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Abstract: We present a framework for robot skill acquisition, which 1) efficiently scale1

up data generation of language-labelled robot data and 2) effectively distills this data down2

into a robust multi-task language-conditioned visuo-motor policy. For (1), we use a large3

language model (LLM) to guide high-level planning, and sampling-based robot planners4

(e.g. motion or grasp samplers) for generating diverse and rich manipulation trajectories.5

To robustify this data-collection process, the LLM also infers a code-snippet for the6

success condition of each task, simultaneously enabling the data-collection process to7

detect failure and retry as well as the automatic labeling of trajectories with success/failure.8

For (2), we extend the diffusion policy single-task behavior-cloning approach to multi-task9

settings with language conditioning. Finally, we propose a new multi-task benchmark10

with 18 tasks across five domains to test long-horizon behavior, common-sense reasoning,11

tool-use, and intuitive physics. We find that our distilled policy successfully learned the12

robust retrying behavior in its data collection procedure, while improving absolute success13

rates by 33.2% on average across five domains. All code, data, and qualitative policy14

results are available at this anonymized website.15

Figure 1: Language-guided Skill Acquisition enables scalable robot learning. In the data generation stage, a LLM
takes as input task descriptions (a) and uses sampling-based robotic planners and privileged simulation information (b) to
perform task-directed exploration. This enables the scaling up of language and task-success labeled dataset generation (c).
In the second stage, the dataset is filtered for success and distilled down into a closed-loop language-conditioned
visuomotor policy for real world deployment (d).

1 Introduction16

How can we scalably acquire robust, reusable, real-world manipulation skills? This question has been the driv-17

ing force behind extensive research in robot learning. Attempts in the field have focused on two primary aspects:18

First, how to scale up the data collection for a diverse range of manipulation skills, which involves efforts19

such as improving the hardware [1, 2] and software [3, 4] which support demonstration collection, utilization20

of non-robotics datasets [5, 6], or trial-and-error explorations [7]. The second aspect of this question concerns21

effective learning from the collected data, which delves into exploring effective action representations [8–10]22

and policy formulations [11, 12] that can robustly model the training data and generalize to novel scenarios.23

This paper proposes a new framework that provides a comprehensive solution for both aspects by24

leveraging language guidance, while using no expert demonstrations or reward specification/engineering.25

We contribute two key components with our framework:26

• Scaling Up Language-Guided Data Generation: Our data-collection policy is a large language model27

(LLM) which has access to a suite of 6DoF exploration primitives (i.e., sampling-based robot planners and28

utilities). Given an input task description, this policy first simplifies the task by recursively decomposing29

it into subtasks, resulting in a hierarchical plan (i.e., task tree). Next, this plan is grounded into a sequence30
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of 6DoF exploration primitives, which generates diverse robot trajectories for the task. Finally, the data31

collection policy verifies the trajectories’ success with an inferred success function and retries the task32

until it succeeds. This verify & retry step not only improves the data-collection policy’s success, but also33

adds robot experience on how to recover from failure, an important trait for downstream policy distillation.34

This data generation approach is scalable, enabling significantly more efficient autonomous task-directed35

exploration than unguided alternatives (i.e., reinforcement learning) while not being limited by the lack36

of low-level understanding of the LLM-only solution.37

• Distilling Down to Language-Conditioned Visuomotor Policy: We distill these robot experiences into38

a visuo-linguo-motor policy that infers control sequences from visual observations and a natural language39

task description. To enable effective learning of high entropy, diverse robot trajectories, we extend the40

diffusion policy [12] to handle language-based conditioning for multi-task learning. This allows the learned41

policy to be reused and recomposed through language-based planners. We found that our distilled policy42

successfully learned the robust retrying behavior from its data collection policy, while improving upon43

its absolute success rate across five domains by 33.2%. Further, we demonstrate that our policy directly44

transfers to the real-world without fine-tuning using domain randomization.45

Our framework combines these two components to get the best of both worlds – leverage LLM’s46

common-sense reasoning abilities for efficient exploration while learning robust and re-usable 6DoF47

skills for real-world deployment. In summary, the key contribution of this paper is a new framework for48

visuo-linguo-motor policy learning that is enabled by three novel components:49

• A new language-guided data collection framework that combines language-based task planner with 6DoF50

robot utilities (e.g. motion planning, grasp sampling).51

• New formulation of diffusion-based policy that effectively learns multi-task language-conditioned52

closed-loop control policies.53

• In addition to our algorithmic contributions, we also contribute a new multi-task benchmark that includes54

18 tasks across five domains, requiring long-horizon (≈ 800 control cycles), common sense, tool-use,55

and intuitive physics understanding – capabilities lacking in existing manipulation benchmarks.56

2 Related Works57

Scaling visuo-linguo-motor data. In learning vision-and-language-conditioned motor policies for58

real-world deployment [9, 10, 13–18], one of the most important questions is how to scale up “robot-complete59

data” – data that has robot sensory inputs (e.g. vision), action labels (e.g. target end-effector & gripper60

commands), and task labels (e.g. language description, success). The most prevalent paradigm is to use61

humans to annotate both actions (e.g. teleoperation) and language [9, 10, 13–18]. When providing action62

labels, humans can either provide task-specific [9, 10, 15, 18], or task-agnostic (“play”) data [13, 14, 16, 19].63

A primary limitation, however, is that data scalability is human-limited.64

Other prior works have proposed strategies to enable more-autonomously-scalable data. To scale language65

annotation, prior works study using visual-language models [20, 21], or procedurally post-hoc provided66

in simulation [19]. To scale action labels, methods study how to use autonomous sub-optimal policies from67

random [7] to learned [22] policies. Human egocentric videos [6, 23, 24] has also been shown to be relevant to68

robot learning [5, 25], but is not robot-complete (lacks action labels), and requires cross-embodiment transfer.69

Towards unsupervised exploration, prior works have also investigated evolving environments [26, 27] and70

embodiments [28], automatic task generation [29], leveraging language guidance [30, 31] and world-model71

error [32], but have not been demonstrated to scale to 6 DoF robotic skill learning. While these approaches72

reduce human efforts, they are still limited in optimality, generality, and/or completeness of robot data labels.73

Another option for the autonomous data collection policy is to use a model-based policy, e.g. task and74

motion planning (TAMP) [33]. Our approach extends such methods in terms of flexibility and task generality75

by leveraging LLM’s common-sense knowledge. However, in contrast to recent works which use LLMs76

as the final policy [34–40], we use the LLM-based planner as a suboptimal data-collection policy. We then77

distill only successful trajectories into an observable-information [41–43] policy, allowing the distilled policy78

to improve upon its LLM data collection policy’s performance.79

Policy Representations and Multi-task Policy Distillation. One primary question in visuo-motor80

learning [44] has been how to represent the policy for effective learning, i.e. to enable high precision,81

multi-modal robot behavior [2, 11, 12, 45, 46]. Another related question has been how to best train multi-task82

policies [47, 48], including those conditioned on language [9, 10, 13, 15, 16, 18]. Our work presents the83

novel formulation of bringing diffusion-based [49, 50] policies [12] into the language-conditioned [51, 52]84

visuomotor domain. Additionally, prior works in multi-task language-conditioning typically focus on85

cloning policies from experts, meanwhile we study distilling data from a success-filtered suboptimal policy.86

Success-filtering [11, 53] can be viewed as the simplest form of offline RL [54].87
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Figure 2: Benchmark. We validate our approach on a new multi-task benchmark addressing challenging long-horizon
tasks (i.e., 800 control cycles) requiring language understanding (e.g., put [object] to [top] drawer), common sense
knowledge (e.g., send a package for return requires raising the mailbox flag), tool-use (e.g., catapult), and intuitive physics
(e.g., balance the bus). The tasks are best viewed on our this anonymized website.

3 Approach88

We propose a new framework for robot learning that performs automatic data collection and policy learning89

from only a task description. Our design is grounded on four key observations:90

• We recognize the importance of random exploration in reinforcement learning, but aim to not be constrained91

by its inefficiency for long-horizon, sparse reward tasks.92

• We acknowledge the usefulness of LLM’s common-sense and zero-shot capabilities, but believe language93

is not by itself the ideal representation for robust, rich, and precise robotic manipulation.94

• We are inspired by the effectiveness of robotic planning methods, e.g. TAMP, but wish to be flexible95

to novel tasks and domains and non-reliant on ground truth state during policy inference.96

• We aim to achieve the simplicity and effectiveness of behavior cloning in distilling collected robot97

experience into a policy for real-world deployment, while side-stepping the requirement for costly human98

demonstrations or play data collection.99

Using no human demonstration or manually specified reward, our framework combines the strengths100

of these four areas into a unified framework for both efficient task-directed exploration and multi-task101

visuo-linguo-motor policy learning.102

Method Overview. In the data generation phase, we use an LLM to recursively decompose (§3.1) tasks103

into a hierachical plan (i.e., task tree) for exploration and ground the plan into sampling-based robot utilities104

and motion primitives (§3.2). Next, the LLM infers success-detection functions for each task in the plan105

(§3.3), providing success-labeling. This autonomous data generation process outputs a replay buffer of106

task-directed exploration experience, labeled with language descriptions and success labels. In the training107

phase (§3.4), we filter this data for success according to the LLM inferred success condition and distill it108

into a multi-task vision-and-language-conditioned diffusion policy [12].109

3.1 Simplify: Task Planning and Decomposition110

Given a task description, the first step is to generate a high-level task plan. To improve the flexibility to111

work with any tasks and 3D assets, we opted for an LLM-based planner to leverage their common-sense and112

zero-shot reasoning skills. Unlike classical TAMP planners, our framework does not require domain-specific113

engineering and transition function design to work with new tasks.114

Concretely, our recursive LLM planner takes as input the task description, the simulation state, and outputs115

a plan in the form of a task tree (Fig. 3a). To do so, the LLM first checks whether the task description116

involves the robot interacting with multiple or only one object. For instance, “move the package into the117

mailbox” involves opening the mailbox before picking up the package and putting the mailbox in, and should118

be considered a multi-object task. Meanwhile, “with the mailbox opened, move the package into the mailbox”119

should be a single-object task. For the base case of single-object tasks, we prompt the LLM to which object120

part name to to interact. For the case of multi-object tasks, we prompt the LLM to decompose the task into121

subtasks, and recurse down each subtask.122
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Figure 3: Language-Driven Robot Data Generation takes as input the task description and simulation state, and
outputs a replay buffer, labelled with language descriptions and success. It starts by using an LLM to simplify tasks
recursively (a) until the task involves only one object, resulting in a hierarchical exploration plan. Next, the plan is
grounded (b) into a sequence of 6 DOF exploration primitives (e.g. grasp samplers, motion planners, etc.) and rolled out
in simulation to give an unlabelled robot trajectory. Finally, an LLM infers a success function code-snippet, and uses it to
verify (c) and label it with succeeded or failed. If the trajectory failed, the LLM retries the exploration plan with a different
random seed (e.g. a different grasp pose from the grasp sampler). If the robot succeeds or run out of time, the labeled
trajectory is returned.

3.2 Ground: Compiling a Plan into Robot Utilities123

With the generated task tree §3.1, the next step is to ground the high-level plan into physical actions. Here,124

the choice of the low-level robot API critically defines the system’s capability and, therefore, becomes a125

key differentiating factor between different systems. In principle, there are three desired properties we want126

to see in the action space design:127

• Flexibility. Planar actions [10, 37] aren’t flexible enough to manipulate prismatic and revolute joints.128

• Scalable. Namely, actions should not require human demonstrations to acquire [9, 10, 13–16, 35].129

• Language-friendly. While joint sequences can encode any action, it is not language-friendly.130

We propose to ground the LLM’s plan with API calls into a set of robot utility functions, which include a131

sampling-based motion planner, a geometry-based grasp and placement sampler, and motion primitives for ar-132

ticulated manipulation. We refer to these utilities as 6 DOF Exploration Primitives (Fig 3b) because, by virtue of133

being pseudo-random, the sampling-based utilities generate diverse robot trajectories, enabling effective explo-134

ration for rich 6 DoF manipulation settings. For instance, our grasp and placement samplers samples uniformly135

amongst all points in the object part’s point cloud to find good grasps and placements poses, respectively, which136

are used as input into a rapidly-exploring random trees [55] motion planner that samples uniformly in joint137

space. This results in diverse grasps, placements, and motion trajectories connecting grasps and placements.138

For each leaf node in the inferred task tree (§ 3.1), the grounding process takes as input the node’s task de-139

scription (e.g. “open the mailbox”), its associated object part name (e.g. “mailbox lid”), and the simulation state,140

and outputs a sequence of 6 DoF Exploration Primitive API calls. Using the object part name, we can parse141

the object’s kinematic structure from the simulation state and handle articulated and non-articulated (i.e., rigid,142

deformable) objects separately. For non-articulated objects, the LLM is prompted to choose the pick & place143

object names, used to sample grasp and placement pose candidates. For articulated objects (with either revolute144

or prismatic joints), the leaf node’s associated object part name is used to sample a grasp candidate followed145

by a rotation or translation primitive conditioned on its joint parameters (i.e., joint type, axis, and origin).146

Exploration Plan Rollout. Each node in the exploration plan is grounded only when it is being executed,147

where the order of execution follows a pre-order tree traversal. By keeping track of the subtask’s state,148

sub-segments of robot trajectory can be labelled with the subtask’s description, thereby providing dense and149

automatic text labels for the trajectory. For instance, all actions taken during the inferred subtask “open the150

mailbox” can be labeled with both the subtask’s description “open the mailbox” and the root task description151

“move the package into the mailbox”.152

Since grounding happens only when a task node is visited, each node’s grounding process is independent153

of the other leaf nodes, depending only on the simulation state when it is evaluated. While this simplifies154

planning significantly, it also means that failed execution can occur. For instance, a grasp candidate may155

render all placement candidates infeasible.156
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3.3 Verify & Retry: Robustifying the Data Collection Policy157

Recall, the planning and grounding step can fail, especially when we consider long-horizon tasks. To address158

this, we propose a verify & retry (Fig. 3c) scheme, which uses environment feedback to detect failed execution.159

Verify. For each task, the LLM infers a success function code snippet given the task description,160

simulation state, and API functions to for query simulation state (e.g., checking contact or joint values, etc).161

This amounts to prompting the LLM to complete a task success function definition that outputs a boolean162

value, indicating task success. For instance, given the task “raise the mailbox flag”, the LLM’s inferred163

code snippet should check whether the mailbox’s flag hinge is raised (Fig. 3c, highlighted green).164

Retry. When a trajectory is labeled failed, the robot retries the same sequence of robot utilities with a165

different random seed (i.e., for the sampling-based robotic utilities) without resetting the simulation state166

until the task succeeds. For instance, in the bus balance task (Fig. 2, top left), the robot would repeatedly167

try different grasp and place candidates until the bus is balanced. In the tree traversal process § 3.2, nodes168

only yield execution to its parent task when the node’s inferred success condition returns true. This design169

not only leads to higher success rates in data generation but also provides useful demonstrations on how170

to recover from failure. In the output replay buffer, the only failed trajectories are ones which timed-out171

or led to invalid states (e.g. object dropped on the floor).172

3.4 Language-conditioned Policy Distillation173

Figure 4: Language-Conditioned Policy Distillation.
The policy takes as input a task description, two RGB cam-
era views, and gripper proprioception data, and outputs a
sequence of gripper poses and closing command.

We extend diffusion policy [12], a state-of-the-art ap-174

proach for single-task behavior cloning, to the multi-175

task domain by adding language-conditioning. This176

policy takes as input a task description CLIP [56]177

feature, proprioception history, and visual observa-178

tions, and outputs a sequence of end effector control179

commands. Following Robomimic [4]’s findings,180

we use a wrist-mounted view in addition to a global181

(workspace) view to help with tasks requiring precise182

manipulation. We use their ResNet18-based [57]183

vision encoders, one for each view. We found that184

using only the latest visual observation along with the full observation horizon of proprioception maintains185

the policy’s high performance while reducing training time. When used in conjunction with the DDIM [58]186

noise scheduler, we found that we could use a 10× shorter diffusion process at inference (5 timesteps at187

inference, 50 timesteps at training) while retaining a comparable performance. Quantitatively, when using a188

10 dimensional action space*, our policy can be run at≈35Hz on an NVIDIA RTX3080.189

4 Evaluation190 Domain Complex
geometry

Artic-
ulation

Common
sense

Tool
use

Multi-
task

Long
horizon

Balance 7 7 7 7 7 7
Catapult 7 3 3 3 3 7
Transport 3 7 7 7 7 7
Mailbox 7 3 3 7 7 3
Drawer 3 3 7 7 3 3

Table 1: Benchmark Suite.

Our experiments try to validate two questions: 1) Can our data191

generation approach efficiently perform task-directed explo-192

ration? 2) Can our policy learning approach effectively distill a193

multi-modal, multi-task dataset into a generalizable and robust194

visuo-linguo-motor policy?195

Our Benchmark contains 18 tasks across 5 domains (Fig. 2 Tab. 1), with the following properties:196

• 6DoF & articulated manipulation, for deadling with complex object geometry and articulation.197

• Geometry Generalization. In our bin transport domain, the robot must generalize its bin transport skill to198

unseen object instances, with novel shapes, sizes, and colors.199

• Intuitive physics. Robots should understand the physical properties of the world and use this knowledge200

to perform tasks. In the bus balance domain, the robot needs to learn the precise grasping and placement to201

balance a large bus toy on a small block. In the catapult domain, where the block is placed along a catapult202

arm determines how far the block will be launched, and, thus, which bin (if any) the block will land in.203

• Common-sense reasoning & Tool-use. Natural language task description is user-friendly but often204

under-specifies the task. Common-sense can help to fill in the gaps. In the mailbox domain, given the task205

“send the package for return”, the robot should understand that it not only needs put the package inside, but206

also raise the mailbox flag to indicate that the package is ready for pickup. In the catapult domain, the robot207

needs to understand that pressing the catapult’s button will activate the catapult, and that the block needs to208

be placed on the catapult arm to be launched.209

*3 for position, 6 for rotation using the upper rows of the rotation matrix, and a gripper close command

5



Figure 5: High Entropy yet Precise Language-Guided Action Sequences. Running the pseudorandom language-
conditioned diffusion process with different seeds on the same observations yields language-consistent (a-c, different
colors for different task descriptions), high entropy actions when possible (a-f, object grasping, transports, & placements)
and precise actions when necessary (d, narrow mailbox with large package). Further, domain randomization enables a
simulation trained policy (e) to generalize to the real world (f).

• Multi-task conditioning. Given the same visual observations but different task description, the robot210

should perform different and task-relevant actions. The catapult domain has 3 tasks for three target bins,211

and the drawer domain has 12 tasks.212

• Long horizon behaviour. Our longest horizon domain, mailbox, takes at least 4 subtasks to complete213

(open the mailbox, put the package in the mailbox while its opened, close the mailbox, then raise the214

mailbox flag) which can require up to 800 control cycles. In the drawer domain, the robot needs to open the215

drawer, move the object into the drawer, then close it, which takes about 300 control cycles.216

The benchmark is built on top of the MuJoCo [3] simulator, using assets from the Google Scanned217

dataset [59, 60]. We use a table-top manipulation set-up with a 6DoF robot arm. The task success in evaluation218

is a manually designed function, instead of LLM generated function used for data collection.219

Metrics. We report the success rates (%) averaged over 200 episodes in Table 2, a task completion220

efficiency plot in Fig. 6, and qualitative results in Fig. 5. If a domain has multiple tasks then we report the221

average performance of all tasks. We also compare different LLMs in Table 4 (10 samples per task) and222

investigate the sources of error in our system for the mailbox domain in Table 3 (200 trials per execution).223

Data Generation Baselines. Code-as-Policy [37] is a state-of-the-art approach for using an LLM directly224

as a robot policy by making state (e.g. query present objects) and action primitive API calls to a robot. Given225

an LLM-inferred code string, they execute the snippet in an open-loop fashion. Crucially, in their table226

top manipulation setting, they assume access to planar action primitives. Thus, we introduce the following227

baselines, which build on top of Code-as-Policy and each other as follows:228

• LLM-as-Policy (2D): Similar to code-as-policy using planar pick-and-place, but we use ground truth229

object segmentation instead of their off-the-shelf object detectors [61, 62].230

• (+) 6 DOF robot utils: Builds on top of the previous baseline by adding access to 6 DOF robot utilities231

for grasping, placement, motion planning, and articulated manipulation.232

• (+) Verify & Retry: Adding to the previous baselines, this baseline uses the LLM’s predicted success233

condition to label trajectories and retry failed ones. Since the robot utilities involve pseudo-random samplers234

(e.g. RRT, grasp sampling), retrying the task means running these samplers again using the pseudo-random235

state and environment state from where failed trajectory left it. Since we use this approach as our data236

generation policy, it also serves as an ablation of our approach.237

Policy Distillation Ablations. We compare against BC-Z [15]’s single-task policies which does not use238

FiLM conditioning (used in their bin emptying and door opening tasks). To understand the effects of our239

policy learning design decisions in the single-task regime, we fix training time and dataset size (2 days using240

at least 500 successful trajectories), and provide the following ablations:241

• Action Generation: Instead of using diffusion processes conditioned on the policy input embedding to242

decode actions, it is typical use multi-layer perceptrons. Following Jang et al. [15], we use one MLP with243

two hidden layers and ReLU activations for end effector position, one for the orientation, and another for244
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gripper command. This standard policy architecture is deterministic, and is trained with mean-squared error245

loss for pose and binary cross entropy loss for gripper command.246

• Action Space: Besides our absolute end effector pose action space, Delta-Action and velocity control247

spaces is another popular action space choice [4, 15, 63–65]. We also ablate BC-Z’s execution action248

horizon (Exec) while keeping their original prediction horizon (Pred).249

• Observation Encoder: All approaches encode images using a ResNet18 [57] architecture. Although the250

original architecture was designed with an average pooling layer, its typical for robotic policies to use a251

spatial softmax pooling [44] layer instead.252

• Data usage: No-Retry trains on successful trajectories generated from the data generation approach253

without Verify & Retry, so it does not observe any recovery behavior.254

4.1 Data Collection Policy Evaluation255

Approach Planar 6DoF Average
Balance Catapult Transport Mailbox Drawer

LLM-as-Policy (2D) 28.0 33.3 21.5 0.0 0.0 27.6
(+) 6DoF Robot Utils 5.5 2.5 35.0 0.0 1.3 8.8
(+) Verify & Retry 45.0 7.3 82.0 3.0 31.8 33.8

Distill No Retry 67.5 38.5 32.5 0.0 22.7 32.2
Distill Ours 79.0 58.3 80.0 62.0 55.8 67.0

Table 2: Success Rates (%) for data generation (top) and
distillation approaches (bottom) over 200 trials.

6DoF exploration is critical. First, we verify256

different approach’s ability to perform and ex-257

plore in 6DoF, which is crucial for general manip-258

ulation. When 6DoF exploration is introduced,259

we first observe a drop in the average success260

rate for simple tasks that could be accomplished261

with planar actions (Balance, Transport, Tab. 2).262

However, this ability is critical for exploring com-263

plex tasks, providing data to improve upon in the264

later distilling stage. In particular, we observed that 6DoF actions are important for grasping diverse objects265

with complex geometry (Transport, Tab. 2), and manipulating articulated objects (Drawer, Mailbox, Tab. 2).266

Subtask Planning Verify Execution

Open mailbox 100 100 43.5
Put package in mailbox 100 100 28.5
Raise mailbox flag 100 100 62.0
Close mailbox 100 100 94.2

Table 3: Sources & Propagation of
Error. Accuracy (%) of planning, veri-
fication, and execution success rate (%)
for each mailbox subtask.

Moreover, 6DoF exploration also helps in diversifying the data267

collection strategy, which provides the possibility to improve268

upon in the later distilling stage. For example in the catapult269

domain, LLM-as-Policy (2D) is only able to solve one of three pos-270

sible goals (the closest bin) using a deterministic strategy. However,271

it provides no useful data for learning the other two goals, making272

it a poor data-collection policy. In contrast, incorporating 6 DOF273

robot utilities achieves lower but non-zero average success rates in274

all bins (16.3%, 3.3%, and 2.2%, full table in appendix), which275

provide much better exploration data for distillation.276

Verify & Retry always helps. In the verify & retry step, the LLM retries all tasks until they are successful.277

This simple addition improves performance in all domains, with 2×, 3×, 8×, and 13× in transport, catapult,278

balance, and drawer domains. Without this crucial step, we observe 0.0% success rate in the mailbox domain,279

underscoring the difficulty of flawlessly executing long sequences of 6 DOF actions, and the importance of280

recovery after failure.281
Model Size Planning Success

LLAMA2 7B 42.0 10.0
13B 62.0 48.3

GPT3 175B 82.0 91.1

Table 4: LLM Evaluation.

Language Model Scaling. In addition to the final task success, we282

provide more detailed analysis of planning and success condition inference283

accuracy in Tab. 4. We evaluate on the proprietary GPT3 [66] (175B284

text-davinci-003) and the open LLAMA2 [67] (7B and 13B). We found285

that Llama models struggles in complex planning domains because they286

do not follow instructions provided in the prompts. For instance, in the drawer domain, both models fail to287

account for drawer opening and closing. However, we observe an upwards trend with respect to Llama model288

size, with the 13B model outperforming the 7B model by +20.0% and +38.3% in planning and success289

verification accuracy respectively.290

4.2 Distilled Policy Evaluation291

Robustness In, Robustness Out. By filtering trajectories with LLM’s inferred success condition, distilled292

policies inherit the robustness of their data collection policies while improving upon success rates (+23.4%293

and +33.2% for no-retry and ours, Tab. 2). Since our distilled policy learned from a robust data collection294

policy, it also recovers from failures (e.g. failed grasps or placements) and continuously retries a task until it295

succeeds. Meanwhile, since the no-retry distilled policy learned from a data collection policy which did not296

retry upon failure, it is sensitive and brittle, leading to−34.8% lower average success rate across all domains297

compared to ours (Tab. 2).298

High Performance From Diverse Retry Attempts. Plotting how long policies take to solve the bal-299

ance task (Fig. 6), we observed that our policy and its data collection policy continuously tries a diverse300
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set of grasps and placements after each failed attempt until it succeeds. This results in higher success301

rates as the policy is given more time, and is reflected in their monotonically increasing success rates.302

su
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Ours 79.0%

LLM-Policy 28.0%

(2D) 

Distill 67.5%

(No Retry) 
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80

60

40

20

0
20 40 60 80 100

Figure 6: Distilled Robustness. Our policy inherits
robust recovery from failure behavior from its data
collection policy, while improving upon success rate.

In contrast, baselines plateau after their first grasp/plate-303

ment attempts. This highlights the synergy of two design304

decisions. First, the verify & retry step (§ 3.3) is crucial305

for demonstrating retrying behavior, but is by itself insuffi-306

cient if each retrying action is the identical as the previous307

one. Instead, opting for a diffusion policy (§ 3.4) for308

learning from and generating high-entropy, diverse retry309

attempts (Fig 5) is also essential for high performance.310

Policy Learning Baselines. We investigate policy311

learning design decisions on the single-task balance do-312

main, and remove language conditioning. While BC-Z313

found spatial softmax hurt their performance and opted for314

a mean pool, we observed using spatial softmax improved315

performance by +5.0%. Further, we found that switching316

from delta to absolute action spaces improved success317

rates +6.5% and +9.5% when using the MLP action318

decoder and our diffusion action decoder, respectively,319

confirming Chi et al. [12]’s findings. Lastly, we find that using our pseudo-random diffusion-based action320

encoder consistently outperforms a deterministic MLP action mappings, regardless of other design decisions.321

Method Output Input Success

Generation Rep. ExecPredPool Proprio (%)

BC-Z FeedForwardDelta 1 10 Avg 7 0.0
FeedForwardDelta 4 10 Avg 7 15.0
FeedForwardDelta 8 10 Avg 7 18.5

Ours FeedForwardDelta 8 16 Spatial 3 29.0
FeedForwardAbs 8 16 Spatial 3 35.5
Diffusion Delta 8 16 Spatial 3 69.5
Diffusion Abs 8 16 Avg 3 76.5
Diffusion Abs 8 16 Spatial 3 79.0

Table 5: Policy Learning Ablations. Ac-
tion generation using diffusion models [50]
robustly outperforms feed-forward models
across other policy design decisions.

Sim2Real Transfer. We evaluated a policy trained on do-322

main randomized synthetic data in a real world transport task323

with five novel objects (Fig. 5e). Averaging across ten episodes324

per object, our policy achieved 76% success rate, demonstrat-325

ing the effectiveness of our approach in Sim2Real transfer.326

327

4.3 Limitations328

By using priviledged simulation state information, the LLM329

can infer success conditions which uses ground truth contact,330

joint information, and object poses. This means our imple-331

mentation of the data generation phase is limited to simulation332

environments, and our policy requires sim2real transfer. Fur-333

ther, Our data generation method relies on existing 3D assets334

and environments, which presents a further opportunity for scaling up with assets from 3D generative models335

or procedural generation. Finally, while our approach’s dataset contains text labels and success labels for all336

subtasks, we have only evaluated its effectiveness in learning the root task. Learning from all subtasks and337

growing a robot’s set of learned, reusable sub-skills over time to enable compositional generalization is left for338

future work.339

5 Conclusion340

We proposed “Scaling Up and Distilling Down”, a framework that combines the strengths of LLMs, sampling-341

based planners, and policy learning into a single system that automatically generates, labels, and distills342

diverse robot-complete exploration experience into a multi-task visuo-linguo-motor policy. The distilled policy343

inherits long-horizon behaviour, rich low-level manipulation skills, and robustness from its data collection344

policy while improving upon performance beyond its training distribution. We believe that this integrated345

approach is a step towards putting robotics on the same scaling trend as that of LLM development while not346

compromising on the rich low-level control.347

References348

[1] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-loop grasping349

from low-cost demonstrations. IEEE Robotics and Automation Letters, 5(3):4978–4985, 2020.350

[2] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with351

low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.352

[3] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012353

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.354

doi:10.1109/IROS.2012.6386109.355

8

http://dx.doi.org/10.1109/IROS.2012.6386109


[4] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and356

R. Mart́ın-Mart́ın. What matters in learning from offline human demonstrations for robot manipulation.357

In arXiv preprint arXiv:2108.03298, 2021.358

[5] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation for359

robot manipulation. arXiv preprint arXiv:2203.12601, 2022.360

[6] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang, M. Liu,361

X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In Proceedings of the362

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18995–19012, 2022.363

[7] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven reinforcement364

learning. arXiv preprint arXiv:2004.07219, 2020.365

[8] J. Wu, X. Sun, A. Zeng, S. Song, J. Lee, S. Rusinkiewicz, and T. Funkhouser. Spatial action maps for366

mobile manipulation. arXiv preprint arXiv:2004.09141, 2020.367

[9] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic manipulation.368

In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.369

[10] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipulation. In370

Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.371

[11] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, and372

J. Tompson. Implicit behavioral cloning. Conference on Robot Learning (CoRL), November 2021.373

[12] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor374

policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.375

[13] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. arXiv376

preprint arXiv:2005.07648, 2020.377

[14] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-conditioned378

imitation learning for robot manipulation tasks. Advances in Neural Information Processing Systems,379

33:13139–13150, 2020.380

[15] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z: Zero-shot381

task generalization with robotic imitation learning. In A. Faust, D. Hsu, and G. Neumann, editors,382

Proceedings of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning383

Research, pages 991–1002. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.press/v164/jang22a.384

html.385

[16] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.386

Interactive language: Talking to robots in real time. arXiv preprint arXiv:2210.06407, 2022.387

[17] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation learning388

over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205–11212, 2022.389

[18] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,390

A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint391

arXiv:2212.06817, 2022.392

[19] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-conditioned393

policy learning for long-horizon robot manipulation tasks. IEEE Robotics and Automation Letters, 7(3):394

7327–7334, 2022.395

[20] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tompson.396

Robotic skill acquisition via instruction augmentation with vision-language models. arXiv preprint397

arXiv:2211.11736, 2022.398

[21] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim. Sprint: Scalable policy pre-training via language instruction399

relabeling. arXiv preprint arXiv:2306.11886, 2023.400

[22] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot behavior401

from offline data and crowd-sourced annotation. In Conference on Robot Learning, pages 1303–1315.402

PMLR, 2022.403

9

https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html


[23] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel, I. Fruend,404

P. Yianilos, M. Mueller-Freitag, et al. The” something something” video database for learning and405

evaluating visual common sense. In Proceedings of the IEEE international conference on computer406

vision, pages 5842–5850, 2017.407

[24] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti, J. Munro,408

T. Perrett, W. Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In Proceedings of the409

European Conference on Computer Vision (ECCV), pages 720–736, 2018.410

[25] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from” in-the-wild”411

human videos. arXiv preprint arXiv:2103.16817, 2021.412

[26] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer (poet): Endlessly413

generating increasingly complex and diverse learning environments and their solutions. arXiv preprint414

arXiv:1901.01753, 2019.415

[27] M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster, E. Grefenstette, and T. Rocktäschel. Replay-guided416
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A Policy Rollout Visualizations522

Our policy’s 6DoF manipulation behavior is best visualized through videos. Please visit this anonymized523

website to view the videos.524

B LLM Prompts525

Below, we include all prompts used in our approach. We use the same LLM pipeline and prompts in all526

domains and tasks. We first outline the rationale behind our design of the LLM pipeline (§ B.1). Next, we527

describe in detail the LLM modules and how they are used in the data generation stage (§ B.2), summarize the528

general prompt structure (§ B.3), and outline the API supplied to the LLM for success condition inference529

(§ B.4). Finally, we show some examples of LLM completions (§ B.5).530

In all of our experiments, we use GPT3 (text-davinci-003) with temperature 0.0.531

B.1 LLM Pipeline Design532

Our LLM pipeline is factorized into multiple LLM modules, allowing each module’s prompt to speciallize in a533

small reasoning skill (e.g. one set of prompts for deciding whether a task involves a single or multiple objects).534

We found that this not only improves the LLM’s performance, but also makes designing and maintaining535

prompts easy. For instance, during development, if the LLM outputs an unexpected task tree, the error could536

be traced back to a single module, and only that module’s prompt needs to be updated. Another convenient537

feature of this approach is that it also saves on token usage. Since each module’s task is small (e.g. answer538

only “one” or “multiple”), the amount of completion tokens is significantly smaller than a monolithic prompt.539

Further, when a module’s prompt is updated, only that module’s outputs needs to be updated, allowing540

cost-effective approaches to cache-ing LLM’s completions.541

B.2 LLM Pipeline542

The recursive LLM-based planner starts with an ambiguous task description handler (Listing 1), which543

transforms ambiguous task descriptions such as “move the block onto the catapult then shoot the block into544

the furthest bin” into more specific task descriptions like “move the block onto the catapult then shoot the545

block into the furthest bin by pressing the catapult’s button”. While this handler’s task can occasionally546

overlap with the LLM planner’s task, we found that it was more effective to keep them separate.547

Next, given a un-ambiguous task description, the LLM planner first decides whether the planning step548

is necessary by checking whether the task involves touching only a single object or requiring further549

decomposition (Listing 2). If the task involves multiple objects, it proceeds with planning (explained in the550

next paragraph). If the task involves only one object part, an LLM identifies which object part name it should551

interact with (Listing 3). If the object part name is a single-link rigid object, the LLM is asked for which552

object it should move (the pick object part) and where (the place object part) using the prompt in Listing 4.553

In the planning step, the LLM planner outputs a list of subtasks (Listing 5). Given the recursive nature of554

this planning module, parent tasks also need to keep track of and propagate the current state of the environment555

to child tasks. For instance, the “open the fridge” subtask should be followed with “with the fridge door556

opened, move the eggs from the fridge ...”, such that the recursive call for moving the eggs knows it does not557

need to open the fridge door again.558

After it has inferred the full task tree, the LLM also infers a success condition for every task in the task tree559

(Listing 6) in the form of a code-snippet. Similar to [37], we inform the LLM which state API utilities are560

available for its usage by including import statements at the top of the file and demonstrating how they are561

used in the examples.562

B.3 Prompt Structure563

All prompts start with instructions to explain to the LLM what the task is (e.g. “given an input task description,564

the goal is to output a list of subtasks ..”), followed by a few “shots” of examples, separated by a “#” symbol565

(in text-based prompts) or a multi-line comment (in code-based prompts). Each shot starts with a structured566

text encoding of the scene’s object’s and their parts’ names in the form of a bullet list. In the planning, success567

condition inference, single-or-multiple , pick-and-place, and ambiguous task description LLM tasks, we found568

that it was helpful to encourage the LLM to output its reasoning (either with an explicit “reasoning:” field or569

through in-line code comments). In contrast, we found the object part identifier task to be more effective570

without this explicit reasoning field.571
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B.4 APIs for Success Condition Code Generation572

All functions take as the first argument the simulation state, which contains information on object and part573

names, kinematic structure, contact, all degrees of freedom, and collision meshes.574

Contact. This function takes as input two object (part) names, and returns whether they (or any of their575

parts) are in contact.576

Activation. A pair of functions, check activated and check deactivated, take as input an577

object part name and checks whether the revolute/prismatic joint connecting the object part to its parent578

link are near their maximum or minimum values, respectively. This is useful for checking whether a lid is579

opened/closed or a button is pressed/released.580

Spatial Relations. We provide two spatial relations, check on top of and check inside,581

which takes two object (part) names and returns whether the first object (part) is on top of the second582

object (part) or inside the second object (part), respectively. An object is on top of another if they are in contact583

and the contact normal’s dot product with the up direction is greater than 0.99. An object is inside a container584

if that the intersection of that object’s axis-aligned bounding boxes with the container’s axis-aligned bounding585

boxes is at least 75% of the object’s axis-aligned bounding box’s volume. This axis-aligned bounding box586

information can be parsed from the collision checker of most physics simulators.587

Listing 1: Ambiguous task description handler’s prompts
1 instructions:588
2 given an input task description, the goal is rephrase the task such that it is not ambiguous.589
3 if the task is already specific enough, just return the original task description.590
4 below are some examples:591
5 #592
6 task: stack the blocks on top of each other593
7 scene:594
8 - navy block595
9 - maroon block596

10 - violet block597
11 reasoning: the block stacking order is ambiguous. we can specify which block should be placed598

on which, in which order.599
12 answer: move the maroon block onto the navy block, and the violet block on the maroon block.600
13 #601
14 task: move the lilac block onto the brown block602
15 scene:603
16 - brown block604
17 - lilac block605
18 - yellow block606
19 reasoning: the blocks to interact with are fully specified, so just return the original task607

description.608
20 answer: move the lilac block onto the brown block.609
21 #610
22 task: sort the blocks based on their color’s temperature onto corresponding plates611
23 scene:612
24 - red block613
25 - orange block614
26 - blue block615
27 - purple block616
28 - red plate617
29 - blue plate618
30 reasoning: which blocks and plates belong to the same color temperature group are ambiguous.619

we can specify exactly which blocks should be placed on which plate.620
31 answer: move the red and orange blocks onto the red plate, and the purple and blue blocks onto621

the blue plate.622
32 #623
33 task: open the jar624
34 scene:625
35 - jar626
36 + jar lid627
37 reasoning: opening a jar is a primitive action and is fully specified, so just return the628

original task description.629
38 answer: open the jar.630
39 #631
40 task: close the second drawer632
41 scene:633
42 - drawer634
43 + first drawer635
44 + first drawer handle636
45 + second drawer637
46 + second drawer handle638
47 + third drawer639
48 + third drawer handle640
49 reasoning: closing the second drawer is a primitive action towards a specific drawer, so just641

return the original task description.642
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50 answer: close the second drawer.643
51 #644
52 task: move the ingredients for the omelette onto the kitchen counter645
53 scene:646
54 - kitchen counter647
55 + cupboard648
56 + cupboard door649
57 + cupboard door handle650
58 + salt651
59 + pepper652
60 - fridge653
61 + fridge door654
62 + fridge door handle655
63 + fridge top shelf656
64 + eggs657
65 + butter658
66 + cheese659
67 + milk660
68 + fridge bottom shelf661
69 + mushrooms662
70 + broccoli663
71 + freezer664
72 + lamb shank665
73 + trader joe’s dumplings666
74 + tilapia fillet667
75 reasoning: which ingredients belong to the omelette is ambiguous. we can specify exactly which668

items to take out of the fridge.669
76 answer: move the eggs, butter, cheese, and mushrooms onto the kitchen counter and the salt and670

pepper onto the kitchen counter.671
77 #672
78 task: open the fridge, move the cheese onto the kitchen counter, and then close the fridge.673
79 scene:674
80 - kitchen counter675
81 + cupboard676
82 + cupboard door677
83 + cupboard door handle678
84 + salt679
85 + pepper680
86 - fridge681
87 + fridge door682
88 + fridge door handle683
89 + fridge top shelf684
90 + eggs685
91 + butter686
92 + cheese687
93 + milk688
94 + fridge bottom shelf689
95 + mushrooms690
96 + broccoli691
97 + freezer692
98 + lamb shank693
99 + trader joe’s dumplings694

100 + tilapia fillet695
101 reasoning: which actions to perform and in which order is fully specified, so just return the696

original task description.697
102 answer: open the fridge, move the cheese onto the kitchen counter, and then close the fridge.698

Listing 2: One-or-Multiple module’s prompts
1 instructions:699
2 given an input task description, the goal is to classify whether performing the task will700

involve touching only "one" object or "multiple" objects.701
3 all objects start in a de-activated state (e.g., doors, drawers, cabinets, cupboards, and702

other objects with doors are closed, lights are off, etc.) unless specified otherwise (e.703
g., with the door opened).704

4 after performing the task, objects should be reset to their de-activated state if relevant.705
5 below are some examples:706
6 #707
7 task: move the blue block onto the plate708
8 scene:709
9 - green block710

10 - blue block711
11 - red block712
12 - plate713
13 reasoning: "moving the blue block onto the plate" involves two objects, the blue block and the714

plate. moving the blue block requires touching it. the plate does not have any715
activation state, so does not need to be touched.716

14 answer: one.717
15 #718
16 task: stack the blocks on the plate719
17 scene:720
18 - green block721
19 - plate722
20 - red block723
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21 - blue block724
22 reasoning: "stack the blocks" can be decomposed into moving the red block onto the plate,725

moving the green block onto the red block, and moving the blue block onto the green block726
. performing these steps involve touching multiple blocks.727

23 answer: multiple.728
24 #729
25 task: with the red block on the plate and the orange block on the red block, move the green730

block onto the pink block731
26 scene:732
27 - orange block733
28 - pink block734
29 - plate735
30 - green block736
31 - red block737
32 reasoning: "moving the green block onto the pink block" involves two objects, the green block738

and the pink block. moving the green block requires touching it. the pink block does not739
have any activation state, so does not need to be touched.740

33 answer: one.741
34 #742
35 task: move the lasagna into the microwave743
36 scene:744
37 - microwave745
38 + microwave door746
39 + microwave door handle747
40 - kitchen counter748
41 - fridge749
42 + fridge door750
43 + fridge door handle751
44 - lasagna752
45 reasoning: "moving the pasta into the microwave" involves only two objects, the lasagna and753

the microwave. however, it is not a primitive task because the microwave has a door (754
activation state), but it starts off being closed (de-activated). opening the microwave755
involves touching the microwave.756

46 answer: multiple.757
47 #758
48 task: with the microwave opened, move the pasta into the microwave759
49 scene:760
50 - microwave761
51 + microwave door762
52 + microwave door handle763
53 - kitchen counter764
54 - fridge765
55 + fridge door766
56 + fridge door handle767
57 - pasta768
58 reasoning: "moving the pasta into the microwave" involves two objects, the pasta and the769

microwave. the microwave’s door needs to be opened (activation state), but it is already770
opened. since the task asserts that the microwave is opened, it also does not need to be771
closed afterwards. this means performing the task does not involve touching the microwave772
.773

59 answer: multiple.774
60 #775
61 task: open the microwave776
62 scene:777
63 - fridge778
64 + fridge door779
65 + fridge door handle780
66 - dumplings781
67 - microwave782
68 + microwave door783
69 + microwave door handle784
70 - kitchen counter785
71 reasoning: "opening the microwave" is a primitive task. it involves only one object, the786

microwave.787
72 answer: one.788
73 #789
74 task: with the microwave opened and the sandwich in the microwave, close the microwave790
75 scene:791
76 - fridge792
77 + fridge door793
78 + fridge door handle794
79 - sandwich795
80 - microwave796
81 + microwave door797
82 + microwave door handle798
83 - kitchen counter799
84 reasoning: "closing the microwave" is a primitive task. it involves only one object, the800

microwave.801
85 answer: one.802

Listing 3: Object part identifier’s prompts
1 instructions: given an input task description, the goal is to identify which object part from803

the scene to interact with.804
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2805
3 below are some examples:806
4 #807
5 task: stack the blue block on the plate808
6 scene:809
7 - red block810
8 - blue block811
9 - green block812

10 - plate813
11 answer: blue block.814
12 #815
13 task: with the red block on the plate, stack the green block on the red block816
14 scene:817
15 - red block818
16 - blue block819
17 - green block820
18 - plate821
19 answer: green block.822
20 #823
21 task: turn on the lights824
22 scene:825
23 - light switch826
24 - ceiling light827
25 - wall828
26 answer: light switch.829
27 #830
28 task: open the microwave831
29 scene:832
30 - microwave833
31 + microwave door834
32 + microwave door handle835
33 + microwave start button836
34 + microwave plate837
35 - kitchen counter838
36 + cupboard839
37 + cupboard door840
38 + cupboard door handle841
39 answer: microwave door handle.842
40 #843
41 task: with microwave opened and the lasagna on the kitchen counter, move the lasagna into the844

microwave845
42 scene:846
43 - kitchen counter847
44 + cupboard848
45 + cupboard door849
46 + cupboard door handle850
47 - fridge851
48 + fridge door852
49 + fridge door handle853
50 + fridge top shelf854
51 + fridge bottom shelf855
52 + freezer856
53 - lasagna857
54 - microwave858
55 + microwave door859
56 + microwave door handle860
57 + microwave start button861
58 + microwave plate862
59 answer: lasagna.863
60 #864
61 task: with the fridge door opened, open the cupboard865
62 scene:866
63 - microwave867
64 + microwave door868
65 + microwave door handle869
66 + microwave start button870
67 + microwave plate871
68 - kitchen counter872
69 + cupboard873
70 + cupboard door874
71 + cupboard door handle875
72 - fridge876
73 + fridge door877
74 + fridge door handle878
75 + fridge top shelf879
76 + fridge bottom shelf880
77 + freezer881
78 - lasagna882
79 answer: cupboard door handle.883

Listing 4: Pick & place handler’s prompts
1 instructions: given an input pick and place description, the goal is to identify which object884

to pick and where to place among the objects listed in the scene.885
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2886
3 below are some examples:887
4 #888
5 task: move the blue block on the plate889
6 scene:890
7 - red block891
8 - blue block892
9 - green block893

10 - plate894
11 pick: blue block.895
12 place: plate.896
13 #897
14 task: with the red block on the plate, move the green block to the top of the red block898
15 scene:899
16 - red block900
17 - blue block901
18 - green block902
19 - plate903
20 pick: green block.904
21 place: red block.905
22 #906
23 task: with microwave opened and the lasagna on the kitchen counter, move the lasagna into the907

microwave908
24 scene:909
25 - kitchen counter910
26 + cupboard911
27 + cupboard door912
28 + cupboard door handle913
29 - fridge914
30 + fridge door915
31 + fridge door handle916
32 + fridge top shelf917
33 + fridge bottom shelf918
34 + freezer919
35 - lasagna920
36 - microwave921
37 + microwave door922
38 + microwave door handle923
39 + microwave start button924
40 + microwave plate925
41 pick: lasagna.926
42 place: microwave plate.927

Listing 5: Planning module’s prompts
1 instructions: given a input task description, the goal is to output a list of subtasks, which,928

when performed in sequence would solve the input task. all objects start in a de-929
activated state (e.g., doors, drawers, cabinets, cupboards, and other objects with doors930
are closed, lights are off, etc.) unless specified otherwise (e.g., with the door opened)931
. after performing the task, objects should be reset to their de-activated state if932
possible. below are some examples:933

2 #934
3 task: move the red block onto the plate, the blue block onto the red block, and the green935

block on the blue block936
4 scene:937
5 - red block938
6 - blue block939
7 - green block940
8 - plate941
9 reasoning: no objects have activation states. the blocks can be directly placed onto the942

plates.943
10 answer:944
11 - 1. move the red block onto the plate945
12 - 2. with the red block on the plate, move the blue block onto the red block946
13 - 3. with the red block on the plate and the blue block on the red block, move the green947

block onto the blue block948
14 #949
15 task: move the eggs, salt, and pepper onto the kitchen counter950
16 scene:951
17 - kitchen counter952
18 + cupboard953
19 + cupboard door954
20 + cupboard door handle955
21 + salt956
22 + pepper957
23 - fridge958
24 + fridge door959
25 + fridge door handle960
26 + fridge top shelf961
27 + eggs962
28 + butter963
29 + cheese964
30 + milk965
31 + fridge bottom shelf966
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32 + freezer door967
33 + freezer door handle968
34 reasoning: the fridge and cupboard has doors (activation states) which start off closed (de-969

activated). they need to be opened before objects can be taken out of them. after the970
task is done, they need to be closed (reset).971

35 answer:972
36 - 1. open the fridge973
37 - 2. with the fridge door opened, move the eggs from the fridge onto the kitchen counter974
38 - 3. with the eggs on the kitchen counter, close the fridge975
39 - 4. with the eggs on the kitchen counter, open the cupboard976
40 - 5. with the eggs on the kitchen counter and the cupboard door opened, move the salt onto977

the kitchen counter978
41 - 6. with the eggs and salt on the kitchen counter and the cupboard door opened, move the979

pepper onto the kitchen counter980
42 - 7. with the eggs, salt, and pepper on the kitchen counter, close the cupboard door981
43 #982
44 task: with the fridge door opened, move the eggs, salt, and pepper onto the kitchen counter983
45 scene:984
46 - kitchen counter985
47 + cupboard986
48 + cupboard door987
49 + cupboard door handle988
50 + salt989
51 + pepper990
52 - fridge991
53 + fridge door992
54 + fridge door handle993
55 + fridge top shelf994
56 + eggs995
57 + butter996
58 + cheese997
59 + milk998
60 + fridge bottom shelf999
61 + freezer door1000
62 + freezer door handle1001
63 reasoning: the fridge and cupboard has doors (activation states). the fridge’s door is already1002

opened (activated) and so don’t need to be reset. the cupboard’s door starts off closed1003
(de-activated) but needs to be opened before objects can be taken out of it. after the1004
task is done, the cupboard need to be closed (reset).1005

64 answer:1006
65 - 1. with the fridge door opened, move the eggs from the fridge onto the kitchen counter1007
66 - 2. with the fridge door opened and the eggs on the kitchen counter, open the cupboard1008
67 - 3. with the fridge door opened, the eggs on the kitchen counter, and the cupboard door1009

opened, move the salt onto the kitchen counter1010
68 - 4. with the fridge door opened, the eggs and salt on the kitchen counter, and the cupboard1011

door opened, move the pepper onto the kitchen counter1012
69 - 5. with the fridge door opened, the eggs, salt, and pepper on the kitchen counter, close1013

the cupboard door1014

Listing 6: Success Condition Inference module’s prompts
1 from utils import (1015
2 check_contact,1016
3 check_activated,1017
4 check_deactivated,1018
5 check_inside,1019
6 check_on_top_of,1020
7 EnvState,1021
8 )1022
91023

101024
11 """1025
12 instructions:1026
13 given a input task description, the goal is to output the success condition for1027
14 that task. unless otherwise specified, all objects start in a de-activated state1028
15 (e.g., doors, drawers, cabinets, cupboards, and other containers are closed,1029
16 lights are off, etc.) unless specified otherwise (e.g., with the door opened).1030
17 after performing the task, objects should be reset to original state if possible.1031
18 """1032
191033
201034
21 # robot task: touch the apple1035
22 # scene:1036
23 # - apple1037
24 # + apple body1038
25 # + apple stem1039
26 def touching_apple(init_state: EnvState, final_state: EnvState):1040
27 return check_contact(1041
28 final_state, "robotiq left finger", "apple body"1042
29 ) and check_contact(final_state, "robotiq right finger", "apple body")1043
301044
311045
32 # robot task: release the cup1046
33 # scene:1047
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34 # - cup1048
35 # + cup body1049
36 # + cup handle1050
37 def released_cup(init_state: EnvState, final_state: EnvState):1051
38 finally_touching_cup = check_contact(1052
39 final_state, "robotiq left finger", "cup handle"1053
40 ) and check_contact(final_state, "robotiq right finger", "cup handle")1054
41 finally_released_cup = (not finally_touching_cup) and (1055
42 not final_state.gripper_command1056
43 )1057
44 return finally_released_cup1058
451059
461060
47 # robot task: move the milk carton into the shelf1061
48 # scene:1062
49 # - milk carton1063
50 # - coke can1064
51 # - shelf1065
52 def milk_carton_is_on_shelf(init_state: EnvState, final_state: EnvState):1066
53 return check_on_top_of(final_state, "milk carton", "shelf")1067
541068
551069
56 # robot task: move the milk carton from the shelf1070
57 # scene:1071
58 # - milk carton1072
59 # - coke can1073
60 # - shelf1074
61 def milk_carton_is_not_on_shelf(init_state: EnvState, final_state: EnvState):1075
62 return not check_on_top_of(final_state, "milk carton", "shelf")1076
631077
641078
65 # robot task: open the washing machine1079
66 # scene:1080
67 # - washing machine1081
68 # + washing machine door1082
69 # + washing machine door handle1083
70 # + control panel1084
71 # + on off button1085
72 def washing_machine_opened(init_state: EnvState, final_state: EnvState):1086
73 return check_activated(final_state, "washing machine door")1087
741088
751089
76 # robot task: move the sock into the washing machine1090
77 # scene:1091
78 # - washing machine1092
79 # + washing machine door1093
80 # + washing machine door handle1094
81 # + control panel1095
82 # + on off button1096
83 # - sock1097
84 def sock_inside_washing_machine(init_state: EnvState, final_state: EnvState):1098
85 # the washing machine can be opened (activated state) or closed (de-activated1099
86 # state). since its activation state was not specified, the washing machine starts1100
87 # off closed. therefore, it needs to be closed after the sock is moved inside.1101
88 sock_inside_washing_machine = check_inside(final_state, "sock", "washing machine")1102
89 washing_machine_door_closed = check_deactivated(final_state, "washing machine door")1103
90 return sock_inside_washing_machine and washing_machine_door_closed1104
911105
921106
93 # robot task: with the washing machine opened, move the sock into the washing machine1107
94 # scene:1108
95 # - washing machine1109
96 # + washing machine door1110
97 # + washing machine door handle1111
98 # + control panel1112
99 # + on off button1113

100 # - sock1114
101 def sock_inside_washing_machine_with_washing_machine_opened(1115
102 init_state: EnvState, final_state: EnvState1116
103 ):1117
104 # the washing machine can be opened (activated state) or closed (de-activated1118
105 # state). the washing machine starts off opened, so it does not need to be closed1119
106 # after the sock is moved inside.1120
107 sock_inside_washing_machine = check_inside(final_state, "sock", "washing machine")1121
108 return sock_inside_washing_machine1122

B.5 Example Completions1123

Most modules are designed such that their answers are multi-choice (e.g. single or multiple). We show1124

examples of more interesting open-ended completions for the ambiguous task description handler, planning,1125

and success condition inference modules. The LLM’s outputs are highlighted in blue.1126
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B.5.1 Ambiguous Task Description Handler1127

task: move the block onto the catapult arm, then press the button to shoot the block into the
closest box
scene:
- catapult

+ button
+ catapult arm

- yellow block
- closest box
- furthest box
- middle box
- table
reasoning: which block to move onto the catapult arm is ambiguous. we can specify exactly
which block to move onto the catapult arm.
answer: move the yellow block onto the catapult arm, then press the button to shoot the block
into the closest box.

1128

1129

task: send the amazon package for return
scene:
- mailbox

+ mailbox lid
+ mailbox lid handle

+ mailbox flag
- amazon package
- table
reasoning: which actions to perform and in which order is ambiguous. we can specify exactly
which actions to take.
answer: open the mailbox lid, place the amazon package inside the mailbox, raise the mailbox
flag, and then close the mailbox lid.

1130

1131

B.5.2 Planning1132

task: move the yellow block onto the catapult arm, then press the button to shoot the block
into the closest box
scene:
- catapult

+ button
+ catapult arm

- yellow block
- closest box
- furthest box
- middle box
- table
reasoning: the catapult has a button (activation state) which starts off de-activated. it
needs to be pressed to shoot the block. after the task is done, the button should be reset to
its de-activated state.
answer:
- 1. move the yellow block onto the catapult arm
- 2. with the yellow block on the catapult arm, press the button to shoot the block into the
closest box
- 3. with the yellow block in the closest box, reset the button to its de-activated state

1133

1134

task: open the mailbox lid, place the amazon package inside the mailbox, raise the mailbox
flag, and then close the mailbox lid
scene:
- mailbox

+ mailbox lid
+ mailbox lid handle

+ mailbox flag
- amazon package
- table
reasoning: the mailbox lid has an activation state (closed/de-activated). it needs to be
opened before the package can be placed inside. after the task is done, the lid needs to be
closed (reset).
answer:
- 1. open the mailbox lid
- 2. with the mailbox lid opened, move the amazon package from the table into the mailbox
- 3. with the amazon package in the mailbox, raise the mailbox flag
- 4. with the amazon package in the mailbox and the mailbox flag raised, close the mailbox lid

1135

1136
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B.5.3 Success Condition Inference1137

# robot task: move the yellow block onto the catapult arm
# scene:
# - catapult
# + button
# + catapult arm
# - yellow block
# - closest box
# - furthest box
# - middle box
# - table
def yellow_block_on_catapult_arm(init_state: EnvState, final_state: EnvState):
return check on top of(final_state, "yellow block", "catapult arm")

1138

1139

# robot task: open the mailbox lid
# scene:
# - mailbox
# + mailbox lid
# + mailbox lid handle
# + mailbox flag
# - amazon package
# - table
def mailbox_lid_opened(init_state: EnvState, final_state: EnvState):
return check_activated(final_state, "mailbox lid")

1140

1141

C Training & Data Details.1142

C.1 Data Generation1143

Our data-collection policy uses the 6DoF Exploration Primitives with the Verify & Retry step. For each1144

domain, we run data generation until we get at least 500 successful trajectories per task. Although this can be1145

costly when tasks are long horizon with low success rates (the mailbox domain took 2 days on 256 CPU cores1146

Intel Xeon Gold 6230R CPU @ 2.10GHz), data generation happens only once.1147

C.2 Network Architecture & Hyperparameters1148

We use the same network architecture and hyperparameters for all domains. Our task descriptions are encoded1149

using CLIP B/32’s text encoder [56], and projected into a 512-dimensional vector. For each of the two camera1150

view, we learn a separate Resnet18-based [4] vision encoder, whose features are flattened, concatenated, and1151

projected into a 512-dimensional vector. The Resnet18 architecture is pre-processed by replacing BatchNorm1152

with GroupNorm and replacing the final average pool layer with a spatial softmax pooling [4, 12]. We use an1153

image resolution of 160×240 for each view, processed with a 90% random crop to 144×216. Finally, the1154

proprioception is concatenated with the vision and text encoder as the condition into the diffusion policy.1155

We use the convolution network-based diffusion policy architecture [12]. The final network has 108 million1156

parameters. All networks are optimized end-to-end with the AdamW optimizer, with 5e-5 learning rate and1157

1e-6 weight decay, and a cosine learning rate scheduler. For evaluation, we use an exponential moving average1158

of all networks with a decay rate of 0.75.1159

C.3 Training1160

We train a separate multi-task policy for each domain using the same hyperparameters and network architecture.1161

For domains with only a single task, this amounts to a single-task policy. All networks are trained for 2 days1162

on a single NVIDIA A6000, and the best checkpoint’s performance is reported. We found that performance1163

typically saturates around 1 day into training.1164

D Utilities Implementation1165

For motion planning, we implemented rapidly-exploring random trees (RRT [55]) with grasped-object-aware1166

collision checking, allowing the robot to motion plan with dynamic grasping constraints. The geometry-based1167

grasp and placement sampler is implemented using point clouds created from depth maps, camera matrices,1168

and segmentation maps from the simulator. While our grasp sampler uses only geometry, kinematics, and1169

contact information, including other grasp quality metrics (e.g. stability analysis) can improve its performance.1170

In the placement sampler, we sample candidate place positions at points whose estimated contact normal is1171

aligned against the gravity direction. The revolute and prismatic joint motion primitives are implemented by1172
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Figure 7: Generalization to Novel Objects. The Transport domain requires generalization to diverse and novel object
shapes and colors. Trained to transport 22 toys, our distilled policy generalizes to 8 novel toys (in blue section). All objects
rendered from a fixed camera to show diversity of object size.

checking the grasp pose relative to the joint (e.g. mailbox lid handle grasp relative to the mailbox lid hinge),1173

then performing a circular motion around the joint axis or a linear motion along the joint axis, respectively.1174

E Benchmark1175

Our benchmark is built on top of the Mujoco [3] simulator, using assets from the Google Scanned Objects1176

dataset [59, 60]. We use a table-top manipulation set-up, with a WSG50 gripper and Toyota Research Institute1177

Finray fingers mounted on a UR5e, with a policy control rate of 4Hz. The workspace has two cameras, one1178

front view, which observes the entire workspace and robot, and a wrist-mounted camera, which is used to help1179

with fine-grained manipulation [4]. We end episodes when any object is dropped to the floor. Below, we1180

clarify how we design the tasks for each domain.1181

E.1 Mailbox1182

To be considered successful, the mailbox needs to be closed with the package inside the mailbox, with the1183

mailbox flag raised within 200 seconds (800 control cycles). During data generation and testing, the package’s1184

planar position is uniformly random in a planar bound of dimensions [10cm, 10cm]. At evaluation, the policy1185

has to generalize to unseen package positions. The amazon has is a rigid object with 6DoF. The mailbox is a1186

fixed rigid object, with one degree of freedom for each of its revolute joints, one for the mailbox lid, and one1187

for the mailbox flag.1188

E.2 Transport1189

To be considered successful, the toy needs to be inside the left bin within 100 seconds. At the beginning of1190

each episode, a random toy 3D asset is sampled. During data generation and testing, the toy’s position is1191

uniformly random inside the right bin, and orientation uniformly random along all three euler axes. On top of1192

novel randomized poses, the policy also has to generalize to unseen object instances with novel geometry. We1193

use 22 toys for data generation, and 8 for testing (Fig. 7). The toy is a rigid object with 6DoF, while the bins1194

are fixed rigid objects with no DoF. The bin asset names corresponds with their spatial location (e.g. the left1195

bin is called “left bin” when the scene is presented to the LLM).1196

E.3 Drawer1197

This is a multi-task domain with 12 tasks, where each task involves moving one of the four objects (vitamin1198

bottle, pencil case, crayon box, horse) into one of the three drawers (top, middle, bottom). The task description1199

follows the template “move the 〈object〉 into the 〈 drawer〉”. To be considered successful, the specified object1200

needs to be inside the specified drawer within 120 seconds. During data generation and testing, each of1201

the four object’s position is uniformly random within a planar bound of dimensions [10cm,10cm], centered1202

around 4 evenly spaced locations along the table. At test time, the policy has to generalize to unseen object1203

positions in the same distribution as its data generation.1204

All four objects are rigid objects with 6DoF. The drawer is a fixed articulated object with 3 DoF, one for1205

each of the drawers.1206
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Approach Crayon Horse Pencilcase Vitamin Avg.
B M T B M T B M T B M T

LLM-as-Policy (2D) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(+) 6DoF Robot Utils 5.5 0.5 0.0 2.0 0.0 0.0 5.0 0.0 0.0 2.0 0.0 0.0 1.3
(+) Verify & Retry 48.5 39.5 33.0 45.5 32.0 24.5 46.0 27.0 20.0 27.0 18.5 20.5 31.8

Distill No Retry 19.0 19.0 17.5 13.0 34.0 22.5 27.5 41.0 39.5 13.5 12.5 13.5 22.7
Distill (Ours) 57.5 63.0 50.0 62.5 59.0 51.5 59.5 72.5 61.5 46.0 39.5 46.5 55.8

Table 6: Drawer Quantitative Results (Success Rate %) where B, M, T means bottom, middle, and top
drawers. Averaged over 200 episodes.

Approach Balance Catapult Transport Mailbox
Near Mid Far Train Test

LLM-as-Policy (2D) 28.0 100.0 0.0 0.0 – 21.5 0.0
(+) 6DoF Robot Utils 5.5 7.0 1.0 0.0 – 35.0 0.0
(+) Verify & Retry 45.0 16.3 3.3 2.2 – 82.0 3.0

Distill No Retry 67.5 2.5 56.5 56.5 31.0 32.5 0.0
Distill (Ours) 79.0 78.0 52.0 45.0 74.0 80.0 62.0

Table 7: Full Quantitative Results (Success Rate %). Averaged over 200 episodes.

E.4 Catapult1207

This is a multi-task domain with 3 tasks, one for each of the three bins. The task description follows the1208

template “move the block onto the catapult arm, then press the button to shoot the block into the 〈bin〉” where1209

〈bin〉 is either closest, middle, or furthest bin. The bin asset names corresponds with their spatial location (e.g.1210

the furthest bin is called “furthest bin” when the scene is presented to the LLM).1211

In order to be considered successful, the block needs to be inside the specified bin within 60 seconds. This1212

is a short amount of time, which prevents policies from retrying after failure. The block is a rigid object with1213

6DoF. The bins are fixed rigid objects with no degrees of freedom. The catapult has two degrees of freedom,1214

one revolute joint for the catapult arm, and one prismatic joint for the button. This task is designed to study1215

tool-use, and does not have any pose randomization. Thus, different seeds affect only the policy’s pseudo1216

random samplers or the diffusion process.1217

We implement the catapult with a special callback function which checks whether the button sliding joint is1218

near its max value. If it is, then the constraint that holds the catapult arm down is disabled, releasing the spring1219

loaded catapult arm hinge joint.1220

E.5 Bus Balance1221

In order to be considered successful, the bus needs to be fully balanced on top of the block within 100 seconds.1222

On top of testing for intuitive physics, this high precision requirement of this task was also used to test the1223

policy’s precision and ability to recover from failure, which is why we allow a generous time budget. The task1224

description is “balance the bus on the block”.1225

The bus is a rigid object with 6DoF, dropped from a fixed location above the table with uniformly random1226

orientation. This means when the bus drops, it lands in different positions and orientations. The block is fixed1227

with no degrees of freedom.1228

F Full Results1229

We include the full results for all tasks in the drawer domain in Table 6, and all other domains in Table 7. We1230

omit data generation baseline numbers on the train set in the transport domain, since they are non-learning1231

approaches. All approaches are evaluated on 200 different seeds, which controls pose randomization, which1232

asset is sampled, the pseudo-random robotic utility samplers, and the pseudo-random diffusion process. We1233

make one exception in the catapult domain, where due to the low success rates of getting the block into1234

the middle and far bin, we run evaluation until there are 500 successful trajectories per task, then report the1235

average success rate. Since the time limit for the catapult is short, the data-collection policy will not have1236

enough time to retry, leading to identical numbers with the baseline data-collection policy without verify &1237

retry.1238

In the drawer domain, we observe that the task is more difficult for:1239
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Figure 8: Domain Randomization. To facilitate Sim2Real transfer, we train our policy on lighting, texture, and camera
pose randomized scenes.

1. Larger objects: The most challenging objects are the vitamin bottle and the horse toy, both of which1240

are too large to fit the drawer if they are in an upright orientation. This means to be effective at this task,1241

the robot should perform sideway grasps on these objects, such that downstream placement is easier. In1242

contrast, the small crayon box is has the highest success rates amongst the data-collection policies.1243

2. Top drawer: We observe interacting with this drawer often brings the robot close to its kinematic reach1244

range. This means slight imprecision in the policy’s predicted actions or small shifts in the grasped1245

object (which is unaccounted for during motion planning) in execution could lead to failure. For instance,1246

while moving the objects inside the top drawer, the grasped object could collide with the drawer, causing1247

the grasped object to drop or the drawer to close.1248

3. Planar Action Primitives: A top-down grasp on the drawer handle will typically be in collision with1249

the drawer’s body. Thus, in LLM-as-Policy (2D)’s first action to open the drawer, its call to the motion1250

planner will fail due to an invalid goal configuration.1251

G Real World Evaluation1252

Figure 9: Real World Objects.

We train a separate policy for real-world transfer on1253

domain randomized scenes (Fig. 8). We evaluate our1254

policy on a real UR5e robot with a WSG50 gripper and1255

Toyota Research Institute Finray fingers, matching our1256

simulation set-up. We use five unseen objects (Fig. 9),1257

ranging in shape, size, and visual appearance. Each1258

object is evaluated on 10 episodes, with the object1259

placed at a random pose on the right bin. We observe1260

70%, 80%, 60%, 80%, and 90% for the pear, monster, rubiks cube, fetch controller, and mustard bottle1261

respectively, giving a mean success rate of 76%.1262
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