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Abstract

Learning a model from data for the three layers of Pearl Causal Hierarchy
(PCH) (i.e., the associational, the interventional, and the counterfactual)
is a central task in contemporary causal inference research, and it becomes
particularly challenging for counterfactual queries. The prevailing scien-
tific understanding is anchored in the three-step counterfactual algorithm
(i.e., abduction, action, and prediction) proposed by Judea Pearl, which
he considers as one of his most pivotal contributions. While this algo-
rithm offers a theoretical solution, the absence of complete knowledge on
structural causal models (SCMs) renders it highly impractical in most sce-
narios. To tackle the tasks of PCH, this paper introduces the DiscoModel,
grounded in the core principle that ”Causality is invariance across het-
erogeneous units.” The underlying causal modeling theory of our model is
Distribution-consistency Structural Causal Models (DiscoSCMs), which ex-
tends both structural causal models and the potential outcome framework.
The model is implemented through a customized neural network, compris-
ing two sub-networks: AbductionNet and ActionNet. The former infers
the selection variable on heterogeneous units, while the latter encapsulates
the invariant causal relationship. DiscoModel exhibits remarkable capabil-
ity for all the three layers of PCH simultaneously, providing practical and
reasonable answers to important counterfactual questions (e.g., “For a user
on a specific internet platform who has been observed with high subsidy
and high retention, would returning to the past and continuing to provide
a high subsidy result in high retention?”). To the best of our knowledge,
DiscoModel is the first to provide non-trivial answers to such queries, sub-
stantiated through experiments on both simulated and real-world data.

1 Introduction

In the field of causal modeling, there are two primary frameworks: Potential Outcomes
(PO) (Rubin, 1974; Holland, 1986) and Structural Causal Models (SCMs) (Pearl, 1995;
2009). The former represents “experimental” causality for individuals, while the latter casts
causal inference as Pearl Causal Hierarchy (PCH) (Pearl & Mackenzie, 2018; Bareinboim
et al., 2022) consisting of three layers: the associational (Layer 1), the interventional (Layer
2), and the counterfactual (Layer 3). However, these two frameworks, which are mathe-
matically equivalent, encounter the issue of degenerate counterfactuals (Gong, 2023). This
problem arises from the consistency assumption, i.e., the potential outcome Y (t) must be
consistent with y when observing T = t and Y = y. This issue makes it very challenging to
establish a practical model for Layer 3 Valuations under the current mainstream causal mod-
eling frameworks, as it requires complete knowledge of structural equations among domain
variables.
Consider a scenario where a user on a specific internet platform is observed with high
subsidy and high retention. A pertinent question arises: “Would the user still have demon-
strated high engagement if we go back in time and still provide a high subsidy, assuming all
other conditions remained equal?” The observed high retention could be attributed either
to the generous subsidy or simply to fortuitous circumstances. Regardless, models devel-
oped under conventional frameworks would consistently predict high retention due to the
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consistency assumption, thereby rendering the model impractical when acknowledging that
good fortune is something that we cannot control. In contrast, employing DiscoSCM allows
for the prediction of low retention, with the probability of such an outcome varying across
heterogeneous units (Gong, 2023).
In this paper, we introduce a practical model learned from data, DiscoModel, which is
capable of conducting Layer 1/2/3 Valuations simultaneously. The theoretical framework of
the model we use is DiscoSCM, serving as an extension of both aforementioned frameworks.
The fundamental idea behind it is “Causality is Invariance Across Heterogeneous Units”, and
the specific algorithm employed is the Population-level Counterfactual Algorithm. In terms
of implementation, the system consists of two specialized sub-networks: AbductionNet and
ActionNet. AbductionNet is used for inferring the unit selection variable S, while ActionNet
is for computing the unit potential outcome. Finally, it has been validated that DiscoModel
is a reasonable and practical model for Layer Valuations through experiments on both
simulated and real data.

1.1 Related Work

Pearl (Pearl, 1995; 2009; Pearl & Mackenzie, 2018; Pearl, 2018) proposes a division of causal
information into three distinct layers, forming a three-layer causal hierarchy. These layers
are 1. Association, 2. Intervention, and 3. Counterfactual, each corresponding to their re-
spective usage. Questions at Layer i (where i = 1, 2, 3) can only be answered if information
from Layer i or higher is available, which recently has been rigorously defined mathemat-
ically as Layer Valuations (Bareinboim et al., 2022). Generally, Layer Valuations require
complete knowledge of structural equations in the underlying SCM, making it impractical
for most real-world applications. Efforts have been made to learn these valuations from data
using neural nets (Xia et al., 2021). However, learning the complete causal graph among
domain variables and deterministic structural equations from data remains a significant chal-
lenge. Furthermore, Even with complete knowledge of SCM, there are no straightforward
methods for practically calculating Layer 3 Valuations with the three-step counterfactual
algorithm proposed by Pearl (2009). Addressing these challenges appears to be fraught with
considerable difficulties.
Gong (2023) realizes that the issue of individual-level degenerate counterfactuals is essen-
tially caused by the consistency assumption, and thus addresses it theoretically by extend-
ing the SCM framework to DiscoSCM. They prove that in DiscoSCMs, under the condition
of independent potential noise, individual-level counterfactuals at Layer 3 can be directly
reduced to Layer 2 valuation calculations. Besides, they further theoretically prove that
population-level counterfactuals can be computed through a three-step algorithm: abduc-
tion, action, and reduction. Due to space constraints, further content related to this work
are relegated to the Appendix.

2 DiscoModel

In this section, we introduce DiscoModel, a model grounded in the core principle that
causality is invariance across heterogeneous units. This principle is crucial, especially in
fields like social science where population heterogeneity is ubiquitous. It implies that while
different units share a common mechanism for generating unobserved outcome parameters,
variations in parameters are attributed to each unit’s unique causal representation. It is
implemented through a customized neural network, consisting of two sub-networks: Abduc-
tionNet and ActionNet. AbductionNet infers the selection variable on heterogeneous units,
while ActionNet encapsulates the invariant causal relationship. Initially, we will clarify the
settings, assumptions, and the associated Layer Valuation algorithm framework underlying
the DiscoModel.
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2.1 Settings, Assumptions and Mathematical Foundations for DiscoModel

Consider a common causal modeling setting involving domain variables: treatment T ,
pre-treatment features X, and outcomes Y . To perform counterfactual predictions, i.e.,
P (Y (t) = y|e), Pearl (2009) proposes a three-step process:

1. Abduction: Update the probability P (u) to obtain P (u|e).
2. Action: Modify the equations determining the variable T to T = t.
3. Prediction: Utilize the modified model to compute the probability P (Y = y).

Here, e represents the observed trace, also referred to as evidence, exemplified by X = x̃, T =
t̃, Y = ỹ, which can be succinctly represented as e = [x̃, t̃, ỹ]. When there is no observed
trace for any domain variables, this is denoted as e = []. The corresponding random vari-
able for the counterfactual distribution P (Y (t) = y|e) is called the counterfactual variable,
denoted as Y (t|e), representing the outcome under intervention t given the evidence e. For
conciseness, the use of bold symbols is avoided unless there is ambiguity or a specific need
to emphasize that they are vectors.
As stated in Pearl (2018) (p. 3), the vector U = u can be interpreted as an experimental
“unit” which can stand for an individual subject, and every instantiation U = u of the ex-
ogenous variables uniquely specifies all domain variable values. While Pearl’s counterfactual
algorithm requires complete knowledge of structural equations, limiting its practical appli-
cation, DiscoSCM innovatively decouples individual semantics from the exogenous variable
U = u, assuming the same distribution of remaining exogenous uncertainty across all individ-
uals. Such separation calls for distinct algorithms for individual-level and population-level
calculations. Specifically, for individual-level valuations under DiscoSCM with independent
potential noises(Gong, 2023):

P (Yi(t|e) = y) ≜ P (Yi(t) = y|e) = P (Yi(t) = y) (1)
for any individual i in a population, such as all users of an online platform. Let S be
the unit selection variable for this population, which is typically assigned a uniform prior
distribution. Consequently, for population-level calculations, a corresponding three-step
algorithm is employed:

Algorithm 1: Population-Level Counterfactual Algorithm
1: Abduction: Compute the posterior P (·|e) of the unit selection variable S, denoted its

corresponding variable as S(e).
2: Valuation: Derive the individual-level counterfactual variable Yi(t|e) with certain

method for each unit i.
3: Reduction: Obtain an estimation of the sub-population counterfactual outcome

Y (t|e) = YS(e)(t) (2)

using a reduction method such as expectation or direct sampling.

The formula in the reduction step of Algorithm 1 for population-level Layer Valuations can
be justified as follows:

P (Y (t|e) = y) = P (Y (t) = y|e) by definition (3)

=
∑

i

P (Yi(t) = y|e, i)P (i|e) by probability formula (4)

=
∑

i

P (Yi(t) = y)P (i|e) by equation 1 (5)

= P (YS(e)(t) = y) by probability formula (6)

This innovative algorithm for Layer valuations inspired the development of DiscoModel,
which consists of two sub-networks: AbductionNet and ActionNet. AbductionNet is used to

3



Under review as a conference paper at ICLR 2024

infer the probability of a user being identified when X = x, T = t, Y = y is observed, namely,
P (i|e) = P (S = i|X = x, T = t, Y = y) ≜ P (S(e) = i). Meanwhile, ActionNet directly
computes the causal parameters for any unit i with its causal representation zi. Specifically,
AbductionNet, with e as the input and posterior P (·|e) as the output, addresses the question:
“Given the evidence e, how do we calculate the probability of selecting a particular unit i?”
To do this, it employs a highly sophisticated design based on the following assumption:
Assumption 1 (Unit Causal Representation). For each individual i, there exists a causal
representation zi satisfying that,

P (Y (t) = y|e, S(e) = i) = P (Y (t) = y|e, zS(e) = zi) (7)
for any treatment t, outcome y and evidence e.

This assumption suggest that, for individual i, the individual-level counterfactual outcome
shares the same distribution as the counterfactual outcome for the sub-population possessing
a similar causal representation. Hence, to calculate counterfactuals, we only need a model
that predicts the outcome from the causal representation and computes the posterior for
causal representation. Both of these can be learned with population data, thereby under-
scoring the pivotal role of causal representation to overcome the computational difficulties
on estimating counterfactuals.
For simplicity, we may assume that the unit representation variable follows a prior of a stan-
dard multivariate normal distribution, namely zS ∼ N(0, I). The rationale of the network’s
structural design can be revealed itself through extreme cases. Firstly, in the extreme case
where no observational information is present, i.e., e = [], the posterior should naturally
align with the prior. This implies that drawing a sample z from a standard multivariate
normal distribution is equivalent to randomly selecting a sample i from the population.
Secondly, in the opposite extreme where e contains abundant information, enough to de-
termine which unit i has been selected, S(e) should converge to a Dirac distribution at i.
Consequently, zS(e) should be approximated by a distribution with mean zi and variance
near zero. These scenarios guide the setting of the output of AbductionNet as a multivariate
normal distribution, serving as the distribution for the causal representation variable zS(e).
More specifically, the AbductionNet is designed as a mapping f : e→ µr,Σr, serving as the
parameters for the causal representation variable zS(e) with multivariate normal distribu-
tion. Meanwhile, ActionNet is also a mapping g : z, t→ µo,Σo, serving as the distribution
parameters for the unit potential outcome variable Yi(t) with normal distribution. Essen-
tially, DiscoModel aims to learn the functions f and g from the data, ultimately for the
estimation of counterfactual outcome Y (t|e). To gain a clearer understanding of the design
of DiscoModel, we will now delve into the details of the network architecture in the following
subsection.

2.2 Network Structure and Components

Our DiscoModel, as illustrated in Fig. 1, primarily consists of two sub-networks: Abduc-
tionNet and ActionNet. Delving into the architecture, AbductionNet is composed of several
layers. It features a sequence of TYGatedInjectBlocks (refer to Fig. 2b) and an MLP
layer, succeeded by a NormalVectorLayer. This last layer models the distribution of the
unit causal representation variable for sub-population S(e), which is assumed to follow a
normal distribution N (µr(e),Σr(e)). The network processes the observation e to infer user
representations, which subsequently serve as input to ActionNet. On the other hand, Ac-
tionNet employs the unit causal representations inferred by the AbductionNet to calculate
the parameters of the outcome variables. This network is comprised of a sequence of Gate-
dInjectBlocks (See Fig. 2a) and an MLP layer, culminating in a NormalVectorLayer. The
latter is used to ascertain the distribution of Yi(t), presumed to be N (µo(zi, t),Σo(zi, t)).
A distinctive feature of DiscoModel is its ability to takes a triplet [x, t, y] or its subset as
input, in contrast to other causal representation learning methods, such as CEVAE (Louizos
et al., 2017), TARNet (Shalit et al., 2017), and DragonNet(Shi et al., 2019), which typically
not take y as input. Consequently, a natural question arises: “Why do we opt to use [x, t, y]
as input to infer causal representation? Additionally, how is this feature achieved?” To
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Figure 1: The DiscoModel, consisting of two sub-networks: AbductionNet and ActionNet.
The former is responsible for deriving ausal representation variable zS(e), while the latter
computes the unit potential outcome variable Yi(t).

(a) The GatedInjectBlocks, featuring a gate for
observation e, is a fundamental module capable
of controlling the input of specific information.

(b) The TYGatedInjectBlock consists of two
gates for t and y, enabling flexible control of the
input information of observed t, y. It is a core
component of AbductionNet.

Figure 2: Building blocks for DiscoModel.

illustrate, we may consider unobserved cancer genes as the causal representation z, physical
examination results as x, and treatment T and outcome Y as smoking status and cancer
diagnosis, respectively, then under the condition that it is known that the individual smokes
and has been diagnosed with cancer, it is evident that incorporating t, y information can
more accurately infer z. Therefore, the input for AbductionNet is setting to [x, t, y] rather
than just x. The key to our ability to achieve this lies in a Gated Design in GatedInject-
Blocks/TYGatedInjectBlocks (See Fig. 2). In a nutshell, this is accomplished by filling
None in [x, t, y] with thoughtfully crafted bias terms, represented by empty circles presented
in Fig. 1 and Fig. 2. For more detailed information, please refer to the corresponding code
implementation.
Another pivotal structural design incorporated is the Multiple Inject Layers, a structure
devised to prevent the signal of t from being overwhelmed. This design ensures that the
network’s forward propagation layers, transitioning from high-dimensional input features x
to the output parameters, outnumber those from t, y to the output parameters. This design
mitigates the vanishing gradient problem by strategically reducing the forward propagation
layers from t, y to the output. Furthermore, it employs multiple gates to fine-tune the impact
of t, y on the outcome parameters, thereby enhancing the model’s proficiency in processing
information pertinent to t and y. Additionally, the NormalVectorLayer is instrumental
for modeling the distribution of the output, assuming a Normal distribution. Initialized
with input and output dimensions, it outputs the parameters of the Normal distribution,
capturing the inherent variability in the data and facilitating robust predictions.
While some may posit that the application of deep networks for causal inference, exemplified
by DiscoModel, is no longer a novelty (Li et al., 2023), we wish to underscore a key differ-
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entiation. The prevalent networks are predominantly employed for causal effect estimation,
and fall short of addressing Layer 3 counterfactual estimation. Distinctively, DiscoModel
exhibits the capability to concurrently conduct Layer 1/2/3 valuations at both individual
and population levels. This encompasses counterfactual outcome prediction, potential out-
come prediction, individual treatment effect (ITE) estimation, and association prediction,
all of which will be further delineated in the ensuing section.

3 Layer Valuations

Our DiscoModel clearly reflects the distinction between individual-level and population-
level valuations. The AbductionNet is designed to infer representations of sub-populations,
emphasizing the idea that abduction inference is inherently tied to populations. In contrast,
the ActionNet is dedicated to computing outcomes for individual, highlighting the principle
that actions or interventions are fundamentally rooted at the individual level. Hence, once
we have a well-trained model, the individual-level counterfactual Yi(t|e) = Yi(t) can be
naively computed by any estimation of the potential outcome. On the other hand, estimating
the population-level counterfactual involves a three-stage process of abduction, action and
reduction. Specifically, for evidence e = [x̃, t̃, ỹ] or any subset of it, the counterfactual
estimation procedure is formally described as Algorithm 2.

Algorithm 2: Population-Level Counterfactual Estimation using DiscoModel
1: Abduction: Use the AbductionNet to compute the distribution parameters of the

representation for sub-population S(e), i.e., µr(e) and Σr(e).
2: Action: Use the ActionNet to compute the distribution parameters for the

counterfactual outcome Yi(t|e) = Yi(t), i.e., µo(z, t) and Σo(z, t).
3: Reduction: Apply a reduction method, such as expectation, mode, or a simple

sampling, to derive estimation Ŷ (t|e) for counterfactual outcome.

It is evident that the sub-population counterfactual outcome Y (t|e) = YS(e)(t) is a com-
position of unit potential outcome variable Yi(t) and unit selection variable S(e), with
parameters computed by the network. Henceforth, for a unit i with observed trace
Xi = xi, Ti = ti, Yi = yi, the population-level counterfactual outcome Y (t|e) and the
individual-level counterfactual outcome Yi(t|e) are usually not identical. They are equal
only when evidence e is sufficient to identify this particularly unit, which constitutes an
overly strong constraint.
The aforementioned algorithm implies that our DiscoModel, being a specialized neural net-
work, is able to directly compute the counterfactual outcome Y (t|e). This naturally prompts
the question: Why does it specifically have to be a DiscoSCM? Is it feasible to design a
DiscoModel under the SCM framework to conduct Layer 3 Valuations? Indeed, current
mainstream causal modeling frameworks, both SCM and the PO framework, encounter
challenges in this aspect. They grapple with the issue of degeneration stemming from the
consistency assumption. This assumption imposes a stringent constraint that Y (t) must
consistent with y when e = [x, t, y] is observed. Such a constraint necessitates that the
normal posterior P (·|e) for causal representation variable, with a non-degenerate normal
distribution as the input of ActionNet, would yield a constant output. Integrating this
requirement into the training of ActionNet results in degeneration, potentially culminat-
ing in an ActionNet where only the bias terms of the input layer are non-zero. From this
viewpoint, given the network structure of DiscoModel, DiscoSCM becomes indispensable
for those aspiring to learn a non-trivial ActionNet, as it extends the consistency assumption
to a distribution-consistency assumption, thereby eliminating constraints that lead to the
degeneration of ActionNet.
The primary objective in developing DiscoModel, which has been successfully achieved,
was to predict the counterfactual outcome Y (t|e), categorized as a Layer 3 valuation. This
naturally leads to the computability of lower Layer Valuations. To substantiate this assertion
mathematically, the expectation reduction method in Algorithm 2 serves as an example, from

6



Under review as a conference paper at ICLR 2024

which it can be deduced that the naive estimation for the counterfactual outcome could be:

Ŷ (t|e) = µo(µr(e), t) (8)

The understanding of the above formula specifically involves the following two derivations:

E[Y (t|e)] = E[Y (t)|e] = E[E[Y (t)|zS(e), e]] = E[µo(zS(e), t)]

and
E[zS(e)] = µr(e)

Hence, the outcome variable given any evidence e and intervention do(t) can be estimated
with DiscoModel. Consequently, setting appropriate e and t in the above estimation formula
allows for the estimation of quantities Layer 1 E[Y |X = x̃, T = t̃], Layer 2 E[Y (t)|X = x̃],
and Layer 3 E[Y (t)|X = x̃, T = t̃, Y = ỹ] as follows

Ê[Y |x̃, t̃] = µo(µr(x̃, t̃), t̃)
Ê[Y (t)|x̃] = µo(µr(x̃), t)
Ê[Y (t)|x̃, t̃, ỹ] = µo(µr(x̃, t̃, ỹ), t)

(9)

where t can be a given treatment that differs from the observed trace. These estimations
are referred to as the naive predictions of the counterfactual outcome.
To illustrate the capabilities of DiscoModel, consider a final example involving a user on an
internet platform. This user, having received a high subsidy, exhibited high engagement.
The question arises: Would the user still have demonstrated high engagement without the
high subsidy, assuming all other conditions remained equal? Traditional causal frameworks
would predict a 100% probability of high user engagement, which can be derived from the
probability of consistency equals 1. However, DiscoSCM is capable of modeling non-trivial
consistency probabilities, and allowing for heterogeneous consistency probabilities. In other
words, DiscoModel has the ability to predict low user engagement, either by naive estimation
µo(µr(x, t, y), t) or other estimation methods. This capability can help us determine whether
the high engagement of each user is brought about by high subsidies, providing invaluable
insights for the industrial sector regarding individual incentivization strategies.

4 Simulation Study

This section starts with choosing suitable loss functions. Following that, we validate the
model’s proficiency in Layer Valuations using synthetic data. The final step involves assess-
ing its effectiveness on a real-world dataset. For the implementation details, please refer to
the following link: https://anonymous.4open.science/r/DiscoModel.

4.1 Loss Function

The basic idea is that the output prediction of DiscoModel given observation e should be
consistent with the observed outcome y. Hence, we might opt to minimize the following loss
function:

L =
∑

i

(yi − ̂Y (ti|ei))2P (i) (10)

where ei = [xi, ti, yi] represents the observed trace of individual i. If we use naive predictions
for E[Y (t|e)] with equation 9 as an estimation for Y (t|e), the loss function transforms into

L =
∑

i

(yi − µo(µr(ei), ti))2P (i)

Another method is using the direct sampling strategy to obtain ẑS(e) and then estimate
Y (t|e). In our simulation, the former is used for prediction and evaluation, while the latter
is employed for training the model.
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4.2 Synthetic Data

In the data generation process (See Fig. 3), a causal representation z is sampled from a
bivariate normal distribution. Features x are generated using z, an invertible matrix A,
and noise. The treatment variable t is uniformly sampled from {0, 1, 2}. The outcome Y is
derived from functions of z and additional noise.

z ∼ N (0, I)
X3 ∼ N (0, 1), X4, . . . , X50 ∼ Bernoulli(p)
(X1, X2) = Az + softplus(X3)ϵ, ϵ ∼ N (0, 1)
T ∼ Uniform{0, 1, 2}
τ(z) = (z1 + z2 + 1)+, b(z) = z2

1 + z2
2 , σ(z) = |z1 − z2|

Y = τ(z)T + b(z) + σ(z)ϵy, ϵy ∼ N (0, 1)

Figure 3: The equations (left) and graph (right) of the data generation process.

We trained a DiscoModel, and the Layer Valuations are exhibited in Fig. 4. This experiment
validated that Layer Valuations can be effectively conducted with DiscoModel. Interestingly,
it is observed that as more information is input, the precision of the outcome prediction
increases, indirectly verifying the reasonableness of these calculations. Furthermore, our
model demonstrates competitive performance in predicting ITE on real-world datasets, as
substantiated through the Uplift Curve (See Fig. 7) and the evaluation metric AUUC, with
details presented in Appendix A.4.

Figure 4: The naive estimation for counterfactual outcome under different scenarios: 1)
e = [x], 2) e = [x, t] and do(t), 3) e = [x, t, y] and do(t), 4) e = [x, y].

4.3 Real-world RCT Dataset

Offering incentives to users, under cost constraints, is a common strategy employed by online
platforms to enhance user engagement and increase platform revenue (Zhao & Harinen, 2019;
Goldenberg et al., 2020; Ai et al., 2022). Personalized subsidies strategy require a model
to to predict the ITE. We utilize a real-world dataset of 10,000 RCT samples on a certain
internet platform which offers incentives to enhance user retention.
It can be observed that our DiscoModel exhibits comparable performance to the Causal-
Forest algorithm (Athey & Wager, 2019) benchmark, assessed using the offline evaluation
metric AUUC (See Appendix A.4) and Uplift Curve Fig. 5. Moreover, DiscoModel possesses
potential advantages—it can directly address counterfactual questions, such as reflecting on
whether high retention is a result of high subsidies. Other advantages include the ability to
handle highly complex treatment forms, such as vectorized subsidies.
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(a) Uplift curve for DiscoModel on real busi-
ness data

(b) Uplift curve for CausalForest on real
business data

Figure 5: The evaluation results for DiscoModel and CausalForest on real business data

5 Conclusion

In DiscoModel, the fundamental design philosophy is to treat causality as invariance across
heterogeneous units. The invariant causal relationship is encapsulated by ActionNet, which
serves as a network to compute parameters for the outcome variable, taking heterogeneous
unit representation as input. Consider a scenario where a user on a specific internet plat-
form is observed with high subsidy and high retention. This raises the question, ”if time
were turned back and the same high subsidy offered, would a high retention outcome be
guaranteed?” Your choice in this matter fundamentally determines whether you should
employ DiscoSCM. Traditional causal modeling frameworks rely on the consistency rule,
which would assure the same high retention in this situation. In contrast, DiscoSCM allows
for predicting low retention with heterogeneous probabilities, aligning with the real-world
scenario where decisions should be made assuming that one cannot control luck. Once a
commitment is made to utilizing DiscoModel, which can be learned from the data, it thereby
achieves practical and reasonable Layer 1/2/3 Valuations and allows for heterogeneous coun-
terfactuals estimation across units—a feat that, to the best of our knowledge, has not been
accomplished by any existing work.

5.1 Discussion and Limitations

Within the field of causality, there have been observed criticisms or a lack of acknowledg-
ment regarding the practical value of Layer 3 Valuations, as evidenced by comments from
Imbens (Imbens, 2020). One possible reason is the indeterminable nature of counterfactuals
when lacking complete knowledge on structural equations, suggesting that they cannot be
learned from observed or RCT data, which significantly limits their practicality. Our work
is predicated on the acceptance of the value of Layer Valuations and the abandonment of the
fundamental assumption of causal inference, the consistency assumption. This constitutes
a notable limitation of this study, as it may encounter resistance from some researchers
specializing in causal inference.
Advocates of consistency might contend: “An empirically minded scientist might say that,
once we have data, the fact that some potential outcomes must equal their observed values
in the data is a good thing; it is the information we have gained from the data.” However,
we prefer distribution-consistency and would argue: “An empirically minded scientist might
prefer to maximize the likelihood of the observed values of variables in the data, rather than
imposing equality constraints on them. Therefore, the observed value of potential outcomes
in the data should be consistent with their distribution, rather than being strictly equated”.
In conventional causal frameworks, the underlying basis of consistency assumption is essen-
tially a form of Laplacian determinism, which is challenged by Dawid for causal modeling
(Geneletti & Dawid, 2011; Dawid & Senn, 2023). It is plausible to conjecture that Pearl
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might favor consistency over distribution-consistency given his advocacy for determinism
(Pearl, 2009). If one firmly believes in determinism and denies the distribution-consistency
assumption, a question arises: does such adherence lead to more convenient and practical
models? After all, all models are wrong, but some are useful. Hence, our preference is to
explore how a model, potentially incorrect, can be useful. While the philosophical correct-
ness of determinism remains a subject of debate, we posit that deterministic modeling is
unrealistic. A model serves as an abstraction of natural phenomena, and there exists irre-
ducible computational complexity that cannot be compressed. DiscoSCM might function
as a “reducible pocket”for this irreducible reality, serving as a probabilistic causal modeling
approach for deterministic causal ground-truth.
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A Appendix

A.1 Causal Frameworks Based on Consistency

There are two main frameworks for causal models: Potential Outcome (PO) and Structural
Causal Models (SCM). Both of them are equivalent frameworks based on the consistency
assumption (Pearl, 2011), but they can be challenging when computing counterfactuals, even
for the simplest cases such as the correlation between potential outcomes with and without
aspirin. The former can be interpreted as experimental causality, while the latter emphasizes
causal mechanism modeling and derives the three Layers of information: associational,
interventional and counterfactual.
The Potential Outcome (PO) framework, also known as the Rubin Causal Model (Holland,
1986), begins with a population of units. There is a treatment/cause that can take on
different values for each unit. Each unit in the population is characterized by a set of
potential outcomes Y (t), one for each level of the treatment. In the simplest case with
a binary treatment there are two potential outcomes, Y (0) and Y (1), but in other cases
there can be more. Only one of these potential outcomes can be observed, namely the one
corresponding to the treatment received:

Y obs =
∑

t

Y (t)1T =t. (11)

This equation is derived from the consistency assumption that states

T obs = t⇒ Y (t) = Y obs

The causal effects correspond to comparisons of the potential outcomes, of which at most one
can be observed, with all the others missing. Paul Holland refers to this as the “fundamental
problem of causal inference” (Holland, 1986).
We refer to and use the mathematical symbols in Xia et al. (2021) to provide a brief intro-
duction to SCM. The basic semantic framework of our analysis rests on structural causal
models (SCMs) , which are defined below.
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Definition 1 (Structural Causal Model (SCM)). An SCM M is a 4-tuple
⟨U, V,F , P (U)⟩, where U is a set of exogenous variables (or “latents”) that are deter-
mined by factors outside the model; V is a set {V1, V2, . . . , Vn} of (endogenous) variables of
interest that are determined by other variables in the model – that is, in U ∪V; F is a set
of functions {fV1 , fV2 , . . . , fVn

} such that each fi is a mapping from (the respective domains
of) UVi

∪PaVi
to Vi, where UVi

⊆ U, PaVi
⊆ V\Vi, and the entire set F forms a mapping

from U to V. That is, for i = 1, . . . , n, each fi ∈ F is such that vi ← fVi(paVi
, uVi); and

P (u) is a probability function defined over the domain of U.

Interventions and counterfactuals are defined through a mathematical operator called do(x),
which modifies the set of structural equations F to Fx := {fVi : Vi ∈ V \X} ∪ {fX ← x :
X ∈ X} while maintaining all other elements constant. Here we explain how an SCM M
assigns values to the three layers in Pearl Causal Hierarchy in the following:
Definition 2 (Layers 1, 2 Valuations). An SCM M induces layer L2(M), a set of
distributions over V, one for each intervention x. For each Y ⊆ V,

P M(yx) =
∑

{u|Yx(u)=y}

P (u), (12)

where Yx(u) is the solution for Y after evaluating Fx := {fVi
: Vi ∈ V \X} ∪ {fX ← x :

X ∈ X}.
The specific distribution P (V), where X is empty, is defined as layer L1(M).
Definition 3 (Layer 3 Valuation). An SCM M = ⟨U, V,F , P (U)⟩ induces a family of
joint distributions over counterfactual events Yx, . . . , Zw, for any Y, Z, . . . , X, W ⊆ V:

P M(yx, . . . , zw) =
∑

{u | Yx(u)=y,
..., Zw(u)=z}

P (u). (13)

Each SCMM induces a causal diagram G where every Vi ∈ V is a vertex, there is a directed
arrow (Vj → Vi) for every Vi ∈ V and Vj ∈ Pa(Vi). In the case of acyclic diagrams, which
correspond to recursive SCMs, do-calculus (Pearl, 1995) can be employed to completely
identify all Layer 2 expressions in the form of P (y|do(x), c) (Huang & Valtorta, 2012).
However, calculating counterfactuals at Layer 3 is generally far more challenging compared
to Layers 1 and 2. This is because it essentially requires modeling the joint distribution of
potential outcomes, such as the potential outcomes with and without aspirin. Unfortunately,
we often lack access to the underlying causal mechanisms and only have observed traces of
them. This limitation leads to the practical use of equation (equation 13) for computing
counterfactuals being quite restricted.

A.2 Probability of Causation

The probability of causation and its related parameters can be addressed by counterfactual
logical (Pearl, 2009), three prominent concepts of which are formulated in the following :
Definition 4 (Probability of necessity (PN)). Let X and Y be two binary variables
in a causal model M , let x and y stand for the propositions X = true and Y = true,
respectively, and x′ and y′ for their complements. The probability of necessity is defined as
the expression:

PN =∆ P (Yx′ = false|X = true, Y = true)
=∆ P (y′

x′ |x, y) (14)

In other words, PN stands for the probability that event y would not have occurred in the
absence of event x, given that x and y did in fact occur. This counterfactual notion is used
frequently in lawsuits, where legal responsibility is at the center of contention.
Definition 5 (Probability of sufficiency (PS)).

PS =∆ P (yx|y′, x′) (15)
Definition 6 (Probability of necessity and sufficiency (PNS)).

PNS =∆ P (yx, y′
x′) (16)
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PNS stands for the probability that y would respond to x both ways, and therefore measures
both the sufficiency and necessity of x to produce y. Tian and Pearl (Tian & Pearl, 2000)
provide tight bounds for PNS, PN, and PS without a causal diagram:

max


0

P (yx)− P (yx′)
P (y)− P (yx′)
P (yx)− P (y)

 ≤ PNS (17)

PNS ≤ min


P (yx)
P (y′

x′)
P (x, y) + P (x′, y′)
P (yx)− P (yx′)+

+P (x, y′) + P (x′, y)

 (18)

max
{ 0

P (y)−P (yx′ )
P (x,y)

}
≤ PN (19)

PN ≤ min

{
1

P (y′
x′ )−P (x′,y′)

P (x,y)

}
(20)

In fact, when further structural information is available, we can obtain even tighter bounds
for those parameters, as highlighted by recent research (Li & Pearl, 2019).

A.3 DiscoSCMs: Distribution-consistency Structural Causal Models

In this section, we provide a brief introduction to distribution-consistency structural causal
models (DiscoSCMs), and refer readers to Gong (2023) for more details.
On one hand, DiscoSCM can be viewed as an extension of PO framework, where the consis-
tency assumption is replaced with the distribution-consistency assumption to leverage the
advantages of PO in individual causality semantics. The distribution-consistency assump-
tion can be expressed as follows:
Assumption 1 (Distribution Consistency). For any individual i with treatment Ti,
pre-treatment features Xi, and outcome Yi:

Ti = t⇒ Yi(t)
d= Yi, ∀i = 1, 2, .... (21)

where the symbol d= denotes identical distribution.

This assumption implies that the randomness in the potential outcome Y (t) given T = t
arises from both the selection of individuals and the exogenous uncertainty, as opposed to the
PO framework which considers only unit selection. In fact, in the Distribution-consistency
Structural Causal Model (DiscoSCM), the roles of units or individuals are pivotal. It makes a
strict distinction between individual and population parameters, fundamentally considering
individual-level valuations as primitives and population-level valuations as derivatives.
On the other hand, DiscoSCM can also be perceived as a generalization of Structural Causal
Model (SCM), facilitating the representation of Layer Valuations.
Definition 7 (Distribution Consistency Structural Causal Model (DiscoSCM)).
A DiscoSCM M is a 4-tuple ⟨U, V,F , P (U)⟩, where U is a set of exogenous variables (or
“latents”) that are determined by factors outside the model; V is a set {V1, V2, . . . , Vn} of
(endogenous) variables of interest that are determined by other variables in the model – that
is, in U ∪ V; F is a set of functions {fV1 , fV2 , . . . , fVn

} such that each fi is a mapping
from (the respective domains of) UVi

∪ PaVi
to Vi, where UVi

⊆ U, PaVi
⊆ V \ Vi, and

the entire set F forms a mapping from U to V. That is, for i = 1, . . . , n, each fi ∈ F is
such that vi ← fVi

(paVi
, uVi

); and P (u) is a probability function defined over the domain
of U. A mathematical operator called do(x), which modifies the set of structural equations
F to Fx := {fVi : Vi ∈ V \X}∪ {fX ← x : X ∈ X} while maintaining the same endogenous
uncertainty as U,induces a submodel ⟨U(x), V,Fx, P (u)⟩.
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It’s important to note that the formulation distinction between DiscoSCM and SCM lies in
the construction of the submodel induced by the do-operator, which changes U to U(x) that
is referred as the potential noise with same distribution as U. This modification enables the
prediction of an average score for retaking a test for a specific individual who, with average
ability, takes a test and achieves an exceptionally high score due to good luck. Similarly,
interventions and counterfactuals are defined in the following manner:
Definition 8 (Layer 1, 2, 3 Valuation). A DiscoSCM M = ⟨U, V,F , P (U)⟩ induces a
family of joint distributions over potential outcomes Yx, . . . , Zw, for any Y, Z, . . . , X, W ⊆
V:

P M(y) =
∑

{u | Y(u)=y}

P (u), (22)

P M(yx) =
∑

{ux | Yx(ux)=y}

P (ux), (23)

P M(yx, . . . , zw) =
∑

{ux ...,uw | Yx(ux)=y,
..., Zw(uw)=z}

P (ux, ..., uw). (24)

By definition, it’s evident that all Layer 1 and Layer 2 valuations within the SCM and
DiscoSCM frameworks are equivalent. However, Layer 3 valuations exhibit differences.
These differences are best exemplified by considering the counterfactual parameter, PNS,
at individual-level. In the SCM framework, this parameter degenerates to either 0 or 1,
whereas in the DiscoSCM framework, it can take any value between 0 and 1, for a specific
individual i. In fact, the degenerative probability of causation parameters prevalent in the
SCM framework no longer degenerate in DiscoSCM. This non-degeneration provides conve-
nience for utilizing and modeling these parameters, thereby allowing for the definition of a
novel parameter within DiscoSCM:
Definition 9 (Probability of Consistency (PC)).

PC =∆ P (yx|y, x) (25)

It is evident that PC degenerates to constant 1 in the SCM framework and is thus a parame-
ter that only holds significance within the DiscoSCM framework. Individual-level valuations
are primitive, and population-level valuations are derivation. Here we present the following
procedure for the population-level valuations:
Theorem 1 (Population-Level Valuations). Consider a population where A represents a
counterfactual event (such as being a complier), and c represents observed-variable conditions
(e.g., observed T = t, Y = y). Then, the population-level valuations of the form P (A|c) can
be computed via the following three-step algorithm:
Step 1 (Abduction): From the context c, derive a individual selector S to define a pop-
ulation with a distribution P ′. A sample selector can typically be defined by the posterior
over the index-set of samples given the context c and a uniform prior.
Step 2 (Valuation): Compute P (Ai) as Layer valuations in Def. 8 for each individual i .
Step 3 (Reduction): Obtain the population-level P (A) by summing over all individuals,
which can be expressed as follows:

P (A|c) =
∑

i

P (Ai)P ′(i) (26)

The valuation step involves the computation of individual-level counterfactuals, which is
often infeasible due to the Indeterminable Counterfactuals problem. This issue describes
a scenario where individual-level counterfactual information remains elusive, relying solely
on data, even in the case of the most comprehensive and ideal dataset. To address this
challenge, DiscoSCM incorporates an independent potential noise assumption.
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Definition 10. A DiscoSCM M = ⟨U, V,F , P (U)⟩ with independent potential noises
induces a family of joint distributions over potential outcomes Yx, . . . , Zw, for any
Y, Z, . . . , X, W ⊆ V, satisfying:

P (ux, ..., uw) = P (ux) · · ·P (uw) (27)

The term “independent potential noises” refers to the independence among the exogenous
noises across different counterfactual worlds. Combined with Eq. equation 24, the following
theorem for individual-level Layer 3 valuations can be derived:
Theorem 2. For potential outcomes Yx, . . . , Zw in a DiscoSCM M = ⟨U, V,F , P (U)⟩
with independent potential noises:

P M(yx, . . . , zw) = P M(yx) · · ·P M(zw) (28)

This theorem elegantly reduces Layer 3 valuations to Layer 2 valuations, facilitating the
identification of individual-level counterfactuals even in the absence of knowledge about
structural equations, which are typically a prerequisite in ordinary SCMs. In fact, the
correlation patterns of potential noises determine the type of DiscoSCM, as can be illustrated
by the following example:
Example 1. Consider a DiscoSCM for the outcome Y with features X0, X1, X2 and binary
treatment T :

Y = 0.5I[X0 = 1] · (T + 1) + 0.1X2 · ϵ
Y (t) = 0.5I[X0 = 1] · (t + 1) + 0.1X2 · ϵ(t)

where ϵ, ϵ(t) ∼ N(0, 1), t = 0, 1 denote the noise and potential noises respectively. Fig. 6
showcases an RCT dataset produced by this DiscoSCM.

A.4 Experiment Results

Setting. we assign the layer valuations loss weights as [1, 1, 5, 5] to prioritize the model’s
performance in predictions absent of information in y, thereby mitigating overreliance on
y data. The causal representation z dimensions are 25 for synthetic data and 30 for real
business data. We employ a learning rate of 0.001 and a random seed of 1. During training
and evaluation process, we refer to Mean Squared Error (MSE) loss. Notably, a patience of
200 for early stopping is applied to synthetic data 2 to avoid premature training termination.
The experiment with synthetic data can be replicated using the provided code, while the
experiment with real-world data can only be replicated after obtaining authorization to
disclose the data. For the code related to the experiments, please refer to the following link:
https://anonymous.4open.science/r/DiscoModel
Results. The figure below illustrates the evaluation results of DiscoModel and CausalForest
on synthetic data and real RCT data, respectively. The AUUC scores of DiscoModel on syn-
thetic data are [0.6796, 0.7059], with different figures corresponding to different treatments.
For comparison, the ground truth AUUC is [0.7570, 0.7649], while CausalForest yields an
AUUC score of [0.6739, 0.6830], indicating that DiscoModel’s performance is as good as or
slightly better than that of CausalForest on synthetic data. When trained and evaluated
on real business data, DiscoModel also demonstrates a similar capability to CausalForest,
yielding an AUUC score of [0.6046, 0.6938, 0.7356, 0.7386, 0.7199], compared to [0.5380,
0.7234, 0.7298, 0.7392, 0.7098] generated by CausalForest.
The figure below presents the evaluation results of DiscoModel and CausalForest on both
synthetic data and real RCT data. For synthetic data, DiscoModel achieves AUUC scores of
[0.6796, 0.7059], with different figures corresponding to distinct treatments. In comparison,
the ground truth AUUC is [0.7570, 0.7649], and CausalForest attains an AUUC score of
[0.6739, 0.6830]. This suggests that the performance of DiscoModel is comparable to, if not
slightly superior to, that of CausalForest on synthetic data. When applied to real business
data, DiscoModel continues to exhibit a competitive capability, securing an AUUC score
of [0.6046, 0.6938, 0.7356, 0.7386, 0.7199], as opposed to [0.5380, 0.7234, 0.7298, 0.7392,
0.7098] achieved by CausalForest.
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Figure 6: DiscoSCM with heterogeneous causal effects, potential noise correlations, and consistency
probabilities. The type of this DiscoSCM depends on the correlation pattern among potential noises
ϵ(t): if the correlation coefficient is 1, it is an ordinary SCM; if there is some correlation, it is a
general DiscoSCM with indeterminable counterfactuals; if the potential noises are independent, it
becomes a DiscoSCM where Layer 3 individual-level counterfactuals can be reduced to Layer 2
valuations. Specifically, for individual counterfactual parameters corr(Yi(0), Yi(1)), the second row
of Fig. 6 shows that it is always 1 in the SCM, while the third row reveals that its value lies between
0 and 1 in the general DiscoSCM, showing heterogeneity according to X1. The fourth row of Fig. 6
demonstrates that this parameter is always 0 in a DiscoSCM with independent potential noise. To
summarize, when the correlation between potential noises is 1, as is the case in SCM, knowledge
of all structural equations is required to solve for counterfactuals. When potential noises exhibit
some correlation, neither randomized controlled trial (RCT) or observational data can help recover
related counterfactual parameters. Conversely, when potential noises are independent, Layer 3
valuation can be reduced to Layer 2, allowing them to typically be identified from the data. See
code in link. 16
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(a) Uplift curve for Ground
truth of synthetic data

(b) Uplift curve for DiscoModel
on synthetic data

(c) Uplift curve for Causal-
Forest on synthetic data

Figure 7: The evaluation results for DiscoModel and CausalForest on synthetic data
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