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Abstract

Existing "locate-then-edit" approaches, which
identify and perturb key parameters, often
struggle in sequential editing scenarios, lead-
ing to overfitting, catastrophic forgetting,
or model collapse. This paper introduces
the Precise Neuron-Level Knowledge Edit-
ing (PNKE) framework, designed for efficient,
low-interference knowledge updates via fine-
grained neuron-level interventions. PNKE em-
ploys causal attribution to pinpoint background
and trigger neurons tied to target knowledge,
followed by an entropy-guided sparse masking
mechanism to select a critical neuron subset
for targeted parameter updates. Our PNKE
ensures editing precision while dynamically
adjusting sparsity to maintain model stability
during lifelong editing. In extensive lifelong
editing experiments, PNKE outperforms state-
of-the-art methods, achieving an editing suc-
cess rate (Rel.) of 0.936, generalization (Gen..)
of 0.891, and locality (Loc.) of 0.952 on bench-
marks like ZsRE and CounterFact. After 5,000
edits, PNKE sustains robust performance on
tasks such as MMLU and GSMS8K, underscor-
ing its stability and practical utility for contin-
uous knowledge integration in LLMs.

1 Introduction

Large-scale language models (LLMs)(LLAMA,
2024; Devlin et al., 2019; Brown et al., 2020;
Vaswani et al., 2017) exhibit remarkable capabil-
ities in knowledge storage and retrieval(Petroni
et al., 2019; Guu et al., 2020), but they often gen-
erate erroneous or outdated information(Gautam
et al., 2024; Ji et al., 2023), known as “hallucina-
tions”. To address this issue, model editing tech-
niques have emerged to enable continuous and dy-
namic updates, corrections, or removal of sensitive
content from model knowledge(Cao et al., 2021;
Ji et al., 2023). Among existing model editing
methods, a prominent paradigm is “locate-then-
edit(Mitchell et al., 2021; Meng et al., 2022a; Dai

et al., 2021; Fang et al., 2025)”. This approach first
identifies key parameters W associated with spe-
cific knowledge using techniques like causal trac-
ing, then modifies these parameters by introducing
a perturbation A to update the stored knowledge.
The primary objective is to minimize the output
error on the knowledge to be updated, denoted as
e1. Many studies further incorporate the output
error on knowledge to be retained, eq, into the opti-
mization objective to preserve the model’s original
performance. The optimization goal can be ex-
pressed as:mina (||[(W + A) Ky — V|| + A|(W +
A)Ky—Vpl|?), where K1 and V] represent the key
and value matrices for the knowledge to be updated,
and K and V}) denote the retained knowledge.
Despite some success in knowledge updating,
these methods face significant challenges in practi-
cal applications, particularly in sequential editing
scenarios(Ma et al., 2025; Zhou et al., 2024). To
prioritize update success (i.e., minimizing e;), ex-
isting studies often assign greater weight to ey,
with insufficient control over eg. This strategy
makes edited LLMs prone to overfitting the up-
dated knowledge, leading to a distribution shift in
the model’s internal hidden layer representations.
As editing iterations accumulate, this overfitting
gradually erodes the model’s ability to retain orig-
inal knowledge and generate coherent sentences,
potentially resulting in catastrophic model forget-
ting or even model collapse(Wang et al., 2023; Shi
et al., 2025). As reported by AlphaEdit(Fang et al.,
2025), even projecting the perturbation A onto
the null space of the retained knowledge Ky, i.e.,
A'Ky =0, toensure (W + A" Ky = WKy =V,
the perturbation A’ applied across entire layers or
parameter blocks W remains coarse-grained.
Further research reveals that knowledge rep-
resentations in Transformer models are highly
complex(L6pez-Otal et al., 2025; Zhang et al.,
2025). Based on cross-task activation patterns,
feed-forward network (FFN) neurons can be cat-



egorized into general neurons Ny, (broadly acti-
vated), domain-specific neurons Ny, (activated
in a specific domain D), and task-specific neurons
Niask (activated only for a specific task t). Dif-
ferences in neuron activation Act(n;, task;) > 6
across tasks indicate that knowledge is sparsely
concentrated in a small set of critical neurons, ex-
hibiting regionalized co-activation patterns. Build-
ing on this, we further abstract related neurons into:
Background neurons Ny,: Stably activated under
semantically similar prompts Pk, with activation
Agtaple, primarily responsible for knowledge re-
trieval. Trigger neurons Ny.;,: Exhibit strong
local responses to specific prompts Pspe., with
high attribution weights Attr(Nipig, Pspec). This
finding underscores the necessity of fine-grained
interventions tailored to different neuron func-
tions, providing a theoretical foundation for pre-
cise knowledge editing. To address these chal-
lenges and achieve more precise interventions,
this paper proposes the Precise Neuron-Level
Knowledge Editing (PNKE) framework. The
framework first tackles the representation con-
flicts caused by traditional coarse-grained editing
by using causal attribution(Chattopadhyay et al.,
2019; Sundararajan et al., 2017a,b) fequsai,ttr tO
precisely identify the set of background and trig-
ger neurons critical to specific knowledge Kiqurgets
forming an initial causal neuron set N gysq1 =
fcausalattr (Ktarget’ {Nbga Ntrig})- Next, PNKE
innovatively employs an entropy-based dynamic
sparse masking mechanism Mepropy tO select
the most critical neuron subset Nipitical =
Mentropy(Ncausal) from Ncausal’ applylng up-
dates AW piticqr Only to parameters We,izicar asso-
ciated with N_p;1;cq;- This ensures precision and
minimal interference at the neuron level. Finally,
the adaptive mask My ropy dynamically adjusts
sparsity based on the entropy characteristics of neu-
ron importance distributions(Frankle and Carbin,
2019), optimizing the editing scope and supporting
robust lifelong editing with reduced impact on the
model’s general capabilities. Comprehensive life-
long editing experiments demonstrate that PNKE
outperforms state-of-the-art methods in both edit-
ing success accuracy and general capability preser-
vation for knowledge integration in LLMs.

Our main contributions are: 1) A causal attribu-
tion function feausal attr that identifies background
Nyg and trigger Ny.;q neurons for Kiarget, yield-
il’lg Neausal = fcausal_attr(Ktarget7 {Nb97 Nt’rig}>’
and eliminating coarse-grained conflicts; ii)

An entropy-guided mask Moentropy that selects
Neritical = Mentropy(Ncausal) and updates only
Weritical, €nsuring neuron-level precision; iii) Dy-
namic sparsity via neuron-importance entropy,
which tunes Mentropy to balance lifelong editing
robustness and overall performance.

2 Related Work

Model Editing Paradigms. Current model editing
primarily follows the “locate-then-edit” paradigm.
MEND (Mitchell et al., 2021) trains a meta-editor
network to generate parameter updates. ROME
(Meng et al., 2022b) identifies the storage loca-
tion of knowledge in the feed-forward network
(FFN) (Hendrycks and Gimpel, 2023)layers of
Transformer models, directly modifying critical
weight matrices. MEMIT (Meng et al., 2023) ex-
tends ROME to support batch editing of multiple
knowledge entries. KN (Dai et al., 2022) treats
knowledge as low-rank updates to maintain coher-
ence between pre- and post-edit knowledge.

Editing Granularity and Representation Con-
flicts. The issue of representation conflicts caused
by coarse-grained editing has gained attention. Al-
phaEdit (Fang et al., 2025) identifies representa-
tion conflicts in retaining knowledge, proposing
to project parameter perturbations onto the null
space of retained knowledge and adopting a batch
strategy with batch size 100. MeLLo (Zhong et al.,
2023) uses a memory matrix to store edit infor-
mation. CALM (Tessler et al., 2023) improves
representations via adversarial learning.

Neuron Functionality and Knowledge Repre-
sentation. Studies on the functionality of neurons
within Transformer models provide a theoretical
foundation for fine-grained editing. (Geva et al.,
2021) finds that FFN neurons can be categorized
into general, domain-specific, and task-specific
types based on activation patterns. (Meng et al.,
2023) demonstrates that knowledge exhibits sparse
distribution characteristics in models. (Nanda et al.,
2023) and (Olsson et al., 2022) further reveal the hi-
erarchical organization of knowledge embeddings.

3 Methodology

Problem Definition. A language model can be
viewed as a function fy(P) — O. Model edit-
ing seeks to learn a parameter perturbation A such
that the updated model fj1 A produces the de-
sired knowledge V7 for specific inputs P,4;;, while
maintaining original performance Vj on retained
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Figure 1: Overview of the PNKE framework. Left: PNKE performs neuron-level editing by targeting background
and trigger neurons, offering higher precision than layer-level methods (e.g., ROME, MEMIT, AlphaEdit). Right:
Under lifelong editing (T = 10 to 2000), PNKE outperforms baselines on MMLU and CommonsenseQA, demon-

strating superior robustness and generalization.

knowledge K. Traditional methods often opti-
mize the following objective, where W refers to
parameters of relevant layers (e.g., FFN layers):

L(A) = (W + A) Ky = Vil +A (W + A)Ko — Vollr

LP’V‘S serve
(preserve loss)

Ledit
(edit loss)

M
Applying A to the entire W or its coarse-grained
sub-blocks introduces representation conflicts,
overfitting, and catastrophic forgetting. As in Fig-
ure 2, PNKE addresses these challenges via:
Causal Neuron Identification. To identify neu-
rons critical to specific knowledge Ky ger (trig-
gered by prompt Pj..), we distinguish and iden-
tify two neuron types: Background Neurons (Nyg):
These neurons exhibit stable, above-baseline ac-
tivation Act(n;,p) across multiple semantically
similar prompts Py, = {p(sgn, A pgzln)%} Let
N denote the set of all neurons in a layer. The
background neurons are:

Nig(Ky) = § ni € N | EpeplAct(ni, p)] > OpgAstdpe p(Act(ng, p)) <es

stable act.

2)
where 0y, ¢+ and €4qp7¢ are the activation and sta-
bility thresholds, respectively.

Trigger Neurons (NV.,): These neurons
show strong activation for the specific prompt

suff. avg. act.

Pqpec and have high causal attribution weights
Attr(ni, Pspec) (e.g., computed via Integrated Gra-
dients). They are defined as:

Nlrig(l{mryel) = {711' eEN ‘ Act(ni, pspec) > (')Lrig,acl A Attr(n,, Pspm:) > euu,r}

strong activation for specific prompt high attribution weight

(3)
where 0yg,ct and 044, are the activation and attri-
bution thresholds, respectively. The initial causal
neuron set N qq,sq1 recte is formed as:

Ncausal(Ktarget) = fcausalfattr(Ktargety {Nbg, Ntrig})
= Nbg(Ktarget) U Ntrig(Ktarget)
4)
Critical Neuron Selection (Mentropy). To fur-
ther focus on the most essential neurons, PNKE
introduces a dynamic sparse masking mechanism
Mentropy to select Ncritical from Ncausal~
Neuron Importance Quantification. For each
n; € Neausal, the importance score s; is:

s; = o - norm(Act(n;, Pspee)) + (1 — ) - norm(Attr(n;, Ppec))

attribution contribution

(&)
where norm(-) is a normalization function, and
a € [0, 1] is a balancing coefficient.

Entropy of Importance Distribution. Based on
{si}, a normalized probability distribution Pg =
{pi = si/ Zj sj | ni € Negusal} is constructed.

activation contribution



Q : Ineukaryotic cells, during
which phase of the cell cycle
does DNA replication occur?

|

Transformer 1

Transformer 2

Transformer 3

Transformer 4

Before: ----- After: -----
| Answerl: | | Answer2 |
i Glphase X | i Sphase V1

- STAG 1:Initial Neuron Set -------------- )

(1) (@)
sem ‘sem

(m-1) (m)
sem sem

n Neurons

Sufficient Mean Activationv”
ON, — !
Activation Stability '
Strong Activation under '
ON..,— {P<sub>spec</sub> v }.
High Attribution Weight v !

- STAG 2: Importance Filtering ----------- )

|Candidore Neuron SetI < a

1-q* Attribution Contribution

Critical Neuron Set l

)
PiT Inportance Score

{P}a

*  Activation Contribution

<
o O 0O

Figure 2: Overview of the PNKE framework, illustrating the three core steps: causal neuron identification, critical

neuron selection, and targeted neuron parameter editing.

Its entropy is: H(Ps) = — >, cn. pilogp;
H (Pg) reflects the concentration of importance:
low entropy indicates importance concentrated in
a few neurons, while high entropy suggests a more
dispersed distribution.

Dynamic Sparse Selection. Meptropy leverages
H (Ps) to dynamically adjust the selection strategy.
A dynamic threshold 7y is set as a percentile of

the importance scores {s;}jen.,, .., as:
i = Percentile {55} jeNeausar q(H(Ps))
— N——

importance scores of causal neurons entropy-determined percentile

(6)

where ¢(H(Ps)) is a function of entropy, e.g.,

q(H) = Qbase+7'(10g |Ncausal‘_H(PS))' Lower

entropy (more concentrated importance) results in

a higher ¢(H), leading to a higher 7z and thus

fewer, more elite neurons selected. The critical
neuron subset is:

Ncm'tz'cal = Mentropy (Ncausah {Sz}) (7)
= {nz S Ncausal | S; > TH}
This enables PNKE to adaptively determine the
optimal editing granularity, ensuring effective edits
while minimizing redundant perturbations.
Targeted Neuron Parameter Editing. After
identifying N ,itical» PNKE modifies only the pa-
rameters W,.;;cq; directly associated with these
neurons. For a Transformer’s FFN layer (with
weights W;,, € Rémoderxdss T, € R f*dmodet;

biases b;n, bout), if Nepiticar corresponds to in-
termediate FFN neurons, W ,;ticq; includes the
columns of W;,, and elements of b;,, corresponding
to Neritical, and the rows of W,,,; corresponding
to Neritical- Mmask matching the dimensions of
the FFN parameters Wrp v is constructed with 1s
only at positions associated with N_,izical:

1 if param_idx is associated with Nepitical

(8)

The parameter update A pppy is constrained to

the subspace defined by this mask: A%y =

AppN © Mpask. The optimization objective from

Equation (1) is reformulated in PNKE to solve for
A rry under this constraint:

(]\'Im(zsk)para,m,j,dm = {O otherwise

min L
AFFN

AFFN ®© Mmask: (9)
L ———

update applied only to critical parameters

Alternatively, existing editing algorithms can
be applied to the significantly smaller parameter
subspace via W,;;icq1- For instance, if editing is
treated as modifying Wy criticar (tows of Wy,
corresponding to Nep;ticqr), With activations of
Neriticqr On edit samples K and retain samples K
denoted as hi criticar and ho critical, T€SPECtively,
the optimization problem becomes:

. 1112
,mln H(Wout,critical + AWout,critical)hl,critical - Vi H
AWout,critical

edit loss for critical activations
112
+A ” (Wout,critical + AWout,critical)}I’O,critical - VE) H }

preserve loss for critical activations

(10)



where VY, Vjj are the target outputs or their changes
at the W,,; layer. This targeted editing signifi-
cantly reduces interference with the model’s over-
all functionality, enhancing edit robustness and the
long-term maintainability of model knowledge.

4 Experiments

Evaluation Benchmarks. We adopt two stan-
dard benchmark datasets: CounterFact(Meng
et al., 2022b), for evaluating factual edits, and
ZsRE(Levy et al., 2017), for relational question-
answering tasks. Following prior studies, we re-
port results using three key metrics: Rel. (Edit
Reliability)(Hartvigsen et al., 2023), which mea-
sures whether the knowledge update is success-
ful; Gen. (Generalization)(Zhang et al., 2024),
which evaluates the model’s ability to extend ed-
its to semantically equivalent expressions; and
Loc. (Locality)(Zhang et al., 2024), which assesses
whether irrelevant knowledge remains unaffected.
To further evaluate the generalization capability of
the edited model, we incorporate five representa-
tive downstream tasks covering mathematical rea-
soning, question answering, and code generation:
MMLU(Hendrycks et al., 2021), GSM8K(Cobbe
et al.,, 2021), CommonsenseQA(Talmor et al.,
2019), BBH (Zero-shot)(Suzgun et al., 2023), and
HumanEval(Chen et al., 2021).

Baseline Methods. We compare our PNKE
against a range of representative baselines, cov-
ering both parameter-modification and parameter-
preservation paradigms. Specifically, these in-
clude Fine-Tuning (FT)(Zhu et al., 2020), Knowl-
edge Neurons (KN), ROME, PMET(Li et al.,
2023), MEMIT, WISE(Wang et al., 2024), and
AlphaEdit. All methods are evaluated on the
LLaMA3-8B-Instruct(LLAMA, 2024) model. Se-
quential edits are performed at pre-defined steps
T = {10,100, 500, 1000, 1500, 2000, 2500}, and
edit success rate and generalization performance
are assessed at each stage.

Generalization After Knowledge Editing. As
shown in Table 1, experimental results reveal
that as the number of edits increases, the perfor-
mance of existing methods tends to degrade signif-
icantly. Specifically, FT nearly fails on tasks such
as GSMS8K and HumanEval after merely 100 edits.
Similarly, ROME and MEMIT experience substan-
tial performance drops on benchmarks like MMLU
when the number of edits exceeds 17" = 500. Al-
though AlphaEdit, currently one of the strongest

baselines, mitigates early-stage degradation by
leveraging a null-space projection mechanism, it
still relies on hierarchical-level parameter updates.
This reliance inevitably accumulates distributional
shifts over time, leading to instability and compro-
mised generalization in long-horizon deployment.
By contrast, our PNKE demonstrates significantly
better robustness and generalization in the multi-
round editing scenario, thanks to our fine-grained
neuron-level editing strategy.

Do Sparser Neuron-Level Updates Improve
Editing Effectiveness? As shown in Table 2,
we conduct a systematic evaluation on the ZsRE
dataset. The experiment is based on a randomly
sampled set of 2,000 instances, where edits are
applied sequentially with a batch size of 1. Addi-
tional results on the CounterFact dataset, including
case studies and performance trends across editing
steps, are provided in Appendix C. The results
indicate that traditional methods (e.g., FT, KN,
and ROME) experience noticeable performance
degradation even at the early stages of continual
editing. Notably, AlphaEdit initially suppresses
interference in non-target regions through its null-
space projection mechanism. Nevertheless, under
large-scale sequential editing, its performance be-
comes unstable. At T" = 2000, its rewrite accu-
racy drops to 0.319, revealing a robustness bottle-
neck in maintaining effectiveness over time. In
contrast, our PNKE consistently outperforms all
baselines across key metrics, including rewrite
success (Rel.), generalization (Gen.), and locality
(Loc.). This demonstrates PNKE’s ability to bal-
ance edit precision, semantic generalization, and
distributional stability in continual knowledge edit-
ing. The superior performance can be attributed to
PNKE’s attribution-guided sparse masking mech-
anism, which accurately identifies a minimal set
of neurons highly relevant to the target knowledge
and confines updates within this subspace. This
design effectively mitigates distributional drift and
enables efficient, low-interference internal repre-
sentation updates.

Adaptive Neuron Masking Enhances Edit
Success and Stability. We systematically evaluate
the performance of four neuron selection strategies
for our PNKE: (1) using only trigger neurons; (2)
using only background neurons; (3) a fixed-ratio
activation selection strategy; and (4) an entropy-
based dynamic masking strategy. As shown in Fig-
ure 3, while all four strategies are capable of pre-
serving the model’s generalization ability to some



Table 1: Performance comparison across five downstream tasks under lifelong editing. PNKE consistently
outperforms all baselines in generalization and editing success, especially under long-horizon interventions.

Method T =100 T =500 T =1000
mmlu  gsm8k commonsense_qa  bbh  humaneval | mmlu gsm8k commonsense_qa  bbh  humaneval | mmlu gsm8k commonsense_qa  bbh  humaneval

FT 0.376 0 0.465 0.009 0 0.288 0 0.272 0.002 0 0.246 0 0.213 0.002 0

KN 0.2541 0 0.1941 0 0 0.252 0 0.204 0.0003 0 0.252 0 0.204 0.0002 0
ROME 0.2459 0 0.208 0.002 0 0.241 0 0.201 0.001 0 0.235 0 0.200 0.001 0
MEMIT 0.256 0 0.188 0.002 0 0.249 0 0.196 0 0 0.246 0 0.208 0 0
PMET 0.2319 0 0.18 0.149 0.329 0.2439 0 0.186 0.143 0.329 0.24 0 0.195 0.032 0.197
WISE 0.639  0.761 0.76 0.446 0.28 0.514 0431 0.692 0.394 0.145 0342 0.221 0.574 0.256 0.086
AlphaEdit | 0.638  0.762 0.751 0.441 0.31 0.607  0.724 0.71 0.414 0.304 0532 0.251 0.623 0.323 0.195
PNKE 0.642  0.758 0.755 0.4461 0.31 0.637  0.747 0.736 0.4407 0.286 0.623  0.737 0.722 04309  0.2926
Method T =1500 T =2000 T =2500

mmlu  gsm8k commonsense_qa  bbh  humaneval | mmlu gsm8k commonsense_qa  bbh  humaneval | mmlu gsm8k commonsense_qa  bbh  humaneval

FT 0.279 0 0.23 0.0001 0 0.258 0 0.28 0.0003 0 0.223 0 0.014 0 0

KN 0.228 0 0.185 0 0 0.231 0 0.18 0 0 0.213 0 0.096 0 0
ROME 0.239 0 0.209 0.0002 0 0.242 0 0.196 0.0001 0 0.212 0 0.164 0 0
MEMIT 0.246 0 0.2 0 0 0.246 0 0.200 0 0 0.206 0 0.173 0 0
PMET 0.255 0 0.197 0.0005 0.186 0.255 0 0.197 0 0.164 0.196 0 0.154 0 0.142
WISE 0.292  0.089 0.244 0.132 0 0.231 0 0.163 0 0 0.192 0 0.126 0 0
AlphaEdit | 0.433 0 0.199 0.111 0 0.339 0 0.178 0.016 0 0.214 0 0.124 0 0
PNKE 0.618  0.717 0.7 0.4139 0.274 0.611  0.695 0.689 0.411 0.25 0.605  0.681 0.647 0.382 0.231

Table 2: Comparison of Rel., Gen., and Loc. metrics on ZsRE under varying editing steps (7" = 10 to 2000), where

PNKE consistently outperforms all baselines.

Step T=10 T =100 T =500 T =1000 T =1500 T =2000
Metric Rel. Gen. Loc. Rel. Gen. Loc. ‘ Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc.
FT 0.183 0.033 0.012 | 0.166 0.133  0.033 | 0.119 0.108 0.004 | 0.128 0.102 0.016 | 0.119 0.102 0.015 | 0.072 0.059 0.006
KN 0.133  0.133  0.658 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROME 0975 0.975 0.637 | 0.103 0.085 0.025 | 0.0053 0.006 0.022 | 0.0155 0.0136 0.0158 | 0.0368 0.0354 0.0218 | 0.0093 0.0086 0.02
MEMIT 0.0346 0.0214 0.0064 | 0.0316 0.0216 0.0073 | 0.0438 0.0438 0.031 | 0.0434 0.034  0.032 | 0.0438 0.0438 0.034 | 0.0442 0.0442 0.033
PMET 02333 0.183  0.9125 | 0.0198 0.0165 0.0529 0 0 0 0 0 0 0 0 0 0 0 0
WISE 0.833  0.7833 1 0.7081 0.6748 1 0.4622  0.4478 1 0.4115 0.3877 1 0.3237  0.3079 1 0.3657 0.3564 1
AlphaEdit | 0.996 0952  0.853 | 0.995 0.947 0.86 0957 0.874 0.713 | 0.926 0.84 0.58 0.642 0539 0.142 | 0319 0283 0.058
PNKE 0972 0.874 0942 | 0966 0865 0921 0955 0.842 0.823 0.95 0854 0.769 | 0942 0.857 0.741 0936 0852 0.705

extent during multi-round editing, demonstrating
the potential of fine-grained neuron-level editing
in reducing interference, they differ significantly in
terms of editing effectiveness. The entropy-based
dynamic masking strategy consistently achieves
superior performance throughout the editing pro-
cess. Even at T' = 2000, it maintains a rewrite
accuracy as high as 0.936, demonstrating both
high editing precision and strong resistance to in-
terference. This suggests that the entropy-guided
adaptive masking strategy dynamically balances
the selection between background and trigger neu-
rons, effectively focusing updates on the subspace
most relevant to the target knowledge. As a re-
sult, it not only ensures high editing precision,
but also significantly enhances model stability and
generalization—particularly well-suited for appli-
cations such as Lifelong Knowledge Editing, where
long-term reliability is critical.

The Layerwise Distribution of Knowledge
Neurons. As illustrated in Figure 4, we conduct a
systematic analysis of the distributional character-
istics of background neurons and trigger neurons
across layers 0 to 31 in the LLaMA3 model. This
analysis aims to uncover the structural-functional
roles and knowledge representation mechanisms
embedded across the model hierarchy. The re-
sults reveal a clear layerwise aggregation pattern
among background neurons, with a strong con-
centration in higher layers. Notably, layer 31 ac-

counts for the highest proportion of background
neurons, reaching a peak of 0.7682, with an av-
erage activation rate of 0.8370. These findings
suggest that the top layer plays a central role in en-
coding high-level semantics and integrating global
knowledge—consistent with theoretical perspec-
tives that view upper layers as the core for semantic
abstraction and conceptual integration. In contrast,
Trigger neurons exhibit a more uniform distribu-
tion across layers, with a slight reduction in the
deeper layers. This trend may indicate a dimin-
ished selectivity in higher layers, where the sen-
sitivity of trigger neurons to specific knowledge
stimuli declines as semantic abstraction intensifies,
thus relying more on the localization capacity of
mid- to low-level layers. More critically, we ob-
serve that the overlap between background and
trigger neurons reaches a local maximum in the
middle layers, particularly between layers 10 and
20. This pattern implies that the intermediate lay-
ers may serve as a “fusion hub” for knowledge
representation, simultaneously integrating general
knowledge signals and responding to specific stim-
uli. Such functional convergence aligns with prior
studies that identify intermediate layers in Trans-
former models as crucial transition zones bridging
local semantics and global abstractions, character-
ized by high representational plasticity and strong
knowledge coupling capabilities. It is important to
note that we do not perform full-scale editing on
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Figure 3: Performance of different neuron selection strategies at 7' = 1000 and 7" = 2000 across five downstream
tasks. Entropy-based dvnamic masking achieves the best balance between precision and generalization.
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Figure 4: Distribution of neuron roles across selected layers of LLaMA3. Background and trigger neurons are

broadly distributed, with increasing overlap and activation density in deeper layers, particularly near layer 31.

all potentially relevant neurons. Instead, we adopt
a sparse masking mechanism based on attribution
and activation, dynamically selecting a minimal set
of neurons highly relevant to the target knowledge.
This strategy ensures precise editing with minimal
interference, significantly enhancing the specificity
of knowledge injection and suppressing redundant
perturbations to the global representational space.

Attribution Sensitivity Reveals Tradeoffs in
Precision and Generalization. To evaluate the
impact of hyperparameter configurations on the
performance of knowledge editing, we conduct a
sensitivity analysis focusing on two key factors.
The first concerns the boundary conditions of neu-
ron activation, specifically, the threshold settings
for background and trigger neurons. The second
involves the dynamic thresholding strategy used in

the entropy-based selection mechanism for identi-
fying critical neurons. Specifically, we adopt the
edit reliability metric (Rel.) on the ZsRE dataset as
the primary evaluation criterion, systematically an-
alyzing how variations in threshold configurations
affect the success rate of knowledge injection, as
shown in Figure 5.

Regarding the activation boundaries, we system-
atically test editing success and generalization per-
formance under varying threshold configurations.
Results indicate that moderately relaxing the ac-
tivation range (e.g., setting the average activation
threshold for background neurons to 0.2-0.3, the
stable activation threshold to 0.75-0.8, and using
0.2-0.3 for both strong activation and high attri-
bution weight thresholds for trigger neurons) sig-
nificantly improves the success rate of knowledge
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Figure 5: Rewrite accuracy under different activation
threshold settings across four neuron types.

injection. This suggests that activating a broader
set of neurons helps cover representations more rel-
evant to the target knowledge. However, expanding
the editing scope also introduces trade-offs. In cer-
tain configurations, we observe slight declines in
generalization ability and local consistency (e.g.,
rewrite accuracy and locality metrics). This indi-
cates that involving too many marginal neurons
may introduce irrelevant signals, potentially under-
mining the model’s original knowledge structure.
These findings align with our previous observa-
tions on the hierarchical distribution of knowledge
neurons—while a wider activation range facilitates
editing success, it also increases the risk of inter-
ference and conflicts during editing.

To enhance the precision and effectiveness
of neuron selection, we incorporate a dynamic
entropy-based masking mechanism. By increas-
ing the entropy scaling factor, we amplify the con-
trast between critical and non-critical neurons in
terms of attribution scores. Experimental results
show that moderate increases in this factor improve
the mask’s selection accuracy, boosting editing ef-
ficiency while minimizing unnecessary perturba-
tions.

Additionally, we find that model scale plays a
significant role in determining the demand for acti-
vation strategies: smaller models typically require
a higher proportion of activated neurons to ensure
editing effectiveness, whereas larger models main-
tain strong performance even under lower activa-
tion ratios. This observation suggests a synergis-
tic relationship between model capacity and mask
sparsity.

Scaling to 5,000 Edits: Evaluation of Lifelong
Robustness.

As illustrated in Figure 6, we scale the knowl-

performance over Lifelong Editing Steps

performance

0 1000 2000 3000 4000 5000
Editing Steps

Figure 6: Performance degradation over lifelong editing
steps, where PNKE maintains high stability compared
to other methods.

edge editing task on the LLaMA3 model up
to 5,000 steps to systematically evaluate the ro-
bustness and generalization capabilities of dif-
ferent methods in a long-horizon editing sce-
nario. The evaluation covers four representative
approaches: AlphaEdit, WISE, KN, and our pro-
posed method PNKE. To comprehensively assess
the model’s ability to retain general capabilities
under large-scale interventions, we incorporate the
MMLU (Massive Multitask Language Understand-
ing) benchmark to track performance across differ-
ent rounds of editing.

Experiments show that PNKE outperforms exist-
ing methods in editing success and generalization
retention, especially at 7' = 3,000 and 7" = 5,000.
While AlphaEdit and WISE degrade significantly
in later stages, PNKE maintains higher accuracy
(above 0.51 at T" = 5,000), demonstrating superior
scalability and stability for long-term knowledge
editing. PNKE preserves generalization during in-
tensive editing by precisely updating only the most
relevant neurons, minimizing parameter drift and
maintaining model accuracy.

5 Conclusion

Precise Neuron-Level Knowledge Editing (PNKE)
is a framework for editing large language mod-
els (LLMs) that addresses issues like overfitting
and catastrophic forgetting, especially in contin-
ual editing scenarios. PNKE works by accurately
identifying neurons tied to the target knowledge,
enabling efficient and minimally invasive updates.
Its process includes: (1) causal neuron identifica-
tion using attribution methods; (2) critical neuron
selection via an entropy-based approach to isolate
a sparse set of key neurons; and (3) targeted edit-
ing, updating only these neurons’ parameters to
preserve the model’s overall behavior.



Limitations

While PNKE demonstrates substantial improve-
ments in editing precision and representational lo-
cality, it still faces several intrinsic limitations:

Reliance on Neuron Attribution Reliability: The
effectiveness of PNKE significantly depends on
the reliability of neuron attribution methods. Since
these methods inherently approximate model in-
ternals, errors in identifying background or trigger
neurons can propagate to the editing stages, po-
tentially leading to unintended parameter drift or
partial knowledge overwrite.

Hyperparameter Calibration and Stability of
Sparse Masking: The entropy-based sparse mask
construction requires careful hyperparameter cali-
bration. Furthermore, its stability across different
tasks, model scales, and domains has not yet been
sufficiently understood.

Scope of Validation and Generalizability: PNKE
has been primarily validated on single-hop factual
edits within static textual models. Its capability to
generalize to settings that involve multi-modal rep-
resentations, compositional reasoning, or tempo-
rally evolving knowledge has yet to be established.

Latent Representational Shifts and Long-Term
Issues: Although localized updates reduce inter-
ference with unrelated knowledge, they might also
induce latent shifts in representation manifolds.
These shifts can accumulate over long editing tra-
jectories, posing open questions regarding the re-
versibility of edits, long-term robustness, and com-
patibility with continual pretraining paradigms.
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A Implementation Details

A.1 Description of Datasets

To comprehensively evaluate the general capabili-
ties of language models across complex tasks, we
adopt five widely used downstream benchmarks,
covering knowledge understanding, logical reason-
ing, and code generation.

MMLU(Hendrycks et al., 2021) (Massive
Multi-task Language Understanding) is a multiple-
choice benchmark consisting of over 16,000 ques-
tions across 57 academic and professional subjects,
including mathematics, history, law, and medicine.
It assesses the model’s ability to perform cross-
domain knowledge retrieval and multi-field reason-
ing.

GSMBSK (Grade School Math 8K) includes ap-
proximately 8,500 math word problems designed
at the elementary school level. The benchmark
evaluates the model’s step-by-step arithmetic rea-
soning and numerical computation abilities.

CommonsenseQA is a multiple-choice ques-
tion answering task focused on commonsense rea-
soning. Each sample consists of a natural lan-
guage question with five candidate answers, and
the model must select the most logically consistent
one. This benchmark measures the model’s abil-
ity to understand everyday scenarios and implicit
context.

BBH-Zeroshot is a high-difficulty subset of 23
tasks selected from the BIG-Bench benchmark,
spanning logical reasoning, mathematical compu-
tation, and code understanding. It is evaluated in a
zero-shot setting to examine the model’s general-
ization and reasoning ability on unseen tasks.

HumanEval is a code generation benchmark
containing 164 Python programming problems.
Each problem provides a function signature, doc-
string, and input-output examples. The model
must generate functionally correct code that passes
unit tests, thereby assessing its programming profi-
ciency and semantic correctness.

In addition, to evaluate factual knowledge edit-
ing, we adopt two standard benchmarks:

ZsRE is a relation-centric question answering
dataset. Each sample includes an edit prompt, a
paraphrased variant for generalization testing, and
an unrelated locality prompt to assess specificity
and non-interference.

CounterFact constructs factual and counterfac-
tual pairs by replacing the subject entity while
keeping the predicate fixed. It is used to test
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whether the model can accurately incorporate new
facts, generalize to paraphrased forms, and pre-
serve unrelated knowledge.

A.2 Evaluation Metrics

To comprehensively assess the effectiveness and
robustness of knowledge editing, we adopt three
standard evaluation metrics: Rel (Edit Success),
Gen (Generalization), and Loc (Locality Preserva-
tion). These metrics are computed on the editing

dataset Degiy = {(:cgt),yét),xg), xl(éZ) thl,

each sample consists of an edit query mg) with the
corresponding target output yét)

equivalent paraphrased variant x

where

, a semantically
(t

e/

) for generaliza-

tion testing, and a locality probe 951(2 to evaluate

non-interference with unrelated knowledge.
Given the post-edit model fg ., the three metrics

are formally defined as:

T
1
Rel. = > 1{fer (xh) =y},
t=1
T
1
Gen. = TZIL{f@T(xz,) =y}, (11)
t=1

T
Loc. = %Z ﬂ{f@T(Xfoc) = f@o (Xltoc)}>
t=1

where 1{-} denotes the indicator function, and fe,
is the original (pre-edit) model. Specifically, Rel
measures whether the model generates the correct
output for the edited query, Gen tests whether the
edit generalizes to paraphrased variants, and Loc
evaluates whether the model preserves its original
behavior on unrelated inputs, thereby reflecting
locality and non-interference.

A.3 Descriptions of Compared Model Editors

We compare our approach against a suite of repre-
sentative knowledge editing methods, which can be
broadly categorized into two classes: parameter-
modifying methods that directly alter the model
weights, and parameter-preserving methods that
achieve editing through external mechanisms with-
out changing the base model.

FT (Fine-tuning) serves as a basic parameter-
modifying baseline that updates model parame-
ters using standard autoregressive loss on the edit
instance. Despite its simplicity, FT often causes
extensive parameter drift and suffers from poor
locality due to overfitting.



KN identifies a subset of neurons most relevant
to the target fact using attribution techniques and
fine-tunes only those neurons. While this approach
reduces the scope of parameter changes, it still
operates via direct weight updates.

ROME (Rank-One Model Editing) performs
closed-form rank-one updates on the MLP weight
matrices identified via causal tracing. This method
enables localized and efficient interventions, rep-
resenting a structured and analytically grounded
editing technique.

PMET (Precise Model Editing Transformer)
formulates editing as a constrained optimization
problem and solves for minimal weight changes
required to induce the desired output. Unlike
ROME’s analytical formulation, PMET employs
gradient-based methods, offering greater flexibility
for complex editing scenarios.

MEMIT extends ROME to support multi-fact
editing by computing simultaneous low-rank up-
dates across multiple MLP layers. This allows
efficient batch editing of hundreds or thousands
of facts, making it well-suited for high-throughput
use cases.

AlphaEdit (ours) also performs parameter-
modifying edits but incorporates a null-space pro-
jection mechanism. It suppresses directions that in-
terfere with unrelated knowledge by projecting the
learned update into a minimally invasive subspace,
thereby enhancing both precision and generaliza-
tion.

In contrast, the only parameter-preserving
method we compare is:

WISE, which introduces an external memory
module to store edits and employs a learned router
to dynamically decide whether to use original or
edited outputs during inference. This design avoids
any direct modification to the base model, achiev-
ing strong locality and scalability.

In summary, FT, KN, ROME, PMET, MEMIT,
and AlphaEdit implement editing via direct weight
modification, while WISE achieves non-intrusive
editing through auxiliary routing without altering
the original model parameters.
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Critical Neuron Attribution Methods and
Hyperparameters

B Strategy for Generating P,
(Semantically Similar Prompts) and
Parameter Settings

To identify background neurons Ny, the PNKE
framework utilizes a set of semantically similar

1
prompts Peem = {plem, s o }-

B.1 Strategy for Generating Pyep,

The construction of Py, aims to comprehensively
cover the core semantics of the target knowledge

Kiarger While introducing diversity in expression.
The specific generation process is as follows:

1. Template Construction: For the target
knowledge, standard declarative sentences are
manually designed or extracted from datasets
to serve as base templates.

. Paraphrase Generation: Leveraging the
paraphrasing capabilities of pre-trained lan-
guage models (e.g., LLaMA3-8B-Instruct),
the base templates are diversely rephrased to
generate a set of prompts that are semantically
equivalent but differ in syntactic structure or
wording.

. Back-Translation: To further increase diver-
sity, some templates undergo back-translation
("source language — intermediate language
— source language") using high-quality ma-
chine translation systems.

In this study, for each target knowledge Kiargets
m = 10 semantically similar prompts are gener-
ated to form Pie,. This number was determined in
preliminary experiments as the optimal trade-off
point by evaluating the stability of Ny, identifica-
tion and the final editing performance (Rel, Gen,
Loc metrics) for different values of m (ranging
from 5 to 15).

B.2 Threshold Parameters in the Definition of
Npg

Background neurons are defined in Equa-

tion (2) of the main paper as Npg(K;)

{ni S N’w > ebg_act A

stdpe Py (Act(ni, p)) < Estable }-

* Opg act (Average Activation Threshold):
This threshold is used to filter neurons



that consistently exhibit significant activation
across the Piep, set. Opg acc 1s set to the 75th
percentile of the average activation value dis-
tribution of all neurons in the corresponding
layer over Psen. This setting ensures that the
selected neurons have a relatively high aver-
age activation level compared to other neu-
rons in that layer.

€stable (Activation Standard Deviation
Threshold): This threshold ensures that neu-
rons exhibit consistent activation patterns for
different prompts within Pyep. €giable 1S S€t to
the 25th percentile of the activation standard
deviation distribution of all neurons in the cor-
responding layer over Py,. This guarantees
that the selected background neurons respond
stably to semantically similar but differently
phrased inputs.

The principles for setting these thresholds were de-
rived through systematic evaluation (as detailed in
the experimental section of the main paper, e.g., the
sensitivity analysis of activation thresholds shown
in Figure 5), aiming to maximize the effectiveness
of subsequent edits and the stability of the model.

B.3 Selection of Causal Attribution Method
and Parameter Settings

The identification of trigger neurons Ny and the
calculation of neuron importance scores s; both
utilize causal attribution weights Attr(7;, Pipec)-

B.3.1 Selection of Causal Attribution Method

This study employs Integrated Gradients (IG) as
the method for computing neuron causal attribution
weights. The choice of IG is based on its estab-
lished theoretical properties (e.g., completeness,
sensitivity) and its widespread application and val-
idation in explaining the internal mechanisms of
deep learning models, including large language
models. IG provides a quantitative measure of the
contribution of each neuron to the model’s output
for a specific input Pypec.

B.3.2 Limitations of IG

The application of IG requires the definition of
a baseline input. In this study, the baseline for
neuron activation is set to zero activation. While
IG offers effective attribution analysis, its results
can be influenced by the choice of baseline, and its
explanatory power for highly non-linear systems
has inherent limitations due to its linear integration
path.
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B.3.3 Threshold Parameters in the Definition
of NV, trig

Trigger neurons are defined in Equation (3) of
the main paper as Nyig(Kiarget) {n; €
NAct(n;, Pypec) > Ouig act N Attr(ng, Popec) >
9attr}~

* Otrig act (Strong Activation Threshold):
Used to filter neurons that exhibit a strong acti-
vation response to the specific editing prompt
Pypec. This threshold is set to the 90th per-
centile of the activation value distribution of
neurons in the target layer for Pypec.

Oattr (High Attribution Weight Threshold):
Used to filter neurons that are not only highly
activated but also whose activation makes a
highly causal contribution to the model’s out-
put for Pypec. This threshold is set to the 90th
percentile of the attribution weight distribu-
tion computed by IG.

These threshold settings are designed to precisely
identify a small number of neurons with strong sig-
nals that are highly relevant to the specific knowl-
edge point. Their effectiveness has been validated
in the ablation studies presented in the main paper
(see particularly the discussion related to Figure
5).

B.4 Hyperparameter Settings in the Entropy
Mechanism

The entropy-guided critical neuron selection mech-
anism Menyopy depends on the calculation of neu-
ron importance scores s; and the determination of
the dynamic selection threshold 7.

B.4.1 Equation (5) (Importance Score s;):
The norm() Function and Balancing
Coefficient o

* The norm() Function: In the calcu-
lation of the importance score s;
a - norm(Act(ng, Ppec)) + (1 — «)
norm(Attr(n;, Pypec)), the norm() function
employs min-max normalization. Specifi-
cally, the activation values Act(n;, Pspec) and
attribution weights Attr(n;, Pipec) are inde-
pendently normalized within the set of cor-
responding values for all N 45y neurons in
their layer, mapping them to the [0, 1] inter-
val. This operation ensures that the activa-
tion contribution and attribution contribution
have a uniform and comparable scale before
weighted summation.



» Balancing Coefficient o:: This coefficient is
used to weigh the relative contributions of
activation intensity and attribution weight in
the assessment of neuron importance. In this
study, « is set to 0.5. This value was deter-
mined in preliminary experiments by testing
different « values (range [0.1,0.9], step 0.1)
on a validation set for their impact on editing
performance, aiming to equally value both
activation signals and causal attribution infor-
mation.

B.4.2 Equation (6) (Definition of 777): The
q(H (Ps)) Function, gpase, and -y

The dynamic threshold TH =
Percentile({s; } je N> 4(H (Ps))) is  de-
termined by the entropy-based function
Q(H(PS)) = Qbase T 7 (log ‘Ncausal‘ - H(PS))
The output of the function q(H (Ps)) is a per-
centile value, mapped to the range [0, 100], used
to select the threshold from the importance score
distribution {s; }.

* gpase (Base Percentile): Represents the base
selection percentile adopted when the im-
portance distribution is most dispersed (i.e.,
entropy H (Ps) reaches its maximum value
log | Ncausar|)- In this study, gpase is set to 85.
This implies that even in cases of highly dis-
persed importance, PNKE still selects neu-
rons whose scores are in the top 15% (i.e.,
above the 85th percentile).

* v (Entropy Adjustment Factor): Controls
the sensitivity of the selection threshold to the
entropy H(Pg). v > 0 ensures that when
the importance distribution is more concen-
trated (smaller entropy), a more elite subset
of neurons is selected (i.e., a higher percentile
threshold). In this study, + is set to 10.0. This
value was determined by evaluating the com-
bined impact of different v values on the size
of | Neritical| and editing performance on a val-
idation set.

These parameter settings enable PNKE to adap-
tively adjust the sparsity/granularity of editing
based on the concentration of the current knowl-
edge point’s representation among neurons.

B.5 Computational Efficiency and Scalability
of Neuron-Level Editing

The computational efficiency of PNKE is primarily
determined by its three core steps: causal neuron
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identification, critical neuron selection, and tar-
geted neuron parameter editing.

B.5.1 Composition of Computational Costs
1. Causal Neuron Identification (/NVcaysal):

* Ny, identification involves m forward
passes through the target layers.

* Nyig identification involves one forward
pass for the specific prompt Pypec and
one backward pass process based on In-
tegrated Gradients (including multiple
model evaluations for its path integra-
tion).

This step is the main source of computational
overhead in PNKE, with its cost being propor-
tional to m, the number of path integration
steps in IG, the number of target layers, and
the model depth.

. Critical Neuron Selection (Nyitical): This
step includes calculating importance scores
for | Ncausal| neurons, normalization, entropy
calculation, and threshold selection based on
percentiles. These operations are primarily
vector and a few scalar computations, with
computational costs far lower than the neu-
ron identification phase, and roughly linear or
quasi-linear with the size of | Ncausai|-

. Targeted Neuron Parameter Editing
(AW,ritical): Editing operations are confined
to the parameter subset Wiytca directly
associated with | Ngritical| neurons. If using
the method from Equation (10) of the main
paper (i.e., applying existing efficient editing
algorithms like ROME or MEMIT to the
subspace), its computational cost is primarily
that of these algorithms on a significantly
reduced parameter subset. For example, for
a ROME-like solution, its complexity is
cubic with respect to the dimension of A¢ritical
(i.e., |Neritical]), which is far smaller than
the original FFN dimension dg. Therefore,
the computational efficiency of this stage is
significantly better than methods that edit
parameters at the full layer level.

B.5.2 Scalability

The cost of neuron identification in PNKE in-
creases with model scale (total number of neu-
rons). However, as knowledge is typically repre-
sented sparsely in large models, the growth rate



of | Neausal| and | Neritical| is expected to be slower
than the growth rate of the total model parameters
or total neurons. The computational advantage of
the editing phase becomes more pronounced as
model size increases, because Wical constitutes
a smaller fraction of total parameters. In sequen-
tial editing scenarios, the full PNKE process is
executed for each edit, leading to a total cost that
grows linearly with the number of edits. Optimiz-
ing the identification process (e.g., by leveraging
information from previous edits) is a potential di-
rection for improving efficiency in large-scale se-
quential editing.

B.6 Detailed Explanation of the Parameter
Editing Mechanism

The specific implementation of parameter editing
in Section 3.3.3 of the main paper, particularly the
relationship between Equation (9) and Equation
(10), is clarified as follows.

B.6.1 Equation (9) — General Constrained
Optimization Framework

Equation (9) from the main paper,
DA pr Appn=Arrn G Mk L(AFrN), provides
the high-level constraint for parameter editing in
PNKE. It stipulates that any parameter update
Arpn must be confined to the critical parameter
subspace defined by the binary mask Mgk
(where elements with a value of 1 correspond to
parameter positions in Wgica1). The loss function
L(AppN) retains the definitions of the edit loss
Legit and the preservation 10ss Lpreserve as defined
in Equation (1) of the main paper. This constrained
optimization problem is solved using standard
gradient-based methods (e.g., Adam optimizer),
where gradients are computed and applied only to

the parameters indicated by My ask.

B.6.2 Equation (10) — Instantiation of Editing
in a Specific Subspace

Equation (10) from  the
per, MDA W,y crical [ (Wout,criticat +
AW/vout,critical)hl,critical - ‘/1/”%7 + )\”(Wout,critical +
AI/Vout,critical)hO,critical - ‘/OIH%‘]’ is a specific and
efficient way to implement the idea of Equation
(9), particularly suitable when editing is primarily
achieved by modifying Woucriticat (the part of
the FFN output layer weights corresponding to
Neritical) to achieve the target output V;. In this
equation, 1 critical and Ao critical represent the
activation vectors of the critical neurons Nyitical

main  pa-

for the edit and preservation samples, respectively
(i.e., the output of the FFN’s intermediate layer,
but only selecting dimensions corresponding to
Neitica).  V{ and V{ are the desired (modified)
outputs or output changes at the Wy layer for
these activations. This least-squares problem
often has an analytical solution or can be solved
efficiently by iterative methods (e.g., a ridge
regression solver).

B.6.3 Application Strategy

This study primarily adopts a strategy based on
Equation (10) to implement parameter editing.
That is, N¢riticar and its corresponding Weyigicar (par-
ticularly the Wyt critical part) and activations Aeritical
are first identified through the initial two steps of
PNKE. Then, drawing on the principles of methods
like ROME and MEMIT, the optimization problem
described in Equation (10) is solved for this signif-
icantly reduced Wy critical and Rritical to compute
the parameter update AWy critica- This approach
combines the precision of PNKE’s neuron selec-
tion with the maturity and computational efficiency
of existing high-performance editing algorithms.

C Comparison of Computational
Overhead between PNKE Framework
and Baseline Methods

The PNKE (Precise Neuron-Level Knowledge Edit-
ing) framework excels in precision and long-term
stability for knowledge editing tasks. However,
its fine-grained neuron-level operations introduce
computational overhead. This section analyzes the
sources of this overhead and compares them with
baseline methods, with results summarized in a
table 3.

C.1 Computational Overhead of PNKE

The computational cost of PNKE arises from three
key steps:

* Causal Neuron Identification (/V¢aysal):

— Background Neurons (Njg): Requires
m forward passes per target knowl-
edge point, using m semantically sim-
ilar prompts (FPsem) to compute average
neuron activation and stability.

— Trigger Neurons (Ny,): Involves one
forward pass with a specific prompt
(Pspec) to obtain activation values, fol-
lowed by one backward pass using In-
tegrated Gradients (IG), potentially re-



quiring multiple evaluations for the path
integral.

¢ Critical Neuron Selection (Ngpitical): En-
compasses importance score calculation,
normalization, entropy computation, and
percentile-based thresholding. These vector
and scalar operations incur significantly lower
costs than the identification phase.

* Target Neuron Parameter Editing
(AWeritica): Edits only the parameter subset
(Wiritical) tied to critical neurons (Neritical)-
Using subspace methods like ROME or
MEMIT reduces complexity compared to
editing an entire feed-forward network (FFN)
layer.

C.2 Computational Overhead of Baseline

Methods

¢ Fine-Tuning (FT): Demands full forward and
backward propagation across the model per
edit, updating numerous parameters and re-
sulting in substantial overhead.

* ROME: Identifies the editing layer via causal
tracing (a few forward passes) and applies a
closed-form rank-one update, ensuring effi-
cient editing.

* MEMIT: Extends ROME with multi-layer
low-rank updates, increasing computational
cost slightly while remaining efficient.

* AlphaEdit: Builds on ROME/MEMIT with
null-space projection, adding matrix opera-
tions to the overhead.

* Knowledge Neurons (KN): Employs attri-
bution techniques to identify neurons (akin
to PNKE’s Nyjg), followed by iterative fine-
tuning of selected neurons.

* WISE: Uses an external memory module and
routing decisions for editing, avoiding base
model parameter changes and minimizing
overhead.

C.3 Summary and Analysis of Experimental
Results

The PNKE framework achieves superior perfor-
mance on the ZsRE dataset, with an editing success
rate (Rel.) of 0.936, generalization (Gen.) of 0.891,
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and locality (Loc.) of 0.952. After extensive edit-
ing (T=5000), it sustains high accuracies of 0.510
on MMLU and 0.485 on GSMSK, outperforming
other methods significantly.

Regarding computational overhead, PNKE’s
neuron identification demands 30 evalua-
tions—higher than ROME (5 passes) or MEMIT
(10 passes). However, its parameter editing is
minimal, targeting only a small subset, resulting in
approximately 500 MB of memory usage and 2.5
seconds per edit, reflecting strong efficiency. In
contrast, Fine-Tuning, with no identification cost,
incurs the highest overhead due to full parameter
updates, requiring about 10 GB of memory and
10 seconds per edit. KN and AlphaEdit fall in
the mid-range, while WISE, leveraging external
memory, exhibits the lowest overhead but slightly
weaker performance.

In conclusion, PNKE’s high precision, minimal
interference, and robust long-term stability make
it ideal for continuous knowledge updating. Fine-
Tuning and KN struggle with large-scale sequential
editing due to performance degradation over time,
while ROME and AlphaEdit, effective in the short
term, face limitations in long-term stability 3..

D Parameter Settings



Table 3: Performance and Computational Overhead Comparison of PNKE Framework and Baseline Methods

Method Rel Gen.  Loc MMLU MMLU  GSM8K Neuron Parameter Extra Memory  Editing Long-term
: : * (T=2000) (T=5000) (T=5000) Identification Cost Editing Cost Operations Usage Time Stability
PNKE 0936 0891 0952 0611 0510 0485 30 Low Entropy —_soomB - 225 High
evaluations (few params) calculation fedit
Fine-Tuning  0.850 0750 0.600  0.100 0.050 0.045 None High None ~1068 105 o
(all params) fedit
ROME 0920 0.870 0910  0.300 0.150 0.140 3 forward Medium None ~16B % Medium
passes (layer update) Jedit
MEMIT 0930 0.880 0920  0.350 0.200 0.190 10 forward Medium None  ~15GB %% Medium
passes (multi-layer) ledit
AlphaEdit  0.940 0.890 0.930  0.250 0.170 0.160 5 forward Medium Matrix = 1968 © 185 Medium
passes (update+proj.) operations Jedit
KN 0900 0.850 0.880  0.180 0.120 0.110 20 Medium None  ~800MB 2% Low
evaluations (fine-tuning) Jedit
WISE 0910 0.860 0940  0.200 0.150 0.145 None None Memory — _soomB = "2%  Medium
(external memory) access Jedit

Algorithm 2 Identifying Background Neurons Ny

1: Input: Prompt set Py, neuron set \V, thresh-
olds Hbg,act’ Estable

2: Output: Background neurons Ny,
3: function IDENTIFYNBG(N, Psem)
Algorithm 1 Generating Semantically Similar 4 Nog < 0
Prompts Piem 5. for each neuron n; in A" do
1: Input: Target knowledge Kiyrger, Number of 6: actayg < % Zpe p.. Act(ni, p)
prompts m = 10 7: actyq < stdpep,., (Act(n;, p))
2: Output: Set of prompts Pem = 8: if actayg > Opg ace and actyq < Esable
{Dlems -, Pl } then
3: function GENERATEPSEM(K yrget, 112) 9: Npg = Npg U {n;}
4 templates — 10: end if
ConstructTemplates (K arget) > Manual or  11: end for
dataset-based 12: return Npg
5: prompts « () 13: end function
for each t in templates do
: paraphrases —
Paraphrase(¢, LLaMA3-8B-Instruct) >
Diverse rephrasing Algorithm 3 Identifying Trigger Neurons Ny,
8: prompts < promptsUparaphrases 1: Input: Specific prompt Pypec, neuron set N,
9 if |[prompts| < m then thresholds Oyig_act, Vattr
10: bt prompts — 2: Output: Trigger neurons Nyig
BackTranslate(¢, source — intermediate — 3: function IDENTIFYNTRIG(/, Pipec)
source) 4: Nyig < 0
11: prompts < prompts U btprompts 5: for each neuron n; in A do
12: end if 6: act < Act(n;, Pipec)
13: end for 7: attr —
14: return prompts[1 : m| IntegratedGradients(n;, Pypec, baseline = 0)
15: end function 8: if act > Ouig_act and attr > Oy, then
Ntrig — Ntrig U {nz}
10 end if
11: end for
12: return Ny;g
13: end function
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Algorithm 4 Critical Neuron Selection with En-
tropy Mechanism

1: Input: Causal neurons Neausal, prompt Popec,
a = 0.5, gpase = 85,7 = 10.0

2: Output: Critical neurons Nigical
3: function SELECTNCRITICAL(N aysal, Pspec)
4: scores < ()
5: for each n; in Nyusa1 do
6: aCtnorm —
MinMaxNorm(Act(n;, Ppec))
7: attrnorm —
MinMaxNorm(Attr(n;, Pipec))
8: Sj < @+ acCtyorm + (1 — @) - attropom
scores <— scores U {s;}
10: end for
11 H(Ps) < Entropy(scores)
12: q < Qbase + V- (log |Ncausal‘ - H(PS))
13: T < Percentile(scores, q)
14: Neritical < {nz € Neausal | S; > TH}
15: return N gitical

16: end function
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