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ABSTRACT

Machine Learning predictors are increasingly being employed in high-stakes ap-
plications such as credit scoring. Explanations help users unpack the reasons be-
hind their predictions, but are not always “high quality”. That is, end-users may
have difficulty interpreting or believing them, which can complicate trust assess-
ment and downstream decision-making. We argue that classifiers should have
the option to refuse handling inputs whose predictions cannot be explained prop-
erly and introduce a framework for learning to reject low-quality explanations
(LtX) in which predictors are equipped with a rejector that evaluates the quality
of explanations. In this problem setting, the key challenges are how to properly
define and assess explanation quality and how to design a suitable rejector. Fo-
cusing on popular attribution techniques, we introduce ULER (User-centric Low-
quality Explanation Rejector), which learns a simple rejector from human ratings
and per-feature relevance judgments to mirror human judgments of explanation
quality. Our experiments show that ULER outperforms both state-of-the-art and
explanation-aware learning to reject strategies at LtX on eight classification and
regression benchmarks and on a new human-annotated dataset, which we publicly
release to support future research.

1 INTRODUCTION

Machine Learning (ML) predictors are increasingly deployed in high-stakes decision-making appli-
cations, such as medical diagnosis and credit scoring (Litjens et al., 2017; Pesapane et al., 2018;
Gogas and Papadimitriou, 2023). In these domains, incorrect predictions can lead to severe conse-
quences (Kotropoulos and Arce, 2009). To promote trust, Learning to Reject (LtR) allows models
to defer predictions to human experts if the model has an elevated risk of making a mispredic-
tion (Chow, 1970). Traditional LtR approaches typically abstain when the model is uncertain about
its prediction or a test example differs substantially from the observed training data (Liu et al., 2020;
Ruggieri and Pugnana, 2025).

Currently, LtR neglects a critical aspect of decision-making: explanation quality (Kim et al., 2024),
cf. Fig. 1 (left). In many applications, it is equally important that models provide clear and convinc-
ing explanations for their predictions (Hagos et al., 2022). Without addressing explanation quality,
a model might make predictions that cannot be satisfactorily explained. We argue that low-quality
explanations can affect trust assessment and downstream decisions (Gilpin et al., 2018; Schneider
et al., 2023; Lakkaraju and Bastani, 2020) or induce over-reliance by persuading users to accept
incorrect predictions (Joshi et al., 2023; Si et al., 2024; Sieker et al., 2024). As a consequence, we
believe models should offload predictions that they cannot properly explain to human stakeholders.
This ensures that predictions are based on human-validated reasoning and preserves the overall trust-
worthiness of the system. In high-stakes applications, returning only the prediction is not acceptable
when its accompanying explanation is low-quality because explanations are increasingly becom-
ing a legal and regulatory requirement (European Parliament and Council of the European Union).
This perspective aligns with the Four Principles of Explainable Artificial Intelligence (Phillips et al.,
2021), an official document from the U.S. government, which emphasizes the importance that an
AI system recognizes and declares its knowledge limits. According to the authors, “safeguarding
answers so that a judgment is not provided when it may be inappropriate to do so” can prevent “mis-
leading, dangerous, or unjust outputs”. E.g., consider a general practitioner that uses an AI system
to assist in diagnosing malignant melanoma. When examining a suspicious lesion, the AI correctly
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"This is nonsense!
What should I do?"

low-quality explanation z

ACCEPT ✔

x predictor f LtR rejector r

REJECT ✘

low-quality explanation z

x predictor f ULER

"I know I cannot trust
this explanation"

expert feedback
Training Set

Figure 1: Illustration of ULER. Learning to Reject (LtR) is unconcerned with the quality of machine
explanations (left). ULER instead addresses Learning to Reject Low-Quality Explanations (LtX),
which requires to reject predictions that cannot be explained properly to stakeholders, improving
trust assessment and down-stream decision quality (right).

advises against further action, citing the size of the lesion as a key factor, which is irrelevant in the
doctor’s opinion. Distrusting the AI’s explanation, the doctor decides to proceed with additional
examinations, resulting in unnecessary costs and delays.

To formalize this notion, we introduce the Learning to Reject Low-Quality Explanations (LtX)
problem where a model should abstain from making a prediction when it can only provide an unsat-
isfactory explanation from the user’s perspective, cf. Fig. 1 (right). This is a challenging problem
that current techniques cannot adequately address. On the one hand, LtR focuses only on prediction
quality but just because a model can offer a correct prediction does not imply it can offer an accept-
able explanation for it. On the other hand, existing metrics for evaluating explanations do so on the
basis of properties of the model. Consequently, these may not align with a human’s assessment of
the quality of the explanation.

To address the LtX problem, we propose ULER (User-centric Low-quality Explanation Rejector) to
train a novel type of rejector to assess the quality of an explanation from a user’s perspective. It
does so by leveraging expert annotations comprising quality judgments and optionally per-feature
relevance judgments. ULER consists of two main steps. First, to avoid having to collect a large num-
ber number of explanation judgments, we apply a novel quality-aware augmentation strategy that
exploits the human annotations to augment the training set. Second, we fit the rejector to evaluate
the explanations’ quality using the augmented quality judgment labels. Empirically, we demonstrate
that ULER outperforms many popular LtR strategies as well as approaches to estimate the quality of
the explanation on both the machine and human side. Finally, to show the effectiveness of ULER on
real data, we collected a new larger-scale dataset of human-annotated machine explanations which
will make publicly available.

Contributions: Summarizing, we: (i) Introduce the problem of learning to reject low-quality ex-
planations (LtX), filling a significant gap in current LtR strategies, which ignore explanation quality
altogether. (ii) Design ULER, a rejector that uses modest amounts of human annotations – including
explanation ratings and per-feature relevance judgments – to learn an effective rejection policy. (iii)
Empirically evaluate ULER on both popular data sets and on a novel human-annotated task collected
specifically for this work, showcasing its benefits over standard LtR and state-of-the-art explanation
quality metrics. (iv) Provide the first larger-scale (1050 examples, 5 annotations each) data set of
human-annotated explanations as well as a template for running the associated collection campaign.

2 PRELIMINARIES

We describe the setup followed throughout the paper. We consider a predictor f that maps inputs
x ∈ X to a target value f(x) ∈ Y . Here, X is a d-dimensional feature space and Y a discrete
(Y = {1, . . . , C}) or continuous (Y = R) target space. When the target is discrete, we view the
predictor as a probabilistic classifier that assigns a predictive distribution P (Y |X = x) to each input
x; predictions are obtained via MAP inference, that is f(x) = argmaxc∈Y P (Y = c|x) (Koller and
Friedman, 2009). When the target is continuous, we view it as a regressor f(x) = E[Y |X = x].

In the following, we assume the predictor is paired with an explainer e which produces a local
explanation z = e(f,x) of individual prediction f(x). Specifically, we focus on feature importance
explanations, perhaps the most well-known and widespread class of explanations (Guidotti et al.,
2018; Ribeiro et al., 2016; Lundberg and Lee, 2017; Ignatiev et al., 2019; Montavon et al., 2017;
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Mothilal et al., 2020; Selvaraju et al., 2020). These associate a relevance score zi ∈ R to each input
feature xi that quantifies its relative contribution for the prediction. For example, in loan approval, z
might indicate that an application x was rejected (i.e., f(x) = 0) because a specific feature xincome,
which is too low, “votes” against approval by assigning it a negative value (i.e., zincome < 0). We
refer to the pair (f(x), z) as the model output, since each prediction f(x) is returned to the user
along with its corresponding explanation z.

Learning to reject. To promote trust, a Learning to Reject (LtR) model combines a predictor f
with a rejector r. The role of the rejector is to offload difficult predictions to a human expert (Franc
et al., 2023; Pugnana et al., 2024). Formally, it does so by extending the target space Y to include
an additional symbol ® indicating the model abstains from making a prediction (Stefano et al.,
2000; Cortes et al., 2016a). Two classes of rejection strategies have been studied in the literature.
Ambiguity rejection occurs when the predictor f is too uncertain about a particular input x, e.g., due
to class overlap or poor choice of the predictor’s hypothesis space (Pugnana and Ruggieri, 2023a;
Perini and Davis, 2023). Novelty rejection checks if x falls in a region where there is little or no
training data (Van der Plas et al., 2021). Although existing rejection strategies improve the model’s
reliability (Geifman and El-Yaniv, 2017), they focus solely on predictor’s performance (Hendrickx
et al., 2024) and ignore cases where the explanations themselves are unsatisfactory to the user.

Metrics of Explanation Quality. Since explanation quality admits multiple interpretations, numer-
ous metrics have been proposed to evaluate it (Chen et al., 2022). Most of them depend solely on
the relationship between the explanation and the predictor and, as such, can be computed accurately
using information gathered during inference and/or training. For example, faithfulness (Mothilal
et al., 2021; Azzolin et al., 2025) measures whether an explanation accurately reflects the model’s
reasoning process, and it is typically computed by assessing whether the features with high relevance
are sufficient and necessary for the prediction. Another key metric is stability (Slack et al., 2021),
which measures the degree to which different (possibly conflicting) explanations can be provided for
a given prediction. Despite their utility, recent works (Kazmierczak et al., 2024; Colin et al., 2022)
have shown that these metrics do not align with human judgment, highlighting the need for alter-
natives. An exception is PASTA, a novel perceptual quality metric that mimics human preferences
across multiple dimensions (Kazmierczak et al., 2024) and that we compare against in our exper-
iments (Section 4). Appendix B provides a deeper discussion of these metrics. Although several
metrics of explanation quality exist, none have been integrated into rejection strategies to guide the
rejector’s decisions. Next, we address this gap by introducing a novel framework that incorporates
user-perceived explanation quality into the rejection process.

3 LEARNING TO REJECT LOW-QUALITY EXPLANATIONS

We introduce the Learning to Reject Low-Quality Explanations (LtX) problem where a rejector
acts as a filter based on the user-perceived explanation quality (Hoffman et al., 2018; Hsiao et al.,
2021).Specifically, explanation quality reflects two complementary dimensions: plausibility,
meaning that the relevance scores should align with the user’s domain knowledge, and inter-
pretability, meaning that the explanation should be understandable to the user. Consequently,
the rejector in this setting operates on z as opposed to f(x) or x as in a standard LtR setting.
Formally, a model with reject option in the LtX setting is defined as follows.
Definition 1. An LtX model m consists of three components: a predictor f , an explainer e and a
rejector r. Given (test) instance x, m computes f(x) and corresponding explanation e(f,x). Then,
m applies the rejector r to e(f,x) to assign a score representing the quality of the explanation z
with lower scores being associated with worse explanations. If the score is below a threshold τ ,
the model abstains from providing the prediction and the corresponding explanation to the user.
Formally, m is defined as:

m(f,e,r)(x) =

{
® if r (z) < τ

(f(x), z) otherwise
(1)

Our key contribution is to learn a rejector that abstains when e provides a low quality explanation
from the user’s perspective. Obtaining such a rejector is challenging for three reasons. First, LtR
strategies determine when the model should abstain based on where the predictor is likely to make a
mistake. However, the predictor may still output a correct prediction even when the corresponding
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explanation is unreliable, and as such they cannot be used as-is. Second, existing metrics to evaluate
explanations focus only on the model’s internal functioning and are not able to measure the quality
of the explanation from the user’s perspective, as we will show empirically in Section 4. Third,
training a standard LtR model only requires standard supervised dataset consisting of instances and
their target values. In contrast, LtX requires human-judgment labels about the explanations of each
prediction which are usually not available and may be time-consuming to obtain.

3.1 REJECTING LOW-QUALITY EXPLANATIONS WITH ULER

We propose a novel approach for the LtX problem called ULER (User-centric Low-quality Expla-
nation Rejector) that addresses the aforementioned challenges by (i) collecting a small set of user
annotated explanations, (ii) employing a feedback-driven data augmentation strategy, and (iii) train-
ing a rejector that estimates the user-perceived quality of an explanation. We detail these steps next.

The rejector’s training data. ULER assumes access to two sources of expert feedback. First,
it has a set of explanations and corresponding human quality judgments denoted by D =
{(z1, yz1

) , . . . , (zn, yzn
)}, where z are the explanations, and yz ∈ {0, 1} their corresponding hu-

man quality judgments (0 = low-quality, 1 = high-quality)1. This feedback is essential for training
an LtX rejector that is aligned with expert judgments of explanation quality. Yet, such annotations
can be expensive to acquire and therefore typically available in modest amounts (Teso and Kersting,
2019; Kazmierczak et al., 2024).

Second, to avoid having to collect a large annotated dataset, ULER can optionally exploit per-feature
human labels. This more detailed source of information allows us to augment the set of quality
judgments. The per-feature labels indicate, for each explanation z in D, what relevance scores
the user deems incorrect, if any2 Formally, we indicate as Wz (resp. Cz) the indices of the features
whose relevance the user deems wrong (resp. correct). Our experiments support the small annotation
cost of the augmentation step, as empirically shown in Appendix C.7. In Section 4.2, we show how
to design an annotation campaign to obtain both kinds of feedback.

Augmenting the data. The augmentation step works by perturbing each low-quality explanation
using a stochastic transformation that leverages the per-feature labels while keeping yz fixed. We
augment only low-quality explanations since the task is typically unbalanced, i.e., we expect most
explanations to be high-quality, and having a more-balanced dataset helps learn a better rejector. If
explanation z is low-quality, slightly perturbing the features with correct relevance scores should
not affect the explanation label. Formally, for each low-quality explanation z we create K new
explanations zaug sharing the same human-judgment label yz as zaug ∼ N (z, ϵ0s× Σ) . Here, ϵ0
is a hyperparameter controlling the overall magnitude of the perturbations, Σ is a diagonal matrix
whose elements are the per-feature standard deviations across all explanations in D and is responsi-
ble for rescaling perturbations compatibly with the data distribution, and s is a binary vector used to
selectively perturb the features in Cz . In practice, the entries of s corresponding to the indices in Cz
are set to 1 and those in Wz to 0.

Learning the rejector. The rejector is defined by a binary classifier r and a threshold τ . ULER
trains the former on the augmented data Daug . ULER is agnostic to the specific choice of classi-
fier: any model class that associates a score with its prediction is possible. Empirically, we find
that simple models (e.g., kernel SVMs (Cortes and Vapnik, 1995)) work well. τ determines how
often a prediction and explanation are offered by m. Lower values of τ mean that m will op-
erate more autonomously (i.e., return more prediction-explanation pairs) albeit with the risk that
some explanations are low quality. Higher values mean the model is more cautious and only offers
predictions-explanation pairs when its more certain about the quality of the explanation but at the
cost of offloading more decisions to the user. Hence, this value should be carefully tuned, e.g., on
validation to navigate this tradeoff. Two natural strategies are to set τ such that (i) it achieves a spe-

1In practice, one has some flexibility about how to collect these labels. E.g., in our user study, we used a
5-point Likert scale and transformed these scores into binary labels.

2In high-dimensional domains, obtaining per-feature human labels can be made cognitively afford-
able by displaying only a limited number of top-ranked features (i.e., those with the highest relevance
scores) which users can reasonably assess. In practice, users are expected to flag either (i) features among
the presented one whose scores they believe are incorrect, or (ii) additional features not shown but which
they would expect to have significant importance.
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cific rejection rate on the validation data (e.g., one aligned with a user’s capacity to make decisions)
or (ii) its rejection rate is equal to the proportion of low-quality explanations in the training set.

3.2 BENEFITS AND LIMITATIONS

ULER is designed to identify and offload predictions associated with unsatisfactory explanations, as
doing so is crucial for ensuring an accurate decision making. However, if the goal is also to improve
predictive performance, ULER can be combined with state-of-the-art LtR strategies specifically
developed for this purpose. One limitation of ULER is that, just like PASTA (Kazmierczak et al.,
2024), it relies on high-quality human annotations. We argue that this is necessary in high-stakes
applications, but also that good annotations are likely to be available anyhow as in these settings
expert users have to oversee machine decisions at all times (Hoffman et al., 2018; Zhou et al., 2021;
Lai and Tan, 2019), and can therefore consistently supply high-quality responses. Our experiments
in Section 4 indicate that ULER is quite sample efficient, as it outperforms the SOTA while using less
than 1000 annotations, and that augmentation boosts the performance of the rejector. Finally, our
study focuses on tabular data rather than images or text. Working with a larger number of features
may increase the sample complexity of the rejector. A possible solution is to adapt ULER to work in
a rich pre-trained embedding space, as done by PASTA.

4 EMPIRICAL EVALUATION

Empirically, we address the following research questions: (Q1) Does ULER correlate with existing
machine-side explanation metrics? (Q2) Does ULER reject more low-quality explanations than the
competitors? (Q3) (User study) Is ULER capable of mimicking human judgments?

The Appendix examines two additional questions: Appendix C.6 explores the effect of what in-
formation ULER’s rejector has access to on its ability to reject low-quality explanations and Ap-
pendix C.7 investigates the effect of the data augmentation based on per-feature feedback on its
performance. Our code is available in the Supplementary Material and will be published upon
acceptance.

Competitors. We compare ULER against eight representative rejection strategies from two groups:
(i) standard LtR strategies, and (ii) explanation-aware strategies. All strategies yield a score for each
input; the ρ% inputs with the lowest score are rejected, where ρ% is the rejection rate.

We consider three standard LtR strategies that target improving predictive performance on those
examples for which the models offers a prediction. RandRej is a baseline that assigns a random
score to each input. NovRejX rejects inputs based on their novelty (Sun et al., 2022): it first
computes their distance to the k-th nearest training instances and converts these into scores using
a monotonically decreasing function, e.g., 1/(1 + x), such that farthest inputs get lower scores.
PredAmb uses prediction’s confidence as score (Hendrickx et al., 2024). For binary classification
tasks, confidence is computed as the margin of the class probabilities |P (Y = 1|x) − P (Y =
0|x)| (Perini and Davis, 2023). For regression tasks, the conditional variance for each input is
computed and then the score is obtained applying a monotonically decreasing function, e.g., 1/(1+
x), such that higher-variance predictions obtain lower scores (Zaoui et al., 2020).

We consider five novel but natural explanation-aware strategies. Three leverage machine-side ex-
planation metrics as scores, one for each category in Chen et al. (2022). Specifically, StabRej
looks at the stability of the explanation (Mothilal et al., 2021), measuring the similarity among the
different explanations that can be generated for the same prediction. FaithRej assesses the faith-
fulness (Azzolin et al., 2025) of an explanation by measuring how well the explanation identifies fea-
tures that are truly causally relevant for the prediction. ComplRej measures the complexity (Bhatt
et al., 2020) of an explanation i.e., the cognitive load it enforces on a user; since low-complexity
explanations are preferred, the score is obtained applying a monotonically decreasing transforma-
tion, e.g., 1/(1 + x), to the metric value. PASTARej uses an adaptation of the state-of-the-art
human-side PASTA-metric to score each explanation (Kazmierczak et al., 2024). Since our focus is
on tabular data, we drop the embedding network and fit only the scoring network using the expla-
nations as input to learn the human-judgment. Importantly, our approach fundamentally differs
from PASTARej, as it is specifically designed to detect and reject low-quality explanations.
While PASTA provides a human-judgment-based metric to score explanations, our method
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introduces a feedback-aware augmentation strategy for each dataset, enabling the rejector to
effectively learn to discriminate between high- and low-quality explanations. Full details on
all metrics are provided in Appendix B. Finally, NovRejZ mirrors NovRejX but works in the
explanation space, testing whether the perceived low-quality explanations correspond to outlier ex-
planations.

Evaluation metrics. ULER aims to capture human judgments of explanation quality, which recent
works have shown to be misaligned with existing machine-side metrics (Kazmierczak et al., 2024;
Colin et al., 2022). Therefore, to examine whether ULER captures information that existing metris do
not, we compute the correlation between the scores computed by ULER’s rejector and three existing
machine-side metrics: faithfulness, stability, and complexity (see Appendix B.1 for full details).
We use the Spearman coefficient as it is sensitive to all monotonic relationships, even non-linear
ones (Kendall, 1949).

Q2 and Q3 evaluate the competitors’ ability to reject low-quality explanations. Ideally, a user wants
to receive only predictions accompanied by high-quality explanations. A good rejector should there-
fore minimize the number of low-quality explanations it shows to the user (accepted set), and max-
imize the ones for which it abstains (rejected set). Thus, we report the percentage of low-quality
explanations in the accepted and rejected sets when varying the rejection rate. Moreover, we mea-
sure the rejector’s ability to rank low-quality explanations below high-quality ones, making them
more likely to be rejected, by reporting the AUROC, which is standard in novelty rejection (Sun
et al., 2022; Liang et al., 2018).

Setup. We employ the following procedure: for each dataset, we (i) split D into Dtrain, Dval and
Dtest (70%/10%/20%), (ii) fit the rejectors on Dtrain and optimize their hyperparameters on Dval,
(iii) vary the rejection rate ρ% from 1% to 25%, and (iv) compute the metrics outlined in the previous
paragraph on Dtest. To improve robustness, we repeat steps (i)–(iv) 10 times and report the average
results. All experiments were implemented in Python and executed on an Intel i7-12700 machine
with 64 GB RAM. The experiments required approximately two days to complete.

Model selection. All explanations are computed using KernelSHAP (Lundberg and Lee, 2017)
with 100 samples and the predictor’s training set as background. We choose KernelSHAP as it is
one of the most well-known and widely used explainers (Saarela and Podgorelec, 2024). To further
support our findings, we also include results using LIME (Ribeiro et al., 2016) in Appendix C.4.
For ULER, we train an SVM to assess explanation quality. As mentioned, we optimize ULER’s and
the competitors’ hyperparameters via grid search on Dval, see Appendix C.3 for details.

4.1 Q1 AND Q2: BENCHMARK DATASETS

Datasets. We evaluate all competitors on eight widely used benchmarks datasets (Kelly et al., 2023)
using simulated human judgments. Since our approach works for any type of prediction function,
we select four classification tasks and four regression tasks covering several application domains,
including healthcare (parkinson), economics (creditcard, adult), law (compas), etc. (wine, bike,
power, churn). Full details about the datasets are provided in Appendix C.1.

Simulating human judgments. We simulate human quality judgments YZ and identify features
with incorrect relevance scores using a large language model (Llama-3.1-8B-Instruct). Following
Domnich et al. (2025), we carefully crafted a prompt that (i) defines the evaluation task, (ii) in-
troduces the structure and meaning of SHAP explanations, and (iii) specifies the expected output
format. The LLM was asked to assess the quality of each explanation and identify the features with
incorrect relevance scores. Appendix C.2 shows the specific prompt used to obtain the labels. Ad-
ditionally, Appendix C.5 evaluates the ability of ULER and all baselines to reject low-quality
explanations when the simulated human judgments are generated using a ML oracle.

(Q1) Correlation analysis with machine-side metrics. Table 1 reports each dataset’s average
Spearman coefficient (± std) for each machine-side metric. We would expect correlations that are
low in magnitude if ULER captures information that existing metrics do not. With a small number of
exceptions, we observe that indeed ULER’s scores are not strongly correlated with those of the exist-
ing machine metrics as it achieves a correlation > 0.5 or < −0.5 only three times with faithfulness
and once each with stability and complexity. These low correlations confirm that ULER captures
information orthogonal to these machine-side metrics. Importantly, repeating the experiment with
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Table 1: ULER is not strongly correlated with existing machine-side metrics. Average Spearman
correlation coefficient (± std) between ULER and each machine-side metric across the eight bench-
mark datasets considered.

faithfulness stability complexity

compas 0.03 ± 0.11 -0.04 ± 0.08 0.04 ± 0.07
creditcard 0.05 ± 0.06 0.76 ± 0.01 0.66 ± 0.03
adult 0.71 ± 0.02 -0.25 ± 0.02 0.24 ± 0.03
churn 0.71 ± 0.08 0.18 ± 0.06 -0.22 ± 0.08
wine -0.14 ± 0.07 -0.01 ± 0.07 0.14 ± 0.05
parkinson 0.05 ± 0.07 -0.05 ± 0.06 0.08 ± 0.07
power -0.54 ± 0.09 -0.01 ± 0.02 -0.07 ± 0.06
bike -0.02 ± 0.04 -0.04 ± 0.03 -0.05 ± 0.03
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Figure 2: ULER rejects on average more low-quality explanations than all competitors. Av-
erage percentage of low quality explanations in the accepted and rejected set for all the considered
strategies over the 8 datasets for 25 rejection rates ρ%. For all the considered rejection rates, ULER
consistently rejects more low-quality explanations than all competitors.

Table 2: ULER outperforms the competitors at separating low-quality from high-quality ex-
planations. Average AUROC for all the rejection strategies over the 8 datasets and its standard
deviation. ULER consistently obtains the best results in all datasets.

Classification Regression
compas creditcard adult churn wine parkinson power bike

ULER 0.76 ± 0.02 0.56 ± 0.03 0.71 ± 0.03 0.72 ± 0.05 0.80 ± 0.05 0.59 ± 0.08 0.90 ± 0.02 0.78 ± 0.03

RandRej 0.52 ± 0.04 0.50 ± 0.03 0.51 ± 0.05 0.52 ± 0.08 0.49 ± 0.09 0.51 ± 0.09 0.51 ± 0.1 0.51 ± 0.09
PredAmb 0.42 ± 0.04 0.50 ± 0.01 0.35 ± 0.03 0.28 ± 0.04 0.56 ± 0.07 0.49 ± 0.10 0.51 ± 0.05 0.57 ± 0.07
NovRejX 0.70 ± 0.03 0.48 ± 0.04 0.50 ± 0.03 0.57 ± 0.04 0.65 ± 0.06 0.56 ± 0.05 0.28 ± 0.08 0.62 ± 0.05

StabRej 0.46 ± 0.04 0.42 ± 0.03 0.53 ± 0.03 0.50 ± 0.0 0.47 ± 0.06 0.50 ± 0.08 0.45 ± 0.06 0.59 ± 0.09
FaithRej 0.39 ± 0.04 0.49 ± 0.01 0.33 ± 0.02 0.27 ± 0.03 0.52 ± 0.05 0.49 ± 0.05 0.65 ± 0.07 0.53 ± 0.04
ComplRej 0.61 ± 0.04 0.51 ± 0.02 0.54 ± 0.03 0.45 ± 0.04 0.57 ± 0.06 0.39 ± 0.05 0.43 ± 0.07 0.53 ± 0.06
PASTARej 0.66 ± 0.14 0.50 ± 0.05 0.65 ± 0.04 0.53 ± 0.07 0.64 ± 0.15 0.55 ± 0.06 0.74 ± 0.20 0.68 ± 0.10
NovRejZ 0.64 ± 0.04 0.45 ± 0.02 0.33 ± 0.03 0.45 ± 0.09 0.70 ± 0.06 0.57 ± 0.07 0.25 ± 0.06 0.63 ± 0.08

Pearson correlation coefficients led to the same qualitative conclusions. For completeness, we also
report results on the user study data in Table 8 (Appendix).

(Q2) Comparison with competitors. Fig. 2 shows the percentage of low-quality explanations
for the accepted and the rejected set as a function of the rejection rate ρ% averaged over the eight
considered datasets. On average, ULER rejects more low-quality explanations than the competitors:
about 10% more than PASTARej, 15% vs NovRejX , 17% vs RandRej and NovRejZ , and
over 20% vs FaithRej, StabRej and ComplRej, and PredAmb. Notably, PASTARej, the
only competitor that exploits human judgments, outperforms all other baselines, confirming that
obtaining such feedback is crucial in the LtX setting.
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D

Probability of scoring = 9%

shooter
teammate

GK
defender Increase 

scoring probability
Decrease 

scoring probability
Increase 

scoring probability
Decrease 

scoring probability

distance to closest defender

GK distance to mid line

GK distance to goal line

angle between ball and posts

distance to goal

distance to closest defender

GK distance to mid line

GK distance to goal line

angle between ball and posts

distance to goal

Figure 3: Image from the user study illustrating the snapshot (left), the predicted probability of
scoring (bottom) and the associated KernelSHAP explanation (right). This suggests that the feature
“distance to goal” slightly increases the probability, while “GK distance to goal line” decreases it.

Table 2 reports the average AUROC per dataset. In all datasets, ULER is better at distinguishing
between high- and low-quality explanations than its competitors, with an average improvement of
11% and 17% over the best performing competitors PASTARej and NovRejX .

4.2 Q3: ULER PREDICTS HUMAN JUDGMENTS BETTER THAN THE SOTA

Finally, we collect high-quality human ratings of machine explanation through a large-scale an-
notation campaign, recruiting users with the crowd-sourcing platform Prolific (https://www.
prolific.com), 3 and apply ULER to this dataset to reject low-quality explanations.

Our task was to explain the prediction of an expected goals (xG) model, which values the quality
of a scoring opportunity in soccer as the probability that a shot results in a goal (Robberechts et al.,
2020). Our choice stems from three considerations. First, Prolific enabled us to recruit subjects that
possess the necessary domain expertise to perform the task, cf. Appendix D.3 for our vetting criteria.
Second, all instances can be easily visualized, as shown in Fig. 3. Third, this is a real-world task
with xG values being shown on TV and used in player recruitment (Graham, 2024).4 We collected
annotations for 1050 explanations from five annotators each, for a total of 5250 annotations.

Obtaining the explanations. As a first step, we trained the predictor whose explanations we aim to
annotate. Following standard practice in soccer analytics (Robberechts et al., 2020; Robberechts and
Davis, 2020), we learned an XGBoost ensemble classifier (Chen and Guestrin, 2016) to estimate the
probability of a shot resulting in a goal. The training data consists of 21337 annotated shot events
from the 2015-16 season in the top divisions of England, Spain, Germany and France (Statsbomb,
2023). For each shot, the location and the result (goal vs. no goal) are recorded. Additionally,
a snapshot is available, capturing the locations of the players visible in the broadcast video at the
moment the shot is taken, cf. Fig. 3 (left). From this data, we extract features that describe the
positions of the shooter, goalkeeper, and nearest defender. Importantly, we include only features
that are directly visualizable by the annotators in the snapshot. Explanations are generated on a
separate set of 1050 shots from the 2015–16 season of the Italian top division on which the predictor
achieves an AUROC of 0.81. All preprocessing and training details are provided in Appendix D.2.

Obtaining the annotations. Our goal is to obtain human-judgment labels on the explanation quality
and per-feature feedback on the relevance scores. Given that subjective tasks are highly sensitive to
interface design (Pommeranz et al., 2012) and question framing (Stalans, 2012), we designed our
annotation protocol with the help of a psychologist and conducted several pilot studies to mitigate
cognitive biases (Bertrand et al., 2022). Participants (N = 175) were recruited via Prolific while
annotations were collected through Google Forms. Each participant annotated 30 trials. In each trial,
participants were shown a snapshot of a shot and the corresponding prediction and explanation, cf.
Fig. 3. The left side shows the position of all involved players and the ball, along with the model’s
prediction. The right side shows the relevance scores of each feature as arrows indicating whether
the feature increases or decreases the predicted probability of scoring. The features were chosen
specifically to be easily interpretable and visually grounded, enabling intuitive assessment by the
annotators. These were requested to specify how much they agreed with the model’s prediction

3The campaign has received approval from our Research Ethics committee and Privacy office.
4The model used in our experiments is not as complex as deployed models.
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and, separately, with its explanation using two 5-point Likert-scale questions (1 = completely
disagree, 5 = completely agree). Next, they were asked to optionally select individual features
they believed were misused in the explanation, i.e., had an incorrect relevance score, via a multiple-
choice question. We validated our experimental design by tracking the consistency of individual
annotations in two pilot studies: on average, annotators tended to assign consistent scores to the same
explanation across repeated trials. Full details about our procedure are provided in Appendix D.3.

Annotation preprocessing. To ensure high-quality annotations, we filtered out participants that
failed an attention check, rated all explanations the same, or did not flag any as incorrect, leaving us
with 149 participants, as well as explanations with low inter-annotator agreement. We aggregated
the explanation scores using the average and considered explanations with an average score lower
than 3 as low-quality, and the others as high-quality (Joshi et al., 2015; Batterton and Hale, 2017).
For feature-level feedback, we marked a relevance score as incorrect if the majority of annotators
agreed that the corresponding feature was misused.

Results. We evaluate ULER on the collected annotations and compare it against PASTARej, the
only baseline that leverages human judgments and emerged as the runner-up in the previous ex-
periments. ULER achieves an AUROC of 0.64 ± 0.05, outperforming PASTARej, which scores
0.53 ± 0.09. A paired t-test confirms that the difference is statistically significant (p < 0.01).
These results indicate that learning human-perceived explanation quality is inherently challenging,
especially in this subjective task. The overall low performance can be attributed to this increased
variability. Additionally, ULER rejects more low-quality explanations than PASTARej in ∼ 84%
of the experiments across rejection rates (ρ% ∈ [1%, 25%]), confirming its superiority.

5 RELATED WORK

Learning to Reject. The problem of deferring hard decisions has been studied in the context of
learning to reject, learning to defer (Mozannar and Sontag, 2020), learning under algorithmic triage
(Raghu et al., 2019; Okati et al., 2021), learning under human assistance (De et al., 2020; 2021),
and learning to complement (Bansal et al., 2021); see (Hendrickx et al., 2024) for a recent survey.
These approaches all enable the machine to offload certain decisions to a human expert, but differ
in what criterion they use. While some strategies entirely rely on the machine’s self-assessed uncer-
tainty (Cortes et al., 2016b; Liu et al., 2022; Pugnana and Ruggieri, 2023b), others implement the
rejection policy as a machine learning classifier and optimize it for joint team performance (Madras
et al., 2018) or learn the classifier and the policy jointly (Wilder et al., 2021). None of them, however,
considers the role of explanations in decision making, which we argue is central. Note that ULER
is not meant as a replacement for existing strategies, as it has a different goal. On the contrary, it
could and should be combined with them to ensure both incorrect predictions and unsatisfactory
explanations are deferred. We will evaluate this generalization in future work.

Explainable AI (XAI) aims at designing mechanisms for properly justifying algorithmic decisions
to end-users in non-technical terms (Adadi and Berrada, 2018). We focus on (post-hoc) feature
attribution techniques, which highlight what features influenced a prediction the most. Many high
profile techniques belong to this group, e.g., LIME (Ribeiro et al., 2016), SHAP (Lipovetsky and
Conklin, 2001; Strumbelj and Kononenko, 2010; Štrumbelj and Kononenko, 2014; Datta et al., 2016;
Lundberg and Lee, 2017), input gradients (Simonyan et al., 2013; Sundararajan et al., 2017), and
formal feature attributions (Yu et al., 2023). With respect to feature-attribution methods, ULER is
explainer-agnostic, i.e., it can assess the perceived quality of attributions irrespectively of how these
are computed.The only work that combines XAI and LtR is (Artelt et al., 2023), which focuses on
explaining the reasons behind rejection using counterfactuals, and as such is orthogonal to our work.

Evaluating explanations. There is a large body of work on evaluating explanation quality. Most
metrics are “machine-side”, in that they only consider properties of the model and of how the ex-
planation is computed (e.g., faithfulness, stability, complexity) (Azzolin et al., 2025; Kalousis et al.,
2007; Slack et al., 2021; Dasgupta et al., 2022; Alvarez-Melis and Jaakkola, 2018; Chalasani et al.,
2020; Nguyen and Martı́nez, 2020). Our experiments show that these metrics cannot anticipate
whether users will agree with or believe in a given explanation. In contrast, we learn our rejector to
mimic human judgments of explanation quality. Closest to our work is PASTA (Kazmierczak et al.,
2024), which however is not designed for rejection and underperforms in our experiments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

We have introduced the problem of learning to reject low-quality explanations (LtX) and proposed
ULER, a simple yet effective technique for learning a high-quality rejector from a limited amount of
expert feedback. Our empirical analysis showcases how, in contrast to other LtR approaches, ULER
successfully identifies low-quality explanations in both synthetic and human-annotated tasks. In
future work, we will extend our setup to learn the rejector and classifier jointly, so as to optimize their
overall performance (De et al., 2020; 2021; Wilder et al., 2021), and look into leveraging ULER’s
rejector for debiasing confounded ML models by rating their explanations (Teso et al., 2023).

Reproducibility statement All details necessary to reproduce our experiments are provided in
Section 4, Appendix C, and Appendix D, including full descriptions of the models and datasets.
Section 4 presents the overall experimental setup, Appendix C details the hyperparameters and
training settings for the simulated setting, and Appendix D reports the specifics of the user study.
The benchmark datasets are available online (Kelly et al., 2023). The user study data and the source
code will be publicly released upon acceptance.
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A BROADER IMPACT

Rejecting low-quality explanations can be beneficial from at least two perspectives. First, when
human involvement is expensive and time-consuming, this reject option serves as an effective mech-
anism to filter outputs based on human-validated reasoning. Second, since modern decision-making
often relies on both predictions and their corresponding explanations, explanation quality becomes
critical to prevent harmful decisions.

Our approach contributes to this goal by enhancing trust in the system and supporting human-
validated decision-making, ultimately promoting more effective human-AI interaction. Our find-
ings represent an initial step in this direction, showing that our method can reject more low-quality
explanations than several existing and adapted learning-to-reject strategies.

B EXPLANATION QUALITY METRICS

Explanation quality metrics aim to assess to what extent explanations satisfy the general goal of
explaining a decision. These metrics can be broadly categorized into two families (Lopes et al.,
2022; Zhou et al., 2021; Vilone and Longo, 2021): machine-side and human-side metrics. The
former focus exclusively on the relationship between the explainer and the predictor, whereas the
latter involve human subjects in evaluating the quality of the explanations.

B.1 MACHINE-SIDE METRICS.

The simplest way to evaluate an explanation is by verifying whether it effectively reveals the predic-
tor’s underlying reasoning. Several metrics have been proposed to assess the relationship between
explanations and the predictor. Chen et al. (2022) categorize existing machine-side metrics - and
provide their mathematical formulations — into three groups: stability, faithfulness, and complex-
ity. We exclude homogeneity from our analysis because it is defined for groups of explanations
rather than individual ones.

Stability measures the similarity of explanations under changes to the input instance, the training
data or the model hyperparameters (Yeh et al., 2019; Alvarez-Melis and Jaakkola, 2018; Ghorbani
et al., 2019; Kalousis et al., 2007; Nogueira and Brown, 2016; Mishra et al., 2021). This can be
harmful because an attacker can selectively choose explanations based on their (potentially adver-
sarial) interests (Schneider et al., 2023; Bordt et al., 2022). Following Bansal et al. (2020), we define
the stability of an explanation as the average similarity across multiple runs of the same explainer,
each potentially yielding a different explanation. Formally, given an instance x and prediction f(x)
with associated explanation z, stability is defined as:

stab(z) = Ez′∼Z [Sim(z, z′)] (2)

where Sim is a similarity metric and Z denotes the space of possible explanations for the given pre-
diction. In practice, we compute stability using the Pearson correlation coefficient as the similarity
metric and average it across ten independently generated explanations.

Faithfulness measures how accurately an explanation captures the true underlying behavior of the
predictor (Bhatt et al., 2020; Alvarez-Melis and Jaakkola, 2018; Rieger et al., 2020; Nguyen and
Martı́nez, 2020; Dasgupta et al., 2022; Kazmierczak et al., 2024). Given an explanation z, we define
the sets of relevant features zR = {i < d : |zi| > 0} and irrelevant features zI = {i < d : |zi| =
0}. Intuitively, an explanation is faithful if perturbing irrelevant features causes little to no change
in the predictor’s output, while perturbing relevant features induces significant changes. Building
on (Azzolin et al., 2025), we define faithfulness (faith) as the harmonic mean of sufficiency (suf)
and necessity (nec), which estimate the sensitivity of the prediction to perturbations in irrelevant and
relevant features, respectively. Formally, given a instance-prediction pair (x, f(x)) with associated
explanation z, and the predictor to be explained f , sufficiency and necessity are defined as:

sufd,pI (z) = Ex′∼pI [∆f (x,x
′)] (3)

necd,pR (z) = Ex′∼pR [∆f (x,x
′)] (4)

where ∆f measures prediction change between x and its perturbed version x′, and pR and pI are
interventional distributions that specify how to perturb relevant and irrelevant features, respectively.
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Equation 3 and Equation 4 are then normalized to [0, 1] range, the higher the better, via a non-
linear transformation i.e., respectively exp (− sufd,pI ) and 1− exp (−necd,pR). Operationally, for
a given instance-explanation pair (x, z) sampling from pR (pI) involves perturbing the features in
zR (zI) following Bucila et al. (2006), while keeping the remaining features fixed. Additionally,
the prediction change ∆f is computed either as the absolute difference in positive class probability
for classification tasks, i.e., |P (Y = 1|x) − P (Y = 1|x′)|, or the absolute prediction difference in
regression, i.e., |f(x)− f(x′)|.
Complexity refers to the cognitive burden associated with parsing an explanation (Bhatt et al., 2020;
Chalasani et al., 2020; Nguyen and Martı́nez, 2020). In general, a less complex explanation is easier
for a human to understand, making complexity a common proxy for understandability (Cowan,
2001; Molnar, 2020). Following Bhatt et al. (2020), given an instance x with prediction f(x) and
explanation z, we formally define complexity as:

compld,pI
= E [− ln (z)] = −

d∑
i=1

zi ln (zi) (5)

where zi is the fractional contribution of feature i, i.e., the ratio of its absolute relevance score |zi|
to the sum of all the absolute relevance scores

∑d
j=1 | zj |.

B.2 HUMAN-SIDE METRICS

Despite the literature recognizing the importance of human-centered evaluations (Kazmierczak
et al., 2024; Vilone and Longo, 2021), only a few metrics have been proposed to evaluate expla-
nations from perspective of a human (Naveed et al., 2024). This gap stems from the inherently
subjective nature of human evaluations, which typically makes it challenging to provide a precise
mathematical formulation for a metric (Chen et al., 2022). Moreover, there is no consensus in the
literature regarding standard criteria for human-side evaluation metrics (Zhou et al., 2021).

PASTA uses a model to score each explanation based on how this is perceived by humans (Kazmier-
czak et al., 2024). The authors first construct a dataset in which users rated several explanations
according to four key desiderata: faithfulness, robustness, complexity, and objectivity. Then, the
PASTA-metric is trained on these ratings to derive a metric value for new explanations. Specifically,
this model consists of two main components: an embedding network that leverages a foundation
model to generate feature embeddings from the explanations, and a scoring network that employs a
linear layer to predict the human ratings based on these embeddings. PASTA is the closest competi-
tor to our work in that it also aims to assess explanations based on human feedback. However, there
are three substantial differences with our approach. First, PASTA is designed for image data and
relies on an embedding network to create embeddings from this high-dimensional space, whereas
we focus on tabular data and learn directly from feature-importance explanations. Second, PASTA
does not include a rejection mechanism and always returns a score regardless of quality, while we
explicitly aim to develop a reject option based on explanation quality. Third, PASTA seeks to create
a dataset-agnostic metric and thus annotates 25 explanations per dataset to encourage generalization.
In contrast, we aim to train a dataset-specific rejector and therefore collect 1050 annotations for a
single dataset.

Other human-side metrics. Understandability measures whether an explanation is easy to com-
prehend for the human (Lopes et al., 2022). The rationale behind this metric is to examine whether
the explanations facilitate the user’s understanding of the model’s decisions (Dieber and Kirrane,
2022). Plausibility is high if z matches the ground-truth explanation z∗, assuming the latter exists
and is unique. Depending on the model’s behavior and structure of the underlying learning problem,
the model’s reasoning may or may not reflect the ground-truth explanation z∗. Our approach im-
plicitly addresses both metrics. The user’s rating depends on how understandable the explanation is,
i.e., users tend to assign low scores to explanations they find difficult to interpret. Furthermore, the
per-feature feedback we collect encourages users to identify features that substantially deviate from
their expectations, thereby aligning the underlying ground truth.
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Table 3: Datasets’ characteristics and predictor’s performance. This table reports the datasets’
characteristics (i.e., size of the training set #(T ), number of features d, size of the test set #(D),
proportion of low-quality explanations γ) and the predictor f ’s performance on the eight benchmark
datasets used in the experiments.

dataset #(T ) d #(D) BACCf ↑ γ

compas 10000 12 2000 0.690 0.05
creditcard 10000 23 2000 0.608 0.12
adult 10000 12 2000 0.757 0.02
churn 1000 13 1850 0.696 0.15

dataset #(T ) d #(D) MSEf ↓ γ

news 10000 58 2000 0.009 0.48
wine 1000 11 2000 0.015 0.02
parkinson 1000 19 2000 0.044 0.46
appliances 10000 27 2000 0.010 0.32

C EXPERIMENTS: EXTENDED DETAILS AND RESULTS

C.1 DATASET CHARACTERISTICS AND PREDICTOR’S PERFORMANCE

Table 3 presents the characteristics of the eight datasets used in the empirical evaluation, along with
the performance of the predictor f . We report the balanced accuracy (BACC) for classification tasks;
for regeression tasks, we report the mean squared error (MSE) after normalizing the target variable
to the [0, 1]-range. Specifically, the predictor f is trained on a training set T and evaluated on a test
set D. The size of D is limited because obtaining human-judgment labels on explanation quality is
expensive (Kazmierczak et al., 2024). Additionally, the table reports the proportion of low-quality
explanations γ in D for each dataset, as determined using the procedure described in Section 4.1.

C.2 EXAMPLE PROMPT

We use the Llama-3.1-8B-Instruct large language model (LLM) to obtain simulated human quality
judgments and to identify features with incorrect relevance scores. Below is the prompt used for the
COMPAS dataset. This can be easily adapted to other datasets by modifying the task description at
the beginning and the examples illustrating the meaning of SHAP scores.

1 You are an expert in explainable AI and criminal justice risk assessment.
Your task is to evaluate the quality of a SHAP explanation that

describes why a person may be predicted to **recommit a crime**.
2

3 Each explanation is a list of features in the following format:
4 <featureID> <feature_name> : <feature_value> = <feature relevance score>
5

6 Your goal is to determine how **reasonable and high-quality** the
explanation is, based on the SHAP scores and your domain knowledge.

7

8 ### Understanding SHAP scores:
9 - A positive SHAP score (> 0) means the feature increases the risk of

recidivism, contributing to a higher predicted risk.
10 - A negative SHAP score (< 0) means the feature decreases the risk,

contributing to a lower predicted risk.
11 - A SHAP score of 0 means the feature has no impact on the prediction.
12 - The magnitude of the SHAP score reflects the strength of the feature’s

influence on the model’s decision - larger absolute values imply
greater impact.

13

14 ### Your task:
15 Assign a **quality score from 1 to 5**:
16 - **5:** Excellent explanation - all important features have appropriate

SHAP scores, and no suspicious or unjustified values.
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17 - **4:** Good explanation - mostly reasonable, with at most minor issues
in some features.

18 - **3:** Moderate quality - some questionable or poorly aligned SHAP
scores, but overall still partially plausible.

19 - **2:** Poor quality - several features have inappropriate or suspicious
SHAP scores.

20 - **1:** Very low quality - the explanation is clearly flawed, with major
issues in multiple key features.

21

22 Also, list **the feature IDs** whose relevance scores are **unjustified
or suspicious**, based on the feature’s value and known importance.

23

24 Do not consider the model’s prediction. Focus only on whether the
explanation is plausible and grounded.

25

26 ### Output format:
27 <score><space><comma-separated list of incorrect feature IDs>
28

29 Examples:
30 - Excellent explanation: ‘5‘
31 - Good explanation with minor issues: ‘4 5‘
32 - Low quality with clear issues: ‘2 1,6‘
33 - Very low quality with major issues: ‘1 2,4,7‘
34

35 If there are no suspicious features, leave the second part empty (just
the score). DO NOT include any additional text or explanations in
your response.

The obtained scores are then converted into labels following the same procedure as in the user study
(see Section 4.2): explanations with scores below three are considered low-quality, while the others
are deemed high-quality.

C.3 HYPERPARAMETER SELECTION

We optimize all hyperparameters using a grid search on the validation split Dval. Specifically, for
ULERwe optimize the SVM kernel (linear, polynomial, RBF), the cost of mistakes C ∈ {0.1, 1, 10},
the number of augmentations per explanation k ∈ {5, 10, 20} and the noise ϵ0 ∈ {0.1, 0.5, 1}. For
PASTA, we employ the authors’ code for the scoring network and optimize the loss hyperparameters
α ∈ {0.1, 1, 10}, β ∈ {0.001, 0.01, 0.1} and γ ∈ {0.01, 0.1, 1}. For NovRejX and NovRejZ , we
optimize the number of neighbors kNN ∈ {1, 5, 10}.

C.4 ROBUSTNESS TO THE CHOICE OF THE EXPLAINER

In this section, we assess the robustness of our approach to the choice of explanation method.
Specifically, we replicate the experimental setup from Section 4.1, but generate all explanations
using LIME (Ribeiro et al., 2016) with its default hyperparameters.

Fig. 4 shows the percentage of low-quality explanations for the accepted and the rejected set as
a function of the rejection rate ρ% averaged across the six datasets considered. Even when us-
ing LIME, ULER outperforms the competitors across most rejection rates. On average, across
all datasets and rejection rates, ULER reduces the percentage of low-quality explanations in
the accepted set by 10% compared to the best competitors NovRejX and NovRejZ .

Finally, Table 4 reports the average AUROC per dataset. Again, ULER achieves the highest
AUROC on all datasets, demonstrating superior ability to distinguish low- from high-quality
explanations. ULER consistently outperforms all baselines in all datasets by improving the
AUROC by 13% vs NovRejX and NovRejZ , 18% vs FaithRej and PASTARej, and by
more than 22% vs RandRej, ComplRej, StabRej and PredAmb.
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Figure 4: ULER rejects on average more low-quality explanations than all competitors when
LIME is used as explainer. Average percentage of low quality explanations in the accepted and
rejected set for all the considered strategies over the 8 datasets for 25 rejection rates ρ%. ULER out-
performs all the competitors for most of the considered rejection rates, demonstrating its robustness
to the choice of the explainer.

Table 4: ULER outperforms the competitors at separating low-quality from high-quality ex-
planations when LIME is used as explainer. Average AUROC for all the rejection strategies over
the 8 datasets and its standard deviation. ULER consistently obtains the best results in all datasets,
demonstrating its robustness to the choice of the explainer

Classification Regression
compas creditcard adult churn wine parkinson power bike

ULER 0.85 ± 0.16 0.57 ± 0.04 0.89 ± 0.07 0.63 ± 0.04 0.58 ± 0.07 0.80 ± 0.09 0.73 ± 0.04 0.62 ± 0.05

RandRej 0.43 ± 0.25 0.53 ± 0.06 0.43 ± 0.25 0.53 ± 0.06 0.52 ± 0.07 0.44 ± 0.21 0.51 ± 0.10 0.51 ± 0.05
PredAmb 0.41 ± 0.26 0.55 ± 0.05 0.04 ± 0.05 0.45 ± 0.06 0.52 ± 0.07 0.56 ± 0.18 0.52 ± 0.09 0.52 ± 0.07
NovRejX 0.81 ± 0.12 0.51 ± 0.05 0.77 ± 0.30 0.59 ± 0.04 0.51 ± 0.08 0.38 ± 0.07 0.49 ± 0.06 0.52 ± 0.04

StabRej 0.30 ± 0.17 0.52 ± 0.04 0.25 ± 0.25 0.57 ± 0.07 0.46 ± 0.05 0.54 ± 0.23 0.60 ± 0.06 0.45 ± 0.05
FaithRej 0.55 ± 0.30 0.46 ± 0.06 0.76 ± 0.05 0.58 ± 0.05 0.55 ± 0.08 0.29 ± 0.18 0.55 ± 0.09 0.52 ± 0.05
ComplRej 0.58 ± 0.37 0.53 ± 0.04 0.30 ± 0.25 0.53 ± 0.07 0.48 ± 0.06 0.30 ± 0.22 0.42 ± 0.07 0.54 ± 0.04
PASTARej 0.33 ± 0.34 0.57 ± 0.05 0.30 ± 0.29 0.55 ± 0.08 0.50 ± 0.09 0.61 ± 0.24 0.72 ± 0.04 0.60 ± 0.05
NovRejZ 0.79 ± 0.24 0.57 ± 0.05 0.81 ± 0.09 0.52 ± 0.08 0.54 ± 0.06 0.50 ± 0.18 0.47 ± 0.07 0.47 ± 0.03
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Figure 5: ULER rejects on average more low-quality explanations than all competitors. Aver-
age percentage of low quality explanations in the accepted and rejected set for all the considered
strategies over the 8 datasets for 25 rejection rates ρ%. For all the considered rejection rates, ULER
consistently rejects more low-quality explanations than all competitors.
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Table 5: ULER outperforms the competitors at separating low-quality from high-quality ex-
planations. Average AUROC for all the rejection strategies over the 8 datasets and its standard
deviation. ULER consistently obtains the best results in all datasets.

Classification Regression
compas creditcard adult churn power wine parkinson bike

ULER 0.75 ± 0.04 0.87 ± 0.02 0.85 ± 0.04 0.92 ± 0.01 0.90 ± 0.02 0.93 ± 0.03 0.87 ± 0.01 0.78 ± 0.03

RandRej 0.52 ± 0.05 0.50 ± 0.02 0.53 ± 0.06 0.49 ± 0.02 0.49 ± 0.02 0.51 ± 0.07 0.49 ± 0.01 0.50 ± 0.07
NovRejX 0.46 ± 0.04 0.58 ± 0.02 0.30 ± 0.05 0.36 ± 0.02 0.46 ± 0.01 0.51 ± 0.04 0.58 ± 0.02 0.54 ± 0.04
PredAmb 0.56 ± 0.03 0.46 ± 0.02 0.71 ± 0.03 0.85 ± 0.01 0.49 ± 0.03 0.50 ± 0.02 0.49 ± 0.02 0.51 ± 0.09

StabRej 0.69 ± 0.04 0.45 ± 0.02 0.53 ± 0.05 0.63 ± 0.02 0.51 ± 0.02 0.76 ± 0.04 0.53 ± 0.03 0.34 ± 0.06
FaithRej 0.63 ± 0.04 0.42 ± 0.02 0.71 ± 0.03 0.86 ± 0.01 0.29 ± 0.02 0.74 ± 0.05 0.49 ± 0.02 0.37 ± 0.04
ComplRej 0.69 ± 0.04 0.53 ± 0.05 0.45 ± 0.02 0.63 ± 0.02 0.66 ± 0.02 0.62 ± 0.01 0.56 ± 0.02 0.50 ± 0.05
PASTARej 0.52 ± 0.04 0.82 ± 0.03 0.66 ± 0.13 0.87 ± 0.02 0.50 ± 0.03 0.55 ± 0.10 0.61 ± 0.03 0.53 ± 0.10
NovRejZ 0.46 ± 0.04 0.58 ± 0.02 0.57 ± 0.04 0.52 ± 0.02 0.52 ± 0.02 0.53 ± 0.05 0.57 ± 0.02 0.53 ± 0.02

C.5 SIMULATING HUMAN-QUALITY JUDGMENTS WITH A ML ORACLE

To further validate ULER’s effectiveness at rejecting low-quality explanations, we simulate
human quality judgments YZ and identify features with incorrect relevance scores using a
ML oracle O. Specifically, we train a predictor O and use its explanations zO as a surrogate
for those that an expert would provide. Then we train the proper predictor (that is, f ) and
classify its explanations z as low- or high-quality depending on how much they correlate with
the oracle’s explanation. In practice, for each classification (resp. regression) task, we train a
Random Forest classifier (resp. regressor) to serve as the oracle O and a linear SVC (SVR) as
the proper predictor. All predictors use the default scikit-learn implementations (Pedregosa
et al., 2011). We select predictors with different inductive biases to mirror real-world scenarios
where human’s predictions may differ from model outputs. Both predictors are evaluated on a
disjoint test set consisting of 2000 instances: the oracle achieves an average balanced accuracy
(resp. MSE) of 0.76 (resp. 0.008), while the model of 0.69 (resp. 0.020).

Then, explanations for both the oracle and the predictor are generated on D. An explanation z
is labeled as low-quality (yz = 0) if the correlation with the corresponding oracle’s explanation
zO falls below a threshold τz , and as high-quality (yz = 1) otherwise. We fix τz = 0.25 as this
ensures datasets with varying amount of low-quality explanations (1%-48%). Additionally, for
each explanation z, we construct the set of “wrong” relevance scores Wz by selecting the scores
in z that deviate most from the corresponding scores in the oracle explanation zO. Intuitively,
if z is low-quality, Wz should include those entries that account for most of the difference
between zO (which is high-quality by construction) and z. To this end, we first compute the
difference in relevance |zi − zO,i| for each i, and then include in Wz the indices i’s with the
highest difference and that cumulatively account for u% of the L1 distance between zO and
z. We set u% to 0.75 in the experiments. Since we had sufficient data, we could afford to use
non-overlapping sets to train the rejector and the predictor, although doing so is not strictly
necessary.

Fig. 5 shows the percentage of low-quality explanations for the accepted and the rejected set
as a function of the rejection rate ρ% averaged over the eight considered datasets. On average,
ULER reduces the number of low-quality explanations in the accepted set by approximately
24% vs PASTARej and StabRej, 26% vs FaithRej, 32% vs ComplRej, 33% vs PredAmb
and NovRejZ , and 34% vs RandRej and NovRejZ . Moreover, ULER rejects the highest
number of low-quality explanations in around 94% of the experiments against all competi-
tors. Finally, all the rejectors based on explanation metrics work better than the standard
LtR strategies. This confirms that focusing on the prediction ambiguity or input novelty is
not aligned with the objective of the LtX setting. Table 5 reports the average AUROC per
dataset. ULER performs better at separating low-quality from high-quality explanations for
all the considered datasets and obtains an average improvement of 21% and 28% from the two
runner-ups, respectively PASTARej and ComplRej.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: ULER outperforms its variants that additionally provide inputs and/or predictions as
input to the rejector. Average AUROC for ULER and three variants using different inputs to learn
the quality of an explanation over the 8 datasets. ULER consistently achieves the highest AUROC
across all datasets, showing that explanations alone suffice for the rejector to assess their quality.

Classification Regression
compas creditcard adult churn wine parkinson power bike

ULER 0.76 ± 0.02 0.56 ± 0.03 0.71 ± 0.03 0.72 ± 0.05 0.80 ± 0.05 0.59 ± 0.08 0.90 ± 0.02 0.78 ± 0.03

ULER X,Z 0.71 ± 0.08 0.54 ± 0.03 0.63 ± 0.05 0.48 ± 0.10 0.71 ± 0.05 0.56 ± 0.15 0.79 ± 0.14 0.75 ± 0.06
ULER Z,Y 0.76 ± 0.02 0.50 ± 0.06 0.69 ± 0.02 0.65 ± 0.09 0.74 ± 0.07 0.59 ± 0.06 0.89 ± 0.03 0.75 ± 0.06
ULER X,Z,Y 0.74 ± 0.06 0.54 ± 0.03 0.65 ± 0.03 0.52 ± 0.11 0.65 ± 0.14 0.57 ± 0.07 0.88 ± 0.05 0.76 ± 0.06

Table 7: ULER shows a small but consistent improvement over its variant without augmen-
tation in separating low-quality from high-quality explanations. Average AUROC for ULER
and ULER-NOAUG across the eight datasets. For comparison, we also report PASTARej, the best
performing baseline. ULER consistently achieves a modest but consistent improvement in AUROC
across all datasets, while ULER-NOAUG still often outperforms PASTARej.

Classification Regression
compas creditcard adult churn wine parkinson power bike

ULER 0.76 ± 0.02 0.56 ± 0.03 0.71 ± 0.03 0.75 ± 0.06 0.72 ± 0.03 0.59 ± 0.08 0.90 ± 0.02 0.78 ± 0.03

ULER-NOAUG 0.70 ± 0.04 0.51 ± 0.05 0.68 ± 0.02 0.71 ± 0.06 0.71 ± 0.06 0.57 ± 0.04 0.90 ± 0.04 0.68 ± 0.06
PASTARej 0.66 ± 0.14 0.50 ± 0.05 0.65 ± 0.04 0.53 ± 0.07 0.64 ± 0.15 0.55 ± 0.06 0.74 ± 0.20 0.68 ± 0.10

C.6 ULER’S INPUT SPACE

To investigate which inputs the rejector needs to assess explanation quality, we consider three vari-
ants of ULER in which the rejector works in a different input space: ULERZ,X uses both the expla-
nation and its corresponding instance, ULERZ,Y uses the explanation along with the prediction, and
ULERZ,X,Y uses the explanation, the instance, and the prediction. For each variant, we augment
the explanations (see Section 3.1), and train the rejector on a training set obtained by concatenating
each (augmented) explanation with the input, the prediction, or both.

Table 6 reports the average AUROC per dataset for ULER and each of the above variants. Interest-
ingly, including the instances as part of the rejector’s input tends to decrease the performance due
to the limited number of human-judgment labels which makes it difficult for the rejector to learn
the relationship between the explanations and the instances. Moreover, even concatenating only
the prediction as in ULERZ,Y results in a small performance hit (on average 3%), suggesting that
explanations alone are often sufficient.

C.7 ABLATION STUDY - TRAINING THE REJECTOR WITHOUT AUGMENTING THE DATA

In this section, we evaluate whether augmentation improves the rejector’s performance, and thus
whether collecting per-feature feedback is beneficial. To this end, we compare ULER with an ab-
lated variant, ULER-NOAUG, which does not leverage the feedback-aware augmentation strategy
(i.e., does not exploit the per-feature feedback). Specifically, ULER-NOAUG trains the rejector as
described in Section 3.1, but uses D instead of the augmented data Daug .

Table 7 reports the average AUROC per dataset for both ULER and ULER-NOAUG, assessing their
performance in distinguishing low-quality from high-quality explanations. For comparison, we also
report PASTARej, the best-performing baseline in Q1. ULER consistently outperforms its ablated
variant across all considered datasets. While the performance gain in performance is quite small (≈
3%), it in consistent: ULER always outperforms the variant without augmentation across all datasets.
We argue that this improvement is still worth it given the minimal additional cost to obtain the
feature-level feedback. Once user-provided quality judgments are collected, obtaining per-feature
feedback is inexpensive because users are already focused on identifying features with wrong scores
to assess explanation quality. In cases where per-feature feedback is not available, one could skip the
augmentation step and simply use ULER-NOAUG, which still consistently outperforms PASTARej
across most datasets, improving the AUROC by approximately 7%.
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Table 8: ULER is not strongly correlated with existing machine-side metrics. Average Spearman
correlation coefficient (± std) between ULER and each machine-side metric on the user study data.

faithfulness stability complexity

user study -0.43 ± 0.17 -0.22 ± 0.10 -0.05 ± 0.12

Table 9: ULER predicts the human-judgments better than all competitors. Average AUROC
and its standard deviation for all the rejection strategies on the user study data.

rejector AUROC (± std)

ULER 0.64 ± 0.05

RandRej 0.47 ± 0.08
PredAmb 0.46 ± 0.07
NovRejX 0.39 ± 0.07

StabRej 0.43 ± 0.10
FaithRej 0.44 ± 0.07
ComplRej 0.45 ± 0.03
NovRejZ 0.49 ± 0.06

C.8 CORRELATION ANALYSIS WITH MACHINE-SIDE METRICS FOR USER-STUDY DATA

We repeat the same setup as in Q1, but compute the Spearman coefficient on the user study data.
Again, we do not observe strong correlations, confirming that ULER captures information that is
different from existing machine-side metrics.

C.9 Q3: COMPARISON WITH THE OTHER COMPETITORS

Additionally, we replicate the same experiments described in Section 4.2 including all competitors
in Section 4 to further validate that standard LtR strategies and machine-side metrics cannot reliably
reflect user judgments.

Table 9 reports the average AUROC for ULER and the other seven competitors (results for
PASTARej are reported in the main paper), measuring their ability to distinguish between high-
quality and low-quality explanations. ULER outperforms all competitors, achieving at least an 15%
improvement in AUROC and demonstrating more consistent performance, as indicated by the lower
standard deviation. Moreover, we observe that the explanation-aware strategies perform similarly
to the random rejector, thus confirming that existing machine-side metrics do not capture human
judgments.

Additionally, we found that human annotators identified, on average, 1.8 features with incorrect
relevance scores in low-quality explanations, compared to only 0.7 features in high-quality ones.
This supports our intuition that low-quality explanations are perceived by users as containing more
wrong relevance scores.

D USER STUDY

D.1 DATA

For this user study, we used the publicly available StatsBomb 360 event stream data (Statsbomb,
2023). This contextualized event stream data is extracted from broadcast video and contains event
stream data, and snapshots of player positioning at the moment of each event. The event stream data
describes semantic information about the on-the-ball actions, such as which actions are performed,
their start and end location, the outcome of the action, which players performed them, and the time
in the match they were performed at.
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D.2 OBTAINING THE EXPLANATIONS

To obtain the explanations, we begin by preprocessing the data (Statsbomb, 2023) to obtain the fea-
tures needed to train the classifier. From each shot snapshot, we extract the following features: (i)
the distance from the ball to the center of the goal, (ii) the angle between the ball and the goal-
posts, (iii) the distance of the goalkeeper from the goal line, (iv) the distance of the goalkeeper from
the midline (i.e., the line that passes through the center of the field and the middle of the goals),
and (v) the distance to the closest defender (excluding the goalkeeper). We select only these fea-
tures for two main reasons: they are easily interpretable from the snapshot (see Fig. 3), and their
meanings are non-overlapping, which makes it easier for annotators to disentangle their individual
contributions as we found empirically that working with strongly correlated features can complicate
human assessment. Using these features, we train an XGBoost ensemble (Chen and Guestrin, 2016)
consisting of 50 trees with a maximum depth of 3, as it is standard practice in soccer analytics (Rob-
berechts et al., 2020). The model is trained on shots from the 2015–2016 season across four major
top-tier leagues (Germany, Spain, England, and France). We evaluate the classifier on a held-out
test set of 1,050 shots from the Italian top division in the same season. The primary goal of xG
is to produce well-calibrated probability estimates because they are used for decision making (e.g.,
evaluating players and giving advice about when to shot), which we assess by reporting the Brier
score. Additionally, goals should receive an higher scoring probability than non-goals, which we
capture by using AUROC. The model achieves a Brier score of 0.067 and an AUROC of 0.81.

We then use the test set to generate the explanations. As for the benchmark datasets, explanations
are generated using KernelSHAP (Lundberg and Lee, 2017) with 100 samples and the training set
used as background.

D.3 HUMAN ANNOTATION PROCESS

Participants were recruited using Prolific, a crowd sourcing platform. We applied Prolific’s filters
to ensure that participants possessed sufficient soccer expertise. Specifically, we applied filters to
recruit subjects that (i) live in countries where soccer is widespread (UK, Germany, France, Spain,
Belgium, Italy, Netherlands, or Portugal), and (ii) actively watch and play soccer. All participants
were compensated with £3 for an expected completion time of 25 minutes, as estimated from the
pilot studies.

After conducting pilot studies to ensure that the task was clear and comprehensible and to verify
intra-annotator consistency, we launched the main user study. Participants were first requested to
give their consent to participate. Then, they were provided with a link to an external Google Doc
containing task instructions, which they could consult at any time during the session. The document
provides general introduction for the task setting and objective, the description and illustration of
the predictor’s features, and 3 exemplary snapshots.

After the task introduction, participants completed three warm-up trials to familiarize themselves
with the interface and the task; this was followed by the real annotation session comprising of 30
trials. In each trial, participants were asked three questions: two 5-point Likert-scale questions to
separately assess the quality of the prediction and explanation, and one multiple choice question to
identify the features with a wrong relevance score. We used two separate questions, presented in dis-
tinct sections of the form, to disentangle participants’ agreement with the prediction from their per-
ception of the explanation’s quality and to minimize spurious correlations between their responses.
5-point Likert scales have been chosen as they provide satisfactory reliability and validity (Taher-
doost, 2019). Specifically, in the first question, participants were shown an image containing only
the shot snapshot along with the predicted probability of scoring (see Fig. 6) and asked to assess
their agreement with the prediction - ”The AI thinks that the probability that the shooter will score
is 1%, which is much lower than the average (10%). To what extent do you agree with the AI’s
prediction?”, where the comparison much lower was dynamically adapted based on the predicted
probability. For the second and third questions, participants were shown a different image contain-
ing the shot snapshot, the prediction, and the explanation (see Fig. 7). To facilitate interpretation,
features relevance are visualized as independent arrows: blue indicates a positive impact on the
prediction, while red indicates a negative impact. The second question - ”To what extent is the AI’s
explanation consistent with how you would explain the predicted probability of scoring?” - was used
to collect the perceived explanation quality. While the third question - ”Which features are being
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Figure 6: Example of the first image of each trial

used incorrectly, if any?” - is used to obtain the feature-level feedback about the features with an
incorrect relevance score in the prediction. To ensure high-quality annotations, we included an at-
tention check requiring specific answers for a trial. This allowed us to detect and discard inattentive
or randomly answering participants.

D.4 ANNOTATIONS PREPROCESSING

To ensure high-quality annotations, we applied several filtering steps. First, we excluded participants
who failed more than one attention check question, as well as those who consistently provided the
same score for every explanation (typically a score of 3), since this means they were not able (or did
not bother) to discriminate between explanations. We also removed two participants who did not flag
any relevance score as incorrect. Additionally, given the subjective nature of the task (for instance,
we saw that showed very low annotator agreement, e.g., 1 vs 5) we removed explanations for which
the standard deviation of the explanation quality scores exceeded 1.25. This step helped ensuring
that our dataset contains only explanations where annotators’ opinions are reasonably consistent.
After applying these filters, 718 explanations remained for our experiments.

E LLM USAGE

LLMs were used to polish the writing, to rephrase sentences, and to debug the code. Our manuscript
and our code was first human-generated, and then possibly enhanced by LLMs.
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Figure 7: Example of the second image of each trial
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