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ABSTRACT

The method of random Fourier features (RFF), proposed in a seminal paper by
Rahimi and Recht (NIPS’07), is a powerful technique to find approximate low-
dimensional representations of points in (high-dimensional) kernel space, for
shift-invariant kernels. While RFF has been analyzed under various notions of
error guarantee, the ability to preserve the kernel distance with relative error is
less understood. We show that for a significant range of kernels, including the
well-known Laplacian kernels, RFF cannot approximate the kernel distance with
small relative error using low dimensions. We complement this by showing as
long as the shift-invariant kernel is analytic, RFF with poly(ε−1 log n) dimen-
sions achieves ε-relative error for pairwise kernel distance of n points, and the
dimension bound is improved to poly(ε−1 log k) for the specific application of
kernel k-means. Finally, going beyond RFF, we make the first step towards data-
oblivious dimension-reduction for general shift-invariant kernels, and we obtain
a similar poly(ε−1 log n) dimension bound for Laplacian kernels. We also vali-
date the dimension-error tradeoff of our methods on simulated datasets, and they
demonstrate superior performance compared with other popular methods includ-
ing random-projection and Nyström methods.

1 INTRODUCTION

We study the ability of the random Fourier features (RFF) method (Rahimi & Recht, 2007) for
preserving the relative error for the kernel distance. Kernel method (Schölkopf & Smola, 2002) is a
systematic way to map the input data into a (indefinitely) high dimensional feature space to introduce
richer structures, such as non-linearity. In particular, for a set of n data points P , a kernel function
K : P × P → R implicitly defines a feature mapping φ : P → H to a feature space H which is
a Hilbert space, such that ∀x, y,K(x, y) = ⟨φ(x), φ(y)⟩. Kernel methods have been successfully
applied to classical machine learning (Boser et al., 1992; Schölkopf et al., 1998; Girolami, 2002),
and it has been recently established that in a certain sense the behavior of neural networks may be
modeled as a kernel (Jacot et al., 2018).

Despite the superior power and wide applicability, the scalability has been an outstanding issue of
applying kernel methods. Specifically, the representation of data points in the feature space is only
implicit, and solving for the explicit representation, which is crucially required in many algorithms,
takes at least Ω(n2) time in the worst case. While for many problems such as kernel SVM, it
is possible to apply the so-called “kernel trick” to rewrite the objective in terms of K(x, y), the
explicit representation is still often preferred, since the representation is compatible with a larger
range of solvers/algorithms which allows better efficiency.

In a seminal work (Rahimi & Recht, 2007), Rahimi and Recht addressed this issue by introducing the
method of random Fourier features (see Section 2 for a detailed description), to compute an explicit
low-dimensional mapping φ′ : P → RD (for D ≪ n) such that ⟨φ′(x), φ′(y)⟩ ≈ ⟨φ(x), φ(y)⟩ =
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K(x, y), for shift-invariant kernels (i.e., there exists K : P → R, such that K(x, y) = K(x − y))
which includes widely-used Gaussian kernels, Cauchy kernels and Laplacian kernels.

Towards understanding this fundamental method of RFF, a long line of research has focused on
analyzing the tradeoff between the target dimension D and the accuracy of approximating K under
certain error measures. This includes additive error maxx,y |⟨φ(x), φ(y)⟩−⟨φ′(x), φ′(y)⟩| (Rahimi
& Recht, 2007; Sriperumbudur & Szabó, 2015; Sutherland & Schneider, 2015), spectral error (Avron
et al., 2017; Choromanski et al., 2018; Zhang et al., 2019; Erdélyi et al., 2020; Ahle et al., 2020),
and the generalization error of several learning tasks such as kernel SVM and kernel ridge regres-
sion (Avron et al., 2017; Sun et al., 2018; Li et al., 2021). A more comprehensive overview of the
study of RFF can be found in a recent survey (Liu et al., 2021).

We focus on analyzing RFF with respect to the kernel distance. Here, the kernel distance of two
data points x, y is defined as their (Euclidean) distance in the feature space, i.e.,

distφ(x, y) = ∥φ(x)− φ(y)∥2.
While previous results on the additive error of K(x, y) (Rahimi & Recht, 2007; Sriperumbudur
& Szabó, 2015; Sutherland & Schneider, 2015; Avron et al., 2017) readily implies additive error
guarantee of distφ(x, y), the relative error guarantee is less understood. As far as we know, Chen
& Phillips (2017) is the only previous work that gives a relative error bound for kernel distance, but
unfortunately, only Gaussian kernel is studied in that work, and whether or not the kernel distance
for other shift-invariant kernels is preserved by RFF, is still largely open.

In spirit, this multiplicative error guarantee of RFF, if indeed exists, makes it a kernelized version of
Johnson-Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984) which is one of the central result
in dimension reduction. This guarantee is also very useful for downstream applications, since one
can combine it directly with classical geometric algorithms such as k-means++ (Arthur & Vassil-
vitskii, 2007), locality sensitive hashing (Indyk & Motwani, 1998) and fast geometric matching al-
gorithms (Raghvendra & Agarwal, 2020) to obtain very efficient algorithms for kernelized k-means
clustering, nearest neighbor search, matching and many more.

1.1 OUR CONTRIBUTIONS

Our main results are characterizations of the kernel functions on which RFF preserves the kernel
distance with small relative error using poly log target dimensions. Furthermore, we also explore
how to obtain data-oblivious dimension-reduction for kernels that cannot be handled by RFF.

As mentioned, it has been shown that RFF with small dimension preserves the additive error of
kernel distance for all shift-invariant kernels (Rahimi & Recht, 2007; Sriperumbudur & Szabó, 2015;
Sutherland & Schneider, 2015). In addition, it has been shown in Chen & Phillips (2017) that RFF
indeed preserves the relative error of kernel distance for Gaussian kernels (which is shift-invariant).
Hence, by analogue to the additive case and as informally claimed in Chen & Phillips (2017), one
might be tempted to expect that RFF also preserves the relative error for general shift-invariant
kernels as well.

Lower Bounds. Surprisingly, we show that this is not the case. In particular, we show that for
a wide range of kernels, including the well-known Laplacian kernels, it requires unbounded target
dimension for RFF to preserve the kernel distance with constant multiplicative error. We state the
result for a Laplacian kernel in the following, and the full statement of the general conditions of ker-
nels can be found in Theorem 4.1. In fact, what we show is a quantitatively stronger result, that if the
input is (∆, ρ)-bounded, then preserving any constant multiplicative error requires Ω(poly(∆/ρ))
target dimension. Here, a point x ∈ Rd is (∆, ρ)-bounded if ∥x∥∞ ≤ ∆ and mini:xi ̸=0 |xi| ≥ ρ,
i.e., the magnitude is (upper) bounded by ∆ and the resolution is (lower) bounded by ρ.
Theorem 1.1 (Lower bound; see Remark 4.1). For every ∆ ≥ ρ > 0 and some feature mapping
φ : Rd → H of a Laplacian kernel K(x, y) = exp(−∥x − y∥1), if for every x, y ∈ Rd that
are (∆, ρ)-bounded, the RFF mapping π for K with target dimension D satisfies distπ(x, y) ∈
(1± ε) · distφ(x, y) with constant probability, then D ≥ Ω( 1

ε2
∆
ρ ). This holds even when d = 1.

Upper Bounds. Complementing the lower bound, we show that RFF can indeed preserve the
kernel distance within 1 ± ε error using poly(ε−1 log n) target dimensions with high probability,
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as long as the kernel function is shift-invariant and analytic, which includes Gaussian kernels and
Cauchy kernels. Our target dimension nearly matches (up to the degree of polynomial of parameters)
that is achievable by the Johnson-Lindenstrauss transform (Johnson & Lindenstrauss, 1984), which
is shown to be tight (Larsen & Nelson, 2017). This upper bound also greatly generalizes the result
of Chen & Phillips (2017) which only works for Gaussian kernels (see Section G for a detailed
comparison).
Theorem 1.2 (Upper bound). Let K : Rd × Rd → R be a kernel function which is shift-invariant
and analytic at the origin, with feature mapping φ : Rd → H for some feature space H. For
every 0 < δ ≤ ε ≤ 2−16, every d,D ∈ N, D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, if
π : Rd → RD is an RFF mapping for K with target dimension D, then for every x, y ∈ Rd,

Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

The technical core of our analysis is a moment bound for RFF, which is derived by analysis tech-
niques such as Taylor expansion and Cauchy’s integral formula for multi-variate functions. The
moment bound is slightly weaker than the moment bound of Gaussian variables, and this is the
primary reason that we obtain a bound weaker than that of the Johnson-Lindenstrauss transform. Fi-
nally, several additional steps are required to fit this moment bound in Bernstein’s inequality, which
implies the bound in Theorem 1.2.

Improved Dimension Bound for Kernel k-Means. We show that if we focus on a specific ap-
plication of kernel k-means, then it suffices to set the target dimension D = poly(ε−1 log k), in-
stead of D = poly(ε−1 log n), to preserve the kernel k-means clustering cost for every k-partition.
This follows from the probabilistic guarantee of RFF in Theorem 1.2 plus a generalization of the
dimension-reduction result proved in a recent paper (Makarychev et al., 2019). Here, given a
data set P ⊂ Rd and a kernel function K : Rd × Rd → R, denoting the feature mapping as
φ : Rd → H, the kernel k-means problem asks to find a k-partition C := {C1, . . . , Ck} of P , such
that costφ(P, C) =

∑k
i=1 minci∈H

∑
x∈Ci

∥φ(x)− ci∥22 is minimized.
Theorem 1.3 (Dimension reduction for clustering; see Theorem 3.1). For kernel k-means problem
whose kernel function K : Rd ×Rd → R is shift-invariant and analytic at the origin, for every data
set P ⊂ Rd, the RFF mapping π : Rd → RD with target dimension D ≥ O( 1

ε2 (log
3 k

δ + log3 1
ε )),

with probability at least 1− δ, preserves the clustering cost within 1± ε error for every k-partition
simultaneously.

Applying RFF to speed up kernel k-means has also been considered in Chitta et al. (2012), but
their error bound is much weaker than ours (and theirs is not a generic dimension-reduction bound).
Also, similar dimension-reduction bounds (i.e., independent of n) for kernel k-means were obtained
using Nyström methods (Musco & Musco, 2017; Wang et al., 2019), but their bound is poly(k)
which is worse than our poly log(k); furthermore, our RFF-based approach is unique in that it is
data-oblivious, which enables great applicability in other relevant computational settings such as
streaming and distributed computing.

Going beyond RFF. Finally, even though we have proved RFF cannot preserve the kernel distance
for every shift-invariant kernels, it does not rule out the existence of other efficient data-oblivious di-
mension reduction methods for those kernels, particularly for Laplacian kernel which is the primary
example in our lower bound. For instance, in the same paper where RFF was proposed, Rahimi and
Recht (Rahimi & Recht, 2007) also considered an alternative embedding called “binning features”
that can work for Laplacian kernels. Unfortunately, to achieve a relative error of ε, it requires a
dimension that depends linearly on the magnitude/aspect-ratio of the dataset, which may be expo-
nential in the input size. Follow-up works, such as (Backurs et al., 2019), also suffer similar issues.

We make the first successful attempt towards this direction, and we show that Laplacian kernels do
admit an efficient data-oblivious dimension reduction. Here, we focus on the (∆, ρ)-bounded case,
Here, we use a similar setting to our lower bound (Theorem 1.1) where we focus on the (∆, ρ)-
bounded case.
Theorem 1.4 (Oblivious dimension-reduction for Laplacian kernels, see Theorem F.1). Let K be a
Laplacian kernel, and denote its feature mapping as φ : Rd → H. For every 0 < δ ≤ ε ≤ 2−16,
every D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, every ∆ ≥ ρ > 0, there is a mapping
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π : Rd → RD, such that for every x, y ∈ Rd that are (∆, ρ)-bounded, it holds that

Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

The time for evaluating π is dD · poly(log ∆
ρ , log δ

−1).

Our target dimension only depends on log ∆
ρ which may be interpreted as the precision of the input.

Hence, as an immediate corollary, for any n-points dataset with precision 1/ poly(n), we have
an embedding with target dimension D = poly(ε−1 log n), where the success probability is 1 −
1/ poly(n) and the overall running time of embedding the n points is O(npoly(dε−1 log n)).

Our proof relies on the fact that every ℓ1 metric space can be embedded into a squared ℓ2 metric
space isometrically. We explicitly implement an approximate version of this embedding (Kahane,
1981), and eventually reduce our problem of Laplacian kernels to Gaussian kernels. After this
reduction, we use the RFF for Gaussian kernels to obtain the final mapping. However, since the
embedding to squared ℓ2 is only of very high dimension, to implement this whole idea efficiently,
we need to utilize the special structures of the embedding, combined with an application of space
bounded pseudo-random generators (PRGs) (Nisan, 1992).

Even though our algorithm utilizes the special property of Laplacian kernels and eventually still
partially use the RFF for Gaussian kernels, it is still of conceptual importance. It opens up the
direction of exploring general methods for Johnson-Lindenstrauss style dimension reduction for
shift-invariant kernels. Furthermore, the lower bound suggests that the Johnson-Lindenstrauss style
dimension reduction for general shift-invariant kernels has to be not differentiable, which is a fun-
damental difference to RFF. This requirement of “not analytical” seems very counter-intuitive, but
our construction of the mapping for Laplacian kernels indeed provides valuable insights on how the
non-analytical mapping behaves.

Experiments and Comparison to Other Methods. Apart from RFF, the Nyström and the
random-projection methods are alternative popular methods for kernel dimension reduction. In Sec-
tion 6, we conduct experiments to compare their empirical dimension-error tradeoffs with that of
our methods on a simulated dataset. Since we focus on the error, we use the “ideal” implementa-
tion of both methods that achieve the best accuracy, so they are only in favor of the two baselines
– for Nyström, we use SVD on the kernel matrix, since Nyström methods can be viewed as fast
and approximate low-rank approximations to the kernel matrix; for random-projection, we apply
the Johnson-Lindenstrauss transform on the explicit representations of points in the feature space.
We run two experiments to compare each of RFF (on a Gaussian kernel) and our new algorithm
in Theorem 1.4 (on a Laplacian kernel) with the two baselines respectively. Our experiments in-
dicate that the Nyström method is indeed incapable of preserving the kernel distance in relative
error, and more interestingly, our methods perform the best among the three, even better than the
Johnson-Lindenstrauss transform which is the optimal in the worst case.

1.2 RELATED WORK

Variants of the vanilla RFF, particularly those that use information in the input data set and/or sam-
ple random features non-uniformly, have also been considered, including leverage score sampling
random Fourier features (LSS-RFF) (Rudi et al., 2018; Liu et al., 2020; Erdélyi et al., 2020; Li et al.,
2021), weighted random features (Rahimi & Recht, 2008; Avron et al., 2016; Chang et al., 2017;
Dao et al., 2017), and kernel alignment (Shahrampour et al., 2018; Zhen et al., 2020).

The RFF-based methods usually work for shift-invariant kernels only. For general kernels,
techniques that are based on low-rank approximation of the kernel matrix, notably Nyström
method (Williams & Seeger, 2000; Gittens & Mahoney, 2016; Musco & Musco, 2017; Oglic &
Gärtner, 2017; Wang et al., 2019) and incomplete Cholesky factorization (Fine & Scheinberg, 2001;
Bach & Jordan, 2002; Chen et al., 2021; Jia et al., 2021)) were developed. Moreover, specific sketch-
ing techniques were known for polynomial kernels (Avron et al., 2014; Woodruff & Zandieh, 2020;
Ahle et al., 2020; Song et al., 2021), a basic type of kernel that is not shift-invariant.
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2 PRELIMINARIES

Random Fourier Features. RFF was first introduced by Rahimi and Recht (Rahimi & Recht,
2007). It is based on the fact that, for shift-invariant kernel K : Rd → R such that K(0) = 1
(this can be assumed w.l.o.g. by normalization), function p : Rd → R such that p(ω) =
1
2π

∫
Rd K(x)e−i⟨ω,x⟩ dx, which is the Fourier transform of K(·), is a probability distribution (guar-

anteed by Bochner’s theorem (Bochner, 1933; Rudin, 1991)). Then, the RFF mapping is defined
as

π(x) :=

√
1

D


sin⟨ω1, x⟩
cos⟨ω1, x⟩

...
sin⟨ωD, x⟩
cos⟨ωD, x⟩


where ω1, ω2, . . . , ωD ∈ Rd are i.i.d. samples from distribution with densitiy p.

Theorem 2.1 (Rahimi & Recht 2007). E[⟨π(x), π(y)⟩] = 1
D

∑D
i=1 E[cos⟨ωi, x− y⟩] = K(x− y).

Fact 2.1. Let ω be a random variable with distribution p over Rd. Then

∀t ∈ R, E[cos (t⟨ω, x− y⟩)] = ℜ
∫
Rd

p(ω)ei⟨ω,t(x−y)⟩ dω = K(t(x− y)), (1)

and Var(cos ⟨ω, x− y⟩) = 1+K(2(x−y))−2K(x−y)2

2 .

3 UPPER BOUNDS

We present two results in this section. We start with Section 3.1 to show RFF preserves the relative
error of kernel distance using poly(ε−1 log n) target dimensions with high probability, when the ker-
nel function is shift-invariant and analytic at origin. Then in Section 3.2, combining this bound with
a generalized analysis from a recent paper (Makarychev et al., 2019), we show that RFF also pre-
serves the clustering cost for kernel k-clustering problems with ℓp-objective, with target dimension
only poly(ε−1 log k) which is independent of n.

3.1 PROOF OF THEOREM 1.2: THE RELATIVE ERROR FOR PRESERVING KERNEL DISTANCE

Since K is shift-invariant, we interpret K as a function on Rd instead of Rd × Rd, such that
K(x, y) = K(x − y). As in Section 2, let p : Rd → R be the Fourier transform of K, and
suppose in the RFF mapping π, the random variables ω1, . . . , ωd ∈ Rd are i.i.d. sampled from the
distribution with density p. When we say K is analytic at the origin, we mean there exists some
constant r s.t. K is analytic in {x ∈ Rd : ∥x∥1 < r}. We pick rK to be the maximum of such
constant r. Also notice that in D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, there are constants
about K hidden inside the Θ, i.e. RK as in Lemma 3.2.

Fact 3.1. The following holds.

• distπ(x, y) =
√
2− 2/D

∑D
i=1 cos⟨ωi, x− y⟩, and distφ(x, y) =

√
2− 2K(x− y).

• Pr[|distπ(x, y) − distφ(x, y)| ≤ ε · distφ(x, y)] ≥ Pr[|distπ(x, y)2 − distφ(x, y)
2| ≤

ε · distφ(x, y)2].

Define Xi(x) := cos⟨ωi, x⟩ − K(x). As a crucial step, we next analyze the moment of random
variables Xi(x− y). This bound will be plugged into Bernstein’s inequality to conclude the proof.

Lemma 3.1. If for some r > 0, K is analytic in {x ∈ Rd : ∥x∥1 < r}, then for every k ≥ 1 being

even and every x s.t. ∥x∥1 < r, we have E[|Xi(x)|k] ≤
(
4k∥x∥1

r

)2k

.

Proof. The proof can be found in Section A.
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Lemma 3.2. For kernel K which is shift-invariant and analytic at the origin, there exist cK , RK > 0

such that for all ∥x∥1 ≤ RK , 1−K(x)
∥x∥2

1
≥ cK

2 .

Proof. The proof can be found in Section B.

Proof sketch of Theorem 1.2. We present a proof sketch for Theorem 1.2, and the full proof can be
found in Section C. We focus on the case when ∥x− y∥1 ≤ RK (the other case can be found in the
full proof). Then by Lemma 3.2, we have 2− 2K(x− y) ≥ c∥x− y∥21. Then we have:

Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ ε · (2− 2K(x− y))

]
≥ Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ cε · ∥x− y∥21

]
.

We take r = rK for simplicity of exhibition. Assume δ ≤ min{ε, 2−16}, let k = log(2D2/δ), t =
64k2/r2, is even. By Markov’s inequality and Lemma 3.1:

Pr[|Xi(x− y)| ≥ t∥x− y∥21] = Pr
[
|Xi(x− y)|k ≥ tk∥x− y∥2k1

]
≤ (4k)2k

tkr2k
= 4−k ≤ δ

2D2
.

For simplicity denote Xi(x − y) by Xi, ∥x − y∥21 by ℓ and define X ′
i = 1[|Xi|≥tℓ]tℓ · sgn(Xi) +

1[|Xi|<tℓ]Xi, note that E[Xi] = 0. By some further calculations and plugging in the parameters
t, δ,D, we can eventually obtain E[|X ′

i|] ≤ δℓ. Denote σ′2 as the variance of X ′
i , then again

by Lemma 3.1 we immediately have σ′ ≤ 64ℓ/r2. The theorem follows by a straightforward
application of Bernstein’s inequality.

3.2 DIMENSION REDUCTION FOR KERNEL CLUSTERING

We present the formal statement for Theorem 1.3 in Theorem 3.1. In fact, we consider the more
general k-clustering problem with ℓp2-objective defined in the following Definition 3.1, which gen-
eralizes kernel k-means (by setting p = 2).

Definition 3.1. Given a data set P ⊂ Rd and kernel function K : Rd × Rd → R, denoting
the feature mapping as φ : Rd → H, the kernel k-clustering problem with ℓp-objective asks
for a k-partition C = {C1, C2, ..., Ck} of P that minimizes the cost function: costφp (P, C) :=∑k

i=1 minci∈H
∑

x∈Ci
∥φ(x)− ci∥p2.

Theorem 3.1 (Generalization of Makarychev et al. 2019, Theorem 3.6). For kernel k-clustering
problem with ℓp2-objective whose kernel function K : Rd × Rd → R is shift-invariant and analytic
at the origin, for every data set P ⊂ Rd, the RFF mapping π : Rd → RD with target dimension
D = Ω(p2 log3 k

α + p5 log3 1
ε + p8)/ε2 satisfies

Pr[∀k-partition C of P : costπp (P, C) ∈ (1± ε) · costφp (P, C)] ≥ 1− δ.

Proof. The proof can be found in Section D.

4 LOWER BOUNDS

Theorem 4.1. Consider ∆ ≥ ρ > 0, and a shift-invariant kernel function K : Rd → R, denoting
its feature mapping φ : Rd → H. Then there exists x, y ∈ Rd that are (∆, ρ)-bounded, such that
for every 0 < ε < 1, the RFF mapping π for K with target dimension D satisfies

Pr[|distφ(x, y)−distπ(x, y)| ≥ ε ·distφ(x, y)] ≥
2√
2π

∫ ∞

6ε

√
D/s

(∆,ρ)
K

e−s2/2 ds−O
(
D− 1

2

)
(2)

where s
(∆,ρ)
K := sup(∆, ρ)-bounded x∈Rd sK(x), and sK(x) :=

1 +K(2x)− 2K(x)2

2(1−K(x))2
.

Proof. The proof can be found in Section E.
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Note that the right hand side of (2) is always less than 1, since the first term
2√
2π

∫∞
6ε

√
D/s

(∆,ρ)
K

e−s2/2 ds achieves its maximum at Dε2

s
(∆,ρ)
K

= 0, and this maximum is 1. On the

other hand, we need the right hand side of (2) to be > 0 in order to obtain a useful lower bound, and
a typical setup to achieve this is when D = Θ

(
s
(∆,ρ)
K

)
.

Intuition of sK . Observe that sK(x) measures the ratio between the variance of RFF and the
(squared) expectation evaluated at x. The intuition of considering this comes from the central
limit theorem. Indeed, when the number of samples/target dimension is sufficiently large, the er-
ror/difference behaves like a Gaussian distribution where with constant probability the error ≈ Var.
Hence, this sK measures the “typical” relative error when the target dimension is sufficiently large,
and an upper bound of s(∆,ρ)

K is naturally a necessary condition for the bounded relative error. The
following gives a simple (sufficient) condition for kernels that do not have a bounded sK(x).
Remark 4.1 (Simple sufficient conditions for lower bounds). Assume the input dimension is 1, so
K : R → R, and assume ∆ = 1, ρ < 1. Then the (∆, ρ)-bounded property simply requires
ρ ≤ |x| ≤ 1. We claim that, if K’s first derivative at 0 is non-zero, i.e., K ′(0) ̸= 0, then RFF cannot
preserve relative error for such K. To see this, we use Taylor’s expansion for K at the origin, and
simply use the approximation to degree one, i.e., K(x) ≈ 1+ax (noting that x ≤ 1 so this is a good
approximation), where a = K ′(0). Then

sK(x) =
1 + 1 + 2ax− 2(1 + ax)2

2a2x2
= −1− 1

ax
.

So if a = K ′(0) ̸= 0, then for sufficiently small ρ and |x| ≥ ρ, sK(ρ) ≥ Ω(1/ρ). This also
implies the claim in Theorem 1.1 for Laplacian kernels (even though one needs to slightly modify
this analysis since strictly speaking K ′ is not well defined at 0 for Laplacian kernels). As a sanity
check, for shift-invariant kernels that are analytic at the origin (which include Gaussian kernels), it
is necessary that K ′(0) = 0.

5 BEYOND RFF: OBLIVIOUS EMBEDDING FOR LAPLACIAN KERNEL

In this section we provide a proof sketch for theorem 1.4. A more detailed proof is deferred to
section F.

Embedding To handle a Laplacian kernel function K(x, y) = e−
∥x−y∥1

c with some constant c,
we cannot directly use the RFF mapping ϕ, since our lower bound shows that the output dimension
has to be very large when K is not analytical around the origin. To overcome this issue, we come
up with the following idea. Notice that L(x, y) relies on the ℓ1-distance between x, y. If one can
embed (embedding function f ) the data points from the original ℓ1 metric space to a new metric
space and ensure that there is an kernel function K ′, analytical around the origin, for the new space
s.t. K(x, y) = K ′(f(x), f(y)) for every pair of original data points x, y, then one can use the
function composition ϕ ◦ f to get a desired mapping.

Indeed, we find that ℓ1 can be embedded to ℓ22 isometrically (Kahane, 1981) in the following way.
Here for simplicity of exhibition we only handle the case where input data are from Nd, upper
bounded by a natural number N . Notice that even though input data points are only consisted of
integers, the mapping construction needs to handle fractions, as we will later consider some numbers
generated from Gaussian distributions or numbers computed in the RFF mapping. So we first setup
two numbers, ∆′ = poly(N, δ−1) large enough and ρ′ = 1/ poly(N, δ−1) small enough. All our
following operations are working on numbers that are (∆′, ρ′)-bounded. For each dimension we
do the following transformation. Let π1 : N → RN be such that for every x ∈ N, x ≤ N , the
first x entries of π1(x) is the number 1, while all the remaining entries are 0. Then consider all
d dimensions. The embedding function π

(d)
1 : Nd → RNd be such that for every x ∈ Nd, xi ≤

N, ∀i ∈ [d], we have π(d)
1 (x) being the concatenation of d vectors π1(xi), i ∈ [d]. After embedding,

consider a new kernel function K ′ = e−
∥x′−y′∥22

c , where x′ = π
(d)
1 (x), y′ = π

(d)
1 (y). One can see

immediately that K ′(x′, y′) = K(x, y). Hence, we can apply RFF then, i.e. the mapping is ϕ◦π(d)
1 ,

which has a small output dimension. Detailed proofs can be seen in section F.1.
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However, there is another issue. In our setting, if the data is (∆, ρ) bounded, then we have to pick
N = O(∆ρ ). The computing time has a linear factor in N , which is too large.

Polynomial Time Construction To reduce computing time, we start from the following observa-
tion about the RFF mapping ϕ(x′). Each output dimension is actually a function of ⟨ω, x′⟩, where
ω is a vector of i.i.d Gaussian random variables. For simplicity of description we only consider that
x has only one dimension and x′ = π1(x). So x′ is just a vector consists of x number of 1’s starting
from the left and then all the remaining entries are 0’s. Notice that a summation of Gaussian random
variables is still a Gaussian. So given x, one can generate ⟨ω, x′⟩ according to the summation of
Gaussians. But here comes another problem. For two data points x, y, we need to use the same ω.
So if we generate ⟨ω, x′⟩ and ⟨ω′, y′⟩ separately, then ω, ω′ are independent.

To bypass this issue, first consider the following alternate way to generate ⟨ω, x′⟩. Let h be the
smallest integer s.t. N ≤ 2h. Consider a binary tree where each node has exactly 2 children. The
depth is h. So it has exactly 2h leaf nodes in the last layer. For each node v, we attach a random
variable αv in the following way. For the root, we attach a Gaussian variable which is the summation
of 2h independent Gaussian variable with distribution ω0. Then we proceed layer by layer from the
root to leaves. For each u, v being children of a common parent w, assume that αw is the summation
of 2l independent ω0 distributions. Then let αu be the summation of the first 2l−1 distributions
among them and αv be the summation of the second 2l−1 distributions. That is αw = αu + αv

with αu, αv being independent. Notice that conditioned on αw = a, then αu takes the value b with
probability Prαu,αv i.i.d. [αu = b | αu + αv = a]. αv takes the value a− b when αu takes value b.

The randomness for generating every random variable corresponding to a node, is presented as a
sequence, in the order from root to leaves, layer by layer, from left to right. We define αx to be
the summation of the random variables corresponding to the first x leaves. Notice that αx can be
sampled efficiently in the following way. Consider the path from the root to the x-th leaf. First
we sample the root, which can be computed using the corresponding part of the randomness. We
use a variable z to record this sample outcome, calling z an accumulator for convenience. Then we
visit each node along the path. When visiting v, assume its parent is w, where αw has already been
sampled previously with outcome a. If v is a left child of w, then we sample αv conditioned on
αw = a. Assume this sampling has outcome b. Then we add −a + b to the current accumulator z.
If v is a right child of a node w, then we keep the current accumulator z unchanged. After visiting
all nodes in the path, z is the sample outcome for αx. We can show that the joint distribution αx, αy

has basically the same distribution as ⟨ω, π1(x)⟩, ⟨ω, π1(y)⟩. See lemma F.2.

The advantage of this alternate construction is that given any x, to generate αx, one only needs to
visit the path from the root to the x-th leaf, using the above generating procedure. To finally reduce
the time complexity, the last issue is that the uniform random string for generating random variables
here is very long. If we sweep the random tape to locate the randomness used to generate a variable
corresponding to a node, then we still need a linear time of N . Fortunately, PRGs for space bounded
computation, e.g. Nisan’s PRG (Nisan, 1992), can be used here to replace the uniform random-
ness. Because the whole procedure for deciding whether ∥ϕ ◦ π1(x) − ϕ ◦ π1(y)∥2 approximates√

2−K(x, y) within (1 ± ε) multiplicative error, is in poly-logarithmic space. Also the computa-
tion of such PRGs can be highly efficient, i.e. given any index of its output, one can compute that bit
in time polynomial of the seed length, which is poly-logarithmic of N . Hence the computing time
of the mapping only has a factor poly-logarithmic in N instead of a factor linear in N .

Now we have shown our construction for the case that all input data points are from N. One can
generalize this to the case where all numbers are (∆, ρ) bounded, by doing some simple roundings
and shiftings of numbers. Then this can be further generalized to the case where the input data has d
dimension, by simply handling each dimension and then concatenating them together. More details
of this part are deferred to section F.4.

6 EXPERIMENTS

We evaluate the empirical relative error of our methods on a simulated dataset. Specifically, we do
two experiments, one to evaluate RFF on a Gaussian kernel, and the other one to evaluate the new

8



20 30 40 50 60 70 80 90
Target Dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e 

Er
ro

r

Method
RFF
SVD
JL

(a) RFF

20 30 40 50 60 70 80 90
Target Dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e 

Er
ro

r

Method
New-Lap
SVD
JL

(b) New-Lap

Figure 1: The dimension-error tradeoff curves for both experiments, i.e., the experiment that evalu-
ates RFF and the one that evaluates New-Lap.

algorithm in Theorem F.1, which we call “New-Lap”, on a Laplacian kernel. In each experiment, we
compare against two other popular methods, particularly Nyström and random-projection methods.

Baselines. Observe that there are many possible implementations of these two methods. However,
since we focus on the accuracy evaluation, we choose computationally-heavy but more accurate
implementations as the two baselines (hence the evaluation of the error is only in the baseline’s
favor). In particular, we consider 1) SVD low-rank approximation which we call “SVD”, and 2) the
vanilla Johnson-Lindenstrauss algorithm performed on top of the high-dimensional representation
of points in the feature space, which we call “JL”. Note that SVD is the “ideal” goal/form of Nyström
methods and that Johnson-Lindenstrauss applied on the feature space can obtain a theoretically-tight
target-dimension bound (in the worst-case sense).

Experiment Setup. Both experiments are conducted on a synthesized dataset X which consists
of N = 100 points with d = 60 dimensions generated i.i.d. from a Gaussian distribution. For the
experiment that we evaluate RFF, we use a Gaussian kernel K(x) = exp(−0.5 · ∥x∥2), and for that
we evaluate New-Lap, we use a Laplacian kernel K(x) = exp(−0.5 · ∥x∥1). In each experiment,
for each method, we run it for varying target dimension D (for SVD, D is the target rank), and we
report its empirical relative error, which is defined as

max
x̸=y∈X

|d′(x, y)− dK(x, y)|
dK(x, y)

,

where dK is the kernel distance and d′ is the approximated distance. To make the result stabi-
lized, we conduct this entire experiment for every D for T = 20 times and report the average and
95% confident interval. We plot these dimension-error tradeoff curves, and we depict the results in
Figure 1.

Results. We conclude that in both experiments, our methods can indeed well preserve the relative
error of the kernel distance, which verifies our theorem. In particular, the dimension-error curve is
comparable (and even slightly better) to the computationally heavy Johnson-Lindenstrauss algorithm
(which is theoretically optimal in the worst case). On the contrary, the popular Nyström (low-rank
approximation) method is largely incapable of preserving the relative error of the kernel distance.
In fact, we observe that d′SV D(x, y) = 0 or ≈ 0 often happens for some pairs of (x, y) such that
d(x, y) ̸= 0, which explains the high relative error. This indicates that our methods can indeed well
preserve the kernel distance in relative error, but existing methods struggle to achieve this.
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Appendices
A PROOF OF LEMMA 3.1

Lemma 3.1. If for some r > 0, K is analytic in {x ∈ Rd : ∥x∥1 < r}, then for every k ≥ 1 being

even and every x s.t. ∥x∥1 < r, we have E[|Xi(x)|k] ≤
(
4k∥x∥1

r

)2k

.

We first introduce following two lemmas to show the properties of E[Xi(x)
k].

Lemma A.1. For any ωi sampled in RFF and k ≥ 0, we have E[cosk⟨ωi, x⟩] =
1
2k

∑k
j=0

(
k
j

)
K((2j − k)x).

Proof. By eq. (1) it is sufficient to prove that

cosk⟨ωi, x⟩ =
1

2k

k∑
j=0

(
k

j

)
cos((2j − k)⟨ωi, x⟩).
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We prove this by induction. In the case of k = 0 the lemma holds obviously.

If for k the lemma holds, we have

cosk+1(⟨ωi, x⟩) = cos(⟨ωi, x⟩) ·
1

2k

k∑
j=0

(
k

j

)
cos((2j − k)⟨ωi, x⟩)

=
1

2k

k∑
j=0

(
k

j

)
cos(⟨ωi, x⟩) cos(2j − k)⟨ωi, x⟩)

=
1

2k+1

k∑
j=0

(
k

j

)(
cos((2j − k + 1)⟨ωi, x⟩) + cos((2j − k − 1)⟨ωi, x⟩)

)

=
1

2k+1

k∑
j=0

(
k

j

)(
cos((2(j + 1)− (k + 1))⟨ωi, x⟩) + cos(2j − (k + 1))⟨ωi, x⟩)

)

=
1

2k+1

k+1∑
j=0

((
k

j

)
+

(
k

j − 1

))
cos((2j − (k + 1))⟨ωi, x⟩)

=
1

2k+1

k+1∑
j=0

(
k + 1

j

)
cos((2j − (k + 1))⟨ωi, x⟩)

where in the third equality we use the fact that 2 cosα cosβ = cos(α+ β) + cos(α− β).

Lemma A.2. If there exists r > 0 such that K is analytic in {x ∈ Rd : ∥x∥1 < r}, then ∀k ≥ 0,
limx→0

E[Xi(x)
k]

∥x∥2k
1

= c for some constant c.

Proof. We denote analytic function K(x) as Taylor series around origin as

K(x) =
∑
β∈Nd

cβx
β , (3)

where xβ :=
∏d

i=1 x
βi

i is a monomial and its coefficient is cβ . By definition, c0 = 1 since K(0) = 1.
We let s : Nd → N, s(β) :=

∑d
i=1 βi denote the degree of xβ . Since K(x − y) = K(x, y) =

K(y, x) = K(y − x) by definition, hence K(x) is an even function, so cβ = 0 for s(β) odd.

Recall that Xi(x) := cos⟨ωi, x⟩ − K(x). In the following, we drop the subscripts in Xi, ωi and
write X,ω for simplicity. By the definition of X we have

E[X(x)k] =

k∑
i=0

(
k

i

)
K(x)i(−1)k−iE[cosk−i⟨ω, x⟩]. (4)

Note that by Lemma A.1, E[cosk−i⟨ω, x⟩] = 1
2k−i

∑k−i
j=0

(
k−i
j

)
K((2j − (k − i))x). Plug this in

eq. (4):

E[X(x)k] =

k∑
i=0

(
k

i

)
K(x)i(−1)k−i 1

2k−i

k−i∑
j=0

(
k − i

j

)
K((2j − (k − i))x)

=

k∑
i=0

(
k

i

)
K(x)i

(
−1

2

)k−i k−i∑
j=0

(
k − i

j

) ∑
β∈Nd

cβ(2j − k + i)s(β)xβ

=
∑
β∈Nd

cβx
β

k∑
i=0

(
k

i

)
K(x)i

(
−1

2

)k−i k−i∑
j=0

(
k − i

j

)
(2j − k + i)s(β)

where the second equality comes from the Tyler expansion of K((2j− k+ i)x). Next we will show
that E[X(x)k] is of degree at least 2k.
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For β = 0 note that
∑k

i=0

(
k
i

)
K(x)i(−1)k−i = (K(x) − 1)k, since K(x) is even and K(0) = 1,

we have limx→0
(K(x)−1)k

xt = 0,∀t < 2k . For β ̸= 0, we next show that every term of degree less
than 2k has coefficient zero.

Fix β ̸= 0 and take Tyler expansion for K(x)i

K(x)i =
∑

β1,β2,...,βi

cβ1
cβ2

. . . cβi
xβ1+...+βi ,

Without loss of generality, we assume βl+1, ..., βi are all βs that equals 0, so we have cβl+1
= ... =

cβi
= 1.

Now we consider the coefficient of term cβcβ1cβ2 . . . , cβl
xβ+

∑l
j=1 βj , which would be:

C̃

k∑
i=0

(
k

i

)(
i

l

)(
−1

2

)k−i k−i∑
j=0

(
k − i

j

)
(2j − k + i)s(β)

where C̃ is the number of ordered sequence (β1, β2, . . . , βl), here, for β1 = β2, (β1, β2, . . . , βl) and
(β2, β1, . . . , βl) are equivalent.

Next, we show if the degree of a monomial s(β) +
∑l

j=1 s(βj) < 2k, its coefficient is zero. Since
all βj ̸= 0, we may assume s(βj) ≥ 2, therefore s(β) < 2k − 2l.

Suppose operator J is a mapping from a function space to itself, such that ∀f : R → R, J(f) : R →
R is defined by J(f)(x) := f(x+ 1) . Denote J1 = J, Jk := J ◦ Jk−1 as its k-time composition,
define J0 to be the identity mapping such that J0(f) = f . Similarly we can define addition that
(J1 + J2)(f) = J1(f) + J2(f) and scalar multiplication that (αJ)(f) = α(J(f)). By definition,
cJm ◦ Jn = Jm ◦ (cJn) = cJm+n,∀c ∈ R,m, n ∈ N.

Let L(x) = xs(β), the coefficient can be rewritten as:

C̃

k∑
i=0

(
k

i

)(
i

l

)(
−1

2

)k−i k−i∑
j=0

(
k − i

j

)(
J2j+i(L)(−k)

)
Let P = C̃

∑k
i=0

(
k
i

)(
i
l

) (−1
2

)k−i∑k−i
j=0

(
k−i
j

)
J2j+i(L), the above is P (−k). Now we show P ≡ 0

P =C̃

 k∑
i=0

(
k

i

)(
i

l

)(
−1

2

)k−i

J i ◦

k−i∑
j=0

(
k − i

j

)
J2j

 (L)

=C̃

(
k∑

i=l

(
k

l

)(
k − l

i− l

)
J i ◦

(
−J0 + J2

2

)k−i
)
(L)

=C̃J l ◦
(
k

l

)( k∑
i=l

(
k − l

i− l

)
J i−l ◦

(
−J0 + J2

2

)k−i
)
(L)

=C̃J l ◦
(
k

l

)(
J − J0 + J2

2

)k−l

(L).

Note that
(
J − J0+J2

2

)
(f)(x) = (f(x + 1) − f(x))/2 − (f(x + 2) − f(x + 1))/2 calculates

second order difference, namely, ∀f that is a polynomial of degree k ≥ 2,
(
J − J0+J2

2

)
(f) is a

polynomial of degree k − 2, and ∀f that is a polynomial of degree k < 2,
(
J − J0+J2

2

)
(f) is 0.

Since L is a polynomial of degree less than 2(k − l), we have(
J − J0 + J2

2

)k−l

(L) ≡ 0.

Combining the above two cases, we have proved eq. (4) is of degree at least 2k, which completes
our proof.
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Proof of Lemma 3.1. If 2k∥x∥1 ≥ r, since |Xi(x)| = | cos⟨ωi, x⟩ − K(x)| ≤ 2, we have

E[Xi(x)
k] ≤ 2k ≤

(
4k∥x∥1

r

)2k

. Otherwise ∥x∥1 < r/2k. Define gk(x) := E[Xi(x)
k], we

have:

gk(x) =

∞∑
i=0

 d∑
j=1

xj
∂

∂xj

i

gk(x)

i!
=

 d∑
j=1

xj
∂

∂xj

2k

gk(θx)

(2k)!
, θ ∈ [0, 1]

where the second equation comes from Lemma A.2 and Taylor expansion with Lagrange remainder.

Lemma A.3 (Cauchy’s integral formula for multivariate functions Hormander 1966). For
f(z1, ..., zd) analytic in ∆(z, r) =

{
ζ = (ζ1, ζ2, . . . , ζd) ∈ Cd; |ζν − zν | ≤ rν , ν = 1, . . . , d

}
f(z1, . . . , zd) =

1

(2πi)d

∫
∂D1×∂D2×···×∂Dd

f(ζ1, . . . , ζd)

(ζ1 − z1) · · · (ζd − zd)
dζ.

Furthermore,

∂k1+···+kdf(z1, z2, . . . , zd)

∂z1k1 · · · ∂zdkd
=

k1! · · · kd!
(2πi)d

∫
∂D1×∂D2···×∂Dd

f(ζ1, . . . , ζd)

(ζ1 − z1)k1+1 · · · (ζd − zd)kd+1
dζ.

If in addition |f | < M , we have the following evaluation:∣∣∣∣∂k1+···+kdf(z1, z2, . . . , zd)

∂z1
k1 · · · ∂zdkd

∣∣∣∣ ≤ Mk1! · · · kd!
r1k1 · · · rdkd

.

Recall that gk(x) = E[Xi(x)
k] =

∑k
i=0

(
k
i

)
K(x)i(−1)k−i 1

2k−i

∑k−i
j=0

(
k−i
j

)
K((2j − (k − i))x),

so gk(x) = poly(K(x),K(−x), . . . ,K(kx),K(−kx)) is analytic when ∥x∥1 ≤ r/k. Applying
Cauchy’s integral formula Lemma A.3 (here ∥z + θx∥1 ≤ 2 · r/2k is in the analytic area),

gk(x) =
∑

t1+···+td=2k

xt1
1 xt2

2 . . . xtd
d

t1!t2! . . . td!

∂2kgk(θx)

∂xt1
1 ∂xt2

2 . . . ∂xtd
d

=
∑

t1+···+td=2k

xt1
1 xt2

2 . . . xtd
d

(2πi)d

∫
z∈Cd,|zi|= r

2k

gk(z + θx)

zt1+1
1 . . . ztd+1

d

dz

we have

|gk(x)| ≤ sup
|zi|=r/2k

|gk(z + θx)|
(
2k

r

)2k
∣∣∣∣∣

d∑
i=1

xi

∣∣∣∣∣
2k

≤
(
4k∥x∥1

r

)2k

.

B PROOF OF LEMMA 3.2

Lemma 3.2. For kernel K which is shift-invariant and analytic at the origin, there exist cK , RK > 0

such that for all ∥x∥1 ≤ RK , 1−K(x)
∥x∥2

1
≥ cK

2 .

Proof. It suffices to prove that lim infx→0
1−K(x)
∥x∥2

1
≥ c > 0, for some c. Towards proving this, we

show that K is strongly convex at origin. In fact, by definition, ℜ
∫
Rd p(ω)e

i⟨ω,tx⟩ dω = K(tx) for
every fixed x, therefore K ′′(tx) = ℜ

∫
Rd ∥ω∥2p(ω)ei⟨ω,tx⟩ dω > 0, hence K(tx) is strongly convex

with respect to t at origin, so is K(x).
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C PROOF OF THEOREM 1.2

Theorem 1.2 (Upper bound). Let K : Rd × Rd → R be a kernel function which is shift-invariant
and analytic at the origin, with feature mapping φ : Rd → H for some feature space H. For
every 0 < δ ≤ ε ≤ 2−16, every d,D ∈ N, D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, if
π : Rd → RD is an RFF mapping for K with target dimension D, then for every x, y ∈ Rd,

Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

Proof. When ∥x−y∥1 ≥ RK , consider the function g(t) = K(t(x−y)). It follows from definition
that g′(0) = 0, g′′(t) = −ℜ

∫
Rd ∥ω∥2∥x − y∥2p(ω)ei⟨ω,t(x−y)⟩ dω < 0, so g(t) strictly decreases

for all t > 0. So 2 − 2K(x − y) ≥ 2 − 2max∥x−y∥1=RK
K(x − y) > 0. We denote t =

2− 2max∥x−y∥1=RK
K(x− y), so by Chernorff bound, when D ≥ 1

2t (ln
1
δ + ln 2), we have:

Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ ε · (2− 2K(x− y))

]
≥ Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ t

]
≥ 1− δ.

When ∥x− y∥1 ≤ RK , by Lemma 3.2, we have 2− 2K(x− y) ≥ c∥x− y∥21. Then we have:

Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ ε · (2− 2K(x− y))

]
≥ Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≤ cε · ∥x− y∥21

]
.

We take r = rK for simplicity of exhibition. Assume δ ≤ min{ε, 2−16}, let k = log(2D2/δ), t =
64k2/r2, is even. By Markov’s inequality and Lemma 3.1:

Pr[|Xi(x− y)| ≥ t∥x− y∥21] = Pr
[
|Xi(x− y)|k ≥ tk∥x− y∥2k1

]
≤ (4k)2k

tkr2k
= 4−k ≤ δ

2D2
.

For simplicity denote Xi(x − y) by Xi, ∥x − y∥21 by ℓ and define X ′
i = 1[|Xi|≥tℓ]tℓ · sgn(Xi) +

1[|Xi|<tℓ]Xi, note that E[Xi] = 0. Then:

|E[X ′
i]| ≤ |E[X ′

i | |X ′
i| < tℓ]| · Pr[|X ′

i| < tℓ] + tℓ · |Pr[X ′
i ≥ tℓ]− Pr[X ′

i ≤ −tℓ]|
= |E[X ′

i | |X ′
i| < tℓ]| · Pr[|Xi| < tℓ] + tℓ · |Pr[Xi ≥ tℓ]− Pr[Xi ≤ −tℓ]|

=
|E[Xi]− E [Xi | |Xi| ≥ tℓ] Pr[|Xi| ≥ tℓ]|

Pr[|Xi| < tℓ]
Pr[|Xi| < tℓ] + tℓ · |Pr[Xi ≥ tℓ]− Pr[Xi ≤ −tℓ]|

= |E[Xi]− E [Xi | |Xi| ≥ tℓ] Pr[|Xi| ≥ tℓ]|+ tℓ · |Pr[Xi ≥ tℓ]− Pr[Xi ≤ −tℓ]|
= |E [Xi | |Xi| ≥ tℓ] Pr[|Xi| ≥ tℓ]|+ tℓ · |Pr[Xi ≥ tℓ]− Pr[Xi ≤ −tℓ]|

where tℓ · |Pr[Xi > tℓ] − Pr[Xi < −tℓ]| ≤ tℓ · Pr[|Xi| > tℓ] ≤ tℓδ/(2D2). The first inequality
is by considering the two conditions |Xi| < tℓ and |Xi| ≥ tℓ, then taking a triangle inequality.
The first and second equations are by definition of Xi, X

′
i . The third equation is a straightforward

computation. The last equation is due to E[Xi] = 0. By Lemma 3.1 for every integer α,

Pr
[
|Xi| ≥ αℓ/r2

]
= Pr

[
|Xi|

√
α/8 ≥ (αℓ/r2)

√
α/8
]
≤ E[|Xi|

√
α/8]

(αℓ/r2)
√
α/8

≤ 4−
√
α/8.

The first equality is straightforward. The first inequality is by Markov. The second equality is by

E[|Xi|
√
α/8] ≤

(
αℓ
4r2

)√α/8
which follows from Lemma 3.1, and a rearrangement of parameters,

where r is the parameter r in Lemma 3.1. Therefore,

|E[Xi | |Xi| ≥ tℓ]|Pr[|Xi| ≥ tℓ] ≤ E[|Xi| | |Xi| ≥ tℓ] Pr[|Xi| ≥ tℓ]

≤ (t+
1

r2
)ℓ · Pr[|Xi| ≥ tℓ] +

ℓ

r2

∑
integer α≥tr2+1

Pr[|Xi| ≥ αℓ/r2]

≤ (t+
1

r2
)ℓ · δ

2D2
+ ℓ

∫ ∞

tr2
4−

√
α/8 dα

≤ ℓ

(
(t+

1

r2
)

δ

2D2
+

16

r2 ln 4
4−tr2/8

)
.
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The first inequality is by the property of absolute value. The second inequality is because we can
divide the event |Xi| ≥ tℓ into |Xi| ∈ [αℓ/r2, (α + 1)ℓ/r2), α = tr2, tr2 + 1, . . . and when
|Xi| ∈ [αℓ/r2, (α+1)ℓ/r2), |Xi| < (α+1)ℓ/r2. The third inequality is by pluging in the previous
bound for Pr[|Xi| ≥ αℓ/r2]. The last inequality is by a calculation of the integral.

By plugging in parameters t, δ, D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, we have
E[|X ′

i|] ≤ δℓ. Note that the Θ(D) hides a constant r. Denote σ′2 as the variance of X ′
i . So

σ′ ≤ 64ℓ/r2 by Lemma 3.1.

Lemma C.1 (Bernstein’s Inequality). Let X1, .., XD be independent zero-mean random variables.
Suppose that |Xi| ≤ M,∀i, then for all positive t,

Pr

[
D∑
i=1

Xi ≥ t

]
≤ exp

(
− t2/2

Mt/3 +
∑D

i=1 E[X2
i ]

)
.

Applying Bernstein’s Inequality to X ′
i ,

Pr

[
D∑
i=1

X ′
i −DE[X ′

i] ≥ (cεℓ/σ′)Dσ′

]
≤ exp

(
− c2ε2D

ctε+ 2σ′2/ℓ2

)
≤max

{
exp

(
−cε2D

2tε

)
, exp

(
− c2ε2D

4σ′2/ℓ2

)}
.

Since D ≥ max{Θ
(
tε−1 log(1/δ)

)
, Θ
(
ε−2 log(1/δ)

)
}, we have Pr

[∑D
i=1 X

′
i ≥ ε(ℓ/σ′)Dσ′

]
≤

δ/2. With 1 − δ
2 probability, every Xi ≤ tℓ,X ′

i = Xi. Therefore, Pr
[∑D

i=1 Xi ≥ D(δ + ε)ℓ
]
≤

δ/2. Combine it together, Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

D PROOF OF THEOREM 3.1

Theorem 3.1 (Generalization of Makarychev et al. 2019, Theorem 3.6). For kernel k-clustering
problem with ℓp2-objective whose kernel function K : Rd × Rd → R is shift-invariant and analytic
at the origin, for every data set P ⊂ Rd, the RFF mapping π : Rd → RD with target dimension
D = Ω(p2 log3 k

α + p5 log3 1
ε + p8)/ε2 satisfies

Pr[∀k-partition C of P : costπp (P, C) ∈ (1± ε) · costφp (P, C)] ≥ 1− δ.

The proof relies on a key notion of (ε, δ, ρ)-dimension reduction from (Makarychev et al., 2019),
and we adopt it with respect to our setting/language of kernel distance as follows.
Definition D.1 (Makarychev et al. 2019, Definition 2.1). For ε, δ, ρ > 0, a feature mapping φ :
Rd → H for some Hilbert space H, a random mapping πd,D : Rd → RD is an (ε, δ, ρ)-dimension
reduction, if

• for every x, y ∈ Rd, 1
1+ε distφ(x, y) ≤ distπ(x, y) ≤ (1 + ε) distφ(x, y) with probability

at least 1− δ, and

• for every fixed p ∈ [1,∞), E
[
1{distπ(x,y)>(1+ε) distφ(x,y)}

(
distπ(x,y)

p

distφ(x,y)p − (1 + ε)p
)]

≤ ρ.

In Makarychev et al. (2019), most results are stated for a particular parameter setup of Definition D.1
resulted from Johnson-Lindenstrauss transform (Johnson & Lindenstrauss, 1984), but their analy-
sis actually works for other similar parameter setups. The following is a generalized statement
of (Makarychev et al., 2019, Theorem 3.5) which also reveals how alternative parameter setups af-
fect the distortion. We note that this is simply a more precise and detailed statement of (Makarychev
et al., 2019, Theorem 3.5), and it follows from exactly the same proof in Makarychev et al. (2019).
Lemma D.1 (Makarychev et al. 2019, Theorem 3.5). Let 0 < ε, α < 1 and θ :=
min{εp+13−(p+1)(p+2), αεp/(10k(1 + ε)4p−1), 1/10p+1}. If some (ε, δ, ρ)-dimension reduction
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π for feature mapping φ : Rd → H of some kernel function satisfies δ ≤ min(θ7/600, θ/k),
(
k
2

)
δ ≤

α
2 , ρ ≤ θ, then with probability at least 1− α, for every partition C of P ,

costπp (P, C) ≤ (1 + ε)3p costφp (P, C),
(1− ε) costφp (P, C) ≤ (1 + ε)3p−1 costπp (P, C).

Proof of Theorem 3.1. We verify that setting D = Θ(log3 k
α + p3 log3 1

ε + p6)/ε2, the RFF map-
ping π with target dimension D satisfies the conditions in Lemma D.1, namely, it is a (ε, δ, ρ)-
dimension reduction . In fact, Theorem 1.2 already implies such π satisfies that for every x, y ∈ Rd,
1

1+ε distφ(x, y) ≤ distπ(x, y) ≤ (1 + ε) distφ(x, y) with probability at least 1 − δ, where
δ = e−cf(ε,D) for some constant c, and f(ε,D) := max{ε2D, ε1/3D1/3}. For the other part,

E
[
1{distπ(x,y)>(1+ε) distφ(x,y)}

(
distπ(x, y)

p

distφ(x, y)p
− (1 + ε)p

)]
=

∫ ∞

ε

((1 + t)p − (1 + ε)p) d

(
−Pr

(
distπ(x, y)

distφ(x, y)
> t+ 1

))
= [−(1 +m)p + (1 + ε)p] Pr

(
distπ(x, y)

distφ(x, y)
> m+ 1

)∣∣∣∣m=+∞

m=ε

+

∫ ∞

ε

p(1 + t)p−1 Pr

(
distπ(x, y)

distφ(x, y)
> t+ 1

)
dt (integration by part)

=

∫ ∞

ε

p(1 + t)p−1 Pr

(
distπ(x, y)

distφ(x, y)
> t+ 1

)
dt

≤
∫ ∞

ε

p(1 + t)p−1e−cf(t,D) dt.

Where the third equality follows by Pr
(

distπ(x,y)
distφ(x,y) > m

)
decays exponentially fast with respect to

m. Observe that for p ≥ 1, D ≥ (p−1)3

8c3 , p(1 + t)p−1e−cD
1
3 t

1
3 /2 decrease when t ≥ ε, and for

D ≥ c(p−1)
ε2 , p(1 + t)p−1e−ct2D/2 decrease when t ≥ ε. Hence for D ≥ max{ (p−1)3

8c3 , c(p−1)
ε2 }, we

have ∫ ∞

ε

p(1 + t)p−1e−cf(t,D)dt ≤ c′
∫ ∞

ε

e−cf(t,D)/2dt < c′′e−cf(ε,D)/2.

In conclusion, by setting D = Θ(log3 k
α + p3 log3 1

ε + p6)/ε2, for δ = e−cf(ε,D), ρ = c′′e−cf(ε,D)

and f(ε,D) = max{ε2D, ε1/3D1/3}, it satisfies δ ≤ min(θ7/600, θ/k),
(
k
2

)
δ ≤ α

2 , ρ ≤ θ. This
verifies the condition of Lemma D.1.

Finally, we conclude the proof of Theorem 3.1 by plugging ε′ = ε/3p and the above mentioned RFF
mapping π with target dimension D into Lemma D.1.

E PROOF OF THEOREM 4.1

Theorem 4.1. Consider ∆ ≥ ρ > 0, and a shift-invariant kernel function K : Rd → R, denoting
its feature mapping φ : Rd → H. Then there exists x, y ∈ Rd that are (∆, ρ)-bounded, such that
for every 0 < ε < 1, the RFF mapping π for K with target dimension D satisfies

Pr[|distφ(x, y)−distπ(x, y)| ≥ ε ·distφ(x, y)] ≥
2√
2π

∫ ∞

6ε

√
D/s

(∆,ρ)
K

e−s2/2 ds−O
(
D− 1

2

)
(2)

where s
(∆,ρ)
K := sup(∆, ρ)-bounded x∈Rd sK(x), and sK(x) :=

1 +K(2x)− 2K(x)2

2(1−K(x))2
.

Proof. Our proof requires the following anti-concentration inequality.
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Lemma E.1 (Berry 1941; Esseen 1942). For i.i.d. random variables ξi ∈ R with mean 0 and
variance 1, let X := 1√

D

∑D
i=1 ξi, then for any t,

Pr[X ≥ t] ≥ 1√
2π

∫ ∞

t

e−s2/2 ds−O(D− 1
2 )

Let Xi(x) := cos⟨ωi, x⟩−K(x), σ(x) :=
√

Var(Xi(x)) =
√

1+K(2(x))−2K(x)2

2 , choose x, y such

that sK(x− y) = s
(∆,ρ)
K . Clearly, such pair of x, y satisfies that (x− y) is (∆, ρ)-bounded. In fact,

it is without loss of generality to assume that both x and y are (∆, ρ)-bounded, since one may pick
y′ = 0, x′ = x− y and still have x′ − y′ = x− y. We next verify that such x, y satisfy our claimed
properties. Indeed,

Pr[|distφ(x, y)− distπ(x, y)| ≥ ε · distφ(x, y)]
≥Pr[|distφ(x, y)2 − distπ(x, y)

2| ≥ 6ε · distφ(x, y)2]

=Pr

[∣∣∣∣∣ 2D
D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≥ 6ε(2− 2K(x− y))

]

=Pr

[∣∣∣∣∣ 1√
D · σ(x− y)

D∑
i=1

Xi(x− y)

∣∣∣∣∣ ≥ 6ε(1−K(x− y)) ·
√
D

σ(x− y)

]

≥−O(D−1/2) +
2√
2π

∫ ∞

6ε(1−K(x−y))
√
D/σ(x−y)

e−s2/2 ds

=−O(D−1/2) +
2√
2π

∫ ∞

6ε

√
D/s

(∆,ρ)
K

e−s2/2 ds,

where the second inequality is by Lemma E.1, and the the second-last equality follows from the
definition of sK(·), and that of x, y such that sK(x− y) = s

(∆,ρ)
K .

F BEYOND RFF: OBLIVIOUS EMBEDDING FOR LAPLACIAN KERNEL WITH
SMALL COMPUTING TIME

In this section we show an oblivious feature mapping for Laplacian kernel dimension reduction with
small computing time. The following is the main theorem.
Theorem F.1. Let K be a Laplacian kernel with feature mapping φ : Rd → H. For every 0 < δ ≤
ε ≤ 2−16, every d,D ∈ N, D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, every ∆ ≥ ρ > 0,
there is a mapping π : Rd → RD, such that for every x, y ∈ Rd that are (∆, ρ)-bounded,

Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

The time for evaluating π is dD poly(log ∆
ρ , log δ

−1).

For simplicity of exhibition, we first handle the case when the input data are from Nd. At the end we
will describe how to handle the case when the input data are from Rd by a simple transformation.
Let N ∈ N be s.t. every entry of an input data point is at most N . Even though input data are only
consisted of integers, the mapping construction needs to handle fractions, as we will later consider
some numbers generated from Gaussian distributions or numbers computed in the RFF mapping.
So we first setup two numbers, ∆′ = poly(N, δ−1) large enough and ρ′ = 1/ poly(N, δ−1) small
enough. All our following operations are working on numbers that are (∆′, ρ′)-bounded. Denote
ρ′/∆′ as ρ0 for convenience.

F.1 EMBEDDING FROM ℓ1 TO ℓ22

Now we describe an isometric embedding from ℓ1 norm to ℓ22. This construction is based on Ka-
hane (1981), in which the first such construction of finite dimension was given, to the best of our
knowledge. Let π1 : N → RN be such that for every x ∈ N, x ≤ N , π1(x)[j] = 1, if j ∈ [1, x] and
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π1(x)[j] = 0 otherwise. Let π(d)
1 : Nd → RNd be such that for every x ∈ Nd, xi ≤ N, ∀i ∈ [d], we

have π
(d)
1 (x) being the concatenation of d vectors π1(xi), i ∈ [d].

Lemma F.1. For every x, y ∈ Nd with xi, yi ≤ N, i ∈ [d], it holds that

∥x− y∥1 = ∥π(d)
1 (x)− π

(d)
1 (y)∥22.

Proof. Notice that for every i ∈ [d], π1(xi) has its first xi entries being 1 while π1(yi) has its first yi
entries being 1. Thus ∥π1(xi)−π1(yi)∥22 is exactly ∥xi− yi∥1. If we consider all the d dimensions,
then by the construction of π(d)

1 , the lemma holds.

F.2 FEATURE MAPPING FOR LAPLACIAN KERNEL

Notice that we can apply the mapping π
(d)
1 and the RFF mapping ϕ from Theorem 1.2 for the kernel

function exp(−∥x−y∥22) which is actually a Gaussian kernel. This gives a mapping which preserves
kernel distance for Laplacian kernel. To be more precise, we setup the mapping to be π = ϕ ◦ π(d)

1 .
The only drawback is that the running time is high, as in the above mapping we map d dimension to
dN dimension. We formalize this as the following theorem.
Theorem F.2. Let K be a Laplacian kernel with feature map φ : Rd → H. For every 0 < δ ≤ ε ≤
2−16, every d,D,N ∈ N, D ≥ max{Θ(ε−1 log3(1/δ)),Θ(ε−2 log(1/δ))}, there exists a mapping
π : Rd → RD s.t. for every x, y ∈ Nd, x, y ≤ N ,

Pr[|distπ(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ.

The time of evaluating π is Õ(dDN).

Proof. Consider the map π defined above. It follows by Lemma F.1 and Theorem 1.2. The running
time is as stated, since we need to compute a vector of length O(N) and then apply the RFF on this
vector.

The time complexity is a bit large, since we need to compute π(d)
1 which has a rather large dimension

dN . Next we show how to reduce the time complexity.

F.3 AN ALTERNATE CONSTRUCTION

We give the following map π′ which has the same output distribution as that of π = ϕ ◦ π(d)
1 . Then

in the next subsection we will use pseudorandom generators to replace the randomness in π′ while
using its highly efficiency in computation to reduce the time complexity. Notice that in computing
ϕ ◦ π

(d)
1 , for each output dimension, the crucial step is computing ⟨ω, π(d)

1 (x)⟩ for some Gaussian
distribution ω ∈ RdN which has each dimension being an independent gaussian distribution ω0.
The final output is a function of ⟨ω, π(d)

1 (x)⟩. So we only need to present the construction for the
first part, i.e. the inner product of an N dimension Gaussian distribution and π1(x1). For the other
parts the computations are the same and finally we only need to sum them up. Hence to make the
description simpler, we denote this inner product as ⟨ω, π1(x)⟩, where now we let x ∈ N, x ≤ N
and ω has N dimensions each being an independent ω0.

Let h be the smallest integer s.t. N ≤ 2h. Consider a binary tree where each node has exactly 2
children. The depth is h. So it has exactly 2h ≥ N leaf nodes in the last layer. For each node v, we
attach a random variable αv in the following way. For the root, we attach a Gaussian variable which
is the summation of 2h independent Gaussian variable with distribution ω0. Then we proceed layer
by layer from the root to leaves. For each u, v being children of a common parent w, assume that
αw is the summation of 2l independent ω0 distributions. Then let αu be the summation of the first
2l−1 distributions among them and αv be the summation of the second 2l−1 distributions. That is
αw = αu + αv with αu, αv being independent. Notice that conditioned on αw = a, then αu takes
the value b with probability Prαu,αv i.i.d. [αu = b | αu + αv = a]. αv takes the value a− b when αu

takes value b.

The randomness for generating every random variable corresponding to a node, are presented as a
sequence, in the order from root to leaves, layer by layer, from left to right. We define αx to be
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the summation of the random variables corresponding to the first x leaves. Notice that αx can be
sampled efficiently in the following way. Consider the path from the root to the x-th leaf. First we
sample the root, which can be computed using the corresponding randomness. We use a variable
z to record this sample outcome, calling z an accumulator for convenience. Then we visit each
node along the path. When visiting v, assume its parent is w, where αw has already been sampled
previously with outcome a. If v is a left child of w, then we sample αv conditioned on αw = a.
Assume this sampling has outcome b. Then we add −a + b to the current accumulator z. If v is a
right child of a node w, then we keep the current accumulator z unchanged. After visiting all nodes
in the path, z is the sample outcome for αx.
Lemma F.2. The joint distribution αx, x = 0, 1, . . . , N has the same distribution as ⟨ω, π1(x)⟩, x =
0, 1, . . . , N .

Proof. According to our construction, each leaf is an independent distribution ω0. Hence if we take
all the leaves and form a vector, then it has the same distribution as w.

Notice that for each parent w with two children u, v, by the construction, αw = αu + αv . Here
αu, αv are independent, each being a summation of l independent ω0, with l being the number of
leaves derived from u. Thus for each layer, for every node u in the layer, αu’s are independent and
the summation of them is their parent. So for the last layer all the variables are independent and
follow the distribution ω0. And for each node w in the tree, αw is the summation of the random
variables attached to the leaves of the subtree whose root is w. So αx is the summation of the first x
leaf variables.

We do the same operation for other dimensions of the output of π(d)
1 and then sum them up to get an

alternate construction π′ for π = ϕ ◦ π(d)
1 .

We note that to generate an αv , we only need to simulate the conditional distributions. The distri-
bution function F of the random variable is easy to derive, since its density function is a product of
three Gaussian density functions, i.e.

Pr
αu,αv i.i.d.

[αu = b | αu + αv = a] = Pr
αu,αv i.i.d.

[αu = b, αv = a− b]/ Pr
αu,αv i.i.d.

[αu + αv = a]

= Pr
αu

[αu = b] · Pr
αv

[αv = a− b]/ Pr
αu,αv i.i.d.

[αu + αv = a],

where αu, αv are Gaussians. To compute F we can use the taylor expansion of its density function
to get an analytical form of F , and the evaluation then can be computed in time tτ = poly(ρ−1

0 ).
Recall that ρ0 is defined to be ρ′/∆′. To sample αu, we use τ = O(log ρ−1

0 ) uniform random bits to
generate a number p uniformly with precision poly(ρ−1

0 ) small enough. Then we use binary search
to figure out an b such that F (b) ∈ [p− ε0, p+ ε0], for some small enough ε0 = poly(ρ0). and the
space used is sτ = poly log(ρ−1

0 ).

We remark that simulating a distribution using uniform random bits always has some simulat-
ing bias. The above lemma is proved under the assumption that the simulation has no bias.
But we can see that the statistical distance between the simulated distribution and the origi-
nal distribution is at most poly(ρ0) = 1/ poly(N), which is small enough by our picking of
∆′ = poly(N, δ−1), ρ′ = 1/poly(N, δ−1). So if we consider simulation bias, then we can show
that for every subset S ⊆ {0, 1, . . . , N}, the joint distribution αx, x ∈ S has a statistical distance
O(|S|ε0) to the joint distribution ⟨ω, π1(x)⟩, x ∈ S. Later we will only use the case that |S| = 2,
i.e. two points. So the overall statistical distance is δ−Θ(1) which does not affect our analysis and
parameters.

F.4 REDUCING THE TIME COMPLEXITY USING PRGS

Next we use a pseudorandom generator to replace the randomness used in the above construction.
A function G : {0, 1}r → {0, 1}n a pseudorandom generator for space s computations with error
parameter εg , if for every probabilistic TM M with space s using n bits randomness in the read-once
manner

|Pr [M(G(Ur)) = 1]− Pr [M(Un) = 1]| ≤ εg.

Here r is called the seed length of G.
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Theorem F.3 (Nisan 1992). For every n ∈ N and s ∈ N, there exists an pseudorandom generator
G : {0, 1}r → {0, 1}n for space s computations with parameter εg , where r = O(log n(log n +
s + log 1

εg
)). G can be computed in polynomial time (in n, r) and O(r) space. Moreover, given an

index i ∈ [n], the i-th bit of the output of G can be computed in time poly(r).

Let G : {0, 1}r → {0, 1}ℓ, ℓ = 2dDNτ be a pseudorandom generator for space s = c1(logN+sτ ),
with εg = δ/2, τ = c2 logN for some large enough constants c1, c2. Again we only need to consider
the construction corresponding to the first output dimension of ϕ◦π1. We replace the randomness Uℓ

used in the construction by output of G. That is, when we need τ uniform random bits to construct
a distribution αv in the tree, we first compute positions of these bits in Uℓ and then compute the
corresponding bits in the output of G. Then use them to do the construction in the same way. We
denote this mapping using pseudorandomness as our final mapping π∗.

Now we provide a test algorithm to show that the feature mapping provided by the pseudorandom
distribution has roughly the same quality as that of the mapping provided by the true randomness.
We denote the test algorithm as T = TK,x,y,ε where x, y ∈ Rd and K is a Laplacian kernel with
feature mapping φ. T works as the following. Its input is the randomness either being Uℓ or G(Ur).
T first computes distφ(x, y). Notice that T actually does not have to compute φ since the distance
can be directly computed as

√
2− 2K(x, y). Then T (G(Ur)) computes distπ∗(x, y) and test

|distπ∗(x, y)− distφ(x, y)| ≤ εdistφ(x, y).

Notice that when the input is Uℓ, then this algorithm T is instead testing

|distπ′(x, y)− distφ(x, y)| ≤ εdistφ(x, y).

Recall that π′ is defined in the previous section as our mapping using true randomness.

Next we consider using T on true randomness.
Lemma F.3. Pr[T (Uℓ) = 1] ≥ 1− δ/2.

Proof. By Lemma F.2, distπ′(x, y) = distπ(x, y). By Theorem 1.2 setting the error probability to
be δ/2, we have

Pr[|distπ(x, y)− distφ(x, y)| ≤ εdistφ(x, y)] ≥ 1− δ/2.

Notice that the event T (Uℓ) = 1 is indeed |distπ′(x, y)− distφ(x, y)| ≤ εdistφ(x, y). Hence the
lemma holds.

Now we show that T is actually a small space computation.
Lemma F.4. T runs in space c(logN + sτ ) for some constant c and the input is read-once.

Proof. The computing of distφ(x, y) is in space O(logN), since x, y ∈ N, x, y ≤ N and the kernel
function K can be computed in that space. Now we focus on the computation of π′. We claim that by
the construction of αx in section F.3, π′ can be computed using space O(sτ +logN). The procedure
proceeds as the following. First it finds the path to the x-th leaf. This takes space O(logN). Then
along this path, for each node we need to compute a distribution αv . This takes space O(sτ ). Also
notice that since the randomness is presented layer by layer, the procedure only needs to do a read-
once sweep of the randomness. T needs to compute π′ for both x and y, but this only blow up the
space by 2. So the overall space needed is as stated.

Finally we prove our theorem by using the property of the PRG.

Proof of Theorem F.1. We first show our result assuming x, y ∈ N, x, y ≤ N for an integer N . We
claim that π∗ is the mapping we want. By lemma F.3, Pr[T (Uℓ) = 1] ≥ 1 − δ/2. By Lemma F.4,
T runs in space O(logN + sτ ) and is read-once. As G is for space c(logN + sτ ) for some large
enough constant c,

|Pr[T (G(Ur)) = 1]− Pr[T (Uℓ) = 1]| ≤ εg,

where seed length r = O(log(dDNsτ/εg) log(dDNτ)). Notice that T (G(Ur)) = 1 is equivalent
to |distπ∗(x, y)− distφ(x, y)| ≤ ε · distφ(x, y). Thus

Pr[|distπ∗(x, y)− distφ(x, y)| ≤ ε · distφ(x, y)] ≥ 1− δ/2− εg ≥ 1− δ.
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The running time is computed as the following. We only need to consider one dimension of the
input data and one output dimension of the mapping, since others can be computed using the same
time. So actually we consider the time for sampling αx. For αx, recall that we visit the path from
the root to the x-th leaf. We don’t have to compute the whole output of G, but instead only need
to use some parts of the output. For sampling each variable αv along the path, we use τ bits in the
output of G. By Theorem F.3, the computing of each random bit in G’s output, given the index
of this bit, needs time poly(r). Locating the τ bits of randomness for generating αv needs time
O(logN). Generating each of the Gaussian random variable using these random bits needs time tτ .
Summing up these variables takes less time than sampling all of them. After sampling, the cosine
and sine function of the RFF can be computed in time poly(1/ρ0) = poly(logN, δ−1). There are d
input dimensions and D output dimensions. So the total time complexity is dD poly(logN, δ−1).

For the case that x, y ∈ Rd, we only need to modify the embedding π
(d)
1 in the following way. We

first round every entry so that their decimal part is now finite. The rounded parts are small enough
(e.g. dropping all digits after the 10 log ρ−1-th position to the right of the decimal point.) such
that this only introduce some small additive errors. Then we shift all the entries to be non-negative
numbers by adding a common shift s. Then we multiply every entry of x by a common factor t s.t.
every entry now only has an integer part. Notice that t and s can both be chosen according to ∆

ρ ,
for example t = s = O(∆ρ ). And we can take N to be poly(∆ρ ). Then we apply π1, and multiply a

factor
√
1/t. Denote this map as π̃1. Notice that this ensures that ∥x−y∥1 = ∥π̃(d)

1 (x)− π̃
(d)
1 (y)∥22.

Then we can apply the same construction and analysis as we did for the above natural number case.
This shows the theorem.

G REMARKS AND COMPARISONS TO CHEN & PHILLIPS (2017)

Our upper bound in Theorem 1.2 is not directly comparable to that of Chen & Phillips (2017) which
gave dimension reduction results for Gaussian kernels. Chen & Phillips (2017) showed in their
Theorem 7 a slightly improved target dimension bound than ours, but it only works for the case of
∥x− y∥ ≥ σ, where σ is the parameter in the Gaussian kernel1. For the other case of ∥x− y∥ < σ,
their Theorem 14 gave a related bound, but their guarantee is quite different from ours. Specifically,
their target dimension depends linearly on the input dimension d. Hence, when d is large (e.g.,
d = log2 n), this Theorem 14 is worse than ours (for the case of ∥x− y∥ < σ.

Finally, we remark that there might be subtle technical issues in the proof of [CP17]. Their The-
orem 7 crucially uses a bound for moment generating functions that is established in their Lemma
5. However, we find various technical issues in the proof of Lemma 5 (found in their appendix).
Specifically, the term E[e−s 1

2ω
2∥∆∥2

] in the last line above “But” (in page 17), should actually be
E[es 1

2ω
2∥∆∥2

]. Even if one fixes this mistake (by negating the exponent), then eventually we can
only obtain a weaker bound of lnM(s) ≤ s2

4 ∥∆∥4 + s∥∆∥2 in the very last step, since the term
−s∥∆∥2 is negated accordingly. Hence, it is not clear if the claimed bound can still be obtained in
Theorem 7.

1This condition is not clearly mentioned in the theorem statement, but it is indeed used, and is mentioned in
one line above the statement in Chen & Phillips (2017).
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