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ABSTRACT

Diffusion models (Ho et al., 2020; Song et al., 2020) have achieved state-of-the-
art performance across multiple domains (Austin et al., 2021; Watson et al., 2023;
Anand & Achim, 2022), with recent advancements extending their applicability
to discrete data (Lou et al., 2023; Shi et al., 2024; Campbell et al., 2022; 2024).
However, aligning discrete diffusion models with task-specific preferences re-
mains challenging, particularly in scenarios where explicit reward functions are
unavailable. In this work, we introduce Discrete Diffusion DPO (D2-DPO), the
first adaptation of Direct Preference Optimization (DPO) (Rafailov et al., 2024) to
discrete diffusion models formulated as continuous-time Markov chains. Our ap-
proach derives a novel loss function that directly fine-tunes the generative process
using preference data while preserving fidelity to a reference distribution. We val-
idate D2-DPO on a structured binary sequence generation task, demonstrating that
the method effectively aligns model outputs with preferences while maintaining
structural validity. Our results highlight that D2-DPO enables controlled fine-
tuning without requiring explicit reward models, making it a practical alternative
to reinforcement learning-based approaches. Future research will explore extend-
ing D2-DPO to more complex generative tasks, including language modeling and
protein sequence generation, as well as investigating alternative noise schedules,
such as uniform noising, to enhance flexibility across different applications.

1 INTRODUCTION

Diffusion models have emerged as powerful generative models, achieving state-of-the-art results in
a variety of domains, including image generation (Ho et al., 2020; Song et al., 2020) and molecu-
lar design (Watson et al., 2023; Anand & Achim, 2022). While originally formulated in continu-
ous spaces, recent advancements have extended diffusion models to discrete domains (Austin et al.,
2021; Campbell et al., 2022), including language modelling (Lou et al., 2023; Shi et al., 2024; Sahoo
et al., 2024; Ou et al., 2024), symbolic music composition (Campbell et al., 2022) and biological se-
quence generation (Campbell et al., 2024). Discrete diffusion models have demonstrated remarkable
effectiveness in tasks where autoregressive approaches struggle, particularly in capturing long-range
dependencies and modelling global consistency. However, in many applications, generating plausi-
ble sequences alone is insufficient. One often seeks to optimize generation with respect to specific
task objectives, such as increasing factual accuracy in text generation, generating more harmonious
music compositions, or designing protein sequences with improved stability.

To address this challenge, recent works have explored fine-tuning pre-trained discrete diffusion mod-
els to optimize task-specific reward functions (Wang et al., 2024). However, explicitly defining a re-
ward function is often infeasible when generation quality depends on subjective or hard-to-quantify
criteria. In such cases, experts’ feedback can provide valuable guidance: they can qualitatively com-
pare generated candidates and express preferences based on fundamental knowledge of the domain.

Direct Preference Optimization (DPO) has recently emerged as a powerful method for fine-tuning
generative models based on preference data, eliminating the need for explicit reward modelling. It
has been successfully applied in natural language processing to align model responses with human
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feedback (Rafailov et al., 2024), in text-to-image generation to improve adherence to human aes-
thetic preferences (Wallace et al., 2024), and in protein design to enhance the stability of generated
sequences (Widatalla et al., 2024). Despite its success in autoregressive and continuous generative
models, DPO has not been explored for discrete diffusion models, which differ fundamentally in
their formulation and training dynamics.

In this work, we introduce Discrete Diffusion DPO (D2-DPO), the first adaptation of DPO to dis-
crete diffusion models. Unlike continuous diffusion models, which leverage score-matching, dis-
crete diffusion models are formulated as Continuous-Time Markov Chains (CTMCs), requiring a
different optimization framework. We derive a novel loss function that directly fine-tunes discrete
diffusion models using pairwise preference data while preserving fidelity to a reference distribution.

Our key contributions are as follows. Firstly, we introduce D2-DPO, a DPO-based optimization
framework tailored for CTMCs, enabling preference alignment in discrete diffusion models with-
out requiring an explicit reward function. Secondly, we show that under a masking-state noising
process, our preference-based objective simplifies to an intuitive closed-form expression, providing
theoretical insights into its effectiveness. Thirdly, we empirically validate D2-DPO on a structured
sequence generation task, demonstrating that it successfully aligns discrete diffusion models with
preferences while maintaining distributional coherence.

2 BACKGROUND AND NOTATION

2.1 DISCRETE DIFFUSION MODELS

Continuous-Time Markov Chain (CTMC). A CTMC describes a sequence of discrete states {xt}
evolving over continuous time t ∈ [0, 1]. The process begins at t = 0 with an initial state x0 ∼ p0,
and transitions between states occur stochastically governed by a rate matrix Rt ∈ RX×X . The
probability of transitioning from state xt to xt+dt over an infinitesimal time interval dt is given by:

pt+dt|t (xt+dt|xt) = δ(xt, xt+dt) +Rt(xt, xt+dt)dt, (1)

where δ is the Kronecker delta function, which equals 1 when xt+dt = xt and 0 otherwise. The off-
diagonal elements of the rate matrix, Rt(j, k) ≥ 0 for j ̸= k, specify the rate at which probability
mass transitions from state j to state k at time t. The diagonal elements Rt(j, j) = −

∑
k ̸=j Rt(j, k)

represent the total rate at which probability mass moves out of state j and are thus negative.

Noising Process. The noising process qt|1(xt|x1) progressively perturbs the data distribution
p1(x) = pdata(x) gradually transforming it into the noise prior p0(x) = pnoise(x) as t → 0. A
widely used approach is the masking-state noise process (Shi et al., 2024; Sahoo et al., 2024; Ou
et al., 2024) which gradually maps all states x ∈ X to a masked state M as t → 0. Under this
scheme, the noise prior is pmask

noise(x) = δ{M,x}, and the state space is augmented to X ∪ {M}. The
corresponding transition kernel for this process is given by:

qmask
t|1 (xt|x1) = tδ(x1, xt) + (1− t)δ(M,xt). (2)

Generative Modelling. To generate samples from pdata(x), we begin by drawing the initial noisy
state from the noise prior, x0 ∼ pnoise(x), and then simulate the trajectory {xt}t=1

t=0 by iteratively
applying the transition kernel pt+dt|t(xt+dt|xt). This process allows the system to evolve towards
the target distribution, ensuring that the final state at t = 1 is effectively a sample from the clean
data distribution, i.e., x1 ∼ pdata(x).

Reconstructing the transition kernel in equation 1 requires knowledge of the rate matrix
Rt(xt, xt+dt). Campbell et al. (2024) demonstrate that this matrix can be expressed as an expecta-
tion over a simpler conditional rate matrix. Specifically, we can write:

Rt(xt, xt+dt) = Ep1|t(x1|xt) [R
q
t (xt, xt+dt|x1)] , (3)

where p1|t(x1|xt) represents the denoising distribution, which we approximate using a neural net-
work pθ1|t(x1|xt). We define the rate matrix Rθ

t (xt, xt+dt) by substituting pθ1|t(x1|xt) into the ex-
pectation. The conditional rate matrix Rq

t (xt, xt+dt|x1) depends on the chosen noise schedule and
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is defined as:

Rq
t (xt, xt+dt|x1) =

ReLU
(
∂tqt|1(xt+dt|x1)− ∂tqt|1(xt|x1)

)
S · qt|1(xt|x1)

. (4)

2.2 DIRECT PREFERENCE OPTIMIZATION

Bradley-Terry (BT) Model. We assume access to a dataset of pairwise preferences P over clean
data samples x1. Each preference is represented as a tuple (xw

1 , x
l
1, c), where c ∈ C represents a

conditioning variable, xw
1 is the preferred sample, and xl

1 is the less preferred sample. The ranking
between samples is assumed to follow an unknown latent reward function r(c, x1), such that xw

1 ≻
xl
1 ⇐⇒ r(c, xw

1 ) > r(c, xl
1). To model the probability of preferring xw

1 over xl
1, we adopt the

Bradley-Terry (BT) model:

pBT(x
w
1 ≻ xl

1|c) = σ(r(c, xw
1 )− r(c, xl

1)), (5)

where σ(·) is the sigmoid function. Given a dataset of preferences, a parametric reward function can
be learned by maximum likelihood estimation:

LBT(ϕ) = −Ec,xw
1 ,xl

1

[
log σ

(
rϕ (c, x

w
1 )− rϕ

(
c, xl

1

))]
. (6)

RLHF. Given a learned reward function rϕ(c, x1), RLHF seeks to optimize a conditional genera-
tive model pθ(x1|c) such that the expected reward is maximized while maintaining distributional
regularization. The objective function takes the form:

max
pθ

Ec∼C,x1∼pθ(x1|c) [r (c, x1)]− βDKL [pθ (x1|c) || pref (x1|c)] . (7)

Here, pref(x1|c) is a reference model, and β controls regularization.

DPO. The optimizer of the RLHF objective in equation 7 can be written as:

pθ(x1|c) = pref(x1|c) exp(r(c, x1)/β)/Z(c), (8)

where Z(c) =
∑

x1
pref (x1|c) exp (r (c, x1) /β) is a normalizing factor. Solving for r(c, x1) and

substituting this into Equation equation 6, we obtain the DPO loss function:

LDPO(θ) = −Ec,xw
1 ,xl

1

[
log σ

(
β log

pθ (x
w
1 |c)

pref (xw
1 |c)

− β log
pθ
(
xl
1|c
)

pref
(
xl
1|c
))] . (9)

This formulation eliminates the need for explicit reward modeling, allowing direct optimization of
the generative model parameters θ without requiring an RL-based policy update.

3 DPO FOR DISCRETE DIFFUSION MODELS

To facilitate computations, we approximate the CTMC with a discrete-time representation. We
partition the continuous time interval [0, 1] into equally spaced steps tn with n ∈ {0, ..., N}, such
that the process is described by a discrete-time Markov chain. Denoting the discrete-time states as
xn = xtn we express the transition probabilities as

pθ(xn+1|xn) = δ(xn+1, xn) +Rθ
n(xn, xn+1)∆t. (10)

Here, Rθ
n(xn, xn+1) denotes the time-discretized rate matrix that governs state transitions. Building

on the approach of Wallace et al. (2024) we can express the DPO objective in discrete time LDT(θ) =

− log σ

βNE n∼U{0,N}
xw,l
n ∼q(xn|xw,l

N )

xw,l
n+1∼q(xn+1|xw,l

n ,xw,l
N )

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )
− log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

] (11)
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where q(xn|xN ) is the discrete time equivalent of qt|1(xt|x1), and q(xn+1|xn, xN ) is the discrete
time equivalent of equation 14. We omit c for compactness. By substituting the transition probability
expansion for rate matrices, and taking the continuous-time limit (N → ∞, ∆t → 0), the final
D2-DPO loss for CTMCs is obtained:

LD2-DPO(θ) = −E (xw
1 ,xl

1)∼P,t∼U [0,1]

xw∼q(xt|xw
1 ),xl∼q(xt|xl

1)

log σ

[
β Dθ

ref(x
w
t |xw

1 )− β Dθ
ref(x

l
t|xl

1)

]
(12)

with

Dθ
ref(xt|x1) =

∑
j ̸=xt

Rq
t (xt, j|x1) log

Rθ
t (xt, j)

Rref
t (xt, j)

+Rref
t (xt, j)−Rθ

t (xt, j) , (13)

where Rq
t (xt, xt+dt|x1) depends on the chosen noise schedule and is defined as per equation 4, while

Rθ
t (xt, xt+dt) and Rref

t (xt, xt+dt) are estimated as per equation 3. We defer the full derivation to
Appendix C and the multi-dimensional case to Appendix D. In Appendix E, we show how this
objective can be efficiently optimized for the masking-state noise process.

4 PRELIMINARY EXPERIMENTS

Figure 1: Results for preference-based alignment using the D2-DPO loss. (Left) Training loss
monotonically decreases over epochs. (Center) Ratio of generated sequences corresponding to odd
integers increases w.r.t. reference model. (Right) Fraction of generated sequences with valid struc-
ture remains close to 1.

To validate the effectiveness of D2-DPO, we conduct a small-scale experiment demonstrating how
the proposed loss in Equation equation 12 enables preference alignment in a discrete diffusion
model. Building on the framework of Campbell et al. (2024), we first pre-train a masking-state
discrete diffusion model to generate structured binary representations of integers. Specifically, each
integer i ∈ {0, . . . , N} is represented as a binary sequence of length N , denoted as bi ∈ 0, 1N . The
first i bits are set to 1, while the remaining bits are set to 0. The pre-trained model learns to gen-
erate valid sequences that adhere to this structured encoding rather than producing arbitrary binary
strings.

We then fine-tune the model using our preference-based objective in equation 12 to bias the gener-
ative distribution toward binary sequences that represent odd integers. To achieve this, we construct
a dataset of pairwise preferences, where the preferred sample xw corresponds to an odd integer and
the less preferred sample xl corresponds to an even integer. Figure 1 summarizes the fine-tuning pro-
cess. On the left, the training loss steadily decreases, indicating stable optimization. In the centre,
the odd-integer ratio,proportion of generated sequences corresponding to odd integers, rapidly rises
above 0.9, confirming model successfully shifts its generative distribution toward odd numbers. On
the right, the Valid Samples Ratio (VSR) measures the fraction of generated sequences that correctly
follow the structured binary encoding of integers. After an initial dip, the VSR steadily recovers and
surpasses the reference baseline, confirming that fine-tuning does not compromise structural validity.

5 CONCLUSION AND FUTURE WORK

We introduce Discrete Diffusion DPO (D2-DPO), a novel extension of the DPO framework to diffu-
sion models formulate as continuous-time Markov chains. Our derivation yields a computationally
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efficient loss function that aligns the generative sampling process with preference data while pre-
serving fidelity to the reference distribution. Experiments on a structured binary sequence generation
task confirmed that D2-DPO successfully biases discrete diffusion models towards preferred outputs
while preserving structural validity.

Future work will explore scalability to larger models and more complex sequence generation tasks,
such as language modelling and protein design. Additionally, we aim to investigate alternative noise
schedules, including the uniform noise schedule, where the prior is a uniform distribution over states,
potentially enhancing flexibility in different applications.
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A APPENDIX STRUCTURE

The appendix is structured as follows. Appendix B discusses related work, covering advancements
in discrete diffusion models, fine-tuning techniques, and preference-based optimization in diffu-
sion models. Appendix C provides a detailed derivation of the D2-DPO loss for discrete diffusion
models, starting from a discrete-time approximation of the CTMC formulation and extending it to
the continuous-time limit. Appendix D generalizes the D2-DPO loss to multi-dimensional data,
presenting a factorized transition model that enables tractable optimization in structured sequence
generation tasks. Appendix E derives the D2-DPO loss for the masking noise process, adapting the
framework for discrete diffusion models that use an absorbing-state corruption scheme. Appendix
E.1 extends the masking noise derivation to cases with additional re-masking noise, allowing for
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bidirectional transitions between masked and unmasked states. Appendix E.2 provides a complexity
analysis of the derived loss functions for the masking state noise process, showing that preference-
based fine-tuning with D2-DPO is computationally efficient.

B RELATED WORK

Discrete Diffusion Models. Diffusion models have achieved strong generative performance in con-
tinuous spaces (Ho et al., 2020; Song et al., 2020), with recent extensions to discrete spaces enabling
applications in language modelling and biological sequence design (Austin et al., 2021; Campbell
et al., 2022; Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024). Compared to
autoregressive models, discrete diffusion models better capture long-range dependencies and gener-
ate structured sequences such as DNA and protein sequences (Sarkar et al., 2024; Campbell et al.,
2024).

Fine-Tuning and Alignment of Discrete Diffusion Models. Fine-tuning diffusion models for con-
trolled generation typically involves guidance techniques, RL-based optimization, or classifier-free
methods. Guidance methods such as classifier-based guidance (Dhariwal & Nichol, 2021; Song
et al., 2020) have been extended to discrete spaces (Nisonoff et al., 2024), but require costly itera-
tive inference. RL-based fine-tuning has been explored for optimizing reward functions in contin-
uous diffusion models (Fan et al., 2024; Black et al., 2023) and discrete diffusion models (Wang
et al., 2024). Classifier-free fine-tuning (Ho & Salimans, 2022; Zhang et al., 2023) conditions on
high-reward samples, but is limited by reward sparsity in structured sequence generation. Our work
departs from these approaches by proposing preference-based fine-tuning for discrete diffusion mod-
els, enabling optimization without an explicit reward model.

Preference-Based Alignment of Diffusion Models. Preference-based optimization methods such
as Reinforcement Learning from Human Feedback (RLHF) Ziegler et al. (2019) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024) have been highly effective for fine-tuning LLMs
and continuous diffusion models. Unlike RL-based methods, DPO directly fine-tunes a model using
pairwise preference comparisons, bypassing the need for a reward model (Ethayarajh et al., 2024;
Azar et al., 2024). Recent adaptations of DPO to text-to-image diffusion models (Zhu et al., 2025;
Wallace et al., 2024; Yang et al., 2024; Li et al., 2024) have shown promising results but are not
applicable to discrete diffusion models.

Our work extends DPO to discrete diffusion models, deriving a loss function that respects their
underlying CMTC formulation. This enables preference-based fine-tuning without the need of a
reward model.

C FULL DERIVATION OF 1-DIMENSIONAL D2-DPO LOSS

C.1 CONDITIONAL DENOISING KERNEL.

Here we provide an expression for the infinitesimal transition probability qt+dt|t,1(xt+dt|xt, x1) in
terms of the conditional rate matrix Rq

t (xt, xt+dt|x1) which will be useful later in the derivation of
the D2-DPO loss.

Given a noise process qt|1(xt|x1) we can define the joint probability over two successive states xt

and xt+dt as qt,t+dt|1(xt, xt+dt|x1). Using the chain rule of probability:

qt,t+dt|1(xt, xt+dt|x1) = qt|1(xt|x1)qt+dt|t,1(xt+dt|xt, x1)

where qt+dt|t,1(xt+dt|xt, x1) can be interpreted as an infinitesimal denoising probability, condi-
tioned on clean data x1. Similarly to equation 1, we can write this infinitesimal transition probability
in terms of a rate matrix:

qt+dt|t,1(xt+dt|xt, x1) = δ(xt, xt+dt) +Rq
t (xt, xt+dt|x1)dt (14)

where the conditional rate matrix Rq
t (xt, xt+dt|x1) is given as per equation 4.
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C.2 DISCRETE-TIME APPROXIMATION

We consider a time-discretization of the CTMC to simplify calculations. In practice, we approximate
the time evolution of the sequence trajectory {xt} using discrete steps of size ∆t, and successively
take the limit as ∆t → 0 to recover the continuous time case. We partition the the time interval [0, 1]
with discrete time steps tn, n ∈ {0, ..., N} where t0 = 0 and tN = 1. We define ∆t = tn− tn−1 =
1/(N+1) hence recovering the continuous time case when N → ∞. With a slight abuse of notation
we write xn = xtn .

Considering a CTMC with this time partitioning converts the problem into a discrete time Markov
Chain with transition kernel pθ(xn+1|xn) which is the time-discrete equivalent of pθt+dt|t(xt+dt |
xt) that naturally emerges from equation 1 by identifying dt = ∆t and evaluating at t = tn. Hence
we have:

pθ(xn+1|xn) := pθtn+∆t|tn(xtn+∆t|xtn) (15)

= δ(xn+1, xn) +Rθ
n(xn, xn+1)∆t (16)

Following the Markov assumption we can factorize the joint probability over paths in discrete time

pθ(x0:N ) = pθ(x0)

N∏
n=1

pθ(xn+1|xn). (17)

We define RDT(c, x0:N ) as the reward on the whole trajectory in discrete time, such that we can
define rDT(c, x1) as:

rDT(c, xN ) = Ex0:N−1∼pθ(x0:N−1|xN ,c)RDT (c, x0:N ) (18)

C.3 RLHF LOSS FOR DISCRETE DIFFUSION MODELS

Now our derivation proceeds along the lines of Wallace et al. (2024), who derive a DPO loss function
for classical diffusion models in discrete time. The RLHF objective in Eq. equation 7 can be adapted
to the diffusion framework as:

max
pθ

ExN∼pθ(xN |c)[rDT (c, xN )]− βDKL [pθ (xN | c) ∥pref (xN | c)]

=min
pθ

−ExN∼pθ(xN |c)[rDT (c, xN )] + βDKL [pθ (xN | c) ∥pref (xN | c)]

≤min
pθ

−ExN∼pθ(xN |c)[rDT (c, xN )] + βDKL [pθ (x0:N | c) ∥pref (x0:N | c)]

=min
pθ

−Ex0:N∼pθ(x0:N |c)[RDT (c, x0:N )] + βDKL [pθ (x0:N | c) ∥pref (x0:N | c)]

=min
pθ

−Ex0:N∼pθ(x0:N |c)[RDT (c, x0:N )] + βEx0:N∼pθ(x0:N |c)

[
log

pθ (x0:N | c)
pref (x0:N | c)

]
=min

pθ

Ex0:N∼pθ(x0:N |c)

[
log

pθ (x0:N | c)
pref (x0:N | c) exp(RDT (c, x0:N ) /β)

]
=min

pθ

Ex0:N∼pθ(x0:N |c)

[
log

pθ (x0:N | c)
pref (x0:N | c) exp(RDT (c, x0:N ) /β)/Z(c)

+ logZ(c)

]
=min

pθ

DKL [pθ (x0:N | c) ||pref (x0:N | c) exp(RDT (c, x0:N ) /β)/Z(c)]

where c ∼ C, and on the third line we used the joint KL-divergence DKL[pθ(x0:N | c)∥pref(x0:N |
c)] as upper bound of the marginal DKL[pθ(xN | c)∥pref(xN | c)]. The unique global solution to
this optimisation problem is given by:

p∗θ (x0:N | c) = pref (x0:N | c) exp(RDT (c, x0:N ) /β)/Z(c) ,

Hence we can re-parametrize the reward function as:

RDT (c, x0:N ) = β log
p∗θ (x0:N | c)
pref (x0:N | c)

+ β logZ(c)

8
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which leads to:

rDT(c, xN ) = Ex0:N−1∼pθ(x0:N−1|xN ,c)RDT (c, x0:N ) (19)

= βEx0:N−1∼pθ(x0:N−1|xN ,c)

[
log

p∗θ (x0:N | c)
pref (x0:N | c)

]
+ β logZ(c) (20)

C.4 D2-DPO LOSS

We can substitute equation 20 into the BT model loss in equation 6 to get the per-example DPO loss
in the discrete time approximation:

LDT(θ) = − log σ

βExw
0:N−1∼pθ(x

w
0:N−1|x

w
N )

xl
0:N−1∼pθ(x

l
0:N−1|x

l
N )

[
log

pθ(x
w
0:N )

pref(xw
0:N )

− log
pθ(x

l
0:N )

pref(xl
0:N )

]
= − log σ

βExw
0:N−1∼pθ(x

w
0:N−1|x

w
N )

xl
0:N−1∼pθ(x

l
0:N−1|x

l
N )

[
N−1∑
n=0

log
pθ(x

w
n+1|xw

n )

pref(xw
n+1|xw

n )
− log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

]
= − log σ

βExw
0:N−1∼pθ(x

w
0:N−1|x

w
N )

xl
0:N−1∼pθ(x

l
0:N−1|x

l
N )

NEn

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )
− log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

]
where we omit c for simplicity. Since sampling from the reverse process pθ(x0:N−1 | xN ) is
intractable, we approximate it with the forward process q(x0:N−1 | xN ):

LDT(θ) = − log σ

βExw
0:N−1∼q(xw

0:N−1|x
w
N )

xl
0:N−1∼q(xl

0:N−1|x
l
N )

NEn

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )
− log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

]
= − log σ

βNEnExw
n+1,n∼q(xn+1,n|xw

N )

xl
n+1,n∼q(xn+1,n|xl

N )

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )
− log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

]
Using the chan rule we write q(xn+1,n|xN ) = q(xn|xN )q(xn+1|xn, xN ), where q(xn|xN ) is the
discrete time equivalent of qt|1(xt|x1), and q(xn+1|xn, xN ) is the discrete time equivalent of equa-
tion 14. Hence we get:

LDT(θ) = − log σ

(
βNEnE xw

n∼q(xn|xw
N )

xw
n+1∼q(xn+1|xw

n ,xw
N )

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )

]

−E xl
n∼q(xn|xl

N )

xl
n+1∼q(xn+1|xl

n,x
l
N )

[
log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

])
(21)

Following Campbell et al. (2022) we will expand the expression for
Exn+1∼q(xn+1|xn,xN )

[
log pθ(xn+1|xn)

pref(xn+1|xn)

]
starting from log pθ(xn+1|xn):

log pθ(xn+1|xn) = log(δxn,xn+1
+Rθ

n(xn, xn+1)∆t)

= δxn,xn+1
log(1 +Rθ

n(xn, xn)∆t) + (1− δxn,xn+1
) log(Rθ

n(xn, xn+1)∆t)

= δxn,xn+1R
θ
n(xn, xn)∆t+ (1− δxn,xn+1) log(R

θ
n(xn, xn+1)∆t)

where on the last line we used log(1+ z) = z− z2

2 + o
(
z2
)

which is valid for |z| ≤ 1, z ̸= −1. For
any finite Rθ

n (xn, xn) ,∆t can be taken small enough such that the series expansion holds. Next we

9
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look at the expectation of this expression with respect to the distribution q(xn+1|xn, xN ):

Exn+1∼q(xn+1|xn,xN )[log pθ(xn+1|xn)] =

=
∑
xn+1

(δxn,xn+1 +Rq
n(xn, xn+1|xN )∆t)

[
δxn,xn+1R

θ
n(xn, xn)∆t+

(1− δxn,xn+1) log(R
θ
n(xn, xn+1)∆t)

]
= δxn,xn+1

(1 +Rq
n(xn, xn+1|xN )∆t)Rθ

n(xn, xn)∆t+∑
xn+1 ̸=xn

Rq
n(xn, xn+1|xN )∆t logRθ

n(xn, xn+1)∆t

= Rθ
n(xn, xn)∆t+Rq

n(xn, xn+1|xN )Rθ
n(xn, xn)(∆t)2+∑

xn+1 ̸=xn

Rq
n(xn, xn+1|xN )∆t logRθ

n(xn, xn+1)∆t

= Rθ
n(xn, xn)∆t+

∑
xn+1 ̸=xn

Rq
n(xn, xn+1|xN )∆t logRθ

n(xn, xn+1)∆t+ o(∆t)

= o(∆t) + ∆t
∑

xn+1 ̸=xn

Rq
n(xn, xn+1|xN ) logRθ

n(xn, xn+1)∆t−Rθ
n(xn, xn+1)

where Rq
n(xn, xn+1|xN ) is the rate matrix associated with the transition kernel q(xn+1|xn, xN ).

When considering a discrete approximation of continuous time, i.e. ∆t → 0, o(∆t) represents
higher-order corrections (terms that vanish faster than ∆t). Hence when considering the limit ∆t →
0 these terms can be ignored, leading to

Exn+1∼q(xn+1|xn,xN )[log pθ(xn+1|xn)] =

∆t
∑

xn+1 ̸=xn

Rq
n(xn, xn+1|xN ) logRθ

n(xn, xn+1)∆t−Rθ
n(xn, xn+1)

Now we use this expression to write:

Exn+1∼q(xn+1|xn,xN )

[
log

pθ(xn+1|xn)

pref(xn+1|xn)

]
= Exn+1∼q(xn+1|xn,xN )[log pθ(xn+1|xn)]− Exn+1∼q(xn+1|xn,xN )[pref(xn+1|xn)]

= ∆t
∑

xn+1 ̸=xn

Rq
n(xn, xn+1|xN ) log

Rθ
n(xn, xn+1)

Rref
n (xn, xn+1)

+Rref
n (xn, xn+1)−Rθ

n(xn, xn+1)

Plugging this expression into the DPO loss LDT(θ) we get:

LDT(θ) = − log σ

[
β

N∑
n=0

Exw
n∼q(xn|xw

N )

xl
n∼q(xn|xl

N )

∆t

 ∑
xn+1 ̸=xw

n

Rθ
n(x

l
n, xn+1|xN ) log

Rθ
n(x

w
n , xn+1)

Rref
n (xw

n , xn+1)
+Rref

n (xw
n , xn+1)−Rθ

n(x
w
n , xn+1)


−∆t

 ∑
xn+1 ̸=xl

n

Rθ
n(x

l
n, xn+1|xN ) log

Rθ
n(x

l
n, xn+1)

Rref
n (xl

n, xn+1)
+Rref

n (xl
n, xn+1)−Rθ

n(x
l
n, xn+1)

]

Taking the limit of the discrete time loss LDT(θ) as N → ∞ (and hence ∆t = 1/N → 0 ) we get
back to the continuous time case:

10
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LCT(θ) = lim
N→∞
∆t→0

LDT(θ) = − log σ

[
βExw

n∼q(xn|xw
N )

xl
n∼q(xn|xl

N )

∫ 1

0

dt( ∑
xn+1 ̸=xw

n

Rθ
n(x

l
n, xn+1|xN ) log

Rθ
n(x

w
n , xn+1)

Rref
n (xw

n , xn+1)
+Rref

n (xw
n , xn+1)−Rθ

n(x
w
n , xn+1)

−
∑

xn+1 ̸=xl
n

Rθ
n(x

l
n, xn+1|xN ) log

Rθ
n(x

l
n, xn+1)

Rref
n (xl

n, xn+1)
+Rref

n (xl
n, xn+1)−Rθ

n(x
l
n, xn+1)

)]

We can estimate the integral with Monte Carlo if we consider it to be an expectation with respect to
a uniform distribution over times t ∈ [0, 1].

LCT(θ) = − log σ

[
βE t∼U [0,1]

xw
t ∼qt|1(xt|xw

1 )

xl
t∼qt|1(xt|xl

1)( ∑
j ̸=xw

t

Rq
t (x

w
t , j|xw

1 ) log
Rθ

t (x
w
t , j)

Rref
t (xw

t , j)
+Rref

t (xw
t , j)−Rθ

t (x
w
t , j)

−
∑
j ̸=xl

t

Rq
t (x

l
t, j|xl

1) log
Rθ

t (x
l
t, j)

Rref
t (xl

t, j)
+Rref

t (xl
t, j)−Rθ

t (x
l
t, j)

)]

Note that − log σ is a convex function and we can apply Jensen’s inequality to yield:

LCT(θ) ≤ −E t∼U [0,1]
xw
t ∼qt|1(xt|xw

1 )

xl
t∼qt|1(xt|xl

1)

log σ

[
β Dθ

ref(x
w
t |xw

1 )− β Dθ
ref(x

l
t|xl

1)

]

where

Dθ
ref(xt|x1) =

∑
j ̸=xt

Rq
t (xt, j|x1) log

Rθ
t (xt, j)

Rref
t (xt, j)

+Rref
t (xt, j)−Rθ

t (xt, j) .

where Rq
t (xt, xt+dt|x1) depends on the chosen noise schedule and is defined as per equation 4,

while Rθ
t (xt, xt+dt) and Rref

t (xt, xt+dt) are estimated as per equation 3.

D MULTI-DIMENSIONAL D2-DPO

In this section we adapt the D2-DPO loss to account for D-dimensional data. Consider x ∈
{1, · · · , S}D is a D-dimensional vector with components xd where d = 1, . . . , D. We derive the
DPO loss for this general case. The derivation proceeds in the same way as for the 1-dimensional
case above, up to equation 21. For the D-dimensional case have:

LDT(θ) = − log σ

(
βNEnE xw

n∼q(xn|xw
N )

xw
n+1∼q(xn+1|xw

n ,xw
N )

[
log

pθ(x
w
n+1|xw

n )

pref(xw
n+1|xw

n )

]

−E xl
n∼q(xn|xl

N )

xl
n+1∼q(xn+1|xl

n,x
l
N )

[
log

pθ(x
l
n+1|xl

n)

pref(xl
n+1|xl

n)

])

In order to model transitions across multiple dimensions in a single time-step, we consider the
following factorization of the transition probability:

pθ (xn+1 | xn) =

D∏
d=1

pdθ
(
xd
n+1 | xn

)
.

11



Published as a workshop paper at ICLR 2025 Bi-Align Workshop

By considering each dimension xd
n+1 to be conditionally independent given the current vector xn,

we can tractably account for multi-dimensional transitions in a single timestep. Similarly, we fac-
torize

q (xn+1 | xn,xN ) =

D∏
d=1

qd
(
xd
n+1 | xd

n, x
d
N

)
,

which aligns with the structure of the forward diffusion process, where noise is added independently
across dimensions. Using this factorization we can rewrite the expectation terms as:

E xn∼q(xn|xN )
xn+1∼q(xn+1|xn,xN )

[
log

pθ(xn+1|xn)

pref(xn+1|xn)

]
=

D∑
d=1

E xn∼q(xn|xN )

xd
n+1∼qd(xd

n+1|x
d
n,x

d
N)

[
log

pdθ(x
d
n+1|xn)

pdref(x
d
n+1|xn)

]

Proof

E xn∼q(xn|xN )
xn+1∼q(xn+1|xn,xN )

[
log

pθ(xn+1|xn)

pref(xn+1|xn)

]
= E xn∼q(xn|xN )

xn+1∼q(xn+1|xn,xN )

[
log

∏D
d=1 p

d
θ(x

d
n+1|xn)∏D

d=1 p
d
ref(x

d
n+1|xn)

]

=

D∑
d=1

E xn∼q(xn|xN )
xn+1∼q(xn+1|xn,xN )

[
log

pdθ(x
d
n+1|xn)

pdref(x
d
n+1|xn)

]

=

D∑
d=1

E xn∼q(xn|xN )

xd
n+1∼qd(xd

n+1|x
d
n,x

d
N)

[
log

pdθ(x
d
n+1|xn)

pdref(x
d
n+1|xn)

]

Where on the last line we use the fact that the term inside the expectation depends on xn+1 only via
its d-dimensional component xd

n+1.

Substituting this expression into the DPO loss we get:

LDT(θ) = − log σ

(
βNEn

D∑
d=1

Exw
n∼q(xn|xw

N )Exd
n+1∼qd(xd

n+1|xd
n,x

d,w
N )

[
log

pdθ(x
d
n+1|xw

n )

pdref(x
d
n+1|xw

n )

]

−Exl
n∼q(xn|xl

N )Exd
n+1∼qd(xd

n+1|xd
n,x

d,l
N )

[
log

pdθ(x
d
n+1|xl

n)

pdref(x
d
n+1|xl

n)

])

We can now follow the same derivation steps as for the 1-dimensional case, leading to:

LCT(θ) = −Et∼U(0,1),xw
t ∼q(xt|xw

1 ),xl
t∼q(xt|xl

1)
log σ

[
β

D∑
d=1

(
Dθ,d

ref (x
w
t |xw

1 )−Dθ,d
ref (x

l
t|xl

1)
)]

where

Dθ,d
ref (xt|x1) =

∑
jd ̸=xd

t

Rd,q
t (xd

t , j
d|xd

1) log
Rd,θ

t (xt, j
d)

Rd,ref
t (xt, jd)

+Rd,ref
t (xt, j

d)−Rd,θ
t (xt, j

d) (22)

where Rd,θ
t (x, jd) = Epd,θ

1|t (x
d
1 |x)

[Rd,θ
t (xd, jd|xd

1)], and xd denotes the d-dimensional component of
vector x.

E D2-DPO LOSS FOR MASKING STATE MODELS

In this section we adapt the D2-DPO loss for the specific case of masking noise process. In D
dimensions we consider independent corruption processes in each dimension, similar to the fac-
torization assumptions made in continuous diffusion models where the forward noising processes

12
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proceed independently in each dimension.

qmask
t|1 (xt | x1) =

D∏
d=1

qmask,d
t|1

(
xd
t | xd

1

)
=

D∏
d=1

(
tδ
{
xd
t , x

d
1

}
+ (1− t)δ

{
xd
t ,M

})
In this case, the conditional rate matrix for the masking process can be derived in closed form as:

Rq,d
t

(
xd
t , x

d
t+dt | xd

1

)
=

ReLU
(
∂tq

mask,d
t|1

(
xd
t+dt | xd

1

)
− ∂tq

mask,d
t|1

(
xd
t | xd

1

))
S · qmask,d

t|1
(
xd
t | xd

1

)
=

1

1− t
δ
{
xd
t ,M

}
δ
{
xd
t+dt, x

d
1

}
(23)

We can then express the unconditional rate matrix as:

Rd,θ
t (xt, x

d
t+dt) = Epθ

1|t(x
d
1 |xt)

[
Rmask,d

t

(
xd
t , x

d
t+dt | xd

1

)]
= Epθ

1|t(x
d
1 |xt)

[
1

1− t
δ
{
xd
t ,M

}
δ
{
xd
t+dt, x

d
1

}]
=

1

1− t
δ
{
xd
t ,M

}
pθ1|t

(
xd
1 = xd

t+dt | xt

)
(24)

which vanishes for xd
t ̸= M and for xd

t+dt = M as pθ1|t
(
xd
1 = M | xt

)
= 0, meaning x1 cannot

have any masked dimensions. Substituting equation 23 and equation 24 into equation 22:

Dθ,d(xt|x1) =
∑

jd ̸=xd
t

Rd,q
t (xd

t , j
d|xd

1) log
Rd,θ

t (xt, j
d)

Rd,ref
t (xt, jd)

+Rd,ref
t (xt, j

d)−Rd,θ
t (xt, j

d)

=
δ{xd

t ,M}
1− t

∑
jd ̸=M

δ{xd
1, j

d} log
pθ1|t

(
jd | xt

)
pref
1|t (j

d | xt)
+ pref

1|t
(
jd | xt

)
− pθ1|t

(
jd | xt

)
=

δ{xd
t ,M}

1− t
log

pθ1|t
(
xd
1 | xt

)
pref
1|t
(
xd
1 | xt

) (25)

Where on the last line we use the fact that the neural network pθ1|t (· | xt) outputs a
probability distribution over all unmasked tokens to write

∑
jd ̸=M pref

1|t
(
xd
1 = jd | xt

)
=∑

jd ̸=M pθ1|t
(
xd
1 = jd | xt

)
= 1. Hence the final loss is:

Lmask
CT (θ) = −E t∼U [0,1]

xw
t ∼q(xt|xw

1 )

xl
t∼q(xt|xl

1)

log σ

[
β

1− t

D∑
d=1δ{xd,w

t ,M} log
pθ1|t

(
xd,w
1 | xw

t

)
pref
1|t

(
xd,w
1 | xw

t

) − δ{xd,l
t ,M} log

pθ1|t

(
xd,l
1 | xl

t

)
pref
1|t

(
xd,l
1 | xl

t

)
]

Similar to the classical DPO loss in equation 9, this loss is based on the difference in log prob-
abilities assigned to recovering the original samples under the learned model pθ1|t compared to a
reference model pref

1|t. However, this difference is weighted by a masking indicator, ensuring that
only masked dimensions contribute to the loss. Intuitively, the effect of optimizing this objective
is to increase the model’s likelihood of reconstructing the preferred sample xw while reducing the
likelihood of reconstructing the dis-preferred sample xl, making xw more likely to be recovered
during the unmasking process.

13
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E.1 MASKING WITH ADDITIONAL UNIFORM NOISE

We now consider the case in which we introduce a non-zero probability to transition from an un-
masked state back to a masked state during the denoising process. Intuitively this allows more
flexibility at inference time as the model could potentially recover from errors by re-masking certain
tokes. Campbell et al. (2024) show that such an additional noise process is in detailed balance with
the noise-free process and hence does not affect the final data distribution at time t = 1. They also
show that the resulting rate matrix for a noise process with coefficient η is given by:

Rd,θ
t (xt, j

d) =
1 + ηt

1− t
pθ1|t

(
xd
1 = jd | xt

)
δ
{
xd
t ,M

}
+ η

(
1− δ

{
xd
t ,M

})
δ
{
jd,M

}
=


1+ηt
1−t p

θ
1|t
(
xd
1 = jd | xt

)
for xd

t = M, jd ̸= M

η for xd
t ̸= M, jd = M

0 otherwise

While Rd,q
t (xd

t , x
d
t+dt|xd

1) remains unaffected. Substituting this into equation 22:

Dθ,d
t (x) =

∑
jd ̸=xd

Rd,q
t (xd

t , j
d|xd

1) log
Rd,θ

t (x, jd)

Rd,ref
t (x, jd)

+Rd,ref
t (x, jd)−Rd,θ

t (x, jd)

=
1 + ηt

1− t
δ{xd

t ,M} log
pθ1|t

(
xd
1 | xt

)
pref
1|t
(
xd
1 | xt

) + (1− δ
{
xd
t ,M

})
δ
{
jd,M

}(
η log

η

η
+ η − η

)

=
1 + ηt

1− t
δ{xd

t ,M} log
pθ1|t

(
xd
1 | xt

)
pref
1|t
(
xd
1 | xt

) (26)

which is the same as for the noiseless reverse process, up to a multiplicative constant 1 + ηt. Hence
the final loss is:

Lmask
CT (θ) = −E t∼U [0,1]

xw
t ∼q(xt|xw

1 )

xl
t∼q(xt|xl

1)

log σ

[
β(1 + ηt)

1− t

D∑
d=1δ{xd,w

t ,M} log
pθ1|t

(
xd,w
1 | xw

t

)
pref
1|t

(
xd,w
1 | xw

t

) − δ{xd,l
t ,M} log

pθ1|t

(
xd,l
1 | xl

t

)
pref
1|t

(
xd,l
1 | xl

t

)
]

E.2 COMPLEXITY ANALYSIS FOR MASKING NOISE PROCESS

For the masking noise process, the derived expressions for Dθ,d
t (x) in Equations equation 25 and

equation 26 provide a computationally efficient way to estimate the D2-DPO loss function. In
practice, the denoising models pθ1|t and pref

1|t take as input a noisy vector xt ∈ {1, . . . , S,M}D and
output probability vectors p1|t(x1 | xt) ∈ [0, 1]D. Since the loss function requires evaluating the
probability of reconstructing each dimension xd

1, this can be directly accessed as the dth component
of the model’s output.

Due to the structure of the masking noise process, computing the sum
∑D

d=1 D
θ,d
t (x) is particularly

efficient. The required probability vectors pθ1|t(x1 | xt) and pref
1|t(x1 | xt) can be obtained with

a single forward pass for each model. As a result, evaluating
∑D

d=1 D
θ,d
t (x) requires exactly two

model queries: one for the learned model pθ1|t and one for the reference model pref
1|t.

When estimating the per-example D2-DPO loss using a batch of size T to approximate the expec-
tation over t ∼ U [0, 1], the total number of model queries scales to 2T = O(T ). For a dataset
containing P preference pairs, the overall computational complexity becomes O(PT ), reflecting
a linear dependence on both the number of preferences and batch size. This scaling ensures that
preference optimization in discrete diffusion models remains computationally efficient, making it
practical for large-scale generative modeling tasks.
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