
Efficient and Stable Lifelong Knowledge Editing in LLMs via
Neuron-Level Interventions

Anonymous ACL submission

Abstract001

Existing "locate-then-edit" approaches, which002
identify and perturb key parameters, often003
struggle in sequential editing scenarios, lead-004
ing to overfitting, catastrophic forgetting,005
or model collapse. This paper introduces006
the Precise Neuron-Level Knowledge Edit-007
ing (PNKE) framework, designed for efficient,008
low-interference knowledge updates via fine-009
grained neuron-level interventions. PNKE em-010
ploys causal attribution to pinpoint background011
and trigger neurons tied to target knowledge,012
followed by an entropy-guided sparse masking013
mechanism to select a critical neuron subset014
for targeted parameter updates. Our PNKE015
ensures editing precision while dynamically016
adjusting sparsity to maintain model stability017
during lifelong editing. In extensive lifelong018
editing experiments, PNKE outperforms state-019
of-the-art methods, achieving an editing suc-020
cess rate (Rel.) of 0.936, generalization (Gen..)021
of 0.891, and locality (Loc.) of 0.952 on bench-022
marks like ZsRE and CounterFact. After 5,000023
edits, PNKE sustains robust performance on024
tasks such as MMLU and GSM8K, underscor-025
ing its stability and practical utility for contin-026
uous knowledge integration in LLMs.027

1 Introduction028

Large-scale language models (LLMs)(LLAMA,029

2024; Devlin et al., 2019; Brown et al., 2020;030

Vaswani et al., 2017) exhibit remarkable capabil-031

ities in knowledge storage and retrieval(Petroni032

et al., 2019; Guu et al., 2020), but they often gen-033

erate erroneous or outdated information(Gautam034

et al., 2024; Ji et al., 2023), known as “hallucina-035

tions”. To address this issue, model editing tech-036

niques have emerged to enable continuous and dy-037

namic updates, corrections, or removal of sensitive038

content from model knowledge(Cao et al., 2021;039

Ji et al., 2023). Among existing model editing040

methods, a prominent paradigm is “locate-then-041

edit(Mitchell et al., 2021; Meng et al., 2022a; Dai042

et al., 2021; Fang et al., 2025)”. This approach first 043

identifies key parameters W associated with spe- 044

cific knowledge using techniques like causal trac- 045

ing, then modifies these parameters by introducing 046

a perturbation ∆ to update the stored knowledge. 047

The primary objective is to minimize the output 048

error on the knowledge to be updated, denoted as 049

e1. Many studies further incorporate the output 050

error on knowledge to be retained, e0, into the opti- 051

mization objective to preserve the model’s original 052

performance. The optimization goal can be ex- 053

pressed as:min∆(∥(W +∆)K1−V1∥2+λ∥(W + 054

∆)K0−V0∥2), where K1 and V1 represent the key 055

and value matrices for the knowledge to be updated, 056

and K0 and V0 denote the retained knowledge. 057

Despite some success in knowledge updating, 058

these methods face significant challenges in practi- 059

cal applications, particularly in sequential editing 060

scenarios(Ma et al., 2025; Zhou et al., 2024). To 061

prioritize update success (i.e., minimizing e1), ex- 062

isting studies often assign greater weight to e1, 063

with insufficient control over e0. This strategy 064

makes edited LLMs prone to overfitting the up- 065

dated knowledge, leading to a distribution shift in 066

the model’s internal hidden layer representations. 067

As editing iterations accumulate, this overfitting 068

gradually erodes the model’s ability to retain orig- 069

inal knowledge and generate coherent sentences, 070

potentially resulting in catastrophic model forget- 071

ting or even model collapse(Wang et al., 2023; Shi 072

et al., 2025). As reported by AlphaEdit(Fang et al., 073

2025), even projecting the perturbation ∆ onto 074

the null space of the retained knowledge K0, i.e., 075

∆′K0 = 0, to ensure (W +∆′)K0 = WK0 = V0, 076

the perturbation ∆′ applied across entire layers or 077

parameter blocks W remains coarse-grained. 078

Further research reveals that knowledge rep- 079

resentations in Transformer models are highly 080

complex(López-Otal et al., 2025; Zhang et al., 081

2025). Based on cross-task activation patterns, 082

feed-forward network (FFN) neurons can be cat- 083

1

egorized into general neurons Ngen (broadly acti-084

vated), domain-specific neurons Ndom (activated085

in a specific domain D), and task-specific neurons086

Ntask (activated only for a specific task t). Dif-087

ferences in neuron activation Act(ni, taskj) > θ088

across tasks indicate that knowledge is sparsely089

concentrated in a small set of critical neurons, ex-090

hibiting regionalized co-activation patterns. Build-091

ing on this, we further abstract related neurons into:092

Background neurons Nbg: Stably activated under093

semantically similar prompts Psem with activation094

Astable, primarily responsible for knowledge re-095

trieval. Trigger neurons Ntrig: Exhibit strong096

local responses to specific prompts Pspec, with097

high attribution weights Attr(Ntrig, Pspec).This098

finding underscores the necessity of fine-grained099

interventions tailored to different neuron func-100

tions, providing a theoretical foundation for pre-101

cise knowledge editing. To address these chal-102

lenges and achieve more precise interventions,103

this paper proposes the Precise Neuron-Level104

Knowledge Editing (PNKE) framework. The105

framework first tackles the representation con-106

flicts caused by traditional coarse-grained editing107

by using causal attribution(Chattopadhyay et al.,108

2019; Sundararajan et al., 2017a,b) fcausalattr to109

precisely identify the set of background and trig-110

ger neurons critical to specific knowledge Ktarget,111

forming an initial causal neuron set Ncausal =112

fcausalattr(Ktarget, {Nbg, Ntrig}). Next, PNKE113

innovatively employs an entropy-based dynamic114

sparse masking mechanism Mentropy to select115

the most critical neuron subset Ncritical =116

Mentropy(Ncausal) from Ncausal, applying up-117

dates ∆Wcritical only to parameters Wcritical asso-118

ciated with Ncritical. This ensures precision and119

minimal interference at the neuron level. Finally,120

the adaptive mask Mentropy dynamically adjusts121

sparsity based on the entropy characteristics of neu-122

ron importance distributions(Frankle and Carbin,123

2019), optimizing the editing scope and supporting124

robust lifelong editing with reduced impact on the125

model’s general capabilities. Comprehensive life-126

long editing experiments demonstrate that PNKE127

outperforms state-of-the-art methods in both edit-128

ing success accuracy and general capability preser-129

vation for knowledge integration in LLMs.130

Our main contributions are: i) A causal attribu-131

tion function fcausal_attr that identifies background132

Nbg and trigger Ntrig neurons for Ktarget, yield-133

ing Ncausal = fcausal_attr(Ktarget, {Nbg, Ntrig}),134

and eliminating coarse-grained conflicts; ii)135

An entropy-guided mask Mentropy that selects 136

Ncritical = Mentropy(Ncausal) and updates only 137

Wcritical, ensuring neuron-level precision; iii) Dy- 138

namic sparsity via neuron-importance entropy, 139

which tunes Mentropy to balance lifelong editing 140

robustness and overall performance. 141

2 Related Work 142

Model Editing Paradigms. Current model editing 143

primarily follows the “locate-then-edit” paradigm. 144

MEND (Mitchell et al., 2021) trains a meta-editor 145

network to generate parameter updates. ROME 146

(Meng et al., 2022b) identifies the storage loca- 147

tion of knowledge in the feed-forward network 148

(FFN) (Hendrycks and Gimpel, 2023)layers of 149

Transformer models, directly modifying critical 150

weight matrices. MEMIT (Meng et al., 2023) ex- 151

tends ROME to support batch editing of multiple 152

knowledge entries. KN (Dai et al., 2022) treats 153

knowledge as low-rank updates to maintain coher- 154

ence between pre- and post-edit knowledge. 155

Editing Granularity and Representation Con- 156

flicts. The issue of representation conflicts caused 157

by coarse-grained editing has gained attention. Al- 158

phaEdit (Fang et al., 2025) identifies representa- 159

tion conflicts in retaining knowledge, proposing 160

to project parameter perturbations onto the null 161

space of retained knowledge and adopting a batch 162

strategy with batch size 100. MeLLo (Zhong et al., 163

2023) uses a memory matrix to store edit infor- 164

mation. CALM (Tessler et al., 2023) improves 165

representations via adversarial learning. 166

Neuron Functionality and Knowledge Repre- 167

sentation. Studies on the functionality of neurons 168

within Transformer models provide a theoretical 169

foundation for fine-grained editing. (Geva et al., 170

2021) finds that FFN neurons can be categorized 171

into general, domain-specific, and task-specific 172

types based on activation patterns. (Meng et al., 173

2023) demonstrates that knowledge exhibits sparse 174

distribution characteristics in models. (Nanda et al., 175

2023) and (Olsson et al., 2022) further reveal the hi- 176

erarchical organization of knowledge embeddings. 177

3 Methodology 178

Problem Definition. A language model can be 179

viewed as a function fW (P) → O. Model edit- 180

ing seeks to learn a parameter perturbation ∆ such 181

that the updated model fW+∆ produces the de- 182

sired knowledge V1 for specific inputs Pedit, while 183

maintaining original performance V0 on retained 184

2

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Answer1：
Potential
energy

Answer2：
Activation
energy

layer-level

Edit-All

neuron-level

Importance-Edit

ROME

MEMIT

Alphaedit
PNKE

Q：What is the term for the minimum amount of
energy required to start a chemical reaction?

CommonsenseQA Accuracy under Lifelong Editing

MMLU Accuracy under Lifelong Editing

Figure 1: Overview of the PNKE framework. Left: PNKE performs neuron-level editing by targeting background
and trigger neurons, offering higher precision than layer-level methods (e.g., ROME, MEMIT, AlphaEdit). Right:
Under lifelong editing (T = 10 to 2000), PNKE outperforms baselines on MMLU and CommonsenseQA, demon-
strating superior robustness and generalization.

knowledge K0. Traditional methods often opti-185

mize the following objective, where W refers to186

parameters of relevant layers (e.g., FFN layers):187

L(∆) = ∥(W +∆)K1 − V1∥2F︸ ︷︷ ︸
Ledit

(edit loss)

+λ ∥(W +∆)K0 − V0∥2F︸ ︷︷ ︸
Lpreserve
(preserve loss)

(1)188

Applying ∆ to the entire W or its coarse-grained189

sub-blocks introduces representation conflicts,190

overfitting, and catastrophic forgetting. As in Fig-191

ure 2, PNKE addresses these challenges via:192

Causal Neuron Identification. To identify neu-193

rons critical to specific knowledge Ktarget (trig-194

gered by prompt Pspec), we distinguish and iden-195

tify two neuron types: Background Neurons (Nbg):196

These neurons exhibit stable, above-baseline ac-197

tivation Act(ni, p) across multiple semantically198

similar prompts Psem = {p(1)sem, . . . , p
(m)
sem}. Let199

N denote the set of all neurons in a layer. The200

background neurons are:201

Nbg(Kt) =

ni ∈ N | Ep∈P[Act(ni, p)]>θbg︸ ︷︷ ︸
suff. avg. act.

∧stdp∈P(Act(ni, p))<ϵs︸ ︷︷ ︸
stable act.

(2)202

where θbgact and ϵstable are the activation and sta-203

bility thresholds, respectively.204

Trigger Neurons (Ntrig): These neurons205

show strong activation for the specific prompt206

Pspec and have high causal attribution weights 207

Attr(ni, Pspec) (e.g., computed via Integrated Gra- 208

dients). They are defined as: 209

Ntrig(Ktarget) =

ni ∈ N | Act(ni, Pspec) > θtrig_act︸ ︷︷ ︸
strong activation for specific prompt

∧Attr(ni, Pspec) > θattr︸ ︷︷ ︸
high attribution weight

(3) 210

where θtrigact and θattr are the activation and attri- 211

bution thresholds, respectively. The initial causal 212

neuron set Ncausal recte is formed as: 213

Ncausal(Ktarget) = fcausal_attr(Ktarget, {Nbg, Ntrig})
= Nbg(Ktarget) ∪Ntrig(Ktarget)

(4) 214

Critical Neuron Selection (Mentropy). To fur- 215

ther focus on the most essential neurons, PNKE 216

introduces a dynamic sparse masking mechanism 217

Mentropy to select Ncritical from Ncausal. 218

Neuron Importance Quantification. For each 219

ni ∈ Ncausal, the importance score si is: 220

si = α · norm(Act(ni, Pspec))︸ ︷︷ ︸
activation contribution

+(1− α) · norm(Attr(ni, Pspec))︸ ︷︷ ︸
attribution contribution

(5) 221

where norm(·) is a normalization function, and 222

α ∈ [0, 1] is a balancing coefficient. 223

Entropy of Importance Distribution. Based on 224

{si}, a normalized probability distribution PS = 225

{pi = si/
∑

j sj | ni ∈ Ncausal} is constructed. 226

3

Transformer 1

Transformer 2

Transformer 3

Transformer 4

FFN

STAG 2: Importance Filtering

Pk

STAG 1:Initial Neuron Set

Psem
(2)

Psem
(m-1) Psem

(m)

Psem
(1)

0.3

......

0.6
......

0.2
0.4

......

......

....
..

n
N

eu
ro

ns

m Psem
(1)

Sufficient Mean Activation
Activation Stability

High Attribution Weight

Strong Activation under
P_{spec}

Nbg

Ntrig

Candidate Neuron Set

Nbg i Ntrig j

Critical Neuron Set

Nbg i‘ N‘
trig j

1-α* Attribution Contribution

α * Activation Contribution

Importance Score

Ps{ } i+j

<
?

Δ*.

Q：In eukaryotic cells, during
which phase of the cell cycle
does DNA replication occur?

Before:
Answer1：

G1 phase

After:
Answer2：

S phase

Figure 2: Overview of the PNKE framework, illustrating the three core steps: causal neuron identification, critical
neuron selection, and targeted neuron parameter editing.

Its entropy is: H(PS) = −
∑

ni∈Ncausal
pi log pi227

H(PS) reflects the concentration of importance:228

low entropy indicates importance concentrated in229

a few neurons, while high entropy suggests a more230

dispersed distribution.231

Dynamic Sparse Selection. Mentropy leverages232

H(PS) to dynamically adjust the selection strategy.233

A dynamic threshold τH is set as a percentile of234

the importance scores {sj}j∈Ncausal
as:235

τH = Percentile

 {sj}j∈Ncausal︸ ︷︷ ︸
importance scores of causal neurons

, q(H(PS))︸ ︷︷ ︸
entropy-determined percentile

(6)236

where q(H(PS)) is a function of entropy, e.g.,237

q(H) = qbase+γ ·(log |Ncausal|−H(PS)). Lower238

entropy (more concentrated importance) results in239

a higher q(H), leading to a higher τH and thus240

fewer, more elite neurons selected. The critical241

neuron subset is:242

Ncritical = Mentropy(Ncausal, {si})
= {ni ∈ Ncausal | si > τH}

(7)243

This enables PNKE to adaptively determine the244

optimal editing granularity, ensuring effective edits245

while minimizing redundant perturbations.246

Targeted Neuron Parameter Editing. After247

identifying Ncritical, PNKE modifies only the pa-248

rameters Wcritical directly associated with these249

neurons. For a Transformer’s FFN layer (with250

weights Win ∈ Rdmodel×dff , Wout ∈ Rdff×dmodel ;251

biases bin, bout), if Ncritical corresponds to in- 252

termediate FFN neurons, Wcritical includes the 253

columns of Win and elements of bin corresponding 254

to Ncritical, and the rows of Wout corresponding 255

to Ncritical. Mmask matching the dimensions of 256

the FFN parameters WFFN is constructed with 1s 257

only at positions associated with Ncritical: 258

(Mmask)param_idx =

{
1 if param_idx is associated with Ncritical

0 otherwise

(8) 259

The parameter update ∆FFN is constrained to 260

the subspace defined by this mask: ∆′
FFN = 261

∆FFN ⊙Mmask. The optimization objective from 262

Equation (1) is reformulated in PNKE to solve for 263

∆FFN under this constraint: 264

min
∆FFN

L

 ∆FFN ⊙Mmask︸ ︷︷ ︸
update applied only to critical parameters

 (9) 265

Alternatively, existing editing algorithms can 266

be applied to the significantly smaller parameter 267

subspace via Wcritical. For instance, if editing is 268

treated as modifying Wout,critical (rows of Wout 269

corresponding to Ncritical), with activations of 270

Ncritical on edit samples K1 and retain samples K0 271

denoted as h1,critical and h0,critical, respectively, 272

the optimization problem becomes: 273

min
∆Wout,critical

[
∥(Wout,critical +∆Wout,critical)h1,critical − V ′

1∥2︸ ︷︷ ︸
edit loss for critical activations

+ λ ∥(Wout,critical +∆Wout,critical)h0,critical − V ′
0∥2︸ ︷︷ ︸

preserve loss for critical activations

]
(10) 274

4

where V ′
1 , V ′

0 are the target outputs or their changes275

at the Wout layer. This targeted editing signifi-276

cantly reduces interference with the model’s over-277

all functionality, enhancing edit robustness and the278

long-term maintainability of model knowledge.279

4 Experiments280

Evaluation Benchmarks. We adopt two stan-281

dard benchmark datasets: CounterFact(Meng282

et al., 2022b), for evaluating factual edits, and283

ZsRE(Levy et al., 2017), for relational question-284

answering tasks. Following prior studies, we re-285

port results using three key metrics: Rel. (Edit286

Reliability)(Hartvigsen et al., 2023), which mea-287

sures whether the knowledge update is success-288

ful; Gen. (Generalization)(Zhang et al., 2024),289

which evaluates the model’s ability to extend ed-290

its to semantically equivalent expressions; and291

Loc. (Locality)(Zhang et al., 2024), which assesses292

whether irrelevant knowledge remains unaffected.293

To further evaluate the generalization capability of294

the edited model, we incorporate five representa-295

tive downstream tasks covering mathematical rea-296

soning, question answering, and code generation:297

MMLU(Hendrycks et al., 2021), GSM8K(Cobbe298

et al., 2021), CommonsenseQA(Talmor et al.,299

2019), BBH (Zero-shot)(Suzgun et al., 2023), and300

HumanEval(Chen et al., 2021).301

Baseline Methods. We compare our PNKE302

against a range of representative baselines, cov-303

ering both parameter-modification and parameter-304

preservation paradigms. Specifically, these in-305

clude Fine-Tuning (FT)(Zhu et al., 2020), Knowl-306

edge Neurons (KN), ROME, PMET(Li et al.,307

2023), MEMIT, WISE(Wang et al., 2024), and308

AlphaEdit. All methods are evaluated on the309

LLaMA3-8B-Instruct(LLAMA, 2024) model. Se-310

quential edits are performed at pre-defined steps311

T = {10, 100, 500, 1000, 1500, 2000, 2500}, and312

edit success rate and generalization performance313

are assessed at each stage.314

Generalization After Knowledge Editing. As315

shown in Table 1, experimental results reveal316

that as the number of edits increases, the perfor-317

mance of existing methods tends to degrade signif-318

icantly. Specifically, FT nearly fails on tasks such319

as GSM8K and HumanEval after merely 100 edits.320

Similarly, ROME and MEMIT experience substan-321

tial performance drops on benchmarks like MMLU322

when the number of edits exceeds T = 500. Al-323

though AlphaEdit, currently one of the strongest324

baselines, mitigates early-stage degradation by 325

leveraging a null-space projection mechanism, it 326

still relies on hierarchical-level parameter updates. 327

This reliance inevitably accumulates distributional 328

shifts over time, leading to instability and compro- 329

mised generalization in long-horizon deployment. 330

By contrast, our PNKE demonstrates significantly 331

better robustness and generalization in the multi- 332

round editing scenario, thanks to our fine-grained 333

neuron-level editing strategy. 334

Do Sparser Neuron-Level Updates Improve 335

Editing Effectiveness? As shown in Table 2, 336

we conduct a systematic evaluation on the ZsRE 337

dataset. The experiment is based on a randomly 338

sampled set of 2,000 instances, where edits are 339

applied sequentially with a batch size of 1. Addi- 340

tional results on the CounterFact dataset, including 341

case studies and performance trends across editing 342

steps, are provided in Appendix C. The results 343

indicate that traditional methods (e.g., FT, KN, 344

and ROME) experience noticeable performance 345

degradation even at the early stages of continual 346

editing. Notably, AlphaEdit initially suppresses 347

interference in non-target regions through its null- 348

space projection mechanism. Nevertheless, under 349

large-scale sequential editing, its performance be- 350

comes unstable. At T = 2000, its rewrite accu- 351

racy drops to 0.319, revealing a robustness bottle- 352

neck in maintaining effectiveness over time. In 353

contrast, our PNKE consistently outperforms all 354

baselines across key metrics, including rewrite 355

success (Rel.), generalization (Gen.), and locality 356

(Loc.). This demonstrates PNKE’s ability to bal- 357

ance edit precision, semantic generalization, and 358

distributional stability in continual knowledge edit- 359

ing. The superior performance can be attributed to 360

PNKE’s attribution-guided sparse masking mech- 361

anism, which accurately identifies a minimal set 362

of neurons highly relevant to the target knowledge 363

and confines updates within this subspace. This 364

design effectively mitigates distributional drift and 365

enables efficient, low-interference internal repre- 366

sentation updates. 367

Adaptive Neuron Masking Enhances Edit 368

Success and Stability. We systematically evaluate 369

the performance of four neuron selection strategies 370

for our PNKE: (1) using only trigger neurons; (2) 371

using only background neurons; (3) a fixed-ratio 372

activation selection strategy; and (4) an entropy- 373

based dynamic masking strategy. As shown in Fig- 374

ure 3, while all four strategies are capable of pre- 375

serving the model’s generalization ability to some 376

5

Table 1: Performance comparison across five downstream tasks under lifelong editing. PNKE consistently
outperforms all baselines in generalization and editing success, especially under long-horizon interventions.

Method T = 100 T = 500 T = 1000
mmlu gsm8k commonsense_qa bbh humaneval mmlu gsm8k commonsense_qa bbh humaneval mmlu gsm8k commonsense_qa bbh humaneval

FT 0.376 0 0.465 0.009 0 0.288 0 0.272 0.002 0 0.246 0 0.213 0.002 0
KN 0.2541 0 0.1941 0 0 0.252 0 0.204 0.0003 0 0.252 0 0.204 0.0002 0
ROME 0.2459 0 0.208 0.002 0 0.241 0 0.201 0.001 0 0.235 0 0.200 0.001 0
MEMIT 0.256 0 0.188 0.002 0 0.249 0 0.196 0 0 0.246 0 0.208 0 0
PMET 0.2319 0 0.18 0.149 0.329 0.2439 0 0.186 0.143 0.329 0.24 0 0.195 0.032 0.197
WISE 0.639 0.761 0.76 0.446 0.28 0.514 0.431 0.692 0.394 0.145 0.342 0.221 0.574 0.256 0.086
AlphaEdit 0.638 0.762 0.751 0.441 0.31 0.607 0.724 0.71 0.414 0.304 0.532 0.251 0.623 0.323 0.195
PNKE 0.642 0.758 0.755 0.4461 0.31 0.637 0.747 0.736 0.4407 0.286 0.623 0.737 0.722 0.4309 0.2926

Method T = 1500 T = 2000 T = 2500
mmlu gsm8k commonsense_qa bbh humaneval mmlu gsm8k commonsense_qa bbh humaneval mmlu gsm8k commonsense_qa bbh humaneval

FT 0.279 0 0.23 0.0001 0 0.258 0 0.28 0.0003 0 0.223 0 0.014 0 0
KN 0.228 0 0.185 0 0 0.231 0 0.18 0 0 0.213 0 0.096 0 0
ROME 0.239 0 0.209 0.0002 0 0.242 0 0.196 0.0001 0 0.212 0 0.164 0 0
MEMIT 0.246 0 0.2 0 0 0.246 0 0.200 0 0 0.206 0 0.173 0 0
PMET 0.255 0 0.197 0.0005 0.186 0.255 0 0.197 0 0.164 0.196 0 0.154 0 0.142
WISE 0.292 0.089 0.244 0.132 0 0.231 0 0.163 0 0 0.192 0 0.126 0 0
AlphaEdit 0.433 0 0.199 0.111 0 0.339 0 0.178 0.016 0 0.214 0 0.124 0 0
PNKE 0.618 0.717 0.7 0.4139 0.274 0.611 0.695 0.689 0.411 0.25 0.605 0.681 0.647 0.382 0.231

Table 2: Comparison of Rel., Gen., and Loc. metrics on ZsRE under varying editing steps (T = 10 to 2000), where
PNKE consistently outperforms all baselines.

Step T = 10 T = 100 T = 500 T = 1000 T = 1500 T = 2000
Metric Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc. Rel. Gen. Loc.

FT 0.183 0.033 0.012 0.166 0.133 0.033 0.119 0.108 0.004 0.128 0.102 0.016 0.119 0.102 0.015 0.072 0.059 0.006
KN 0.133 0.133 0.658 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROME 0.975 0.975 0.637 0.103 0.085 0.025 0.0053 0.006 0.022 0.0155 0.0136 0.0158 0.0368 0.0354 0.0218 0.0093 0.0086 0.02
MEMIT 0.0346 0.0214 0.0064 0.0316 0.0216 0.0073 0.0438 0.0438 0.031 0.0434 0.034 0.032 0.0438 0.0438 0.034 0.0442 0.0442 0.033
PMET 0.2333 0.183 0.9125 0.0198 0.0165 0.0529 0 0 0 0 0 0 0 0 0 0 0 0
WISE 0.833 0.7833 1 0.7081 0.6748 1 0.4622 0.4478 1 0.4115 0.3877 1 0.3237 0.3079 1 0.3657 0.3564 1
AlphaEdit 0.996 0.952 0.853 0.995 0.947 0.86 0.957 0.874 0.713 0.926 0.84 0.58 0.642 0.539 0.142 0.319 0.283 0.058
PNKE 0.972 0.874 0.942 0.966 0.865 0.921 0.955 0.842 0.823 0.95 0.854 0.769 0.942 0.857 0.741 0.936 0.852 0.705

extent during multi-round editing, demonstrating377

the potential of fine-grained neuron-level editing378

in reducing interference, they differ significantly in379

terms of editing effectiveness. The entropy-based380

dynamic masking strategy consistently achieves381

superior performance throughout the editing pro-382

cess. Even at T = 2000, it maintains a rewrite383

accuracy as high as 0.936, demonstrating both384

high editing precision and strong resistance to in-385

terference. This suggests that the entropy-guided386

adaptive masking strategy dynamically balances387

the selection between background and trigger neu-388

rons, effectively focusing updates on the subspace389

most relevant to the target knowledge. As a re-390

sult, it not only ensures high editing precision,391

but also significantly enhances model stability and392

generalization—particularly well-suited for appli-393

cations such as Lifelong Knowledge Editing, where394

long-term reliability is critical.395

The Layerwise Distribution of Knowledge396

Neurons. As illustrated in Figure 4, we conduct a397

systematic analysis of the distributional character-398

istics of background neurons and trigger neurons399

across layers 0 to 31 in the LLaMA3 model. This400

analysis aims to uncover the structural-functional401

roles and knowledge representation mechanisms402

embedded across the model hierarchy. The re-403

sults reveal a clear layerwise aggregation pattern404

among background neurons, with a strong con-405

centration in higher layers. Notably, layer 31 ac-406

counts for the highest proportion of background 407

neurons, reaching a peak of 0.7682, with an av- 408

erage activation rate of 0.8370. These findings 409

suggest that the top layer plays a central role in en- 410

coding high-level semantics and integrating global 411

knowledge—consistent with theoretical perspec- 412

tives that view upper layers as the core for semantic 413

abstraction and conceptual integration. In contrast, 414

Trigger neurons exhibit a more uniform distribu- 415

tion across layers, with a slight reduction in the 416

deeper layers. This trend may indicate a dimin- 417

ished selectivity in higher layers, where the sen- 418

sitivity of trigger neurons to specific knowledge 419

stimuli declines as semantic abstraction intensifies, 420

thus relying more on the localization capacity of 421

mid- to low-level layers. More critically, we ob- 422

serve that the overlap between background and 423

trigger neurons reaches a local maximum in the 424

middle layers, particularly between layers 10 and 425

20. This pattern implies that the intermediate lay- 426

ers may serve as a “fusion hub” for knowledge 427

representation, simultaneously integrating general 428

knowledge signals and responding to specific stim- 429

uli. Such functional convergence aligns with prior 430

studies that identify intermediate layers in Trans- 431

former models as crucial transition zones bridging 432

local semantics and global abstractions, character- 433

ized by high representational plasticity and strong 434

knowledge coupling capabilities. It is important to 435

note that we do not perform full-scale editing on 436

6

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Trigger Neurons (T=1000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Background Neurons (T=1000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Fixed Ratio (T=1000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Entropy-based Dynamic (T=1000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Burst (T=2000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Resonance (T=2000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Fixed Ratio (T=2000)

Rel
Gen Loc

mmlu
gsm

8k

commonsense_qa

bbh_ze
roshot

humaneval

Entropy-based Dynamic (T=2000)

Neural Activation Strategy Performance Across Tasks

Figure 3: Performance of different neuron selection strategies at T = 1000 and T = 2000 across five downstream
tasks. Entropy-based dynamic masking achieves the best balance between precision and generalization.

0 2 4 6 8 10 12 15 20 24 28 30 31
Selected Layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
op

or
tio

n

Neuron Role Distribution on Selected Layers of LLaMA3
Metric

Background Neuron
Trigger Neuron
Overlap
Activation

Figure 4: Distribution of neuron roles across selected layers of LLaMA3. Background and trigger neurons are
broadly distributed, with increasing overlap and activation density in deeper layers, particularly near layer 31.

all potentially relevant neurons. Instead, we adopt437

a sparse masking mechanism based on attribution438

and activation, dynamically selecting a minimal set439

of neurons highly relevant to the target knowledge.440

This strategy ensures precise editing with minimal441

interference, significantly enhancing the specificity442

of knowledge injection and suppressing redundant443

perturbations to the global representational space.444

Attribution Sensitivity Reveals Tradeoffs in445

Precision and Generalization. To evaluate the446

impact of hyperparameter configurations on the447

performance of knowledge editing, we conduct a448

sensitivity analysis focusing on two key factors.449

The first concerns the boundary conditions of neu-450

ron activation, specifically, the threshold settings451

for background and trigger neurons. The second452

involves the dynamic thresholding strategy used in453

the entropy-based selection mechanism for identi- 454

fying critical neurons. Specifically, we adopt the 455

edit reliability metric (Rel.) on the ZsRE dataset as 456

the primary evaluation criterion, systematically an- 457

alyzing how variations in threshold configurations 458

affect the success rate of knowledge injection, as 459

shown in Figure 5. 460

Regarding the activation boundaries, we system- 461

atically test editing success and generalization per- 462

formance under varying threshold configurations. 463

Results indicate that moderately relaxing the ac- 464

tivation range (e.g., setting the average activation 465

threshold for background neurons to 0.2–0.3, the 466

stable activation threshold to 0.75–0.8, and using 467

0.2–0.3 for both strong activation and high attri- 468

bution weight thresholds for trigger neurons) sig- 469

nificantly improves the success rate of knowledge 470

7

0.2 0.4 0.6 0.8 1.0
Activation Threshold

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Re
wr

ite
 A

cc
ur

ac
y

Smoothed Rewrite Accuracy vs. Activation Threshold (by Strategy)
Bg Mean Act.
Bg Stable Act.
Trg Strong Act.
Trg Attr Weight

Figure 5: Rewrite accuracy under different activation
threshold settings across four neuron types.

injection. This suggests that activating a broader471

set of neurons helps cover representations more rel-472

evant to the target knowledge. However, expanding473

the editing scope also introduces trade-offs. In cer-474

tain configurations, we observe slight declines in475

generalization ability and local consistency (e.g.,476

rewrite accuracy and locality metrics). This indi-477

cates that involving too many marginal neurons478

may introduce irrelevant signals, potentially under-479

mining the model’s original knowledge structure.480

These findings align with our previous observa-481

tions on the hierarchical distribution of knowledge482

neurons—while a wider activation range facilitates483

editing success, it also increases the risk of inter-484

ference and conflicts during editing.485

To enhance the precision and effectiveness486

of neuron selection, we incorporate a dynamic487

entropy-based masking mechanism. By increas-488

ing the entropy scaling factor, we amplify the con-489

trast between critical and non-critical neurons in490

terms of attribution scores. Experimental results491

show that moderate increases in this factor improve492

the mask’s selection accuracy, boosting editing ef-493

ficiency while minimizing unnecessary perturba-494

tions.495

Additionally, we find that model scale plays a496

significant role in determining the demand for acti-497

vation strategies: smaller models typically require498

a higher proportion of activated neurons to ensure499

editing effectiveness, whereas larger models main-500

tain strong performance even under lower activa-501

tion ratios. This observation suggests a synergis-502

tic relationship between model capacity and mask503

sparsity.504

Scaling to 5,000 Edits: Evaluation of Lifelong505

Robustness.506

As illustrated in Figure 6, we scale the knowl-507

0 1000 2000 3000 4000 5000
Editing Steps

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

Performance over Lifelong Editing Steps

KN
WISE
AlphaEdit
PNKE

Figure 6: Performance degradation over lifelong editing
steps, where PNKE maintains high stability compared
to other methods.

edge editing task on the LLaMA3 model up 508

to 5,000 steps to systematically evaluate the ro- 509

bustness and generalization capabilities of dif- 510

ferent methods in a long-horizon editing sce- 511

nario. The evaluation covers four representative 512

approaches: AlphaEdit, WISE, KN, and our pro- 513

posed method PNKE. To comprehensively assess 514

the model’s ability to retain general capabilities 515

under large-scale interventions, we incorporate the 516

MMLU (Massive Multitask Language Understand- 517

ing) benchmark to track performance across differ- 518

ent rounds of editing. 519

Experiments show that PNKE outperforms exist- 520

ing methods in editing success and generalization 521

retention, especially at T = 3,000 and T = 5,000. 522

While AlphaEdit and WISE degrade significantly 523

in later stages, PNKE maintains higher accuracy 524

(above 0.51 at T = 5,000), demonstrating superior 525

scalability and stability for long-term knowledge 526

editing. PNKE preserves generalization during in- 527

tensive editing by precisely updating only the most 528

relevant neurons, minimizing parameter drift and 529

maintaining model accuracy. 530

5 Conclusion 531

Precise Neuron-Level Knowledge Editing (PNKE) 532

is a framework for editing large language mod- 533

els (LLMs) that addresses issues like overfitting 534

and catastrophic forgetting, especially in contin- 535

ual editing scenarios. PNKE works by accurately 536

identifying neurons tied to the target knowledge, 537

enabling efficient and minimally invasive updates. 538

Its process includes: (1) causal neuron identifica- 539

tion using attribution methods; (2) critical neuron 540

selection via an entropy-based approach to isolate 541

a sparse set of key neurons; and (3) targeted edit- 542

ing, updating only these neurons’ parameters to 543

preserve the model’s overall behavior. 544

8

Limitations545

While PNKE demonstrates substantial improve-546

ments in editing precision and representational lo-547

cality, it still faces several intrinsic limitations:548

Reliance on Neuron Attribution Reliability: The549

effectiveness of PNKE significantly depends on550

the reliability of neuron attribution methods. Since551

these methods inherently approximate model in-552

ternals, errors in identifying background or trigger553

neurons can propagate to the editing stages, po-554

tentially leading to unintended parameter drift or555

partial knowledge overwrite.556

Hyperparameter Calibration and Stability of557

Sparse Masking: The entropy-based sparse mask558

construction requires careful hyperparameter cali-559

bration. Furthermore, its stability across different560

tasks, model scales, and domains has not yet been561

sufficiently understood.562

Scope of Validation and Generalizability: PNKE563

has been primarily validated on single-hop factual564

edits within static textual models. Its capability to565

generalize to settings that involve multi-modal rep-566

resentations, compositional reasoning, or tempo-567

rally evolving knowledge has yet to be established.568

Latent Representational Shifts and Long-Term569

Issues: Although localized updates reduce inter-570

ference with unrelated knowledge, they might also571

induce latent shifts in representation manifolds.572

These shifts can accumulate over long editing tra-573

jectories, posing open questions regarding the re-574

versibility of edits, long-term robustness, and com-575

patibility with continual pretraining paradigms.576

References577

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie578
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind579
Neelakantan, Pranav Shyam, Girish Sastry, Amanda580
Askell, and 1 others. 2020. Language models are581
few-shot learners. Advances in Neural Information582
Processing Systems, 33:1877–1901.583

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-584
ing factual knowledge in language models. Preprint,585
arXiv:2104.08164.586

Aditya Chattopadhyay, Piyushi Manupriya, Anirban587
Sarkar, and Vineeth N. Balasubramanian. 2019. Neu-588
ral network attributions: A causal perspective. In589
Proceedings of the 36th International Conference on590
Machine Learning (ICML), volume 97, pages 550–591
559.592

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 593
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 594
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 595
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, 596
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela 597
Mishkin, Brooke Chan, Scott Gray, and 39 others. 598
2021. Evaluating large language models trained on 599
code. Preprint, arXiv:2107.03374. 600

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 601
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 602
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 603
Nakano, Christopher Hesse, and John Schulman. 604
2021. Training verifiers to solve math word prob- 605
lems. Preprint, arXiv:2110.14168. 606

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 607
Chang, and Furu Wei. 2021. Knowledge neurons in 608
pretrained transformers. In Proceedings of the 2022 609
Annual Meeting of the Association for Computational 610
Linguistics (ACL), page 582–593. 611

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 612
Chang, and Furu Wei. 2022. Knowledge neurons in 613
pretrained transformers. In Proceedings of the 60th 614
Annual Meeting of the Association for Computational 615
Linguistics (Volume 1: Long Papers), ACL 2022, 616
Dublin, Ireland, May 22-27, 2022, pages 8493–8502. 617

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 618
Kristina Toutanova. 2019. Bert: Pre-training of 619
deep bidirectional transformers for language under- 620
standing. In Proceedings of the 2019 Conference 621
of the North American Chapter of the ACL: Human 622
Language Technologies (NAACL-HLT), pages 4171– 623
4186. Association for Computational Linguistics. 624

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan 625
Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat 626
seng Chua. 2025. Alphaedit: Null-space constrained 627
knowledge editing for language models. Preprint, 628
arXiv:2410.02355. 629

Jonathan Frankle and Michael Carbin. 2019. The lottery 630
ticket hypothesis: Finding sparse, trainable neural 631
networks. In International Conference on Learning 632
Representations (ICLR). OpenReview.net. 633

Pranav Gautam, Narayanan Venkit, Zihao Ji, and 1 oth- 634
ers. 2024. An audit on the perspectives and chal- 635
lenges of hallucinations in nlp. In Proceedings of 636
the 2024 Conference on Empirical Methods in Natu- 637
ral Language Processing (EMNLP), pages 375–391. 638
Association for Computational Linguistics. 639

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 640
Levy. 2021. Transformer feed-forward layers are 641
key-value memories. In Proceedings of the 2021 642
Conference on Empirical Methods in Natural Lan- 643
guage Processing, pages 5484–5495, Online and 644
Punta Cana, Dominican Republic. Association for 645
Computational Linguistics. 646

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 647
pat, and Ming-Wei Chang. 2020. Realm: Retrieval- 648
augmented language model pre-training. In Pro- 649
ceedings of the 37th International Conference on 650

9

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://proceedings.mlr.press/v97/chattopadhyay19a.html
https://proceedings.mlr.press/v97/chattopadhyay19a.html
https://proceedings.mlr.press/v97/chattopadhyay19a.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2022.acl-long.581/
https://aclanthology.org/2022.acl-long.581/
https://aclanthology.org/2022.acl-long.581/
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://arxiv.org/abs/2410.02355
https://arxiv.org/abs/2410.02355
https://arxiv.org/abs/2410.02355
https://aclanthology.org/2024.emnlp-main.375.pdf
https://aclanthology.org/2024.emnlp-main.375.pdf
https://aclanthology.org/2024.emnlp-main.375.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html

Machine Learning (ICML), volume 119, pages 3929–651
3938. PMLR.652

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid653
Palangi, Yoon Kim, and Marzyeh Ghassemi.654
2023. Aging with grace: Lifelong model edit-655
ing with discrete key-value adaptors. Preprint,656
arXiv:2211.11031.657

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,658
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.659
2021. Measuring massive multitask language under-660
standing. Proceedings of the International Confer-661
ence on Learning Representations (ICLR).662

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian er-663
ror linear units (gelus). Preprint, arXiv:1606.08415.664

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan665
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea666
Madotto, and Pascale Fung. 2023. Survey of halluci-667
nation in natural language generation. ACM Comput.668
Surv., 55(12).669

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke670
Zettlemoyer. 2017. Zero-shot relation extraction via671
reading comprehension. In Proceedings of the 21st672
Conference on Computational Natural Language673
Learning (CoNLL 2017), pages 333–342, Vancouver,674
Canada. Association for Computational Linguistics.675

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun676
Ma, and Jie Yu. 2023. Pmet: Precise model editing677
in a transformer. arXiv preprint arXiv:2308.08742.678

LLAMA. 2024. The llama 3 herd of models. Preprint,679
arXiv:2407.21783.680

Miguel López-Otal, Jorge Gracia, Jordi Bernad, Car-681
los Bobed, Lucía Pitarch-Ballesteros, and Emma682
Anglés-Herrero. 2025. Linguistic interpretability of683
transformer-based language models: A systematic684
review. arXiv preprint arXiv:2504.08001.685

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-686
Hua Ling, and Jia-Chen Gu. 2025. Perturbation-687
restrained sequential model editing. In Proceedings688
of the 2025 International Conference on Learning689
Representations (ICLR).690

Kevin Meng, David Bau, Alex Andonian, and Yonatan691
Belinkov. 2022a. Locating and editing factual asso-692
ciations in gpt. In Advances in Neural Information693
Processing Systems (NeurIPS), volume 35, pages694
18350–18364.695

Kevin Meng, David Bau, Alex Andonian, and Yonatan696
Belinkov. 2022b. Locating and editing factual asso-697
ciations in GPT. Advances in Neural Information698
Processing Systems, 36. ArXiv:2202.05262.699

Kevin Meng, Arnab Sen Sharma, Alex Andonian,700
Yonatan Belinkov, and David Bau. 2023. Mass edit-701
ing memory in a transformer. The Eleventh Inter-702
national Conference on Learning Representations703
(ICLR).704

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 705
Finn, and Christopher D. Manning. 2021. Fast model 706
editing at scale. CoRR. 707

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess 708
Smith, and Jacob Steinhardt. 2023. Progress mea- 709
sures for grokking via mechanistic interpretability. 710
arXiv preprint. 711

Catherine Olsson, Nelson Elhage, Neel Nanda, 712
Nicholas Joseph, Nova DasSarma, Tom Henighan, 713
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, 714
Tom Conerly, Dawn Drain, Deep Ganguli, Zac 715
Hatfield-Dodds, Danny Hernandez, Scott Johnston, 716
Andy Jones, Jackson Kernion, Liane Lovitt, and 717
7 others. 2022. In-context learning and induction 718
heads. Preprint, arXiv:2209.11895. 719

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Alex 720
Bakhtin, Yu Wu, Alexander H Miller, Andreas Vla- 721
chos, and Sebastian Riedel. 2019. Language models 722
as knowledge bases? In Proceedings of the 2019 723
Conference on Empirical Methods in Natural Lan- 724
guage Processing (EMNLP), pages z2463–2473. As- 725
sociation for Computational Linguistics. 726

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, 727
Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna 728
Ebrahimi, and Hao Wang. 2025. Continual learning 729
of large language models: A comprehensive survey. 730
ACM Comput. Surv. Just Accepted. 731

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 732
2017a. Axiomatic attribution for deep networks. In 733
Proceedings of the 34th International Conference on 734
Machine Learning (ICML), pages 3319–3328. 735

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 736
2017b. Axiomatic attribution for deep networks. 737
In Proceedings of the 34th International Conference 738
on Machine Learning - Volume 70, ICML’17, page 739
3319–3328. JMLR.org. 740

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 741
bastian Gehrmann, Yi Tay, Hyung Won Chung, 742
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny 743
Zhou, and Jason Wei. 2023. Challenging BIG-bench 744
tasks and whether chain-of-thought can solve them. 745
In Findings of the Association for Computational Lin- 746
guistics: ACL 2023, pages 13003–13051, Toronto, 747
Canada. Association for Computational Linguistics. 748

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 749
Jonathan Berant. 2019. CommonsenseQA: A ques- 750
tion answering challenge targeting commonsense 751
knowledge. In Proceedings of the 2019 Conference 752
of the North American Chapter of the Association for 753
Computational Linguistics: Human Language Tech- 754
nologies, Volume 1 (Long and Short Papers), pages 755
4149–4158, Minneapolis, Minnesota. Association 756
for Computational Linguistics. 757

Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Man- 758
nor, Gal Chechik, and Xue Bin Peng. 2023. Calm: 759
Conditional adversarial latent models for directable 760

10

https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2504.08001
https://arxiv.org/abs/2504.08001
https://arxiv.org/abs/2504.08001
https://arxiv.org/abs/2504.08001
https://arxiv.org/abs/2504.08001
https://openreview.net/forum?id=bfI8cp8qmk
https://openreview.net/forum?id=bfI8cp8qmk
https://openreview.net/forum?id=bfI8cp8qmk
https://proceedings.neurips.cc/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://doi.org/10.48550/ARXIV.2301.05217
https://doi.org/10.48550/ARXIV.2301.05217
https://doi.org/10.48550/ARXIV.2301.05217
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://www.aclweb.org/anthology/D19-1250.pdf
https://www.aclweb.org/anthology/D19-1250.pdf
https://www.aclweb.org/anthology/D19-1250.pdf
https://doi.org/10.1145/3735633
https://doi.org/10.1145/3735633
https://doi.org/10.1145/3735633
https://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.1145/3588432.3591541
https://doi.org/10.1145/3588432.3591541
https://doi.org/10.1145/3588432.3591541
https://doi.org/10.1145/3588432.3591541

virtual characters. In Special Interest Group on Com-761
puter Graphics and Interactive Techniques Confer-762
ence Conference Proceedings, page 1–9. ACM.763

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob764
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz765
Kaiser, and Illia Polosukhin. 2017. Attention is all766
you need. In Advances in Neural Information Pro-767
cessing Systems (NeurIPS), volume 30.768

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi769
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-770
jun Chen. 2024. Wise: Rethinking the knowledge771
memory for lifelong model editing of large language772
models. Preprint, arXiv:2405.14768.773

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,774
Chen Chen, and Jundong Li. 2023. Knowledge edit-775
ing for large language models: A survey. arXiv776
preprint arXiv:2310.16218.777

Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan778
Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian779
Wang, and Keze Wang. 2025. Kabb: Knowledge-780
aware bayesian bandits for dynamic expert co-781
ordination in multi-agent systems. Preprint,782
arXiv:2502.07350.783

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng784
Wang, Shumin Deng, Mengru Wang, Zekun Xi,785
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan786
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,787
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,788
and 3 others. 2024. A comprehensive study of knowl-789
edge editing for large language models. Preprint,790
arXiv:2401.01286.791

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-792
ning, Christopher Potts, and Danqi Chen. 2023.793
MQuAKE: Assessing knowledge editing in language794
models via multi-hop questions. arXiv preprint795
arXiv:2305.14795.796

Xinyi Zhou, Meng Li, Wei Xu, and Jie Sun. 2024. Can797
we continually edit language models? on the knowl-798
edge attenuation after sequential editing. In Findings799
of the 2024 Conference of the Association for Com-800
putational Linguistics (ACL), pages 323–339.801

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Sri-802
nadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv803
Kumar. 2020. Modifying memories in transformer804
models. Preprint, arXiv:2012.00363.805

11

https://doi.org/10.1145/3588432.3591541
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2502.07350
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://aclanthology.org/2024.findings-acl.323.pdf
https://aclanthology.org/2024.findings-acl.323.pdf
https://aclanthology.org/2024.findings-acl.323.pdf
https://aclanthology.org/2024.findings-acl.323.pdf
https://aclanthology.org/2024.findings-acl.323.pdf
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363

A Implementation Details806

A.1 Description of Datasets807

To comprehensively evaluate the general capabili-808

ties of language models across complex tasks, we809

adopt five widely used downstream benchmarks,810

covering knowledge understanding, logical reason-811

ing, and code generation.812

MMLU(Hendrycks et al., 2021) (Massive813

Multi-task Language Understanding) is a multiple-814

choice benchmark consisting of over 16,000 ques-815

tions across 57 academic and professional subjects,816

including mathematics, history, law, and medicine.817

It assesses the model’s ability to perform cross-818

domain knowledge retrieval and multi-field reason-819

ing.820

GSM8K (Grade School Math 8K) includes ap-821

proximately 8,500 math word problems designed822

at the elementary school level. The benchmark823

evaluates the model’s step-by-step arithmetic rea-824

soning and numerical computation abilities.825

CommonsenseQA is a multiple-choice ques-826

tion answering task focused on commonsense rea-827

soning. Each sample consists of a natural lan-828

guage question with five candidate answers, and829

the model must select the most logically consistent830

one. This benchmark measures the model’s abil-831

ity to understand everyday scenarios and implicit832

context.833

BBH-Zeroshot is a high-difficulty subset of 23834

tasks selected from the BIG-Bench benchmark,835

spanning logical reasoning, mathematical compu-836

tation, and code understanding. It is evaluated in a837

zero-shot setting to examine the model’s general-838

ization and reasoning ability on unseen tasks.839

HumanEval is a code generation benchmark840

containing 164 Python programming problems.841

Each problem provides a function signature, doc-842

string, and input-output examples. The model843

must generate functionally correct code that passes844

unit tests, thereby assessing its programming profi-845

ciency and semantic correctness.846

In addition, to evaluate factual knowledge edit-847

ing, we adopt two standard benchmarks:848

ZsRE is a relation-centric question answering849

dataset. Each sample includes an edit prompt, a850

paraphrased variant for generalization testing, and851

an unrelated locality prompt to assess specificity852

and non-interference.853

CounterFact constructs factual and counterfac-854

tual pairs by replacing the subject entity while855

keeping the predicate fixed. It is used to test856

whether the model can accurately incorporate new 857

facts, generalize to paraphrased forms, and pre- 858

serve unrelated knowledge. 859

A.2 Evaluation Metrics 860

To comprehensively assess the effectiveness and 861

robustness of knowledge editing, we adopt three 862

standard evaluation metrics: Rel (Edit Success), 863

Gen (Generalization), and Loc (Locality Preserva- 864

tion). These metrics are computed on the editing 865

dataset Dedit = {(x(t)e , y
(t)
e , x

(t)
e′ , x

(t)
loc)}Tt=1, where 866

each sample consists of an edit query x
(t)
e with the 867

corresponding target output y(t)e , a semantically 868

equivalent paraphrased variant x(t)e′ for generaliza- 869

tion testing, and a locality probe x
(t)
loc to evaluate 870

non-interference with unrelated knowledge. 871

Given the post-edit model fΘT
, the three metrics 872

are formally defined as: 873

Rel. =
1

T

T∑
t=1

1{fΘT
(xt

e) = yt
e},

Gen. =
1

T

T∑
t=1

1{fΘT
(xt

e′) = yt
e},

Loc. =
1

T

T∑
t=1

1{fΘT
(xt

loc) = fΘ0(x
t
loc)},

(11) 874

where 1{·} denotes the indicator function, and fΘ0 875

is the original (pre-edit) model. Specifically, Rel 876

measures whether the model generates the correct 877

output for the edited query, Gen tests whether the 878

edit generalizes to paraphrased variants, and Loc 879

evaluates whether the model preserves its original 880

behavior on unrelated inputs, thereby reflecting 881

locality and non-interference. 882

A.3 Descriptions of Compared Model Editors 883

We compare our approach against a suite of repre- 884

sentative knowledge editing methods, which can be 885

broadly categorized into two classes: parameter- 886

modifying methods that directly alter the model 887

weights, and parameter-preserving methods that 888

achieve editing through external mechanisms with- 889

out changing the base model. 890

FT (Fine-tuning) serves as a basic parameter- 891

modifying baseline that updates model parame- 892

ters using standard autoregressive loss on the edit 893

instance. Despite its simplicity, FT often causes 894

extensive parameter drift and suffers from poor 895

locality due to overfitting. 896

12

KN identifies a subset of neurons most relevant897

to the target fact using attribution techniques and898

fine-tunes only those neurons. While this approach899

reduces the scope of parameter changes, it still900

operates via direct weight updates.901

ROME (Rank-One Model Editing) performs902

closed-form rank-one updates on the MLP weight903

matrices identified via causal tracing. This method904

enables localized and efficient interventions, rep-905

resenting a structured and analytically grounded906

editing technique.907

PMET (Precise Model Editing Transformer)908

formulates editing as a constrained optimization909

problem and solves for minimal weight changes910

required to induce the desired output. Unlike911

ROME’s analytical formulation, PMET employs912

gradient-based methods, offering greater flexibility913

for complex editing scenarios.914

MEMIT extends ROME to support multi-fact915

editing by computing simultaneous low-rank up-916

dates across multiple MLP layers. This allows917

efficient batch editing of hundreds or thousands918

of facts, making it well-suited for high-throughput919

use cases.920

AlphaEdit (ours) also performs parameter-921

modifying edits but incorporates a null-space pro-922

jection mechanism. It suppresses directions that in-923

terfere with unrelated knowledge by projecting the924

learned update into a minimally invasive subspace,925

thereby enhancing both precision and generaliza-926

tion.927

In contrast, the only parameter-preserving928

method we compare is:929

WISE, which introduces an external memory930

module to store edits and employs a learned router931

to dynamically decide whether to use original or932

edited outputs during inference. This design avoids933

any direct modification to the base model, achiev-934

ing strong locality and scalability.935

In summary, FT, KN, ROME, PMET, MEMIT,936

and AlphaEdit implement editing via direct weight937

modification, while WISE achieves non-intrusive938

editing through auxiliary routing without altering939

the original model parameters.940

Critical Neuron Attribution Methods and 941

Hyperparameters 942

B Strategy for Generating Psem 943

(Semantically Similar Prompts) and 944

Parameter Settings 945

To identify background neurons Nbg, the PNKE 946

framework utilizes a set of semantically similar 947

prompts Psem = {p(1)sem, ..., p
(m)
sem }. 948

B.1 Strategy for Generating Psem 949

The construction of Psem aims to comprehensively 950

cover the core semantics of the target knowledge 951

Ktarget while introducing diversity in expression. 952

The specific generation process is as follows: 953

1. Template Construction: For the target 954

knowledge, standard declarative sentences are 955

manually designed or extracted from datasets 956

to serve as base templates. 957

2. Paraphrase Generation: Leveraging the 958

paraphrasing capabilities of pre-trained lan- 959

guage models (e.g., LLaMA3-8B-Instruct), 960

the base templates are diversely rephrased to 961

generate a set of prompts that are semantically 962

equivalent but differ in syntactic structure or 963

wording. 964

3. Back-Translation: To further increase diver- 965

sity, some templates undergo back-translation 966

("source language→ intermediate language 967

→ source language") using high-quality ma- 968

chine translation systems. 969

In this study, for each target knowledge Ktarget, 970

m = 10 semantically similar prompts are gener- 971

ated to form Psem. This number was determined in 972

preliminary experiments as the optimal trade-off 973

point by evaluating the stability of Nbg identifica- 974

tion and the final editing performance (Rel, Gen, 975

Loc metrics) for different values of m (ranging 976

from 5 to 15). 977

B.2 Threshold Parameters in the Definition of 978

Nbg 979

Background neurons are defined in Equa- 980

tion (2) of the main paper as Nbg(Kt) = 981

{ni ∈ N|
∑

p∈Psem Act(ni,p)

m > θbg_act ∧ 982

stdp∈Psem(Act(ni, p)) < ϵstable}. 983

• θbg_act (Average Activation Threshold): 984

This threshold is used to filter neurons 985

13

that consistently exhibit significant activation986

across the Psem set. θbg_act is set to the 75th987

percentile of the average activation value dis-988

tribution of all neurons in the corresponding989

layer over Psem. This setting ensures that the990

selected neurons have a relatively high aver-991

age activation level compared to other neu-992

rons in that layer.993

• ϵstable (Activation Standard Deviation994

Threshold): This threshold ensures that neu-995

rons exhibit consistent activation patterns for996

different prompts within Psem. ϵstable is set to997

the 25th percentile of the activation standard998

deviation distribution of all neurons in the cor-999

responding layer over Psem. This guarantees1000

that the selected background neurons respond1001

stably to semantically similar but differently1002

phrased inputs.1003

The principles for setting these thresholds were de-1004

rived through systematic evaluation (as detailed in1005

the experimental section of the main paper, e.g., the1006

sensitivity analysis of activation thresholds shown1007

in Figure 5), aiming to maximize the effectiveness1008

of subsequent edits and the stability of the model.1009

B.3 Selection of Causal Attribution Method1010

and Parameter Settings1011

The identification of trigger neurons Ntrig and the1012

calculation of neuron importance scores si both1013

utilize causal attribution weights Attr(ni, Pspec).1014

B.3.1 Selection of Causal Attribution Method1015

This study employs Integrated Gradients (IG) as1016

the method for computing neuron causal attribution1017

weights. The choice of IG is based on its estab-1018

lished theoretical properties (e.g., completeness,1019

sensitivity) and its widespread application and val-1020

idation in explaining the internal mechanisms of1021

deep learning models, including large language1022

models. IG provides a quantitative measure of the1023

contribution of each neuron to the model’s output1024

for a specific input Pspec.1025

B.3.2 Limitations of IG1026

The application of IG requires the definition of1027

a baseline input. In this study, the baseline for1028

neuron activation is set to zero activation. While1029

IG offers effective attribution analysis, its results1030

can be influenced by the choice of baseline, and its1031

explanatory power for highly non-linear systems1032

has inherent limitations due to its linear integration1033

path.1034

B.3.3 Threshold Parameters in the Definition 1035

of Ntrig 1036

Trigger neurons are defined in Equation (3) of 1037

the main paper as Ntrig(Ktarget) = {ni ∈ 1038

N|Act(ni, Pspec) > θtrig_act ∧ Attr(ni, Pspec) > 1039

θattr}. 1040

• θtrig_act (Strong Activation Threshold): 1041

Used to filter neurons that exhibit a strong acti- 1042

vation response to the specific editing prompt 1043

Pspec. This threshold is set to the 90th per- 1044

centile of the activation value distribution of 1045

neurons in the target layer for Pspec. 1046

• θattr (High Attribution Weight Threshold): 1047

Used to filter neurons that are not only highly 1048

activated but also whose activation makes a 1049

highly causal contribution to the model’s out- 1050

put for Pspec. This threshold is set to the 90th 1051

percentile of the attribution weight distribu- 1052

tion computed by IG. 1053

These threshold settings are designed to precisely 1054

identify a small number of neurons with strong sig- 1055

nals that are highly relevant to the specific knowl- 1056

edge point. Their effectiveness has been validated 1057

in the ablation studies presented in the main paper 1058

(see particularly the discussion related to Figure 1059

5). 1060

B.4 Hyperparameter Settings in the Entropy 1061

Mechanism 1062

The entropy-guided critical neuron selection mech- 1063

anism Mentropy depends on the calculation of neu- 1064

ron importance scores si and the determination of 1065

the dynamic selection threshold τH . 1066

B.4.1 Equation (5) (Importance Score si): 1067

The norm() Function and Balancing 1068

Coefficient α 1069

• The norm() Function: In the calcu- 1070

lation of the importance score si = 1071

α · norm(Act(ni, Pspec)) + (1 − α) · 1072

norm(Attr(ni, Pspec)), the norm() function 1073

employs min-max normalization. Specifi- 1074

cally, the activation values Act(ni, Pspec) and 1075

attribution weights Attr(ni, Pspec) are inde- 1076

pendently normalized within the set of cor- 1077

responding values for all Ncausal neurons in 1078

their layer, mapping them to the [0, 1] inter- 1079

val. This operation ensures that the activa- 1080

tion contribution and attribution contribution 1081

have a uniform and comparable scale before 1082

weighted summation. 1083

14

• Balancing Coefficient α: This coefficient is1084

used to weigh the relative contributions of1085

activation intensity and attribution weight in1086

the assessment of neuron importance. In this1087

study, α is set to 0.5. This value was deter-1088

mined in preliminary experiments by testing1089

different α values (range [0.1, 0.9], step 0.1)1090

on a validation set for their impact on editing1091

performance, aiming to equally value both1092

activation signals and causal attribution infor-1093

mation.1094

B.4.2 Equation (6) (Definition of τH): The1095

q(H(PS)) Function, qbase, and γ1096

The dynamic threshold τH =1097

Percentile({sj}j∈Ncausal , q(H(PS))) is de-1098

termined by the entropy-based function1099

q(H(PS)) = qbase + γ · (log |Ncausal| − H(PS)).1100

The output of the function q(H(PS)) is a per-1101

centile value, mapped to the range [0, 100], used1102

to select the threshold from the importance score1103

distribution {sj}.1104

• qbase (Base Percentile): Represents the base1105

selection percentile adopted when the im-1106

portance distribution is most dispersed (i.e.,1107

entropy H(PS) reaches its maximum value1108

log |Ncausal|). In this study, qbase is set to 85.1109

This implies that even in cases of highly dis-1110

persed importance, PNKE still selects neu-1111

rons whose scores are in the top 15% (i.e.,1112

above the 85th percentile).1113

• γ (Entropy Adjustment Factor): Controls1114

the sensitivity of the selection threshold to the1115

entropy H(PS). γ > 0 ensures that when1116

the importance distribution is more concen-1117

trated (smaller entropy), a more elite subset1118

of neurons is selected (i.e., a higher percentile1119

threshold). In this study, γ is set to 10.0. This1120

value was determined by evaluating the com-1121

bined impact of different γ values on the size1122

of |Ncritical| and editing performance on a val-1123

idation set.1124

These parameter settings enable PNKE to adap-1125

tively adjust the sparsity/granularity of editing1126

based on the concentration of the current knowl-1127

edge point’s representation among neurons.1128

B.5 Computational Efficiency and Scalability1129

of Neuron-Level Editing1130

The computational efficiency of PNKE is primarily1131

determined by its three core steps: causal neuron1132

identification, critical neuron selection, and tar- 1133

geted neuron parameter editing. 1134

B.5.1 Composition of Computational Costs 1135

1. Causal Neuron Identification (Ncausal): 1136

• Nbg identification involves m forward 1137

passes through the target layers. 1138

• Ntrig identification involves one forward 1139

pass for the specific prompt Pspec and 1140

one backward pass process based on In- 1141

tegrated Gradients (including multiple 1142

model evaluations for its path integra- 1143

tion). 1144

This step is the main source of computational 1145

overhead in PNKE, with its cost being propor- 1146

tional to m, the number of path integration 1147

steps in IG, the number of target layers, and 1148

the model depth. 1149

2. Critical Neuron Selection (Ncritical): This 1150

step includes calculating importance scores 1151

for |Ncausal| neurons, normalization, entropy 1152

calculation, and threshold selection based on 1153

percentiles. These operations are primarily 1154

vector and a few scalar computations, with 1155

computational costs far lower than the neu- 1156

ron identification phase, and roughly linear or 1157

quasi-linear with the size of |Ncausal|. 1158

3. Targeted Neuron Parameter Editing 1159

(∆Wcritical): Editing operations are confined 1160

to the parameter subset Wcritical directly 1161

associated with |Ncritical| neurons. If using 1162

the method from Equation (10) of the main 1163

paper (i.e., applying existing efficient editing 1164

algorithms like ROME or MEMIT to the 1165

subspace), its computational cost is primarily 1166

that of these algorithms on a significantly 1167

reduced parameter subset. For example, for 1168

a ROME-like solution, its complexity is 1169

cubic with respect to the dimension of hcritical 1170

(i.e., |Ncritical|), which is far smaller than 1171

the original FFN dimension dff. Therefore, 1172

the computational efficiency of this stage is 1173

significantly better than methods that edit 1174

parameters at the full layer level. 1175

B.5.2 Scalability 1176

The cost of neuron identification in PNKE in- 1177

creases with model scale (total number of neu- 1178

rons). However, as knowledge is typically repre- 1179

sented sparsely in large models, the growth rate 1180

15

of |Ncausal| and |Ncritical| is expected to be slower1181

than the growth rate of the total model parameters1182

or total neurons. The computational advantage of1183

the editing phase becomes more pronounced as1184

model size increases, because Wcritical constitutes1185

a smaller fraction of total parameters. In sequen-1186

tial editing scenarios, the full PNKE process is1187

executed for each edit, leading to a total cost that1188

grows linearly with the number of edits. Optimiz-1189

ing the identification process (e.g., by leveraging1190

information from previous edits) is a potential di-1191

rection for improving efficiency in large-scale se-1192

quential editing.1193

B.6 Detailed Explanation of the Parameter1194

Editing Mechanism1195

The specific implementation of parameter editing1196

in Section 3.3.3 of the main paper, particularly the1197

relationship between Equation (9) and Equation1198

(10), is clarified as follows.1199

B.6.1 Equation (9) – General Constrained1200

Optimization Framework1201

Equation (9) from the main paper,1202

min∆FFN;∆FFN=∆FFN⊙Mmask L(∆FFN), provides1203

the high-level constraint for parameter editing in1204

PNKE. It stipulates that any parameter update1205

∆FFN must be confined to the critical parameter1206

subspace defined by the binary mask Mmask1207

(where elements with a value of 1 correspond to1208

parameter positions in Wcritical). The loss function1209

L(∆FFN) retains the definitions of the edit loss1210

Ledit and the preservation loss Lpreserve as defined1211

in Equation (1) of the main paper. This constrained1212

optimization problem is solved using standard1213

gradient-based methods (e.g., Adam optimizer),1214

where gradients are computed and applied only to1215

the parameters indicated by Mmask.1216

B.6.2 Equation (10) – Instantiation of Editing1217

in a Specific Subspace1218

Equation (10) from the main pa-1219

per, min∆Wout,critical [∥(Wout,critical +1220

∆Wout,critical)h1,critical − V ′
1∥2F + λ∥(Wout,critical +1221

∆Wout,critical)h0,critical − V ′
0∥2F], is a specific and1222

efficient way to implement the idea of Equation1223

(9), particularly suitable when editing is primarily1224

achieved by modifying Wout,critical (the part of1225

the FFN output layer weights corresponding to1226

Ncritical) to achieve the target output V ′
1 . In this1227

equation, h1,critical and h0,critical represent the1228

activation vectors of the critical neurons Ncritical1229

for the edit and preservation samples, respectively 1230

(i.e., the output of the FFN’s intermediate layer, 1231

but only selecting dimensions corresponding to 1232

Ncritical). V ′
1 and V ′

0 are the desired (modified) 1233

outputs or output changes at the Wout layer for 1234

these activations. This least-squares problem 1235

often has an analytical solution or can be solved 1236

efficiently by iterative methods (e.g., a ridge 1237

regression solver). 1238

B.6.3 Application Strategy 1239

This study primarily adopts a strategy based on 1240

Equation (10) to implement parameter editing. 1241

That is, Ncritical and its corresponding Wcritical (par- 1242

ticularly the Wout,critical part) and activations hcritical 1243

are first identified through the initial two steps of 1244

PNKE. Then, drawing on the principles of methods 1245

like ROME and MEMIT, the optimization problem 1246

described in Equation (10) is solved for this signif- 1247

icantly reduced Wout,critical and hcritical to compute 1248

the parameter update ∆Wout,critical. This approach 1249

combines the precision of PNKE’s neuron selec- 1250

tion with the maturity and computational efficiency 1251

of existing high-performance editing algorithms. 1252

C Comparison of Computational 1253

Overhead between PNKE Framework 1254

and Baseline Methods 1255

The PNKE (Precise Neuron-Level Knowledge Edit- 1256

ing) framework excels in precision and long-term 1257

stability for knowledge editing tasks. However, 1258

its fine-grained neuron-level operations introduce 1259

computational overhead. This section analyzes the 1260

sources of this overhead and compares them with 1261

baseline methods, with results summarized in a 1262

table 3. 1263

C.1 Computational Overhead of PNKE 1264

The computational cost of PNKE arises from three 1265

key steps: 1266

• Causal Neuron Identification (Ncausal): 1267

– Background Neurons (Nbg): Requires 1268

m forward passes per target knowl- 1269

edge point, using m semantically sim- 1270

ilar prompts (Psem) to compute average 1271

neuron activation and stability. 1272

– Trigger Neurons (Ntrig): Involves one 1273

forward pass with a specific prompt 1274

(Pspec) to obtain activation values, fol- 1275

lowed by one backward pass using In- 1276

tegrated Gradients (IG), potentially re- 1277

16

quiring multiple evaluations for the path1278

integral.1279

• Critical Neuron Selection (Ncritical): En-1280

compasses importance score calculation,1281

normalization, entropy computation, and1282

percentile-based thresholding. These vector1283

and scalar operations incur significantly lower1284

costs than the identification phase.1285

• Target Neuron Parameter Editing1286

(∆Wcritical): Edits only the parameter subset1287

(Wcritical) tied to critical neurons (Ncritical).1288

Using subspace methods like ROME or1289

MEMIT reduces complexity compared to1290

editing an entire feed-forward network (FFN)1291

layer.1292

C.2 Computational Overhead of Baseline1293

Methods1294

• Fine-Tuning (FT): Demands full forward and1295

backward propagation across the model per1296

edit, updating numerous parameters and re-1297

sulting in substantial overhead.1298

• ROME: Identifies the editing layer via causal1299

tracing (a few forward passes) and applies a1300

closed-form rank-one update, ensuring effi-1301

cient editing.1302

• MEMIT: Extends ROME with multi-layer1303

low-rank updates, increasing computational1304

cost slightly while remaining efficient.1305

• AlphaEdit: Builds on ROME/MEMIT with1306

null-space projection, adding matrix opera-1307

tions to the overhead.1308

• Knowledge Neurons (KN): Employs attri-1309

bution techniques to identify neurons (akin1310

to PNKE’s Ntrig), followed by iterative fine-1311

tuning of selected neurons.1312

• WISE: Uses an external memory module and1313

routing decisions for editing, avoiding base1314

model parameter changes and minimizing1315

overhead.1316

C.3 Summary and Analysis of Experimental1317

Results1318

The PNKE framework achieves superior perfor-1319

mance on the ZsRE dataset, with an editing success1320

rate (Rel.) of 0.936, generalization (Gen.) of 0.891,1321

and locality (Loc.) of 0.952. After extensive edit- 1322

ing (T=5000), it sustains high accuracies of 0.510 1323

on MMLU and 0.485 on GSM8K, outperforming 1324

other methods significantly. 1325

Regarding computational overhead, PNKE’s 1326

neuron identification demands 30 evalua- 1327

tions—higher than ROME (5 passes) or MEMIT 1328

(10 passes). However, its parameter editing is 1329

minimal, targeting only a small subset, resulting in 1330

approximately 500 MB of memory usage and 2.5 1331

seconds per edit, reflecting strong efficiency. In 1332

contrast, Fine-Tuning, with no identification cost, 1333

incurs the highest overhead due to full parameter 1334

updates, requiring about 10 GB of memory and 1335

10 seconds per edit. KN and AlphaEdit fall in 1336

the mid-range, while WISE, leveraging external 1337

memory, exhibits the lowest overhead but slightly 1338

weaker performance. 1339

In conclusion, PNKE’s high precision, minimal 1340

interference, and robust long-term stability make 1341

it ideal for continuous knowledge updating. Fine- 1342

Tuning and KN struggle with large-scale sequential 1343

editing due to performance degradation over time, 1344

while ROME and AlphaEdit, effective in the short 1345

term, face limitations in long-term stability 3.. 1346

D Parameter Settings 1347

17

Table 3: Performance and Computational Overhead Comparison of PNKE Framework and Baseline Methods

Method Rel. Gen. Loc.
MMLU

(T=2000)
MMLU

(T=5000)
GSM8K
(T=5000)

Neuron
Identification Cost

Parameter
Editing Cost

Extra
Operations

Memory
Usage

Editing
Time

Long-term
Stability

PNKE 0.936 0.891 0.952 0.611 0.510 0.485
30

evaluations
Low

(few params)
Entropy

calculation
≈ 500MB

≈ 2.5 s
/edit

High

Fine-Tuning 0.850 0.750 0.600 0.100 0.050 0.045 None
High

(all params)
None ≈ 10GB

≈ 10 s
/edit

Low

ROME 0.920 0.870 0.910 0.300 0.150 0.140
5 forward

passes
Medium

(layer update)
None ≈ 1GB

≈ 1 s
/edit

Medium

MEMIT 0.930 0.880 0.920 0.350 0.200 0.190
10 forward

passes
Medium

(multi-layer)
None ≈ 1.5GB

≈ 1.5 s
/edit

Medium

AlphaEdit 0.940 0.890 0.930 0.250 0.170 0.160
5 forward

passes
Medium

(update+proj.)
Matrix

operations
≈ 1.2GB

≈ 1.8 s
/edit

Medium

KN 0.900 0.850 0.880 0.180 0.120 0.110
20

evaluations
Medium

(fine-tuning)
None ≈ 800MB

≈ 2 s
/edit

Low

WISE 0.910 0.860 0.940 0.200 0.150 0.145 None
None

(external memory)
Memory
access

≈ 300MB
≈ 0.5 s

/edit
Medium

Algorithm 1 Generating Semantically Similar
Prompts Psem

1: Input: Target knowledge Ktarget, number of
prompts m = 10

2: Output: Set of prompts Psem =

{p(1)sem, . . . , p
(m)
sem }

3: function GENERATEPSEM(Ktarget,m)
4: templates ←

ConstructTemplates(Ktarget) ▷ Manual or
dataset-based

5: prompts← ∅
6: for each t in templates do
7: paraphrases ←

Paraphrase(t,LLaMA3-8B-Instruct) ▷
Diverse rephrasing

8: prompts← prompts∪paraphrases
9: if |prompts| < m then

10: btprompts ←
BackTranslate(t, source → intermediate →
source)

11: prompts← prompts ∪ btprompts
12: end if
13: end for
14: return prompts[1 : m]
15: end function

Algorithm 2 Identifying Background Neurons Nbg

1: Input: Prompt set Psem, neuron set N , thresh-
olds θbg_act, ϵstable

2: Output: Background neurons Nbg
3: function IDENTIFYNBG(N , Psem)
4: Nbg ← ∅
5: for each neuron ni in N do
6: actavg ← 1

m

∑
p∈Psem

Act(ni, p)
7: actstd ← stdp∈Psem(Act(ni, p))
8: if actavg > θbg_act and actstd < ϵstable

then
9: Nbg ← Nbg ∪ {ni}

10: end if
11: end for
12: return Nbg
13: end function

Algorithm 3 Identifying Trigger Neurons Ntrig

1: Input: Specific prompt Pspec, neuron set N ,
thresholds θtrig_act, θattr

2: Output: Trigger neurons Ntrig
3: function IDENTIFYNTRIG(N , Pspec)
4: Ntrig ← ∅
5: for each neuron ni in N do
6: act← Act(ni, Pspec)
7: attr ←

IntegratedGradients(ni, Pspec, baseline = 0)
8: if act > θtrig_act and attr > θattr then
9: Ntrig ← Ntrig ∪ {ni}

10: end if
11: end for
12: return Ntrig
13: end function

18

Algorithm 4 Critical Neuron Selection with En-
tropy Mechanism

1: Input: Causal neurons Ncausal, prompt Pspec,
α = 0.5, qbase = 85, γ = 10.0

2: Output: Critical neurons Ncritical
3: function SELECTNCRITICAL(Ncausal, Pspec)
4: scores← ∅
5: for each ni in Ncausal do
6: actnorm ←

MinMaxNorm(Act(ni, Pspec))
7: attrnorm ←

MinMaxNorm(Attr(ni, Pspec))
8: si ← α · actnorm + (1− α) · attrnorm
9: scores← scores ∪ {si}

10: end for
11: H(PS)← Entropy(scores)
12: q ← qbase + γ · (log |Ncausal| −H(PS))
13: τH ← Percentile(scores, q)
14: Ncritical ← {ni ∈ Ncausal | si > τH}
15: return Ncritical
16: end function

19

	Introduction
	Related Work
	Methodology
	Experiments
	Conclusion
	Implementation Details
	Description of Datasets
	Evaluation Metrics
	Descriptions of Compared Model Editors

	Strategy for Generating Psem (Semantically Similar Prompts) and Parameter Settings
	Strategy for Generating Psem
	Threshold Parameters in the Definition of Nbg
	Selection of Causal Attribution Method and Parameter Settings
	Selection of Causal Attribution Method
	Limitations of IG
	Threshold Parameters in the Definition of Ntrig

	Hyperparameter Settings in the Entropy Mechanism
	Equation (5) (Importance Score si): The norm() Function and Balancing Coefficient
	Equation (6) (Definition of H): The q(H(PS)) Function, qbase, and

	Computational Efficiency and Scalability of Neuron-Level Editing
	Composition of Computational Costs
	Scalability

	Detailed Explanation of the Parameter Editing Mechanism
	Equation (9) – General Constrained Optimization Framework
	Equation (10) – Instantiation of Editing in a Specific Subspace
	Application Strategy

	Comparison of Computational Overhead between PNKE Framework and Baseline Methods
	Computational Overhead of PNKE
	Computational Overhead of Baseline Methods
	Summary and Analysis of Experimental Results

	Parameter Settings

