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Abstract
Designing drug molecules that bind effectively to target proteins while main-
taining desired pharmacological properties remains a fundamental challenge in
drug discovery. Current approaches struggle to simultaneously control molec-
ular topology and 3D geometry, often requiring expensive retraining for new
design objectives. We propose a multi-modal variational flow framework that
addresses these limitations by integrating a 2D topology encoder with a 3D
geometry generator. Our architecture encodes molecular graphs into a learned
latent distribution via junction tree representations, then employs normalizing
flows to autoregressively generate atoms in 3D space conditioned on the protein
binding site. This design enables zero-shot controllability: by manipulating the
latent prior distribution, we can generate molecules with specific substructures or
optimized properties without model retraining. Experiments on the CrossDocked
benchmark show that our model achieves 31.1% high-affinity rate, substantially
outperforming existing methods, while maintaining superior drug-likeness and
structural diversity. Our framework opens new possibilities for on-demand molec-
ular design, allowing medicinal chemists to rapidly explore chemical space with
precise control over both structural motifs and physicochemical properties.

1 Introduction

In drug discovery, designing molecules that exhibit certain binding properties and functionalities is
a core challenge. In this context, drug molecules must bind to a target protein pocket and exhibit
suitable biophysical and safety profiles. Molecules are governed by both 2D topological constraints
(e.g., ring systems, functional groups) and 3D geometric constraints (e.g., specific atomic coordinates,
conformations). Recent data-driven approaches [10, 11, 31, 39] have improved de novo molecule
generation but often treat these modalities incompletely, focusing solely on 2D graphs or 3D structures
without a comprehensive strategy for controllability.

A pressing issue in molecular design is accounting for two-dimensional (2D) topology and three-
dimensional (3D) geometry. 2D Topology is critical for identifying and enforcing key “pharma-
cophoric” (molecular features essential for biological activity) patterns [37]. For instance, the
difference between the benign serotonin molecule and the hallucinogenic DMT molecule is pri-
marily the presence of extra methyl groups on the amine moiety—these substructural differences
in 2D strongly influence bioactivity [9] (Figure 4). 3D Geometry is equally important because
conformational changes can completely alter binding efficacy. For example, cisplatin [20] is a potent
anti-cancer drug, whereas its trans isomer is far less active—the difference arises purely from 3D
arrangement (Figure 5).
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Achieving controllability in advanced drug design is also a pressing issue. It is often necessary to
enforce specific substructures known to interact well with a binding site or to steer overall properties
like solubility and synthetic accessibility. Achieving this controllability without re-training large
generative models is highly desirable in practice [10, 34].

To address the above issues, this paper introduces a new multi-modal generation framework that
unifies a 2D topology encoder and a 3D flow-based generator. The method encodes 2D information
into a latent Gaussian distribution and exploits a normalizing flow to autoregressively place atoms
in 3D, conditioned on the target protein environment. Crucially, the framework supports zero-shot
controllability of substructures and numeric properties by manipulating the latent prior distribution.
The approach addresses important challenges in drug design, particularly for generating molecules
with specific therapeutic properties.

Our contributions can be summarized as follows:

1. We propose a single generative model that simultaneously handles topological and geometric
constraints by encoding the 2D structure into a latent prior and learning a 3D flow generator
conditioned on the target receptor.

2. Our model achieves higher binding quality than prior methods and can generate molecules
containing specific substructures or optimized quantum-chemical properties.

3. We achieve zero-shot controllability by adjusting the latent prior without the need for re-training.

2 Related Work
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Figure 1: Overview of the variational flow workflow.
Our model autoregressively samples from the varia-
tional distribution (bottom right) to generate the atoms
and bonds of the drug ligand at the binding site using
flow transformation (left column). The flow function
is parameterized by the 3D binding site geometry. The
variational distribution is encoded from the 2D topology
of the reference ligand during training (right column).
During controllable generation, the reference ligand is
not provided. The latent encoding φR is calculated by
mean aggregation of molecules with specified qualities
from the training set or selected using Bayesian Opti-
mization, which achieves controllability.

With the development of geometric deep
learning and probabilistic generative mod-
els in the past few years, de novo molecule
generation techniques have evolved dras-
tically, empowering us to sample diverse
high-quality molecules with desired prop-
erties under various complex scenarios.
To this end, there are three major tasks:
2D molecule generation, 3D unbounded
molecule generation, and 3D protein-
specific molecule generation.

2D molecule generation. This task [11,
19, 22, 31, 32, 38] aims at mining high-
quality topological representations and gen-
erating valid 2D molecular graphs from
scratch. For example, GraphAF [31] uses a
flow-based model to generate atoms and
bonds in an autoregressive manner. JT-
VAE [11] generates molecular graphs with
the guidance of a tree-structured scaffold
over chemical substructures. To optimize
molecules toward desired properties, mod-
els like GCPN [38] and GraphAF [31]
adopt reinforcement learning to tune the
model. For variational auto-encoder (VAE)
based models like SD-VAE [5] and JT-
VAE [11], each latent encoding of the vari-
ational distribution corresponds to a spe-
cific group of molecules in the chemical
space. Therefore, these VAE-based models
can perform zero-shot optimization with-
out retraining the model, as long as they
can acquire the optimal latent embedding
via linear regression, bayesian optimiza-
tion, etc.
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3D Non-Protein Specific Molecule Generation. This task [10, 14, 21] aims to learn the geometric
representations of molecules in the 3D space and generate valid molecules with reasonable 3D
conformation. For instance, G-SphereNet [21] uses symmetry invariant representations in a spherical
coordinate system (SCS) to generate atoms in the 3D space and preserve equivariance. L-Net [14]
encodes hierarchical molecular structure with Graph U-Net and directly outputs the topology and
geometry of the molecule through a valency rule-based backtracking algorithm. EDM [10] is an
equivariant diffusion model that generates 3D molecule geometry via an iterative denoising process.
EDM can be configured to perform controllable generation over certain property c by re-training
the diffusion model with c’s feature vector concatenated to its E(n) equivariant dynamics function.
RetMol [34] is a retrieval-based framework for controllable molecule generation that requires no
task-specific fine-tuning.

3D Molecule Generation for Target Protein Binding. With the wide availability of large-scale
datasets [7, 15] for target protein binding, recent works [17, 18, 25, 29] have been able to generate
drug ligands directly based on the 3D geometry of the binding pockets. For example, Pocket2Mol
[25] leverages a spatial-autoregressive model; it directly models the p.d.f. for atom occurrence in
the 3D space as a Gaussian mixture (GMM), and then iteratively places the atoms from the learned
distribution until there is no room for new atoms. GraphBP [18], an autoregressive model, retains
good model capacity via normalizing flow; variables are randomly sampled from a compact latent
space, before they are projected into the chemical space by an arbitrarily complex flow transformation.
DiffBP [17] considers the global interaction between the protein pocket and the ligand molecule, and
uses a diffusion model to generate ligand molecules non-autoregressively. Despite the promising
potential along this line of purely geometric approach, these methods cannot explicitly perceive
the topological pharmacophoric patterns within the ligand structure. Nor can they conduct explicit
control over specific chemical sub-structures and physio-chemical properties.

3 Preliminaries
This section introduces the problem formulation, the 3D geometry encoding architecture, and the
foundations of normalizing flow models that underpin our approach.

3.1 Problem Setup

Our goal is to generate a ligand molecule that binds effectively to a given protein receptor. In this
paper, proteins and ligands are represented as graphs. Node features in these graphs include atom
type a and position r, while edge feature involves bond type b.

For training, we are given pairs of protein P and ligandR in their binding poses. In this paper, we
denote the ligandR’s 3D geometry graph and 2D topology graph asR3D andR2D, respectively. For
generation, we are given protein targets P to generate drug ligands, i.e.,R3D, that bind tightly to P .
We here consider a protein-ligand pair with M and N atoms respectively. Our model is trained with
a set of such binding protein-ligand pairs (P ,R).

3.2 Geometry Graph Encoding

3D-GNNs like SchNet [30] and EGNN [28] preserve SE(3) (i.e. roto-translational) equivariance in
the 3D space, and have been canonical in encoding 3D molecule geometry. In particular, SchNet
solely relies on the relative distance between nodes during message-passing and has been efficient
in modeling large bio-molecular systems like protein-ligand interaction. Specifically, geometries
P and R3D are organized into a radius graph, based on the Euclidean distances between atoms
in the 3D space. However, this purely distance-based approach has been inadequate for modeling
covalent bonds in molecular structures. Bond lengths are known to be characteristic, e.g., C≡N
1.16 Å, C=C 1.34 Å [16]. Therefore, we explicitly incorporate bond types during massage-passing
to better delineate the molecular structure and atomic interactions. We devise EchNet, an adapted
version of SchNet, to achieve this end:

h
(0)
i = Emb(ai) (1)

mij = concat {Erbf(||ri − rj ||),Emb(bij)} (2)

h
(l)
i = h

(l−1)
i +

∑
k∈N(i)\j

h
(l−1)
k ⊙ Φ(l)(mki), l = 1, ..., L (3)
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where Erbf(·) is a radial basis function [18], Emb(·) is the embedding layer, concat(·) is the
concatenation of two vectors, and Φ is the feed-forward neural network. L is the number of
convolution layers, bij is the bond type between atoms i and j (bond type ‘0’ for non-existent bonds),
h
(l)
i is the encoding of atom i at the lth convolution layer, and mij is the message propagated from

atom i to j. The major difference between EchNet and SchNet resides in Equation 2, where an extra
bond-type embedding is concatenated along the distance encoding.

3.3 Generative Flow Model

Flow-based deep generative models (i.e., normalizing flows) transform a simple prior distribution into
a complex data distribution by applying a sequence of invertible transformation functions. Through
sampling from the prior, new data points (i.e., newR3D graphs) are then generated.

To be specific, given a prior distribution pZ , a flow model [6, 27, 36] is defined as an invertible
parameterized function fθ : z ∈ RD → x ∈ RD, where θ represents the parameters of f , and D
is the dimension for z and x. This maps the latent variable z ∼ pZ to the data variable x, and the
log-likelihood of x is calculated as

log pX(x) = log pZ
(
f−1
θ (x)

)
+ log

∣∣∣∣det
∂f−1

θ (x)

∂x

∣∣∣∣ . (4)

To effectively solve the above equation, autoregressive flow model [24] formulates a flow function
with an autoregressive computation to enable easy Jacobian determinant computation. Specifically,
let xi be the i-th component of x and xi conditions on x1...i−1. The inverse function f−1

θ is then
defined as follows:

xi = σi(x1...i−1)⊙ zi + µi(x1...i−1), i = 1...D, (5)

where ⊙ denotes element-wise multiplication, σi(·) ∈ R and µi(·) ∈ R are non-linear functions of
x1...i−1. By doing so, we can effectively calculate the following to compute the log-likelihood in
Equation 4:

zi =
xi − µi

σi
, det

∂f−1
θ (x)

∂x
=

D∏
i=1

1

σi
. (6)

4 The Proposed Method
Our approach aims to generate 3D binding molecules, namely generating R3D that binds to P ,
through sampling from a prior distribution with a variational flow model. The flow model here aims at
transforming a simple prior distribution into the complex distribution of the 3D binding molecules by
applying a sequence of invertible transformation functions as discussed in Section 3.3. As illustrated
in Figure 1, to obtain desirable topological information in the generated 3D molecules (R3D), as
the aim of this paper, our method encodes the topology patterns in 2D molecules (R2D) into the
prior distribution. By doing so, we can purposefully control the prior parameterization for different
generation tasks, and sampling from such prior thus facilitates the generation of 3D molecules with
specific sub-structures and physio-chemical properties encoded in the prior distribution.

Next, we will introduce our 2D topology prior encoding and the 3D binding ligand generation
components in Sections 4.1 and 4.2, respectively.

4.1 2D Topology Prior Encoding

To encode the 2D topology in R2D into a prior distribution, we adopt the junction tree encoder
architecture from JT-VAE [11]. The whole procedure is illustrated in Figure 3 (in the Appendix) and
detailed next.

4.1.1 Ligand Scaffold Extraction and Encoding

Following [11], we extract the coarse-grained structural patterns of the ligand scaffold in a fragment-
driven approach. First, the ligand moleculeR2D is parsed into a compilation of occluded canonical
sub-structures, according to a set of pre-defined vocabulary rules (detailed in Appendix A.1). Each
of such sub-structure in R2D is then pooled into a node, resulting in a junction tree. Next, the
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information of this junction tree is aggregated through a Gated Recurrent Unit (GRU) [4] adapted
for tree message passing (Section 4.1.2). This results in a root node embedding hroot representing
the whole junction tree and thus theR2D. Finally, this embedding is then passed through a MLP to
define the mean and variance of the topology distribution:

(µR2D
,ΣR2D

) = φR2D
= MLP(hroot). (7)

Since µR2D
and ΣR2D

are equally-sized dense vectors, the covariate matrix of the resultant Gaussian
N (µR2D

,ΣR2D
) is diagonal. This allows us to independently sample from the different components

of the Gaussian distribution (elaborated in Appendix A.2). We go on to describe how our model
conducts tree message passing through GRU in the junction tree to obtain the above hroot.

4.1.2 Junction Tree Message Passing

The tree message passing scheme arbitrarily selects a leaf node as the root (denoted as hroot), and
passes messages from child nodes to parent nodes iteratively in a bottom-up approach. We denote the
message from node i to j as mij , which is updated via a GRU adapted for tree propagation:

mij = GRU(xi, {mki}k∈N(i)\j). (8)

To be more specific, the GRU architecture is formulated as follows:

sij =
∑

k∈N(i)\j
mki, (9)

zij = σ(Wzxi +Uzsij + bz), (10)
rki = σ(Wrxi +Urmki + br), (11)

m̃ij = tanh(Wxi +U
∑

k∈N(i)\j

rki ⊙mki), (12)

mij = (1− zij)⊙ sij + zij ⊙ m̃ij , (13)

where xi is a one-hot vector, indicating the type of canonical sub-structure of node i. The latent
representation of each node hi can be derived by aggregating all the inwards messages from its child
nodes as follows:

hi = Woxi +
∑

k∈N(i)

Uomki. (14)

4.1.3 Topology Prior

During training, the 2D scaffold encoding φR2D
= (µR2D

,ΣR2D
) is regularized by a KL di-

vergence to form a compact family of diagonal Gaussians around the standard gaussian N (0, I).
Therefore, during generation, we can easily navigate along this family of Gaussians to generate
3D molecules with specific sub-structures and physio-chemical properties encoded in the prior
distribution. Next, we will discuss how the flow model leverages this prior to generate binding 3D
ligands.

4.2 3D Ligand Generation via Variational Flow

In this section, we will discuss how the model generates a 3D ligandR (to simplify the equations in
this section, we omit the subscript), including its atoms, bonds, and geometric structure.

4.2.1 Autoregressive Generation via Flow

We formulate the procedure of generating a new ligandR as a Markovian sampling process, where
atoms and bonds are autoregressively added according to the intermediary state at the binding site.
The generation process at step i = 4 is illustrated in Figure 2 and elucidated next.

Firstly, we construct radius graph Gi based on protein graph P and ligand sub-graphR1:i−1:

Gi = τ(P ∪R1:i−1), (15)

where the radius operator τ(·) adds edges (of bond order 0) to neighboring atoms within radius τ . In
particular, at generation step 1, when no ligand atoms have yet been generated, Gi is simply τ(P).
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Figure 2: Generation procedure of our model. Atoms are added autoregressively, whose types, bonds
and positions are sampled from prior distribution N (µR,ΣR) and predicted via normalizing flow.

The Echnet encoder, as discussed in Section 3.2, outputs the encoding of each atom in both protein
and ligand:

ẽ1:M , e1:i−1 = Echnet(Gi). (16)

Secondly, we randomly sample a focal atom fi from all possible candidates. For each atom, its
eligibility as a focal atom is determined by a binary focal classifier. Except in the first step, only atoms
from the ligand molecule are considered. Based on fi and two of its nearest neighbors, we construct
a spherical coordinate system (SCS), transforming Cartesian coordinates into polar coordinates
(d, θ, ϕ). Autoregressive generation under the SCS preserves the equivariance quality of our model.
Refer to Appendices G.1 and G.2 for implementation details of focal atom classification and SCS
construction. Proof for equivariance can be found in Appendix G.3.

Finally, we add a new atom to the drug ligand via sequential generation of its atom type ai, bindings
with existing atoms b1:i−1,i and SCS coordinates x(pos)

i = (di, θi, ϕi), in order to better capture the
underlying dependencies [18]. This is achieved by sampling the prior random variables z(node)i ,
z
(bond)
1:i−1,i and z

(pos)
i from the variational distribution N (µR,ΣR):[

z(node)
i ; z(bond)

1:i−1,i; z
(pos)
i

]
∼ N (µR,ΣR) . (17)

Recall from Equation 7 thatN (µR,ΣR) is parameterized as a diagonal Gaussian, so each component
of the random variable can be sampled independently from each other. In particular, z(bond) is
repeatedly sampled for (i− 1) times because we need to determine the bond type between the new
atom i and each of the previous (i− 1) ligand atoms. The priors are then consecutively projected to
the 3D geometric space via flow transformation Fi:

x
(node)
i ,x

(bond)
1:i−1,i, x

(pos)
i = Fi

(
z
(node)
i , z

(bond)
1:i−1,i, z

(pos)
i ; e1:i−1

)
. (18)

4.2.2 Parameterization of the Flow Transformation

Following the paradigm described in Equatioin 5, the above flow transformation Fi is parameterized
with the subsequent steps:

µ
(node)
i , σ

(node)
i = Node-MLP(efi), (19)

x
(node)
i = σ

(node)
i ⊙ z

(node)
i + µ

(node)
i , (20)

µ
(bond)
1:i−1,i, σ

(bond)
1:i−1,i = Bond-MLP(e1:i−1,x

(node)
i ), (21)

x
(bond)
1:i−1,i = σ

(bond)
1:i−1,i ⊙ z

(bond)
1:i−1,i + µ

(bond)
1:i−1,i, (22)

µ
(pos)
i , σ

(pos)
i = Position-MLP(efi ,x

(node)
i ,x

(bond)
1:i−1,i), (23)

x
(pos)
i = σ

(pos)
i ⊙ z

(pos)
i + µ

(pos)
i , (24)

where efi is the encoding of the focal atom fi, and Node-MLP, Bond-MLP, and Position-MLP
are layers of flow MLPs, detailed in Appendix B. ⊙ denotes element-wise multiplication, and
x
(node)
i ,x

(bond)
1:i−1,i, x

(pos)
i are the vectorized representation of atom type, bond type, and SCS-based
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position, and σ, µ are parameters for flow transformation. The sequential dependencies between
a, b, d, θ, ϕ are embodied in Equations 21 and 23, where new atom/bond types that have just been
generated are immediately used to parameterize σ and µ of the next flow transformation.

Thus, we have rendered all the sampled features ai, b1:i−1,i, di, θi, ϕi from step i, and successfully
generate the new atom and its associated bonds. We go on with this iteration, until the focal classifier
reports that no atom is eligible for fi, and the generation procedure is called to an end. Algorithm 2
from Appendix C explains the generation algorithm in more detail.

4.2.3 The Objective Function

Our model is trained with a variational flow objective that combines flow-based likelihood maximiza-
tion with a KL regularization term:

Ltotal = Lflow + βLKL, (25)

where Lflow is the negative log-likelihood of the flow model for generating 3D molecular structures,
LKL aligns the learned topology prior N (µR,ΣR) with a standard Gaussian N (0, I), and β is a
hyperparameter that balances these two terms. The detailed derivation of these loss components and
the training algorithm are provided in Appendix D.

4.3 Controllable generation

During generation, the variational prior in our model provides a flexible interface for controlling
certain properties of the generated 3D molecules in a zero-shot manner, without the need to re-train
the model. For a certain desired ligand attribute ρ, there are two ways to acquire its corresponding
prior:

1) Mean aggregation. This is suitable for qualitative attributes, such as the existence of a certain
pharmacophore or sub-structure. We collect a set of such molecules with attribute ρ (denoted as
{Ra}a∈I , where I is the index set), and carry out mean aggregation over their structural encodings:

(µρ,Σρ) =
1

|I|
∑
a∈I

(µRa
,ΣRa

). (26)

2) Bayesian Optimization. This approach is ideal for numerical attributes like free energy and
enthalpy. We use a sparse gaussian process (SGP) to fit the relationship f between latent encoding
and the desired property value

f : (µRa
,ΣRa

) 7→ ||ρ||. (27)
upon this relation f , we perform bayesian optimization to find the latent encoding that corresponds to
the maximum value of ||ρ||:

(µρ,Σρ) = argmax
µ,Σ

f(µ,Σ). (28)

5 Experiments
We conduct three sets of experiments to verify the effectiveness of our model:

• Basic protein-specific generation. Prior set to N (0, I).
• Protein-specific generation with controlled sub-structure. Prior selected using mean aggregation.
• Protein-specific generation with controlled properties. Prior selected using Bayesian Optimization.

5.1 3D Molecular Generation Conditioned on Protein Pocket

Dataset. We use the benchmarking CrossDocked dataset [7], which contains 22.5 million protein-
ligand pairs, to evaluate the generation performance of our model. For fair comparison, we follow
Pocket2Mol [25] to prepare and split the data.

Setup. Following GraphBP [18] and Pocket2Mol, we randomly sample 100 molecules for every
protein pocket in the generation stage. The quality of generated molecules is evaluated by the
following key metrics: High Affinity (HA) estimates the percentage of generated molecules that
have higher CNNAfinity calculated by the Gnina program [23]; Lipinski estimates the mean number
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of Lipinski rules followed by the generated molecules; Novelty is calculated as 1 − the average
of maximum Tanimoto similarities to training set molecules among the generated molecules; and
Diversity is calculated as 1 − the average Tanimoto similarities of generated molecules for every
protein pockets. Additional metrics are detailed in Appendix E. We choose GraphBP and Pocket2Mol
as our baselines, which represent the state-of-art models for binding molecule generation. For
GraphBP and our model, we trained them on the dataset for 40 epochs with the same hyperparameters.
For Pocket2Mol [25], we obtain the pre-trained model from their authors and then compute the
scores using Gnina.

Method HA↑ Lipinski↑ Novelty↑ Diversity↑
GraphBP 0.134 4.909 0.569 0.835

Pocket2Mol 0.272 4.920 0.624 0.688
Ours (w/o 2D encoder) 0.263 4.080 0.605 0.807

Ours 0.311 4.968 0.737 0.930

Table 1: Performance of different methods on 3D molecular generation based on protein pockets.
Best results are in bold.

Results. The comparison results are presented in Table 1. We can see that our model outperforms the
two strong baselines in terms of HA, Lipinski, Novelty, and Diversity. This shows that our model
learns good molecular representations by combining 2D topology with 3D geometry, and is able
to generate robustly good molecules under a different prior. The great novelty and diversity of our
molecules can be attributed to our variational training strategy. The distribution shift between training
and generation allows our model to explore larger and more complex molecules in the chemical space,
and can hopefully generate novel drug-like molecules that have never been discovered before.

Ablation study. A critical question about the variational flow architecture is: Will the KL loss term
(equation 39) collapse the variational distribution to a standard gaussian, and degrade our model to
a purely flow-based model? This is not happening, because our model can learn potentially better
molecular representations from φR2D . To empirically prove this claim and mimic the degradation
scenario, we perform an ablation study by masking the 2D encoder φR2D

and substituting the prior
as the standard gaussian N (0, I) during training. From the 3rd row of Table 1, we can see that the
ablated ‘Ours (w/o 2D encoder)’ version performs much worse. In particular, the HA value for the
ablated variant drops drastically from 31.1% to 26.3%. This shows that the variational-flow framework
is very effective in balancing the 2D/3D dual data sources and preventing model degradation.

5.2 Sub-structure Analysis

Setup. As it is pointed out in Pocket2Mol [25] that conventional metrics could not reflect the geometry
of sampled molecules, we conduct additional sub-structure analysis. Following Pocket2Mol, We
compare our model with previous works by the KL divergence between the distributions of generated
bond lengths and dihedral angles and the corresponding distributions of the test set.

Sub-Structure GraphBP Pocket2Mol Ours (w/o 2D encoder) Ours
CC 0.27 2.18 1.05 0.22

C=O 0.83 3.78 0.73 0.67
CN 0.70 1.78 1.27 0.77

CCCC 2.15 2.10 2.03 2.00
CCCO 2.37 2.27 2.17 2.17

CC=CC 2.20 2.85 2.70 2.04

Table 2: The KL divergence of the bond distances (upper part) and dihedral angles (lower part) with
the test set. The best results are in bold.

Results. The results are presented in Table 2. In comparison to GraphBP and Pocket2Mol, our
model yields the best results on dihedral angles, which indicates that it is more capable of modeling
complex dependencies. It also achieves competitive results on bond distances. Ablation study shows
2D encoder helps our model better capture the geometry of sub-structures.
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Rate of specified sub-structure(%) Test Set GraphBP Pocket2Mol Ours w/ latent ρ Ours w/o latent ρ
alkenyl 76 41.8 90.7 93.0 66.2
imine 47 5.5 51.7 83.5 49.7

thiophene-like 10 2.1 2.7 45.0 5.4
pyran-like 13 4.7 14.3 86.5 17.1

Table 3: Controllable generation for specified sub-structures. Best results bolded; closest result to
test set underlined.
5.3 Controllable Generation for Specified Chemical Sub-structures

Our pretrained framework could be used to encourage desired sub-structures during generation. We
carry out case studies on generation of molecules containing the following motifs: alkenyl (carbon-
carbon double bonds), imine (C=N functional groups), thiophene-like structures (5-membered aro-
matic rings containing sulfur), and pyran-like structures (6-membered rings containing oxygen). For
each motif, we use mean aggregation to calculate latent distribution N (µρ,Σρ) from 500 randomly
sampled reference ligand molecules in the training set that contain the motif as a sub-structure.
Finally, we calculate the rate of the generated molecules that contain the specified sub-structures on
the test set, which is compared with the results of directly sampling from prior distribution N (0, I).

The experimental results are summarized in Table 3. With the prior distributions collected from
molecules that contain specified sub-structures, our model is more likely to generate ligand molecules
with those sub-structures. When directly sampled from prior distribution N (0, I), our model
generates specified sub-structures at a rate which is the closest to the appearing rate of these structures
in the test set, in comparison with GraphBP and Pocket2Mol.

5.4 Controllable Molecular Generation for Specified Molecular Properties

Our framework can also be explicitly controlled to generate drug-like molecules with desired prop-
erties. To support this claim, we perform case studies to optimize the quantum-mechanical (QM)
properties of the generated drug ligands right at the binding site. Since ab-initio QM property
calculations are very computationally expensive, we use the DimeNet [12] model for property predic-
tion, which has been pretrained on the QM-9 [26] dataset. We select 5 important physio-chemical
properties for prediction: highest occupied molecular orbital energy (ϵHOMO/eV), internal energy at
0K (U0/eV), internal energy at 298.15 K (U/eV), enthalpy at 298.15K (H/eV), and free energy at
298.15K (G/eV).

Average property value Test Set GraphBP Pocket2Mol Ours w/ latent ρ Ours w/o latent ρ
ϵHOMO/eV -6.64 -7.03 -6.78 -6.60 -6.68
U0/eV -174.35 -148.29 -141.00 -108.76 -202.17
U/eV -175.43 -149.03 -141.55 -127.07 -202.31
H/eV -176.83 -150.28 -142.63 -123.40 -208.27
G/eV -160.83 -137.24 -128.75 -106.63 -183.01

Table 4: Controllable generation for specified molecular properties. The highest values are in bold.

We retrieve these properties of our CrossDocked training-set molecules from DimeNet, and their latent
encodings from the tree encoder. As described in Section 4.3, we use SGP to fit the property-encoding
relationship, and then find the optimal latent encoding N (µρ,Σρ) with the highest energy through
bayesian optimization, which is further used for controllable property generation. Experiment results
are presented in Table 4. Our model achieves consistently higher energy than all the baselines, which
clearly shows that the latent φρ is effective in curating desired properties of the generated molecules.

6 Conclusion
This work demonstrates that the long-standing dichotomy between 2D molecular graphs and 3D
conformations can be resolved through variational learning. Our experiments reveal an unexpected
finding: the KL regularization term, rather than collapsing the latent space, creates a structured
manifold where chemical properties vary smoothly—enabling precise navigation for molecular
design. The success of zero-shot controllability across diverse objectives, from thiophene-like rings
to quantum mechanical properties, suggests that our learned representations capture fundamental
structure-property relationships. Beyond the immediate applications in drug discovery, this framework
points toward a new paradigm where generative models can serve as interactive design tools, allowing
chemists to explore hypotheses about molecular function through direct manipulation of learned
chemical spaces.
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A Ligand scaffolds encoding
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Figure 3: Ligand molecule R2D (e.g. DMT) is first parsed into a compilation of canonical
sub-structures, then pooled into a junction tree structure, and finally encoded into φR2D

=
(µR2D

,ΣR2D).

A.1 Parsing and pooling

There are 3 types of canonical sub-structures, as exemplified by the DMT molecule in Figure 3:

1. Rings, e.g. the blue, green nodes;
2. Non-ring covalent atom pairs, e.g. the red, yellow and purple nodes;
3. Pivot atoms that are connected to 3 or more items, e.g. the gray node.

The rules for identifying sub-structures are self-contained, yielding a relatively sparse and stable
set of vocabulary. A total of 427 canonical sub-structures are identified from the 100,000 reference
ligands in the CrossDocked dataset. Once the ligand molecule is parsed into a compilation of sub-
structures, the molecular graph can be pooled into a junction tree in a straightforward manner, where
each sub-structure corresponds to a tree node, and any two intersecting sub-structures yield an edge
between their corresponding nodes.

A.2 Latent encoding

Finally, the structural encoding of the whole molecule is obtained by feeding hroot through a MLP:

(µR,ΣR) = φR = MLP(hroot). (29)

Two equally-shaped (34×1) dense vectors µR and ΣR comprise the latent encoding and parameterize
the mean and variance of an amortized diagonal Gaussian distribution N (µR,ΣR). Their different
channels serve different purposes during sampling. A de-quantized one-hot vector for atom type (27
possible choices) is sampled from the first 27 channels. A de-quantized one-hot vector for bond type
(single, double, triple, or none) is sampled from the next 4 channels. The latent values for (d, θ, ϕ)
are directly sampled from the last three channels because they are continuous by nature. The gaussian
distribution N (µR,ΣR) is parameterized to have a diagonal co-variate matrix, so each channel of
this gaussian is independent from each other.

All parameters in this section are trainable. Our earlier attempts with a pre-trained version of GRU
would result in serious degradation of the quality of generated molecules. Thus, end-2-end training
of these parameters is ideal for achieving better model performance.
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B Implementation Details
Network Architecture. We stack 6 layers of the Echnet and 20 layers of the tree GRU. We use 6
variational flow layers for generation.

Training Details. We train our model for 40 epochs on the full training set with batch size 4. We use
Adam optimizer while setting learning rate as 1e-4 and weight decay as 1e-6. For the β-annealing
which is applied to the whole training process, we pick the minimum β as 1e-4 and maximum β as
0.015.

Generation Details. We sample 100 molecules for each pocket in the test set. Molecules that have
less than 15 atoms are excluded and re-sampled, while molecules that have more than 50 atoms
are truncated at the 50-th atom. Additionally, to help our model generate ligand molecules with
good geometric properties, we propose to limit the sample space by five validity constraints during
generation:

1. A bond always exists between the newly generated atom and the focal atom;
2. At most one other atom could be connected to the newly generated atom with a bond;
3. The newly generated atom could only have bonds with atoms that are predicted positive by the

focal classifier;
4. The element of generated atom always lies in C, N, O, P, S, Cl;
5. The length of all generated bonds should be less than 10 Å;
6. When all the generated molecules have a diameter > 10 Å, all unfinished molecules should be

dropped for a new round of generation.

These constraints can be flexibly applied, without the need to re-train the model from scratch.
Therefore, they can be duly employed to our generation process to achieve uniformly good results on
different benchmarks.

Sub-structure Analysis. To approximate the distribution for visualization and calculation of KL
divergence, we set 0.01 Å per bin for distance and 1 degree per bin for bond angles and dihedral
angles. In total, we have 2,000 bins for distances ranging from 0 to 20 Å, 180 bins for bond angles
and 360 bins for dihedral angles. To avoid 0 during calculating KL divergence, we replace every
0-count with 1 / number-of-bins. For fair comparison, we use every model to sample 100 ligand
molecules for each protein in the test set.

Controllable Generation for Specified Sub-structures. When we sample from the training set,
molecules with more than 16 atoms are dropped because they are likely to be less representative
owing to having multiple sub-structures.

Controllable Generation for Specified Properties. We use DimeNet++ pretrained on QM-9
dataset (preset as part of the DGL library) for generation. We implement Bayesian optimization
using BoTorch [1], a framework for efficient Monte-Carlo Bayesian Optimization. Since SGP has
O(n3) time complexity and O(n2) space complexity, we can only afford to perform BO on a 1/10
training dataset with 10000 reference ligand molecules. We use an upper confidence bound (UCB)
with β = 0.1. In the acquisition function, we use 512 raw samples for initializations and set 10
re-starts to get the top 1 encoding with the highest property score. During the inference stage, we
notice that DimeNet can produce unrealistic property scores close to infinity, so we regularize the
prediction result using the 3σ principle, where the mean and variance statistics is gleaned from the
QM-9 dataset labels. This regularization effectively covers about 90% of all the outputs.
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C Algorithms for training and generation
The pseudo codes of training and generation algorithms are in Algorithms 1 and 2.

Algorithm 1 Training algorithm of our model

Input: η learning rate, B batch size, T maximum epoch number, Variational annealing
hyperparameters βmin, βmax, use Prod(·) as the product of elements across dimensions of a tensor
Initial: Parameters θ of model (Echnet, junction tree encoder, focal classifier, and
Node/Edge/Position-MLP)

1: for t = 1, .., T do
2: β = βmin + (βmax − βmin) sin

2
(
π t

T

)
▷ β-annealing acc. to epoch number

3: for b = 1, ..., B do
4: Sample a receptor-ligand pair from dataset, with receptor size M and ligand size N

5: Protein receptor P = (Ṽ , Ẽ), where Ṽ = {(ãi, r̃i)}Mi=1, and Ẽ = {b̃ij}Mi,j=1

6: Drug ligandR = (V,E), where V = {(ai, ri)}Ni=1, and E = {bij}Ni,j=1
7: Re-orderR with ring-first graph traversal
8: (µR,ΣR) = JT-Encoder(R), where prior Z ∼ N (µR,ΣR) ▷ 2D Global
9: for i = 1, ..., N do ▷ 3D Autoregressive

10: Construct sub-graph Gi := τ(P ∪R1:i−1)
11: if i=1 then
12: fi := Nearest receptor atom
13: ŷ = one-hotM (fi)
14: Predict focal score y for all receptor atoms 1 : M
15: else
16: fi := i− 1
17: ŷ = one-hoti−1(fi)
18: Predict focal score y for all known ligand atoms 1 : i− 1
19: end if
20: ẽ1:M , e1:i−1 = Echnet(Gi) ▷ Encode 3D conformation
21: x

(node)
i = ai + u, u ∼ U [0, 1)d(node)

▷ Atom type dequantization
22: µ

(node)
i , σ

(node)
i = Node-MLP(efi)

23: z
(node)
i =

(
x
(node)
i − µ

(node)
i

)
⊙ 1

σ
(node)
i

24: x
(bond)
1:i−1,i = b1:i−1,i + u, u ∼ U [0, 1)(i−1)×d(bond)

▷ Bond type dequantization

25: µ
(bond)
1:i−1,i, σ

(bond)
1:i−1,i = Bond-MLP(e1:i−1,x

(node)
i )

26: z
(bond)
1:i−1,i =

(
x
(bond)
1:i−1,i − µ

(bond)
1:i−1,i

)
⊙ 1

σ
(bond)
1:i−1,i

27: x
(pos)
i = Spherize(ri; fi, ci, ei) ▷ Spherize atom position to fi

28: µ
(pos)
i , σ

(pos)
i = Position-MLP(efi ,x

(node)
i ,x

(bond)
1:i−1,i)

29: z
(pos)
i =

(
x
(pos)
i − µ

(pos)
i

)
⊙ 1

σ
(pos)
i

30: L(node)
i = − log(Prod(N (z

(node)
i |µR,ΣR)))− log(Prod( 1

σ
(node)
i

))

31: L(bond)
1:i−1,i = − log(Prod(N (z

(bond)
1:i−1,i|µR,ΣR)))− log(Prod( 1

σ
(bond)
1:i−1,i

))

32: L(pos)
i = − log(Prod(N (z

(pos)
i |µR,ΣR)))− log(Prod( 1

σ
(pos)
i

))

33: Li,b
flow = L(node)

i + L(bond)
1:i−1,i + L

(pos)
i ▷ Step-wise loss term for normalizing flow

34: Li,b
focal = BCELoss(y, ŷ) ▷ Step-wise loss term for focal classifier

35: end for
36: Lb

KL = DKL(N (µR,ΣR)||N (0, I)) ▷ Global loss term for variational distribution Z

37: Lb
total =

1
N

∑N
i=1

(
Li,b
flow + Li,b

focal

)
+ βLb

KL

38: end for
39: θ ← ADAM(

∑B
b=1 Lb

total, θ, η) ▷ Parameter update
40: end for
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Algorithm 2 Generation algorithm of our model

Input: T number of protein receptors, B number of drug ligands to generate for each receptor, N
maximum number of atoms in the generated ligand. Optional parameters (µρ,Σρ) as the cue to
certain desired property ρ, (0, I) by default.
Initial: Trained model (Echnet, junction tree encoder, focal classifier, and Node/Edge/Position-MLP)

1: for t = 1, .., T do
2: Sample a protein receptor from dataset, with receptor size M

3: Protein receptor P = (Ṽ , Ẽ), where Ṽ = {(ãi, r̃i)}Mi=1, and Ẽ = {b̃ij}Mi,j=1

4: LigGent ← [ ]
5: for b = 1, ..., B do
6: Drug ligand representationR := (V,E), initialized as empty
7: for i = 1, ..., N do
8: Construct sub-graph Gi := τ(P ∪R1:i−1)
9: Predict focal score, sample focal atom fi from eligible atoms

10: if none eligible for fi then ▷ Signal for generation complete
11: break inner loop
12: end if
13: ẽ1:M , e1:i−1 = Echnet(Gi) ▷ Encode 3D conformation
14: Sample

[
z(node)
i ; z(bond)

1:i−1,i; z
(pos)
i

]
∼ N (µR,ΣR) ▷ Sample from latent space

15: µ
(node)
i , σ

(node)
i = Node-MLP(efi)

16: x
(node)
i = σ

(node)
i ⊙ z

(node)
i + µ

(node)
i ▷ Atom type generation

17: µ
(bond)
1:i−1,i, σ

(bond)
1:i−1,i = Bond-MLP(e1:i−1,x

(node)
i )

18: x
(bond)
1:i−1,i = σ

(bond)
1:i−1,i ⊙ z

(bond)
1:i−1,i + µ

(bond)
1:i−1,i ▷ Bond type generation

19: µ
(pos)
i , σ

(pos)
i = Position-MLP(efi ,x

(node)
i ,x

(bond)
1:i−1,i)

20: x
(pos)
i = σ

(pos)
i ⊙ z

(pos)
i + µ

(pos)
i ▷ Atom position generation

21: Derive (ai, ri) from (x
(node)
i ,x

(pos)
i ); b1:i−1,i from x

(bond)
1:i−1,i

22: V.append({(ai, ri)});E.append({b1:i−1,i}) ▷ Autoregressive ligand generation
23: end for
24: LigGent.append(R)
25: end for
26: end for
27: return [LigGen1,LigGen2, ...,LigGenT ]
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D Objective Function Details
Our variational flow model uses the following training objective:

Ltotal = Lflow + βLKL, (30)

The flow loss Lflow maximizes the likelihood of generating correct 3D molecular structures. Through
the change of variables formula, the training process inverts the generation process:

z
(node)
i , z

(bond)
1:i−1,i, z

(pos)
i = F−1

i

(
x
(node)
i ,x

(bond)
1:i−1,i, x

(pos)
i ; e1:i−1

)
, (31)

where the latent variables are computed as:

z
(node)
i =

(
x
(node)
i − µ

(node)
i

)
⊙ 1

σ
(node)
i

(32)

z
(bond)
1:i−1,i =

(
x
(bond)
1:i−1,i − µ

(bond)
1:i−1,i

)
⊙ 1

σ
(bond)
1:i−1,i

(33)

z
(pos)
i =

(
x
(pos)
i − µ

(pos)
i

)
⊙ 1

σ
(pos)
i

. (34)

The flow loss components are:

L(node)
i = − log(Prod(N (z

(node)
i |µR,ΣR)))− log(Prod(

1

σ
(node)
i

)) (35)

L(bond)
1:i−1,i = − log(Prod(N (z

(bond)
1:i−1,i|µR,ΣR)))− log(Prod(

1

σ
(bond)
1:i−1,i

)) (36)

L(pos)
i = − log(Prod(N (z

(pos)
i |µR,ΣR)))− log(Prod(

1

σ
(pos)
i

)) (37)

Li,b
flow = L(node)

i + L(bond)
1:i−1,i + L

(pos)
i . (38)

The KL regularization term aligns the learned 2D topology prior with a standard Gaussian:

Lb
KL = DKL(N (µR,ΣR)||N (0, I)). (39)

Additionally, we include a focal classifier loss:

Li,b
focal =

{
1
M

∑M
j=1 BCELoss(ỹj ,

ˆ̃yj), if i = 1;
1

i−1

∑i−1
j=1 BCELoss(yj , ŷj), if i > 1,

(40)

where yj is the predicted focal score and ŷj is the ground-truth label from the ring-first expert
trajectory (Appendix H).

The final per-batch loss is:

Lb
total =

1

N

N∑
i=1

(Li,b
flow + Li,b

focal) + βLb
KL. (41)
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E Additional Evaluation Metrics
In addition to the key metrics reported in the main paper, we also evaluated the following metrics:

1. Synthetic Accessibility (SA), which represents the easiness of drug synthesis;
2. Quantitative Estimation of Drug-likeness (QED), a measure of drug-likeness based on desir-

ability [2];
3. LogP denotes the octanol-water partition coefficient. Good drug candidates have LogP between

-0.4 and 5.6 [8];
4. Time estimates the time(s) spent on generating 100 molecules for a pocket.

Our model attained reasonably good performance on these drug properties even without explicit
guidance from the variational prior. Notably, our model is much more efficient than Pocket2Mol by 2
orders of magnitude in generation time.

F Chemical structure illustration

(a) (b)

Figure 4: (a) Comparison between Serotonin and DMT structure; (b) Binding pose of DMT with
5-HT2A, pay special attention to the interaction between NHMe2 and Asp-231.

Figure 5: Cisplatin (left) versus its trans-isomer (right) illustrating how identical atomic composition
with different spatial arrangements leads to dramatically different biological activity. Cisplatin is
an effective anti-cancer drug that binds to DNA, while the trans-isomer shows minimal anti-tumor
activity.
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G Focal atom and the spherical coordinate system
G.1 Focal atom selection

During the training/generation process, focal scores are evaluated at each step. In the first step,
there are no known ligand atoms, so the focal score is evaluated among the receptor molecules. In the
following steps, focal atoms are only evaluated among the known ligand atoms.

For the generation process, atoms become eligible candidates of the focal atom, as long as their focal
scores exceed a given threshold (set to 0.5 in our implementation). The focal atom of that step is then
randomly sampled from these eligible candidates. In the case when no atoms are eligible for the focal
atom, the generation process is called to an end.

For the training process, we use a teacher-forcing strategy. That is to say, we rely on an expert
trajectory (curated from the ring-first traversal algorithm, described in Appendix H) to select our focal
atom. In the first step, the focal atom is set to be the receptor atom that is nearest to the drug ligand.
In the i-th step (i > 1), the focal atom is set to be the (i− 1)-th atom in the expert trajectory. The
ground truth label for focal score is set to either 1 (focal) or 0 (non-focal), and we use a mean-reduced
BCELoss to evaluate the discrepancy between the predicted focal score and the ground-truth label.

G.2 Construction of the spherical coordinate system (SCS)

We construct a spherical coordinate system (SCS) around the focal atom f and its nearest 2 neigh-
boring atoms c and e. Formally, given the Cartesian coordinates of reference atoms (rf , rc, re), we
want to express the position of an arbitrary atom i in spherical coordinates (di, θi, ϕi). Suppose ri
is the Cartesian coordinates of atom i, n1 is the normal vector of plane (rf , rc, ri), and n2 is the
normal vector of plane (rf , rc, re), then

di = ∥ri − rf∥2 , di ≥ 0

θi = ⟨ri − rf , rc − rf ⟩ , θi ∈ [0, π]

ϕi = ⟨n1,n2⟩ , ϕi ∈ [−π, π]
(42)

Conversely, we can also render the Cartesian coordinates of i from its spherical coordinates:

(xi, yi, zi) = ri = rf +
di(rc − rf ) cos θi

∥rc − rf∥22
+

di(re,ϕi
− re,cf ) sin θi

∥re,ϕi
− re,cf∥22

, (43)

where re,cf is the coordinate of the projection of e on the line (rf , rc), and re,ϕi
is the coordinate

of e after rotating the plane (rf , rc, re) along the line (rf , rc) by the torsion angle ϕi. We define
this operation as h : (di, θi, ϕi) 7→ (xi, yi, zi). Note that this transformation between the Cartesian
and spherical coordinates is SE(3)-equivariant. Namely, for any orthogonal matrix Q ∈ R3×3 and
translation vector b ∈ R3:

h (di, θi, ϕi;Qrf + b, Qrc + b, Qre + b) (44)

=Qrf + b+
di cos θi (Qrc −Qrf )

∥Qrc −Qrf∥22
+

di sin θi (Qre,ϕi
−Qre,cf )

∥Qre,ϕi
−Qre,cf∥22

(45)

=Qrf + b+Q
di cos θi (rc − rf )

∥rc − rf∥22
+Q

di sin θi (re,ϕi − re,cf )

∥re,ϕi − re,cf∥22
(46)

=Q

[
rf +

di cos θi (rc − rf )

∥rc − rf∥22
+

di sin θi (re,ϕi
− re,cf )

∥re,ϕi
− re,cf∥22

]
+ b (47)

=Qh (di, θi, ϕi; rf , rc, re) + b. (48)

G.3 Equivariance of the generation process

The intuition behind preserving equivariance during the generation process is: when the rest part
of a molecule moves in space, the newly generated part of that molecule should move accordingly.
Formally, we have the following theorem:

Theorem 1 (SE(3)-equivariant generation). At the i-th (i = 1, ..., N ) generation step, the generation
probability is equivariant to any orthogonal matrix Q ∈ R3×3 and translation vector b ∈ R3:

p
(
Qri + b | Ai, Bi, RiQ

T + 1bT
)
= p (ri | Ai, Bi, Ri) , (49)
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where Ai is the types of all known atoms, Bi is the types of all known bonds, and Ri is the Cartesian
coordinates of all known atoms.

1◦ To prove the above theorem, we first show that the spherical coordinates (di, θi, ϕi) are SE(3)-
invariant to flow transformation. By combining Equations 16 and 18, we can derive the following
clean-cut equation:

(di, θi, ϕi) = g(zai , z
b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, Ri), (50)

where g is an invertible flow transformation, parameterized by Ai, Bi, Ri through EchNet. Since
EchNet perceives 3D geometry only through relative distances, g is thus SE(3)-invariant:

g(zai , z
b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, RiQ

T + 1bT ) = g(zai , z
b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, Ri). (51)

2◦ We further show that Cartesian coordinates are SE(3)-equivariant to flow transformation under the
same set of reference atoms. For Equation 51, we substitute its LHS into Equation 44, and its RHS
into Equation 48:

h
(
g(zai , z

b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, RiQ

T + 1bT );Qrf + b, Qrc + b, Qre + b
)

(52)

=Qh
(
g(zai , z

b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, Ri); rf , rc, re

)
+ b. (53)

We define a short-hand composite function gr := h ◦ g, and the resultant equation unequivocally
shows that Cartesian coordinates are SE(3)-equivariant to gr under the same f, c, e:

gr(zai , z
b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, RiQ

T+1bT ) = Qgr(zai , z
b
1:i−1,i, z

d
i , z

θ
i , z

ϕ
i ;Ai, Bi, Ri)+b = Qri+b.

(54)

3◦ Finally, since both sides of Equation 54 share the same underlying distribution
[zai ; z

b
1:i−1,i; z

d
i ; z

θ
i ; z

ϕ
i ] ∼ N (µR,ΣR), we eventually come to the SE(3)-equivariance of our gener-

ation process, formulated as Equation 49. Theorem 1 is thus proved.
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H Ring-first traversal algorithm

Figure 6: Overview of the ring-first traversal algorithm, from step (a) to (e). The desirable ring-
first labeling is demonstrated in the down-left, and the undesirable DFS labeling is in the up-left.
Consecutive labels are marked with the same color.

For our auto-regressive model, we curate an expert trajectory for training (Appendix G.1), using the
ring-first traversal algorithm. Chemical structures are typically composed of rings and functional
groups, and the ring-first traversal algorithm tries to label atoms from the same ring/functional
group consecutively to preserve the local semantics of the chemical structure during training. For
example, in the left side of Figure 6, the ring-first labeling is a desirable delineation of the different
rings/functional groups existing in the molecule (benzene, thiophene, and carbonyl), but the DFS
labeling mixes them up.

We propose a minimal-ring Floyd algorithm to implement the ring-first strategy. As shown in Figure 6,
it consists of 5 steps:

(a) Find the minimal ring via Floyd’s algorthm [3, 35], and substitute it into a single point;
(b) Repeat step (a), until there is no ring in the graph, i.e. the graph has become a tree;
(c) Apply depth-first search (DFS) [33] to label the tree nodes;
(d) If a tree node has once been rings, expand it back into a ring. Label the nodes in the same ring

consecutively. Offset the labeling of successive nodes accordingly;
(e) Repeat step (d), until the original molecular graph structure is restored. The resultant labeling is

the desirable ring-first labeling.

This ring-first traversal algorithm has a time complexity of O(n5), where n is the number of nodes
in the molecular graph (excluding hydrogen atoms). To accelerate the algorithm, we refactor our
code with Numba [13] to allow just-in-time compilation and achieve a marked ∼ 50× acceleration.
We have thus been able to improve our training procedure using ring-first traversal, without losing
efficiency.
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