the
front; (b) from the left; (c) from the left front; (d) from the right; (e) from the right front.
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