
Under review as a conference paper at ICLR 2024

ZERO-SHOT HUMAN-OBJECT INTERACTION DETEC-
TION VIA CONDITIONAL MULTI-MODAL PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Human Object Interaction (HOI) detection is the task of locating and inferring the
relationships between all possible human-object combinations. One of the most
challenging issues is the extensive labor required for the annotation of combina-
torial space of possible HOI interactions. Most existing HOI detectors rely on
full annotations of all predefined interactions, resulting in a lack of generalisa-
tion for unseen combinations and actions. Inspired by the powerful generalisation
ability of the large Vision-Language Models (VLM), we propose a Prompt-based
zero-shot human-object Interaction Detection framework, namely PID, which can
improve alignment between the vision and language representations using con-
ditional multi-modal prompts. Specifically, different from traditional prompt-
learning methods, we propose learning decoupled visual and language prompts for
spatial-aware visual feature extraction and interaction classification, respectively.
Furthermore, we introduce constraints for multi-modal prompts to alleviate the
problem of overfitting to seen concepts in prompt learning process, thus improv-
ing the suitability for zero-shot settings. Extensive experiments demonstrate the
prominence of our detector with conditional multi-modal prompts, outperforming
previous state-of-the-art on unseen classes of various zero-shot settings.

1 INTRODUCTION

Human-object interaction (HOI) detection has been introduced by Gupta & Malik (2015) and plays
an important role in understanding high-level human-centric scenes. Given an image, HOI detection
aims to localize human and object pairs and recognize their interactions, i.e. a set of <human,
object, action> triplets. Traditionally, human-object interaction detectors can be categorized as one-
or two-stage. Two-stage methods (Zhou & Chi, 2019; Li et al., 2019; Liu et al., 2020a;b; Li et al.,
2020b; Zhang et al., 2021b; 2022a;b; Liu et al., 2022; Wu et al., 2022b) localize the humans and
objects individually using off-the-shelf detectors (e.g., DETR (Carion et al., 2020)), then the region
features from the localized area are used to predict interaction class. One-stage methods leverage
multi-stream networks (Liao et al., 2020; Wang et al., 2020) or encoder-decoder architectures (Zou
et al., 2021; Chen et al., 2021; Kim et al., 2021; Tamura et al., 2021; Zhong et al., 2022; Liao et al.,
2022; Ning et al., 2023) to predict HOI triplets from a global image context in an end-to-end manner.

Despite recent advances, most previous works lack generalisability to unseen HOIs. Although some
zero-shot HOI detectors (Hou et al., 2020; 2021b; Liao et al., 2022; Wu et al., 2022a; Wang et al.,
2022b) have been proposed in recent years, some of them (Hou et al., 2020; 2021b) fail to incor-
porate language priors and can’t generalise to unseen verbs. Besides, as shown in Figure 1a, many
previous zero-shot detectors perform significantly worse on unseen classes than on seen classes,
which we call ”performance degradation”. For example, as shown in Figure 1a, the mAP of GEN-
VLKT (Liao et al., 2022), EoID (Wu et al., 2022a) and HOICLIP (Ning et al., 2023) on unseen
classes is lower than that on seen classes by 9.27%, 8.02% and 7.89%, respectively. Given the
combinatorial nature of HOIs, constructing a HOI dataset with all possible HOIs is prohibitively
expensive. This motivates us to investigate a HOI detector that can be applied to a wide range of
previously unseen interactions with powerful generalisability. Zero-shot HOI detection has the fol-
lowing two challenges: 1) how to extract interactiveness-aware features for human-object pairs in
order to determine whether they interact with each other when confronted with unseen HOI con-
cepts, and 2) how to recognize the unseen interaction types accurately.
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(a) Performance comparisons on Seen and Un-
seen HOI classes under the unseen verb setting
of HICO-DET dataset. Previous detectors perform
significantly worse on unseen classes than on seen
classes, while our model alleviates it and performs
well on both seen and unseen classes.

(b) Left: Unseen concept sit-on-settee. Spatial
cues help recognize interactiveness of unseen HOI
concepts; Right: t-SNE visualization of CLIP
embeddings of verbs. Text helps recognizing in-
teraction categories of unseen verbs, e.g., hunt.

Figure 1: Zero-shot HOI detection on the unseen verb setting. Conventional detectors’ perfor-
mance has a clear gap between seen classes and unseen classes. For example, the mAP of HOICLIP
on unseen classes is 7.89% lower, than on seen classes. In contrast, our model uses visual spatial
cues during feature extraction to help judge interactiveness and proposes sharing knowledge across
verbs.

To address the aforementioned issues, we propose PID, which divides HOI detection into two sub-
tasks: interactiveness-sensitive spatial-aware visual feature extraction and generalisable interaction
classification. The design aids in reducing their dependence on one another and error propagation
between them. We propose decoupled vision and language prompts for the above two subtasks to
prevent mutual inhibition, respectively. For the first subtask, we design vision prompts to guide the
visual features to be verb-agnostic, so that it can generalise its ability to extract interactiveness-aware
features to previously unseen classes as shown on the left of Figure 1b. Specifically, inspired by the
generalisation capability on classification tasks of VLMs, e.g., Radford et al. (2021), we employ the
attention mechanism (Vaswani et al., 2017) to integrate the knowledge in vision prompts into the
image encoder from the early spatial-aware and fine-grained feature maps, where valuable informa-
tion is lied for HOI detection task. For the subtask of interaction classification, we propose language
prompts that are unaware of spatial information. The language prompts provide a unified context
for both seen and unseen HOIs, allowing the model to leverage knowledge learnt from seen classes
to classify HOIs that include unseen verbs as shown on the right of Figure 1b. The multi-modal
prompts serve as a hub to build a connection between seen and unseen categories.

Furthermore, the proposed multi-modal prompts need to condition on human-designed prior knowl-
edge to alleviate the problem of overfitting to the seen categories. To further avoid the mutual depen-
dence, we propose an approach where the prompts for the two modalities are independent of each
other as illustrated in Figure 2. Each prompt is tailored to leverage distinct types of prior knowledge,
ensuring a more diversified and robust learning process. For the vision prompts, we propose input-
conditioned instance-level prior knowledge to help treating the potentially interactive instances be-
longing to seen and unseen categories equally. The instance-level prior knowledge contains spatial-
aware and interaction-invarient information of the given image. For the language prompts, to make
use of the prior of the text space of the large Vision-Language Models, we use human-designed
prompts as a regularizer to keep the learned text prompts from diverging too much.This constraint
preserves the origin semantic space learnt by VLM, and thus may be better for potential real-world
scenario applications where arbitrary novel actions may occur.

We evaluate our detector with conditional multi-modal prompts under various zero-shot settings.
Experiments show that our model not only performs well on both seen and unseen classes, but also
narrows the performance gap between seen and unseen classes, as shown in Figure 1a.

Our contributions are threefold: (1) To the best of our knowledge, we first propose multi-modal
prompts in zero-shot human-object interaction detection to improve visual-language feature align-
ment and zero-shot knowledge transfer. (2) In order to alleviate the problem of overfitting to seen
concepts and further improve the model’s generalisation ability, we further propose separate con-
ditions for both modalities. (3) Our model sets a new state-of-the-art for HOI detection on unseen
classes in various zero-shot settings, significantly outperforming all previous methods.
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Figure 2: The overall framework of PID. The proposed method splits zero-shot HOI detection
into two subtasks: spatial-aware visual feature extraction and interaction classification. We pro-
pose decoupled visual and text prompts for each subtask to eliminate the dependence between them
and breaks error-propagation in-between. The conditional vision prompts (PV ) are used to inject
spatial-aware and verb-agnostic knowledge into the image encoder and are explicitly constrained
by instance-level visual prior (CV ). The conditional language prompts (PL) are constraint by the
human-designed prompts (CL) through a regularization loss. (Best viewed in color.)

2 RELATED WORK

2.1 HUMAN-OBJECT INTERACTION DETECTION

With the development of large-scale datasets (Gupta & Malik, 2015; Chao et al., 2018; Kuznetsova
et al., 2020; Liao et al., 2020) and deep learning-based methods (Li et al., 2020a; Ulutan et al., 2020;
Chen et al., 2021), HOI learning has been rapidly progressing in two main streams: one- and two-
stage approaches. One-stage HOI detectors usually formulate HOI detection task as a set prediction
problem originating from DETR (Carion et al., 2020) and perform object detection and interaction
prediction in a parallel (Chen et al., 2021; Kim et al., 2021; Tamura et al., 2021) or sequentially (Liao
et al., 2022). In contrast, two-stage methods (Liu et al., 2020a; Li et al., 2020b; Zhang et al., 2021b;
2022a;b) usually utilize pre-trained detectors (Ren et al., 2015; He et al., 2017; Carion et al., 2020)
to detect human and object proposals and exhaustively enumerate all possible human-object pairs
in the first stage. Then they design an independent module to predict the multi-label interactions of
each human-object pair in the second stage. Despite their improved performance, most of previous
models rely heavily on full annotations with predefined HOI categories and thus are costly to scale
further. Moreover, they lack the generalisation capatility to deal with unseen HOI categories. In
contrast to them, our work target on zero-shot HOI detection with the help of an off-the-shelf object
detector and Vision-Language Model in a two-stage manner.

2.2 ZERO-SHOT HOI DETECTION

Zero-shot HOI Detection aims at detecting interactions unseen in the training set, which is essential
for developing practical HOI detection systems that can function effectively in real-world scenar-
ios. Liu et al. (2020b) converts HOI categories and their components into a graph and distributes
knowledge among its nodes. Hou et al. (2020) recombines object representations and human repre-
sentations to compose unseen HOI samples. Hou et al. (2021b) proposes to generate fake object rep-
resentations for human-object recombination. Hou et al. (2021a) exploits additional object datasets
for HOI detection to discover novel HOI categories. However, lacking of the help of semantics, the
above methods aren’t capable of detecting HOIs including unseen verbs.

To incorporate language priors in zero-shot HOI detection, Liao et al. (2022); Wu et al. (2022a);
Ning et al. (2023) propose to distill knowledge from CLIP (Radford et al., 2021) to achieve zero-shot
HOI detection. The nature generalisability of language aids models in recognizing HOIs, even those
with unseen verbs. Despite the progressing generalisability, previous methods still lack of proper
regularization and thus tend to overfit to seen categories. For example, their performance on unseen
classes may be around 10% lower than that on seen classes under the evaluation metric of mAP.
Different from Liao et al. (2022); Wu et al. (2022a), our model solves zero-shot HOI detection in a
two-stage manner and achieves knowledge sharing between seen and unseen HOIs via conditional
multi-modal prompts, resulting in better generalisability to unseen HOI concepts.

3



Under review as a conference paper at ICLR 2024

2.3 PROMPT LEARNING

Recently, the development of large vision-language model (VLM), e.g., CLIP (Radford et al., 2021),
emerges and finds its applications in few-shot or zero-shot learning tasks (Zhang et al., 2021c; Gao
et al., 2021). Inspired by prompt learning in language tasks, CoOp (Zhou et al., 2022b) first pro-
poses to use context tokens as language prompts in the image classification task. Co-CoOp (Zhou
et al., 2022a) proposes to explicitly condition language prompts on image instances. Recently, other
approaches for adapting V-L models through prompting have been proposed. MaPLe (khattak et al.,
2023) proposes a coupling function to explicitly condition vision prompts on their language coun-
terparts, to provide more flexibility to align the vision-language representations. However, existing
methods primarily focus on prompt learning for image classification, which may not be suitable for
HOI detection. Liao et al. (2022) and Wang et al. (2022b) first propose applying static template
prompts or learnable language prompts in the HOI detection task, respectively. However, they ig-
nore the fact that HOI detection involves considering regional spatial information, making it distinct
from image classification. Therefore, how to design tailored spatial-aware prompts specifically de-
signed for the HOI detection task is critical. Note that the human-object localisation and interaction
classification are distinct subtasks, we propose to employ decoupled multi-modal prompts for the
two subtasks to reduce error propagation between them. Lastly, we propose two different types of
prior knowledge for the vision and language prompts to make it spatial sensitive and further enhance
the model’s generalisability.

3 METHOD

3.1 OVERVIEW

HOI Detection aims to detect all interactive human-object pairs and predict the interactive relation-
ship for them. Formally, we define the interaction as a quadruple (bh, bo, a, o): bh, bo represent
the bounding box of humans and objects and a ∈ A, o ∈ O represent the human action and ob-
ject category, where A = {1, 2, ..., A} and O = {1, 2, ..., O} denote the human action and object
set, respectively. Then given an image I, our goal is to predict all quadruples that exist in I. To
avoid struggling with multi-task learning (Zhang et al., 2021a) and missing potentially interactive
human-object pairs, we divide the HOI detection task into two stages: human-object detection and
interaction classification.

The overall architecture of our PID is illustrated in Figure 2. In the first stage, we use an off-the-
shelf object detector D, e.g., DETR (Carion et al., 2020), and apply appropriate filtering strategies
to extract all instances and exhaustively enumerate the detected instances to compose human-object
pairs. Then in the second stage, we first encode the image I using a pretrained image encoder EI,
i.e., fI = EI(I) ∈ RH×W×C . We define the union region bu as the smallest rectangular region that
contains bh, bo. Then following the multi-branch architecture of previous HOI detection works (Hou
et al., 2020; 2021b), we utilize bh, bo, and bu to extract features for the human branch, the object
branch, and the interaction branch from the feature map fI via ROI-align (He et al., 2017), respec-
tively.

To propagate knowledge from seen HOI categories to unseen HOI catetories and eliminate the de-
pendence between the spatial-aware feature extraction and interaction classification tasks, as shown
in Figure 2, we propose decoupled vision prompts PV and language prompts PL for the image en-
coder EI and text encoder ET, respectively. We incorporate PV into the image encoder to adjust
its capabilities from individual instance understanding to pair-wise relation understanding. We feed
forward PL to get the weights of interaction classifier WL, which we can then use to calculate the
interaction score for the given human-object pair.

Furthermore, we introduce constraints for multi-modal prompts to alleviate the overfitting problem
in prompt learning process, as shown in Figure 2. Specifically, we propose a lightweight neural
network to generate input-conditioned vision prompts PV , where instance-level visual prior CV is
used as constraint. The conditional vision prompts are verb-agnostic and can alert the image encoder
EI to all the potential interactive instances in the image. For the linguistic side, to better incorporate
language priors from the pretrained vision-language model, we use human-designed prompts CL to
keep PL from diverging too much or overfitting to the seen categories through a regularization loss.
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3.2 MULTI-MODAL PROMPTS

To efficiently fine-tune the multi-modal encoders for HOI detection task, we introduce multi-modal
prompts to learn shared knowledge of seen and unseen classes while the entire pretrained parame-
ters are kept frozen, as shown in Figure 2. We utilize vision prompts PV for extracting spatial-aware
visual features and language prompts PL for interaction classification. To prevent error-propagation
between visual representation and semantic interaction classification for the zero-shot HOI Detec-
tion task, we separate the visual and language prompts while maintaining alignment between the
modalities’ representations and allowing knowledge sharing between seen and unseen HOI classes.

Language Prompts: Language is the key to generalise for unseen HOI categories, especially for
the unseen verbs setting, thanks to its natural generalisability. For the verb classes, we first convert
them to the text descriptions through human-designed prompts. For example, given a verb of class
a, we format it as ”A photo of a person [Verb-ing] an object.” We then tokenize the sentence for
all verb classes a ∈ A to obtain Ca

L. We denote UL = [U1
L, U

2
L, ..., U

S
L ] as the learnable context

words, where S denotes the number of learnable prompts. The context words UL are shared among
all classes and thus serve as a bridge between semantics of seen and unseen categories. The final
representation of class a can be obtained by concatenation of learnable context words UL and the
text description’s representation Ca

L:

P a
L = concat(UL, C

a
L), (1)

where P a
L is the representation of class a with learnable context words. Then the prototype of the

class a can be obtained by the text encoder ET:

W a
L = ET(P

a
L), a ∈ A (2)

The prototypes should be the representative features belonging to the corresponding category. Given
a sample, the similarity with a prototype could represent how likely it belongs to the category. After
performing l2-normalization on all prototypes W a

L, the interaction classifier WL is then constructed
from prototypes of all target classes’ embeddings:

WL = concat(W 1
L,W

2
L, ...,W

A
L ) (3)

Vision Prompts: Simply introducing the learnable language prompts is not enough for the HOI
detection task since the large vision-language model is originally trained by a image-text matching
problem. As a result, we introduce vision prompts for the image encoder to make it be aware of
the spatial-aware relation recognition task and further extend its ability to determine whether the
human-object pair in a given region is interactive. We use decoupled vision prompts to separate
the spatial-aware visual feature extraction task from the interaction classification task and break
error-propagation in the process. The vision prompts help adjusting visual representations to be
interactiveness-aware and thus benefit recognizing unseen HOIs.

Specifically, we introduce vision prompts PV = [P 1
V , P

2
V , ..., P

M
V ] that are independent of lan-

guage prompts, where M denotes the number of learnable vision prompts, which can grasp valuable
verb-agnostic knowledge for generalising to unseen human-object triplets. The vision prompts PV

are composed of M learnable vectors with the same dimension. Because determining whether a
human-object pair in a given union region is interactive has many similarities between seen and un-
seen HOI classes, we propose vision prompts to store such knowledge for zero-shot HOI detection.
Furthermore, the vision prompts can implicitly learn spatial information to assist the pretrained im-
age encoder EI in transitioning from instance-level recognition to pairwise relation detection task.
However, fusing PV into the pretrained image encoder EI is not trivial since EI is simply pretrained
by image-text matching task with an entire image as input. To deal with it, we propose a lightweight
adapter LA that can help to fuse knowledge learned by prompts to EI via the cross-attention mecha-
nism. LA can incorporate verb-agnostic prior knowledge into low-level feature maps of EI in order
to capture the local spatial structures required for pair-wise relationship detection. Note that the
vision prompts are interaction-agnostic and thus are naturally suitable for zero-shot generalisation.
We denote Xi ∈ Rhw×d as the feature map of i-th block of EI. To keep the model efficient and
avoid redundant information injection, we first down-project the feature dimension of Xi to d′ (d′
<< d) through a simple MLP:

X ′
i = MLP(Xi), (4)
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where X ′
i shares the same feature dimension with PV . Then we inject context knowledge PV into

Xi through LA:
Xi = Xi +MLP(LA(X ′

i, PV , PV )), (5)
where LA is implemented with an attention mechanism and X ′

i is treated as query and PV is treated
as key and value, as shown in Figure 3.

3.3 CONDITIONAL MULTI-MODAL PROMPTS

To alleviate the problem of overfitting to seen concepts in prompt learning process and further im-
prove the model’s generalisability, we propose two different types of prior knowledge for vision and
language prompts, respectively. The independent vision and language prior knowledge can further
help to eliminate the dependence between the two modalities. We use different methods to force
constraints for vision and language prompts. For the vision prompts, we use input-conditioned prior
knowledge as the direct constraint, whereas for the language prompts, we apply the constraint at
the feature space through a regularization loss to better exploit the text space of the pretrained text
encoder.

Figure 3: Injection of conditional vision
prompts. To obtain spatial-aware visual
features with conditional vision prompts,
we inject the conditional vision prompts
PV into the original feature map based on
the attention mechanism.

Conditional Language Prompts: To further utilize the
feature space learnt by the text encoder of VLMs and
improve generalisation for unseen classess, we propose
to use human-designed prompts to constrain the fea-
tures space of the learnable language prompts. The
constraint ensures that prototypes of seen and unseen
classes leave a reasonable separation margin among
each other and do not diverge too far apart. We apply
a regularization loss to reduce the discrepancy between
the feature representation of PL and that of the human-
designed language prompts CL. Specifically, we en-
courage the soft prompt P i

L to be encoded close to its
corresponding human-designed prompt Ci

L through a
contrastive loss. The Conditional Language Prompts
Loss (Lclp) can be formulated as:

Lclp = −
A∑
i=1

log
exp(cos(W i

L,W
i
hum))∑A

j=1 exp(cos(W
i
L,W

j
hum))

, (6)

where Whum = ET(CL) is the encoded features of
human-designed prompts CL and WL is the feature rep-
resentation of PL.

Conditional Vision Prompts: To encourage the model
to treat the seen and potentially unseen interactive in-
stances equally, we utilize instance-level information as
input-conditioned prior knowledge for vision prompts.
We propose a projection network Proj to explicitly con-
dition PV on the human-designed prior knowledge, including (1) bounding boxes b, which captures
the spatial information of detected objects. The spatial configuration might provide cues for under-
standing interactiveness and is good at transferring as it is instance-agnostic. (2) confidence scores
s, which reflect the quality and uncertainty of the candidate instances. (3) semantic embeddings e of
the detected instances, which is obtained by CLIP language encoder and enables PV to leverage the
category priors to capture which objects can be interacted with. These three types of prior knowledge
reflect the detected instances’ spatial configurations, quality, and semantic information, respectively.
By incorporating these prior into the vision encoder, we can effectively guide it to extract features
that are more attuned to interactiveness. We obtain the three components used in instance-level vi-
sual prior from the results of instance detection, which avoids groundtruth leakage and enables us
to access and utilize these information during inference. Note that the semantic embeddings used
here are first projected to the feature space of vision prompts and thus can be disentangled from the
language prompts. Then the conditioned vision prompts PV can be formulated as the following:

PV = Proj(concat(b, s, e)) (7)
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Table 1: Performance comparison for zero-shot HOI detection. RF indicates rare first, NF indi-
cates non-rare first. UC and UV denote unseen composition and unseen verb settings, respectively.
PD denotes performance degradation. Our model not only outperforms previous methods on unseen
classes by a wide margin, but it also exhibits the least performance degradation and thus exhibits
greater generalisability across all three zero-shot settings.

Method Type Unseen↑ Seen↑ Full↑ PD↓
ConsNet (Liu et al., 2020b) UC 16.99 20.51 19.81 3.52

HOICLIP (Ning et al., 2023) UC 23.15 31.65 29.93 8.50
PID (Ours) UC 29.60 32.39 31.84 2.79

VCL Hou et al. (2020) RF-UC 10.06 24.28 21.43 14.22
ATL Hou et al. (2021a) RF-UC 9.18 24.67 21.57 15.49
FCL Hou et al. (2021b) RF-UC 13.16 24.23 22.01 11.07

GEN-VLKT Liao et al. (2022) RF-UC 21.36 32.91 30.56 11.55
EoID Wu et al. (2022a) RF-UC 22.04 31.39 29.52 9.35

HOICLIP (Ning et al., 2023) RF-UC 25.53 34.85 32.99 9.32
PID (Ours) RF-UC 28.82 33.35 32.45 4.53

VCL Hou et al. (2020) NF-UC 16.22 18.52 18.06 2.30
ATL Hou et al. (2021a) NF-UC 18.25 18.78 18.67 0.53
FCL Hou et al. (2021b) NF-UC 18.66 19.55 19.37 0.89

GEN-VLKT Liao et al. (2022) NF-UC 25.05 23.38 23.71 -1.67
EoID Wu et al. (2022a) NF-UC 26.77 26.66 26.69 -0.11

HOICLIP (Ning et al., 2023) NF-UC 26.39 28.10 27.75 1.71
PID (Ours) NF-UC 29.82 28.80 29.00 -1.02

GEN-VLKT Liao et al. (2022) UV 20.96 30.23 28.74 9.27
EoID Wu et al. (2022a) UV 22.71 30.73 29.61 8.02

HOICLIP (Ning et al., 2023) UV 24.30 32.19 31.09 7.89
PID (Ours) UV 26.27 32.60 31.71 6.33

The Proj network is implemented by a simple three-layer perceptron. The conditioned vision
prompts PV explicitly provides more valuable prior knowledge for the image encoder to better
transfer to unseen classes.

3.4 TRAINING PID

Based on the spatial-aware feature map fI and the extracted bounding boxes bh, bo, and bu, we first
apply ROI-Pooling to extract features for different branches:

fhum, fobj , finter = ROI(fI , bh),ROI(fI , bo),ROI(fI , bu) (8)

The interaction classifier WL is composed of prototypes of all target classes as described in Sec-
tion 3.2. We then calculate the action prediction sho for the corresponding human-object pair as
following:

sho = (λhumfhum + λobjfobj + λinterfinter)W
T
L (9)

We incorporate the object confidence scores into the final scores of each human-object pair. We
denote σ as the sigmoid function. The final score sfinalho is computed as:

sfinalho = σ(sho) · (sh)λ · (so)λ, (10)

where sh and so are confidence scores given by object detector D, and λ > 1 is a constant that
is used to suppress overconfident objects during inference. The whole model is trained on focal
loss Lin et al. (2017) Lcls for action classification and language regularization loss Lclp at the same
time. We use λclp as the hyper-parameter weight. The whole loss is formulated as:

L = Lcls + λclpLclp (11)

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Dataset: HICO-DET (Chao et al., 2018) is a dataset for detecting human-object interactions in
images and has 47,776 images (38,118 in train set and 9,658 in test set) and is annotated with
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<human, verb, object> triplets. 600 HOI categories in HICO-DET are composed of 80 object
classes and 117 verb classes, including no interaction labels.

Zero-shot Setups: To validate our model’s zero-shot performance, we evaluate our model on four
zero-shot settings on HICO-DET: 1) Unseen Composition (UC), where the training data contains
all categories of object and verb but misses some HOI triplet categories. 2) Rare First Unseen
Combination (RF-UC) (Hou et al., 2021b), which prioritizes rare HOI categories when selecting
held-out HOI categories. 3) Non-rare First Unseen Combination (NF-UC) (Hou et al., 2021b),
which prioritizes non-rare HOI categories instead. Therefore, the training set of the NF-UC setting
contains much fewer samples and thus is more challenging. 4) Unseen Verb (UV) (Liao et al., 2022),
which is set to discover novel categories of actions and reflects a unique characteristic of zero-shot
HOI detection.

Evaluation Metric: Following the common evaluation protocol, we use the mean average precision
(mAP) to examine the model performance. A detected human-object pair is considered as a true
positive if 1) both the predicted human and object boxes have the Interaction-over-Union (IOU)
ratio greater than 0.5 with regards to the ground-truth boxes. 2) the predicted HOI categories are
accurate.

4.2 IMPLEMENTATION DETAILS

We follow the standard protocol of existing zero-shot two-stage HOI detectors (Bansal et al., 2020;
Hou et al., 2020) to fine-tune DETR on all the instance-level annotations of the entire HICO-DET
dataset prior to training PID. We leverage ViT-B/16 backbone of CLIP in all experiments. The
weight λclp for the regularization loss is set to 2.0 during training. We use AdamW (Loshchilov &
Hutter, 2017) as the optimizer with an initial learning rate of 1e-3 and train PID for only 15 epochs.
Training is conducted with a batch size of 32 on 2 NVIDIA A100 devices.

4.3 EFFECTIVENESS FOR ZERO-SHOT HOI DETECTION

We evaluate the performance of our model and compare it with existing zero-shot HOI detectors
under UC, RF-UC, NF-UC, and UV settings of HICO-DET (Chao et al., 2018) dataset.

Table 2: Ablation on network modules on the Unseen
Verb setting. Cond is short for conditional.

Setting Unseen Seen Full
Base 15.12 14.85 14.89

Base+PL 19.83 25.99 25.13
Base+Cond PL 20.56 26.03 25.27

Base+PV 18.83 32.78 30.83
Base+Cond PV 19.40 32.93 31.03
Base+PL+PV 23.55 32.71 31.43

Base+Cond PV +Cond PL 26.27 32.60 31.71

As shown in Table 1, our model
has demonstrated exceptional perfor-
mance by outperforming all previ-
ous detectors by a significant margin
on the unseen classes. Furthermore,
our model performs comparably to
the previous detectors on the seen
classes, resulting in an overall out-
standing performance. To be specific,
compared to the previous state-of-
the-art methods, our model achieves
a relative mAP gain of 27.86%, 12.89%, 19.04% and 8.11% on unseen classes on four zero-shot
settings, respectively. The performance gap demonstrates our model’s ability to excel in both spa-
tial relation extraction for visual features and prototype learning for interaction classification. No-
tably, since unseen classes under the NF-UC setting are sometimes more common and semantically
straightforward, both our model and previous models (Liao et al., 2022; Wu et al., 2022a) may
perform better on the unseen split than on the seen split.

Furthermore, previous methods exhibit severe performance degradation between seen and unseen
classes, indicating a lack of generalisability. Our model, on the other hand, could alleviate the
problem to a large extent and has a high potential for generalisation to previously unseen HOIs,
confirming the effectiveness of our multi-modal prompts with constraints.

4.4 ABLATION STUDY

Network Modules: Here we study the effectiveness of different modules of PID under the unseen
verb setting of HICO-DET. Experiments are conducted on the unseen verb setting. We consider
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Table 3: Ablation on the constraint
of the language prompts. Introducing
conditional language prompts with ap-
propriate weights contributes to enhanc-
ing the model’s generalization capabil-
ity.

λclp Unseen Seen Full
0 24.49 32.48 31.36

2.0 26.27 32.60 31.71
5.0 24.45 32.24 31.15

Table 4: Ablation on backbone. Our approach
demonstrates a notable improvement in performance
when combined with superior pre-trained models.

Backbone Type Unseen Seen Full
ViT-B/16 RF-UC 28.82 33.35 32.45
ViT-L/14 RF-UC 35.15 37.26 36.84
ViT-B/16 NF-UC 29.82 28.80 29.00
ViT-L/14 NF-UC 34.27 34.90 34.78
ViT-B/16 UV 26.27 32.60 31.71
ViT-L/14 UV 31.98 37.17 36.44

the model with CLIP’s weights for initialization and no learnable parameters to be the baseline. As
shown in Table 2, our Base model achieves an mAP of 15.12% on unseen classes. Additionally, we
observe four behaviors related to the use of prompts in the HOID task: (1) we find that when adding
only one unconditional prompt, visual prompts PV results in a more significant gain as shown in the
fourth lines in Table 2, especially for the seen classes, due to the fact that the original vision encoder
is designed for image-level recognition rather than regional spatial-aware relationship recognition,
which is required for our HOID task. (2) while adding only one unconditional prompt on baseline
does not significantly enhance the recognition of unseen verbs, adding multi-modal prompts on top
of that leads to a substantial improvement on unseen classes. Specifically, as shown in the sixth
line in Table 2, our approach with unconditional multi-modal prompts achieves 23.55% mAP on
unseen classes, outperforming many previous methods. This indicates that incorporating multi-
modal prompts helps to establish a better semantic space that aligns with the regional spatial-aware
visual space. (3) adding conditions independently on top of each prompt can provide some benefits,
but the performance gains of the model are limited due to the inherent constraints of other frozen
modalities. However, when these conditions are combined together, our model is able to achieve a
clear gain, demonstrating its ability to leverage distinct types of prior knowledge for the subtasks of
interactiveness-sensitive feature extraction and generalisable interaction classification.

Constraints for Language Prompts: The role of the Conditional Language Prompts Loss (con-
trastive learning) is to serve as a regularization term, allowing the text prompt PL to learn contextual
information through learnable context UL while preventing excessive deviation from the CLIP text
feature space, avoiding a decrease in generalization performance. We conduct experiments using
various weights for the regularization loss, as presented in the Table 3. We observe that: (1) When
changing the weight λclp, the changes in model performance are mainly shown in the unseen cate-
gories. This indicates that the regularization loss primarily affects the model’s generalization ability.
(2) When λclp is set to 0, the lack of constraint in the text prompt might cause the textual features to
deviate from the CLIP feature space, and decrease the performance on unseen categories. (3) As λclp

is increased to 2.0, the performance on unseen categories improves, demonstrating an enhancement
in model generalization. However, further increasing λclp could potentially result in UL becoming
useless, constraining the model’s capacity and leading to a decrease in the final performance. There-
fore, introducing conditional language prompts with appropriate weights contributes to enhancing
the model’s generalization capability.

Extension to Advanced Backbones: Our approach can benefit from advanced pre-trained vision-
text models, such as ViT-L/14, and we have conducted experiments using larger backbone networks.
As pre-training of VLMs is in a quick-evolving stage, it’s a desirable property of our model to be
easily adaptable to new developments. To further ensure that our model can recognize HOIs even
with small objects, we leverage ViT-L/14-336px to extract high-resolution feature maps. The results
in Table 4 demonstrate that our approach shows a significant performance boost when incorporated
with better pre-trained models, highlighting the great extension ability of our model.

5 CONCLUSION

We propose PID, a Prompt-based zero-shot human-object Interaction Detector. Our model separates
zero-shot HOI detection into two subtasks: extracting spatial-aware visual features and interaction
classification. PID deals with the subtasks with decoupled multi-modal prompts to break error-
propagation in-between. Furthermore, PID employs appropriate constraints for each modality to
reduce overfitting to seen HOI classes. Experiments on three zero-shot settings show that PID
outperforms all pervious methods by a large margin and shows the least performance degradation,
establishing a new state-of-the-art for zero-shot HOI detection.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, and Rama Chellappa. Detecting human-
object interactions via functional generalization. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34, pp. 10460–10469, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. Learning to detect human-
object interactions. In 2018 ieee winter conference on applications of computer vision (wacv),
pp. 381–389. IEEE, 2018.

Mingfei Chen, Yue Liao, Si Liu, Zhiyuan Chen, Fei Wang, and Chen Qian. Reformulating hoi
detection as adaptive set prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9004–9013, 2021.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021.

Saurabh Gupta and Jitendra Malik. Visual semantic role labeling. arXiv preprint arXiv:1505.04474,
2015.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Visual compositional learning for human-
object interaction detection. In European Conference on Computer Vision, pp. 584–600. Springer,
2020.

Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and Dacheng Tao. Affordance transfer learning for
human-object interaction detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 495–504, 2021a.

Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, and Dacheng Tao. Detecting human-object in-
teraction via fabricated compositional learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14646–14655, 2021b.

Muhammad Uzair khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023.

Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim, and Hyunwoo J Kim. Hotr: End-to-end
human-object interaction detection with transformers. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 74–83, 2021.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset v4.
International Journal of Computer Vision, 128(7):1956–1981, 2020.

Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma, Hao-Shu Fang, Yanfeng Wang, and Cewu
Lu. Transferable interactiveness knowledge for human-object interaction detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3585–3594,
2019.

Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu, Jiefeng Li, and Cewu Lu. Detailed 2d-3d
joint representation for human-object interaction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10166–10175, 2020a.

Yong-Lu Li, Xinpeng Liu, Xiaoqian Wu, Yizhuo Li, and Cewu Lu. Hoi analysis: Integrating and
decomposing human-object interaction. Advances in Neural Information Processing Systems, 33:
5011–5022, 2020b.

10



Under review as a conference paper at ICLR 2024

Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, and Jiashi Feng. Ppdm: Parallel point de-
tection and matching for real-time human-object interaction detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 482–490, 2020.

Yue Liao, Aixi Zhang, Miao Lu, Yongliang Wang, Xiaobo Li, and Si Liu. Gen-vlkt: Simplify asso-
ciation and enhance interaction understanding for hoi detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20123–20132, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Xinpeng Liu, Yong-Lu Li, Xiaoqian Wu, Yu-Wing Tai, Cewu Lu, and Chi-Keung Tang. Inter-
activeness field in human-object interactions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 20113–20122, 2022.

Yang Liu, Qingchao Chen, and Andrew Zisserman. Amplifying key cues for human-object-
interaction detection. In European Conference on Computer Vision, pp. 248–265. Springer, 2020a.

Ye Liu, Junsong Yuan, and Chang Wen Chen. Consnet: Learning consistency graph for zero-shot
human-object interaction detection. In Proceedings of the 28th ACM International Conference on
Multimedia, pp. 4235–4243, 2020b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Shan Ning, Longtian Qiu, Yongfei Liu, and Xuming He. Hoiclip: Efficient knowledge transfer
for hoi detection with vision-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23507–23517, 2023.

Xian Qu, Changxing Ding, Xingao Li, Xubin Zhong, and Dacheng Tao. Distillation using or-
acle queries for transformer-based human-object interaction detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19558–19567, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Masato Tamura, Hiroki Ohashi, and Tomoaki Yoshinaga. Qpic: Query-based pairwise human-object
interaction detection with image-wide contextual information. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10410–10419, 2021.

Oytun Ulutan, ASM Iftekhar, and Bangalore S Manjunath. Vsgnet: Spatial attention network for
detecting human object interactions using graph convolutions. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 13617–13626, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Guangzhi Wang, Yangyang Guo, Yongkang Wong, and Mohan Kankanhalli. Distance matters in
human-object interaction detection. arXiv preprint arXiv:2207.01869, 2022a.

11



Under review as a conference paper at ICLR 2024

Suchen Wang, Yueqi Duan, Henghui Ding, Yap-Peng Tan, Kim-Hui Yap, and Junsong Yuan. Learn-
ing transferable human-object interaction detector with natural language supervision. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 939–948,
2022b.

Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, and Jian Sun.
Learning human-object interaction detection using interaction points. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4116–4125, 2020.

Mingrui Wu, Jiaxin Gu, Yunhang Shen, Mingbao Lin, Chao Chen, Xiaoshuai Sun, and Rongrong Ji.
End-to-end zero-shot hoi detection via vision and language knowledge distillation. arXiv preprint
arXiv:2204.03541, 2022a.

Xiaoqian Wu, Yong-Lu Li, Xinpeng Liu, Junyi Zhang, Yuzhe Wu, and Cewu Lu. Mining cross-
person cues for body-part interactiveness learning in hoi detection. In European Conference on
Computer Vision, pp. 121–136. Springer, 2022b.

Aixi Zhang, Yue Liao, Si Liu, Miao Lu, Yongliang Wang, Chen Gao, and Xiaobo Li. Mining the
benefits of two-stage and one-stage hoi detection. Advances in Neural Information Processing
Systems, 34:17209–17220, 2021a.

Frederic Z Zhang, Dylan Campbell, and Stephen Gould. Spatially conditioned graphs for detect-
ing human-object interactions. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 13319–13327, 2021b.

Frederic Z Zhang, Dylan Campbell, and Stephen Gould. Efficient two-stage detection of human-
object interactions with a novel unary-pairwise transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20104–20112, 2022a.

Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021c.

Yong Zhang, Yingwei Pan, Ting Yao, Rui Huang, Tao Mei, and Chang-Wen Chen. Exploring
structure-aware transformer over interaction proposals for human-object interaction detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
19548–19557, 2022b.

Xubin Zhong, Changxing Ding, Zijian Li, and Shaoli Huang. Towards hard-positive query mining
for detr-based human-object interaction detection. In Computer Vision–ECCV 2022: 17th Euro-
pean Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 444–460.
Springer, 2022.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

Penghao Zhou and Mingmin Chi. Relation parsing neural network for human-object interaction
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
843–851, 2019.

Cheng Zou, Bohan Wang, Yue Hu, Junqi Liu, Qian Wu, Yu Zhao, Boxun Li, Chenguang Zhang, Chi
Zhang, Yichen Wei, et al. End-to-end human object interaction detection with hoi transformer.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11825–11834, 2021.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

This supplementary material provides additional details as well as more ablation study. We begin by
describing the experiment setting for zero-shot HOI detection in Section A.1. Then we describe the
input pipeline and hyper-parameters involved in the model in Section A.2. Then we provide further
analysis on conditional vision prompt in Section A.3. At last, we provide qualitative results of our
model on detecting novel HOIs in Section A.4.

A.1 EXPERIMENT SETTING

Following Bansal et al. (2020), in the Unseen Combination (UC) setting, all action categories and
object categories are included during training, but 120 classes of HOI triplets (i.e. combinations) are
missing. Similiar to Hou et al. (2020), in the Rare First Unseen Composition (RF-UC) and Non-
rare First Unseen Composition (NF-UC) settings, 120 HOI classes are missing during training. The
RF-UC selects unseen categories from tail HOIs preferentially, while the NF-UC prefers the head
categories. The selected HOI categories are then removed from the training set. For the UV setting,
20 verbs are selected from all total 117 verbs to form 84 unseen and 516 seen HOIs following Liao
et al. (2022).

A.2 IMPLEMENTATION DETAIL

Input Pipeline: Input images are first randomly flipped horizontally and scaled such that the shortest
side is at least 480 and at most 800 pixels. We then randomly jitter the color of the image on
brightness, contrast saturation and hue with probability of (0.4, 0.4, 0.4), respectively. The images
are fed into the detector at this point. We then resize the images to (224, 224) and feed them into the
image encoder EI.

Object Detection: In the first stage of our method, we first use an off-the-shelf object detector and
apply appropriate filtering strategies to extract all instances. Specifically, We initialize the detector’s
weights from the publicly available model pretrained on MS COCO (Lin et al., 2014) and fine-tune
it on the detection annotations of HICO-DET (Chao et al., 2018), following Zhang et al. (2022a);
Wang et al. (2022a); Qu et al. (2022). We filter out detections with scores less than 0.2 and perform
non-maximum suppression with a threshold of 0.5 to remove low-quality and redundant detections.
Then, we reserve at least 3 and at most 15 boxes for humans and objects each for every image.

Hyper-parameters: For the language prompts PL, we set the length of context words S to be 16.
For the vision prompts PV introduced in Section 3.2, we set the number of learnable vision prompts
M to be 10. We down-project the feature dimension to d′(=64) when injecting prior knowledge into
EI. λ is set to 1 during training and 2.8 during inference to suppress overconfident objects (Zhang
et al., 2021b).

Table 5: Ablation on different blocks to select. PD denotes performance degradation.

Selected blocks Unseen Seen Full PD
Low-level 22.06 28.75 27.82 6.69
High-level 25.02 32.55 31.49 7.53

All 26.27 32.60 31.71 6.33

Table 6: Ablation on different types of visual condition on the Unseen Verb setting. b, s, e
represent bounding boxes, confidence scores and semantic embeddings for the detected instances,
respectively.

b s e Unseen Seen Full
- - - 20.56 26.03 25.27
✓ - - 24.70 32.39 31.31
✓ ✓ - 24.81 33.20 32.02
✓ ✓ ✓ 26.27 32.60 31.71
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A.3 FURTHER ANALYSIS ON CONDITIONAL VISION PROMPT

In this section, we exploit the importance of different blocks when fusing conditional vision prompt
PV into the image encoder EI: All means all blocks are selected; Low-level means to select the
former blocks; High-level means to select the later blocks. As shown in Table 5, it’s worth noting
that choosing low-level blocks results in the least amount of performance degradation, while choos-
ing high-level blocks results in the most. It demonstrates that low-level feature maps represent the
model’s transferability while high-level feature maps represent the model’s discriminability. Select-
ing half of the blocks at random or all of the blocks results in medium performance degradation
compared to selecting low-level blocks and selecting high-level blocks. Selecting all blocks brings
the best performance on the unseen classes, demonstrating a good balance between transferability
and discriminability.

We also study the effectiveness of different types of prior knowledge used as the constraints for
PV . As shown in Table 6, by simply using bounding boxes as condition brings a 4.14% mAP im-
provement on unseen classes, compared to the Base model. Considering a scenario that involves
a bicycle and a person beside it, actions such as ”repair” or ”inspect” are more likely to appear
than ”straddle” or ”ride” due to the spatial configuration. Additionally, by adding confidence scores
to the vision prior knowledge, our model performs better on unseen classes and achieves the best
performance on the seen classes. This suggests that the confidence score serves as an indicator to
help the model perform quality control by providing a measure of certainty for detected instances.
Finally, the model achieves 26.27% mAP on unseen classes by further involving semantics into the
vision prior, which proves improved interactiveness-aware feature extraction and better generalis-
ability of our model. We treat all object semantics equally, regardless of whether they belong to seen
or unseen HOI categories, which helps alleviate overfitting to seen HOI classes.

A.4 QUALITATIVE RESULTS

As shown in Figure 4, we present several qualitative results of successful HOI detections. The
visualized HOIs contain unseen verbs, e.g., the verb ”wear” and ”swing” which don’t appear in the
training set in the unseen verb setting. Our model successfully detects a human-wearing-tie triplet
and a human-swing-baseball-bat triplet as shown in Figure 4a and Figure 4c, which shows powerful
generalisability of our detector.

(a) wearing a tie (b) blocking a frisbee (c) swing a baseball bat (d) ride a bike

Figure 4: Visualization of successfully detected HOIs in the unseen verb setting. Each detected
human-object pair is connected by a red line, with the corresponding interaction score overlaid
above the human box. All the images contain unseen HOIs made up of unseen verbs and seen
objects.
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