
PeRFlow: Piecewise Rectified Flow as
Universal Plug-and-Play Accelerator

Hanshu Yan*, Xingchao Liu+, Jiachun Pan#, Jun Hao Liew*, Qiang Liu+, Jiashi Feng*

*ByteDance, +Univeristy of Texas at Austin, #National University of Singapore
hanshu.yan@outlook.com

Abstract

We present Piecewise Rectified Flow (PeRFlow), a flow-based method for acceler-
ating diffusion models. PeRFlow divides the sampling process of generative flows
into several time windows and straightens the trajectories in each interval via the
reflow operation, thereby approaching piecewise linear flows. PeRFlow achieves
superior performance in a few-step generation. Moreover, through dedicated
parameterizations, the PeRFlow models inherit knowledge from the pretrained
diffusion models. Thus, the training converges fast and the obtained models show
advantageous transfer ability, serving as universal plug-and-play accelerators that
are compatible with various workflows based on the pre-trained diffusion models.
Codes for training and inference have been publicly released. 1.

1 Introduction

Diffusion models have exhibited impressive generation performances across different modalities,
such as image [34, 9, 39, 2], video [10, 55, 42, 15, 48], and audio [11]. Diffusion models generate
samples by reversing pre-defined complicated diffusion processes, thus requiring many inference
steps to synthesize high-quality results. Such expensive computational cost hinders their deployment
[14, 40, 31] in real-world applications.

Diffusion models can be efficiently sampled by solving the corresponding probability flow ordinary
differential equations (PF-ODEs) [39, 38]. Researchers have designed many advanced samplers, such
as DDIM [38], DPM-solver [24], and DEIS [53], to accelerate generation, inspired by the semi-linear
structure and adaptive solvers in ODEs. However, these samplers still require tens of inference
steps to generate satisfying results. Researchers have also explored distilling pretrained diffusion
models into few-step generative models [35, 28, 5, 50, 30, 3], which have succeeded in synthesizing
images within 8 inference steps. Progressive Distillation [35] separates the whole sampling process
into multiple segments and learns the mapping from starting points to endpoints for each segment.
Distribution Matching Distillation [50] and SwiftBrush [30] use the score distillation loss to align
the distributions of teacher and one-step student generators. UFOGen [47], SDXL-Turbo [36] and
SDXL-Lightning [16] resort to adversarial training for learning few-step/one-step image generators.
They initialize the students from pretrained diffusion models and use adversarial and/or MSE losses
to align the student model’s generation with the pretrained ones. These methods suffer from the
difficult tuning of the adversarial training procedure and the mode collapse issue. Latent Consistency
Model (LCM) [26, 27] adopts consistency distillation [40] to train a generator that directly maps
noises to the terminal images. LCM only utilizes supervised distillation where the training procedure
will be more stable and easier in comparison to adversarial training. However, the generated images
have fewer details compared with SDXL-Lighting.

1
https://github.com/magic-research/piecewise-rectified-flow

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/magic-research/piecewise-rectified-flow

Unlike the existing methods above, which mainly learn the mappings from noises to images, we
aim to simplify the flow trajectories and preserve the continuous flow trajectories of the original
pretrained diffusion models. Specifically, we attempt to straighten the trajectories of the original
PF-ODEs via a piecewise reflow operation. Previously, InstaFlow [21] leverages the rectified flow
framework[20, 19] to learn the transformation from initial random noise to images. It bridges the two
distributions with linear interpolation and trains the model by matching the interpolation. With the
reflow operation, it may be able to learn straight-line flows for one-step generation via pure supervised
learning. InstaFlow provides a simple pipeline for accelerating pretrained diffusion models, however,
it suffers from poor sampling quality which can be attributed to synthetic data generation. The reflow
operation requires generating data from the pretrained diffusion models with ODE solvers (e.g.,
DDIM or DPM-Solver [24, 25]) to construct a training dataset. Synthesizing training data brings two
problems: (1) constructing and storing the dataset requires excessive time and space, which limits its
training efficiency; (2) synthetic data has a noticeable gap with real training data in quality due to the
numerical error of solving ODEs. Thus, the performance of the learned straighter flow is bounded.

To address the problems, we propose piecewise rectified flow (PeRFlow), which divides the flow
trajectories into several time windows and conducts reflow in each window. By solving the ODEs
in the shortened time interval, PeRFlow avoids simulating the entire ODE trajectory for preparing
the training data. This significantly reduces the target synthesis time, enabling the simulation to be
performed in real time along with the training procedure. Besides, PeRFlow samples the starting
noises by adding random noises to clean images according to the marginal distributions, and solves
the endpoints of a shorter time interval, which has a lower numerical error than integrating the entire
trajectories. Through such a divide-and-conquer strategy, PeRFlow can straighten the sampling
trajectories with large-scale real training data. Besides the training framework, we also design a
dedicated parameterization method for PeRFlow to inherit sufficient knowledge from the pretrained
diffusion models. Diffusion models are usually trained with ϵ-prediction, but flow-based generative
models generate data by following the velocity field. We derive the correspondence between ϵ-
prediction and the velocity field of flow, thus narrowing the gap between the pretrained diffusion
models and the student PeRFlow model. Consequently, PeRFlow acceleration converges fast and
the resultant model can synthesize highly-detailed images within very few steps. PeRFlow does not
require unstable adversarial training or a complete modification of the training paradigm. It is a
lightweight acceleration framework and can be easily applied to training unconditional/conditional
generative models of different data modalities.

We conducted extensive experiments to verify the effectiveness of PeRFlow on accelerating pretrained
diffusion models, including Stable Diffusion (SD) 1.5, SD 2.1, SDXL [32], and AnimateDiff [6].
PeRFlow-accelerated models can generate high-quality results within four steps. Moreover, we
find that the variation of the weights, ∆W = θ − ϕ, between the trained student model θ and the
pretrained diffusion model ϕ, can serve as universal accelerators of almost all workflows that are
only trained on the pretrained diffusion models. These workflows include customized SD models,
ControlNets, and multiview 3D generation. We compared PeRFlow with state-of-the-art acceleration
methods. PeRFlow shows advantages in terms of FID values, visual quality, and generation diversity.

In summary, PeRFlow has the following favorable features: 1) it is simple and flexible for acceler-
ating various diffusion pipelines with fast convergence; 2) The accelerated generators support fast
generation; 3) The obtained ∆W shows superior plug-and-play compatibility with the workflows of
the pretrained models.

2 Methodology

2.1 Rectified Flow and Reflow

Flow-based generative models aim to learn a velocity field vθ(zt, t) that transports random noise
z1 ∼ π1 sampled from a noise distribution into certain data distribution z0 ∼ π0. Then, one can
generate samples by solving (1) from t = 1 to 0:

dzt = vθ(zt, t)dt, z1 ∼ π1. (1)

Recently, simulation-free learning of flow-based models has become prevalent [20, 19, 18, 1]. A
representative method is Rectified flow [20, 19, 18], which adopts linear interpolation between the
noise distribution z1 and the data distribution z0. It trains a neural network vθ to approximate the

2

Figure 1: Our few-step generator PeRFlow is trained by a divide-and-conquer strategy. We divide
the ODE trajectories into several intervals and perform reflow in each time window to straighten the
sampling trajectories.

velocity field via the conditional flow matching loss. The corresponding optimization procedure is
termed reflow [20, 19],

min
θ

Ez1∼π1,z0∼π0

[∫ 1

0

∥(z1 − z0)− vθ(zt, t)∥2dt
]
, with zt = (1− t)z0 + tz1. (2)

InstaFlow [21] proposed to accelerate pretrained diffusion-based text-to-image models via reflow.
Given a pretrained diffusion model fϕ, one can generate new data by solving the corresponding
probability flow ODE. We denote Φ(zt, t, s) as the ODE solver, such as the DPM-Solver [23]. For
simplicity, our notation drops the parameters in the ODE solvers. By simulating with z0 = Φ(z1, 1, 0),
where z1 is sampled from the random Gaussian distribution π1, it synthesizes a dataset of (text,
noise, image) triplets for reflow. Since it usually takes tens of inference steps to generate
high-quality data with Φ(z1, 1, 0), InstaFlow is expensive to scale up. Moreover, since InstaFlow is
trained with generated images, it lacks the supervision of real data and thus compromises the resulting
generation quality. In the following subsections, we target solving these problems.

2.2 Piecewise Rectified Flow

We present Piecewise Rectified Flow (PeRFlow), aiming at training a piecewise linear flow to
approximate the sampling process of a pretrained diffusion model. PeRFlow sticks to the idea
of trajectory straightening. It further allows using high-quality real training data and one-the-fly
optimization. PeRFlow is easier to scale up and succeeds in accelerating large-scale diffusion models,
including the Stable Diffusion family.

A pretrained diffusion model fϕ corresponds to a probability flow ODE defined by a noise schedule
σ(t). In the Stable Diffusion family, the forward diffusion process follows zt =

√
1− σ2(t)z0 +

σ(t)ϵ, where z0 and ϵ are sampled from the data distribution and random Gaussian respectively. The
sampling trajectories are usually complicated curves. Even for an advanced ODE solver Φ(zt, t, s),
it still requires many steps to generate an artifact-free image. We accelerate the pretrained model by
applying a divide-and-conquer strategy, that is, we divide the ODE trajectories into multiple time
windows and straighten the trajectories in each time window via the reflow operation.

We create K time windows {[tk, tk−1)}1k=K where 1 = tK > · · · > tk > tk−1 > · · · > t0 = 0.
For each time window [tk, tk−1), the starting distribution πk will be the marginal distribution of the
diffusion process at time tk. It can be derived from ztk =

√
1− σ2(tk)z0 + σ(tk)ϵ. The target end

distribution πk−1 is constructed by Φ(ztk , tk, tk−1). We train the PeRFlow model, denoted by θ, to
fit the linear interpolation between ztk and ztk−1

for all k ∈ [1, . . . ,K].

min
θ

K∑
k=1

Eztk
∼πk

[∫ tk

tk−1

∥∥∥∥ztk−1
− ztk

tk−1 − tk
− vθ(zt, t)

∥∥∥∥2 dt
]
,

with ztk−1
= Φ(ztk , tk, tk−1) and zt =

t− tk−1

tk − tk−1
ztk +

tk − t

tk − tk−1
ztk−1

.

(3)

Parameterization The pretrained diffusion models are usually trained by two parameterization
tricks, namely ϵ-prediction and velocity-prediction. To inherit knowledge from the pretrained network,

3

we parameterize the PeRFlow model as the same type of diffusion and initialize network θ from
the pretrained diffusion model ϕ. For the velocity-prediction, we can train the PeRFlow model by
velocity-matching in (3). To accommodate ϵ-prediction, we can represent the denoised state ztk−1

with the starting state ztk and ϵ:
ztk−1

= λkztk + ηkϵ, (4)
where λk > 1 and ηk are defined by the user. We propose to train a neural network ϵθ(zt, t) to
estimate the noise ϵ in (4) based on zt for all t ∈ [tk, tk−1):

min
θ

K∑
k=1

Eztk
∼πk

[∫ tk

tk−1

∥∥∥∥ztk−1
− λkztk
ηk

− ϵθ(zt, t)

∥∥∥∥2 dt
]
,

with ztk−1
= Φ(ztk , tk, tk−1) and zt =

t− tk−1

tk − tk−1
ztk +

tk − t

tk − tk−1
ztk−1

.

(5)

The optimum of (3) and (5) are,

v∗(zt, t) = E
[
ztk−1

− ztk
tk−1 − tk

∣∣∣∣zt] , and ϵ∗(zt, t) = E
[
ztk−1

− λkztk
ηk

∣∣∣∣zt] .
Using calculus and the fact zt =

t−tk−1

tk−tk−1
ztk + tk−t

tk−tk−1
ztk−1

, we get,

v∗(zt, t) =
(1− λk)zt − ηkϵ

∗(zt, t)

t− tk−1 + λktk − λkt
(6)

The sampling process involves first computing ϵθ(zt, t) from zt, then estimating the velocity v(zt)
via (6) for solving the ODE (1). In this paper, we consider two choices for λ and η:

• Parameterization [A]: According to the definition of the diffusion process, we have ztk =

γztk−1
+
√

1− γ2ϵ with γ =
√
(1− σ2

k)/(1− σ2
k−1). We can represent ztk with ztk−1

and
yield,

λk =

√
1− σ2

k−1√
1− σ2

k

, ηk = −

√
σ2
k − σ2

k−1√
1− σ2

k

. (7)

• Parameterization [B]: We can also follow the DDIM solver [38], i.e.,

ztk−1
=

√
αtk−1

αtk

ztk +
√
αtk−1

(√
1− αtk−1

αtk−1

−

√
1− αtk

αtk

)
ϵθ(ztk , tk),

where αk = 1− σ2
k. We can correspondingly set,

λk =

√
αk−1√
αk

, ηk =
√
1− αtk−1

−
√
αk−1√
αk

√
1− αk. (8)

This parameterization initializes the student flow from the update rule of DDIM, which is equivalent
to the Euler discretization of the probability flow ODE. We empirically observe that it gives faster
training convergence.

Scaling Up with Real Training Data PeRFlow divides the time range [1, 0] into multiple windows.
For each window, the starting point ztk is obtained by adding random noise to real training data z0,
and it only requires several inference steps to solve the ending point ztk−1

. The computational cost is
significantly reduced for each training iteration compared to InstaFlow, allowing us to train PeRFlow
on large-scale training datasets with fast online simulation of the ODE trajectory. Besides, solving
endpoints of a shorter time window [ztk , ztk−1

) has lower numerical errors in comparison to the
entire time range. High-quality supervision yields significant improvement in the generation results.

Classifier-Free Guidance in Training Classifier-free guidance (CFG) [7] is a common technique
to improve the generation quality of text-to-image models. During training, we solve the endpoints
ztk−1

for each time window [tk, tk−1) in an online manner via an ODE solver Φ(ztk , tk, tk−1, c, w),
where w ≥ 1 denotes the CFG scale, c denotes the text prompt. CFG is turned off when w = 1.
PeRFlow supports two modes: CFG-sync and CFG-fixed:

4

Algorithm 1: Piecewise Rectified Flow
1 Input: Training dataset D, ϵ- or v-prediction teacher model fϕ, Noise schedule σ(t), ODE

solver Φ(zt, t, s, fϕ), Number of windows K, student model ϵθ or vθ,

2 Create K time windows {(tk−1, tk]}Kk=1 with tK = 1 and t0 = 0 ;
3 Initialize θ = ϕ ;
4 repeat
5 Sample z0 ∼ D;
6 Sample k from {1, · · · ,K} uniformly, then randomly sample time t ∈ (tk−1, tk] ;
7 Sample random noise ϵ ∼ N (0, I) ;
8 Get ztk =

√
1− σ2(tk)z0 + σ(tk)ϵ ;

9 Solve the endpoint of the time window ztk−1
= Φ(ztk , tk, tk−1) ;

10 Get zt = ztk +
ztk

−ztk−1

tk−tk−1
(t− tk) ;

11 if ϵ-prediction then

12 Compute loss ℓ =
∥∥∥ϵθ(zt, t)− ztk−1

−λkztk

ηk

∥∥∥2 ;

13 else

14 Compute loss ℓ =
∥∥∥vθ(zt, t)−

ztk
−ztk−1

tk−tk−1

∥∥∥2 ;

15 end
16 Update θ with gradient-based optimizer using ∇θℓ.
17 until convergence;
18 ∆W = θ − ϕ.

19 Return: Fast PeRFlow fθ and ∆W .

• CFG-sync: We disable CFG by setting w = 1 for Φ(ztk , tk, tk−1, c, w). The obtained PeRFlow
model can use similar CFG scales as the pretrained diffusion models to guide the sampling.

• CFG-fixed: We use a pre-defined w = w∗ > 1 for Φ(ztk , tk, tk−1, c, w) during training. The
obtained PeRFLow model learns to straighten the specific ODE trajectories corresponding to
Φ(ztk , tk, tk−1, c, w

∗). One should use a smaller CFG scale (e.g., 1.0-2.5) to adjust guidance
when sampling from PeRFLow trained with CFG-fixed.

Through empirical comparison, we observe that PeRFlow+CFG-sync preserves the sampling diversity
of the original diffusion models with occasional failure in generating complex structures, while
PeRFlow+CFG-fixed trades off sampling diversity in exchange for fewer failure cases.

Our recommendations are as follows: When using powerful pre-trained diffusion models (e.g., SDXL)
and prioritizing generation quality, PeRFLow+CFG-fixed is the better choice. On the other hand,
when the goal is to maintain the sampling diversity and adaptability of customized fine-tuned plug-ins,
such as Dreamshaper, PeRFLow+CFG-sync is the more suitable option.

PeRFlow as Universal Plug-and-Play Accelerator PeRFlow initializes the weights of the student
model θ with the pretrained diffusion model ϕ. After training with piecewise reflow, we find that
the change of weights ∆W = θ − ϕ can be used to seamlessly accelerate many other workflows
pretrained with the diffusion model. For exmaple, ∆W of PeRFlow+SD-v1.5 can accelerate the
ControlNets [52], IP-Adaptor [49] and multiview generation [22] pipelines trained with the original
SD v1.5. The accelerated pipelines achieve nearly lossless few-step generation as the original
many-step generation. Please refer to Section 3.2 for detailed results.

Number of Time Windows The number of training segments depends on our expected minimum
steps for the inference stage. Suppose the number of minimum steps for the inference stage is N ,
the number of training segments K should be less or equal to N . The reason is that we cannot
approximate the velocity of a time window by the velocity of its previous time window. So, for each
window, we should allocate at least a one-step computation budget. This paper evaluates 4-step,
6-step, and 8-step generation capabilities, so we set the number of training segments as four. In some
special cases (e.g., Wonder3D in gigure 8 Appendix), the trajectory across the whole time window is
almost linear after 4-piece PeRFlow acceleration. We can generate multi-view results with one step.

5

But in most cases, we should use an inference step larger or equal to the training segments. On the
computational cost, PeRFlow only requires the 1/K amount of steps for synthesizing the training
target in each iteration, compared to that of InstaFlow.

3 Experiments

We use PeRFlow to accelerate several large-scale text-to-image and text-to-video models, including
SD-v1.5, SD-v2.1, SDXL, and AnimateDiff. In this section, we will illustrate the experiment
configurations and empirical results.

Experiment Configuration All the PeRFlow models are initialized from their diffusion teachers.
PeRFlow-SD-v1.5 is trained with images in resolution of 512 × 512 using ϵ-prediction defined
in (7). PeRFlow-SD-v2.1 is trained with images in resolution of 768 × 768 using v-prediction.
PeRFlow-SDXL is trained with images in resolution of 1024× 1024 using ϵ-prediction defined in
(8). Images are all sampled from the LAION-Aesthetics-5+ dataset [37] and center-cropped. We also
train PeRFlow-AnimateDiff with video clips in size of 16× 384× 384 using ϵ-prediction defined in
(8). We randomly drop out the text captions with a low probability (10%) to enable classifier-free
guidance during sampling. We divide the time range [0, 1] into four windows uniformly. For each
window, we use the DDIM solver to solve the endpoints with 8 steps. We refer to the Hugging
Face scripts for training Stable Diffusion 2 to set other hyper-parameters, including learning rate and
weight decay. All experiments are conducted with 16 NVIDIA A100 GPUs.

3.1 Few-step generation

PeRFlow succeeds in accelerating pretrained Stable Diffusion models to few-step generators. As
shown in figure 2 and 3, PeRFlow can generate astonishing pictures with only 4 steps. If increasing
the number of inference steps (e.g., 5 or 6), we can obtain images with much richer details. We
compare the generation results with recent acceleration methods, including InstaFlow, LCM-LORA,
and SDXL-lightning. PeRFlow enjoys richer visual texture and better alignment between text prompts
and images. Refer to figure 10, 12, and 13 in Appendix for more results.

We compute the FID values of PeRFlow-accelerated SDs in table 1 using images on three different
reference distributions: (1) LAION-5B-Aesthetics [37], which is the training set of PeRFlow and
other methods; (2) MS COCO 2014 [17] validation dataset; (3) images generated from SD- v1.5/XL
with JourneyDB [41] prompts. We generate 30,000 images for the SD-v1.5 models and 10,000 for the
SDXL series. We set the inference steps to 4 and 8 steps, respectively. In comparison to LCM-LoRA,
we observe that PeRFlow models have obviously lower FID values. When increasing the number of
inference steps, FID values of PeRFlow decrease because the numerical errors of solving ODE are
better controlled. However, FID values of LCM-LoRA unexpectedly increase.

Domain shift caused by acceleration When accelerating diffusion models, we expect to preserve
the performance and properties of the pretrained models. In table 1, we compute the FID values
between the generation of the original SD models and the accelerated models. We observe the FID
values of PeRFlow are smaller than LCM-LORA, InstaFlow, and SDXL-Lightning. This implies
the distribution shift to the original SD models caused by PeRFlow is much smaller than other
counterparts. The numerical comparison corresponds to the results in figure 5. The color style and
layout of PeRFlow’s results match the results of the pretrained models, while an obvious domain shift
appears in the results of LCM-LoRA. Besides, the sampling diversity of PeRFlow is similar to the
original SD-v1.5 and appears to be better than LCM-LoRA in figure 6.

3.2 PeRFlow as Universal Plug-and-Play Accelerator on SD Work Flows

PeRFlow-∆W serves as a universal accelerator that can be simply plugged into various pipelines
trained on the pretrained Stable Diffusion models, including (but not limited to) ControlNet [52],
IP-Adaptor [49], and multiview generation. For example, plugging PeRFlow-∆W into the SD-v1.5
ControlNet-Tile gives a 4-step image enhancement module (figure 7). Combining this module with
the 4-step PeRFlow-SD-v1.5, we can generate high-quality 1024× 1024 images with lightweight
SD-v1.5 backbones. For multiview generation, plugging PeRFlow-∆W into the Wonder3D [22]

2
https://github.com/huggingface/diffusers/tree/main/examples/text_to_image

6

https://github.com/huggingface/diffusers/tree/main/examples/text_to_image

Base-DDIM 24 steps LCM-LORA 4 / 5 steps Lightning 4 / 8 steps PeRFlow 4 / 5 steps

Figure 2: The 1024× 1024 images generated by PeRFlow enjoy richer details and better text-image
consistency in comparison to other acceleration methods on SDXL. Prompt #1: “a closeup face
photo of girl, wearing a raincoat, in the street, heavy rain, bokeh”; Prompt #2: “a closeup face photo
of a boy in white shirt standing on the grassland, flowers”; Prompt #3: “a huge red apple in front of
a small dog, heavy snow”. Prompt #4: “front view of a boat sailing in a cup of water”.

Table 1: FID values of different acceleration methods (lower values indicate better quality).
LAION-5B COCO2014 SD-v1.5

Method 4-step 8-step 4-step 8-step 4-step 8-step
InstaFlow 14.32 10.98 13.86 11.40 16.67 10.45

LCM-LoRA 15.28 19.21 23.49 29.63 15.63 21.19
PeRFlow 8.60 8.52 11.31 14.16 8.28 5.03

(a) SD-v1.5

LAION-5B COCO2014 SDXL

Method 4-step 8-step 4-step 8-step 4-step 8-step
Lightning 15.47 14.37 22.86 20.44 11.41 10.49

LCM-LoRA 13.66 13.31 19.74 21.70 9.42 9.90
PeRFlow 13.30 13.06 18.48 19.21 9.28 9.12

(b) SDXL

pipeline leads to one-step generation of multi-view images (figure 8). More results are shown in
figure 9.

3.3 Additional Discussion

Inference Budget Allocation PeRFlow divides the entire sampling trajectory into K time windows
{[tk, tk−1)}1k=K , with 1 = tK > · · · > tk > tk−1 > · · · > t0 = 0 indicating noisy to clean
states. After training, K-step inference (one for each window) will yield high-quality images in most
cases. However, for pictures with complex structures, such as motorcycles with well-crafted wheels
and engines, PeRFlow may require more steps. Ho et al. [8] found that diffusion models generate
images by synthesizing the layout and structure first and then refining the local details. We denote the

7

Base-DDIM 25 steps InstaFlow 4 / 6 steps LCM-LORA 4 / 6 steps PeRFlow 4 / 6 steps

Figure 3: The 512 × 512 images generated by PeRFlow enjoy richer details and color styles in
comparison to other acceleration methods on SD-v1.5 (w/ DreamShaper). Images in each row are
generated with the same random seed.

Figure 4: 6-step generation (16× 512× 512) via PeRFlow-AnimateDiff (motion module-v3 with
DreamShaper). The text prompts used are “A young woman smiling, in the park, sunshine” and “A
dog sitting in the garden, snow, trees”.

number of inference steps by N . Inspired by this observation, we first allocate each window with
N//K steps. If N mod K > 0, then the extra budget is given to time windows in noisy regions.
Specifically, we give one extra step for windows, whose index i satisfies K − i < N mod K. In
practice, PeRFlow creates 4 time windows for acceleration training, and 5-step inference consistently
generates high-quality images.

Dynamic Classifier-Free Guidance CFG is a useful technique to improve the layout, structure, and
text alignment of the generated images. However, a large CFG scale sometimes leads to over-saturated
color blocks [12, 43]. To mitigate this issue, we use a dynamic CFG strategy for few-step sampling,
i.e., the corresponding CFG scales decrease for window K to 1. For example, when sampling with

8

https://huggingface.co/Lykon

(a) SD-v1.5 (b) PeRFlow (c) LCM-LoRA
Figure 5: PeRFlow has better compatibility with customized SD models compared to LCM-LoRA.
The top is ArchitectureExterior and the bottom is DisneyPixarCartoon.

(a) SD-v1.5 (b) PeRFlow (c) LCM-LORA
Figure 6: Three random samples from two models with the same prompts. PeRFlow has better
sampling diversity compared to LCM-LoRA.

5 steps, the CFG schedule is 7.5-4.0-4.0-4.0 for the CFG-sync mode and 2.5-1.5-1.5-1.5 for the
CFG-fixed mode.

4 Related Works

Few-Step Diffusion Models Diffusion models have demonstrated impressive generative capabilities,
but their iterative sampling process often suffers from slow inference speed [8, 39, 38]. To accelerate
these models, various methods have been proposed. Progressive Distillation [35, 28] iteratively
reduces the number of inference steps to 4-8, but the error can accumulate during the process.
Alternative approaches [45, 44, 54, 47, 16, 36] leverage adversarial losses to align the distributions
and reduce the number of inference steps, but these methods often struggle with training instability
and mode collapse. To avoid adversarial training, recent works [50, 30, 56] employ additional
models to estimate the score of the generated data for distilling one-step generators, but this adds
extra cost to the training pipeline. Consistency Distillation [40, 26] is a novel pipeline for distilling
few-step diffusion models by optimizing a consistency loss. However, the substantial difference
between consistency models and the original diffusion models can hurt their adaptability to pre-
trained modules. In our work, PeRFlow provides a simple, clean, and efficient framework for training
few-step generative flows. By using different parameterizations as described in Section 2.2, PeRFlow
achieves minimal gap with diffusion models, making it suitable for various pre-trained workflows.

Straight Probability Flows Learning straight probability flow is a promising principle for obtaining
fast generative flows [20, 19, 21, 4]. Reflow is an effective way to learn such straight flows, but it
requires constructing a large synthetic dataset [20, 21], which can introduce computational overhead
and distribution shift. To avoid dataset construction,[13, 46] use an extra neural network to estimate
the initial noise corresponding to an image, but training this network can be challenging. [33] employs
mini-batch optimal transport to directly learn a straighter trajectory, but it is unclear how to apply
this method to conditional generation scenarios, such as text-to-image generation. [29] finds the
best step-size schedule for the pretrained generative model before reflow to improve efficiency, but
it cannot avoid dataset generation and the resulting distribution shift. PeRFlow provides a new
method to avoid using synthetic datasets. It uses real training data to mitigate distribution shift and
a divide-and-conquer strategy to efficiently perform reflow, leading to advanced few-step text-to-
image generators. Sequential reflow[51] is a concurrent work to ours. Compared to their work, we
additionally provide different parameterization strategies to enhance the empirical performance in
accelerating pre-trained text-to-image models.

9

https://civitai.com/models/114612/architectureexteriorsdlifechiasedamme
https://civitai.com/models/65203/disney-pixar-cartoon-type-a

5 Conclusions
In this work, we present Piecewise Rectified Flow (PeRFlow), a novel technique to learn few-
step flow-based generative models. PeRFlow adopts a divide-and-conquer strategy, separating the
generation trajectory into intervals and applying the reflow operation within each interval. This yields
two key advantages: (1) using real training data to mitigate distribution shift from synthetic data, and
(2) avoiding the need to generate and store a synthetic dataset prior to training. PeRFlow also designs
proper parameterizations to inherit knowledge from pre-trained diffusion models for fast convergence.
Consequently, PeRFlow accelerates powerful diffusion models like SD v1.5, SD v2.1, and SDXL,
producing high-quality few-step image generators. Moreover, PeRFlow can be seamlessly combined
with various SD workflows to create their accelerated versions.

Limitations Currently, PeRFlow divides the time range into 4 windows, balancing inference and
training costs. It needs 4 steps or more for generation. To enable 1-2 step inference, we plan to
explore multi-stage training and will focus on avoiding target synthesizing in the future.

Broader Impacts

This work proposes an acceleration technique for generative models. It can reduce the computational
cost to less than 20% of the original and thus reduce the power cost. The proposed acceleration
technique makes generative models more environmentally friendly.

Acknowledgment

The authors appreciate Yuanzhi Zhu for his valuable input and suggestions.

References
[1] M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden. Stochastic interpolants: A unifying

framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

[2] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, Q. Zhang, K. Kreis, M. Aittala, T. Aila,
S. Laine, et al. ediff-i: Text-to-image diffusion models with an ensemble of expert denoisers.
arXiv preprint arXiv:2211.01324, 2022.

[3] D. Berthelot, A. Autef, J. Lin, D. A. Yap, S. Zhai, S. Hu, D. Zheng, W. Talbott, and E. Gu.
Tract: Denoising diffusion models with transitive closure time-distillation. arXiv preprint
arXiv:2303.04248, 2023.

[4] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman. How to train your neural ode: the
world of jacobian and kinetic regularization. In International conference on machine learning,
pages 3154–3164. PMLR, 2020.

[5] J. Gu, S. Zhai, Y. Zhang, L. Liu, and J. M. Susskind. Boot: Data-free distillation of denoising
diffusion models with bootstrapping. In ICML 2023 Workshop on Structured Probabilistic
Inference {\&} Generative Modeling, 2023.

[6] Y. Guo, C. Yang, A. Rao, Y. Wang, Y. Qiao, D. Lin, and B. Dai. Animatediff: Animate
your personalized text-to-image diffusion models without specific tuning. arXiv preprint
arXiv:2307.04725, 2023.

[7] J. Ho and T. Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021.

[8] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models, Dec. 2020.
arXiv:2006.11239 [cs, stat].

[9] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded diffusion
models for high fidelity image generation. Journal of Machine Learning Research, 23(47):1–33,
2022.

10

[10] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
Advances in Neural Information Processing Systems, 35:8633–8646, 2022.

[11] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. Diffwave: A versatile diffusion model
for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

[12] T. Kynkäänniemi, M. Aittala, T. Karras, S. Laine, T. Aila, and J. Lehtinen. Applying guidance in
a limited interval improves sample and distribution quality in diffusion models. arXiv preprint
arXiv:2404.07724, 2024.

[13] S. Lee, B. Kim, and J. C. Ye. Minimizing trajectory curvature of ode-based generative models.
In International Conference on Machine Learning, pages 18957–18973. PMLR, 2023.

[14] Y. Li, H. Wang, Q. Jin, J. Hu, P. Chemerys, Y. Fu, Y. Wang, S. Tulyakov, and J. Ren. Snapfusion:
Text-to-image diffusion model on mobile devices within two seconds. Advances in Neural
Information Processing Systems, 36, 2024.

[15] J. H. Liew, H. Yan, J. Zhang, Z. Xu, and J. Feng. Magicedit: High-fidelity and temporally
coherent video editing. arXiv preprint arXiv:2308.14749, 2023.

[16] S. Lin, A. Wang, and X. Yang. Sdxl-lightning: Progressive adversarial diffusion distillation,
2024.

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755.
Springer, 2014.

[18] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. In The Eleventh International Conference on Learning Representations, 2022.

[19] Q. Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

[20] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[21] X. Liu, X. Zhang, J. Ma, J. Peng, et al. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In The Twelfth International Conference on Learning
Representations, 2023.

[22] X. Long, Y.-C. Guo, C. Lin, Y. Liu, Z. Dou, L. Liu, Y. Ma, S.-H. Zhang, M. Habermann,
C. Theobalt, et al. Wonder3d: Single image to 3d using cross-domain diffusion. arXiv preprint
arXiv:2310.15008, 2023.

[23] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances in Neural Information Processing
Systems, 35:5775–5787, 2022.

[24] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. DPM-Solver: A Fast ODE Solver for
Diffusion Probabilistic Model Sampling in Around 10 Steps, Aug. 2022. arXiv:2206.00927 [cs,
stat].

[25] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models, 2023.

[26] S. Luo, Y. Tan, L. Huang, J. Li, and H. Zhao. Latent consistency models: Synthesizing
high-resolution images with few-step inference, 2023.

[27] S. Luo, Y. Tan, S. Patil, D. Gu, P. von Platen, A. Passos, L. Huang, J. Li, and H. Zhao. Lcm-lora:
A universal stable-diffusion acceleration module, 2023.

[28] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and T. Salimans. On distillation
of guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14297–14306, 2023.

11

[29] B. Nguyen, B. Nguyen, and V. A. Nguyen. Bellman optimal step-size straightening of flow-
matching models. In The Twelfth International Conference on Learning Representations,
2023.

[30] T. H. Nguyen and A. Tran. Swiftbrush: One-step text-to-image diffusion model with variational
score distillation, 2024.

[31] J. Pan, H. Yan, J. H. Liew, V. Y. Tan, and J. Feng. Adjointdpm: Adjoint sensitivity method for
gradient backpropagation of diffusion probabilistic models. arXiv preprint arXiv:2307.10711,
2023.

[32] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach.
Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023.

[33] A.-A. Pooladian, H. Ben-Hamu, C. Domingo-Enrich, B. Amos, Y. Lipman, and R. T. Chen.
Multisample flow matching: Straightening flows with minibatch couplings. In International
Conference on Machine Learning, pages 28100–28127. PMLR, 2023.

[34] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image
Synthesis with Latent Diffusion Models, Apr. 2022. arXiv:2112.10752 [cs].

[35] T. Salimans and J. Ho. PROGRESSIVE DISTILLATION FOR FAST SAMPLING OF DIFFU-
SION MODELS. page 21, 2022.

[36] A. Sauer, D. Lorenz, A. Blattmann, and R. Rombach. Adversarial diffusion distillation. arXiv
preprint arXiv:2311.17042, 2023.

[37] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

[38] J. Song, C. Meng, and S. Ermon. Denoising Diffusion Implicit Models, June 2022.
arXiv:2010.02502 [cs].

[39] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. SCORE-BASED
GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS.
page 36, 2021.

[40] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[41] K. Sun, J. Pan, Y. Ge, H. Li, H. Duan, X. Wu, R. Zhang, A. Zhou, Z. Qin, Y. Wang, et al.
Journeydb: A benchmark for generative image understanding. Advances in Neural Information
Processing Systems, 36, 2024.

[42] W. Wang, J. Liu, Z. Lin, J. Yan, S. Chen, C. Low, T. Hoang, J. Wu, J. H. Liew, H. Yan, et al.
Magicvideo-v2: Multi-stage high-aesthetic video generation. arXiv preprint arXiv:2401.04468,
2024.

[43] X. Wang, N. Dufour, N. Andreou, M.-P. Cani, V. F. Abrevaya, D. Picard, and V. Kalogeiton.
Analysis of classifier-free guidance weight schedulers. arXiv preprint arXiv:2404.13040, 2024.

[44] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou. Diffusion-gan: Training gans with diffusion.
In The Eleventh International Conference on Learning Representations, 2022.

[45] Z. Xiao, K. Kreis, and A. Vahdat. Tackling the generative learning trilemma with denoising
diffusion gans. In International Conference on Learning Representations, 2021.

[46] S. Xing, J. Cao, H. Huang, X.-Y. Zhang, and R. He. Exploring straighter trajectories of flow
matching with diffusion guidance. arXiv preprint arXiv:2311.16507, 2023.

[47] Y. Xu, Y. Zhao, Z. Xiao, and T. Hou. Ufogen: You forward once large scale text-to-image
generation via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

12

[48] Z. Xu, J. Zhang, J. H. Liew, H. Yan, J.-W. Liu, C. Zhang, J. Feng, and M. Z. Shou. Magicani-
mate: Temporally consistent human image animation using diffusion model. arXiv preprint
arXiv:2311.16498, 2023.

[49] H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

[50] T. Yin, M. Gharbi, R. Zhang, E. Shechtman, F. Durand, W. T. Freeman, and T. Park. One-step
diffusion with distribution matching distillation, 2023.

[51] J. Yoon and J. Lee. Sequential flow matching for generative modeling. arXiv preprint
arXiv:2402.06461, 2024.

[52] L. Zhang and M. Agrawala. Adding Conditional Control to Text-to-Image Diffusion Models,
Feb. 2023. arXiv:2302.05543 [cs].

[53] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv
preprint arXiv:2204.13902, 2022.

[54] H. Zheng, P. He, W. Chen, and M. Zhou. Truncated diffusion probabilistic models and
diffusion-based adversarial auto-encoders. In The Eleventh International Conference on Learn-
ing Representations, 2022.

[55] D. Zhou, W. Wang, H. Yan, W. Lv, Y. Zhu, and J. Feng. MagicVideo: Efficient Video Generation
With Latent Diffusion Models, May 2023. arXiv:2211.11018 [cs].

[56] M. Zhou, H. Zheng, Z. Wang, M. Yin, and H. Huang. Score identity distillation: Exponen-
tially fast distillation of pretrained diffusion models for one-step generation. arXiv preprint
arXiv:2404.04057, 2024.

13

Appendix

A More generation results

Table 2: Clip scores of different acceleration methods (high values indicate better quality). We select
5000 text prompts from COCO2014 and generate one image for each prompt for computing clip
cosine similarity scores. PeRFlow’s results align better with text prompts in comparison to other
methods.

Method SDXL 25 steps Lightning 4 steps LCM-LORA 4 steps PeRFlow 4 steps

Score 0.337 0.330 0.327 0.337

Figure 7: 4-step image enhancement (128 → 1024) with PeRFlow-SD v1.5+ControlNet-tile [52]

Figure 8: One-step multiview generation of PeRFlow-SD v1.5+Wonder3D [22]

Figure 9: Fast generation via PeRFlow accelerated depth-/edge-/pose-ControlNet [52]

14

Figure 10: 4-step generation (512× 512) via PeRFlow-SD-v1.5.

Figure 11: 8-step generation (512× 512) via PeRFlow-SD-v1.5.

Figure 12: 4-step generation (768× 768) via PeRFlow-SD-v2.1.

15

Figure 13: 4-step generation (1024× 1024) via PeRFlow-SDXL.

16

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: all claims are supported via theoretical or empirical evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in the conclusion section.

17

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Math derivations are all provided in the main article.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Important details about experiments are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public data for training. Codes are also submitted together with the
Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We follow the standard settings of training diffusion models, and provide the
related public links.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We follow the standard settings of computing FID values.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the GPU types.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

20

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No violations to the Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All models used here are publicly released.
Guidelines:

• The answer NA means that the paper poses no such risks.

21

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments.

22

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not related.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Methodology
	Rectified Flow and Reflow
	Piecewise Rectified Flow

	Experiments
	Few-step generation
	PeRFlow as Universal Plug-and-Play Accelerator on SD Work Flows
	Additional Discussion

	Related Works
	Conclusions
	More generation results

