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Abstract

In order to compute near-optimal policies with policy-gradient algorithms, it is common
in practice to include intrinsic exploration terms in the learning objective. Although the
effectiveness of these terms is usually justified by an intrinsic need to explore environments,
we propose a novel analysis with the lens of numerical optimization. Two criteria are in-
troduced on the learning objective and two others on its stochastic gradient estimates, and
are afterwards used to discuss the quality of the policy after optimization. The analysis
sheds light on two separate effects of exploration techniques. First, they make it possible
to smooth the learning objective and to eliminate local optima while preserving the global
maximum. Second, they modify the gradient estimates, increasing the probability that the
stochastic parameter updates eventually provide an optimal policy. We empirically illustrate
these effects with exploration strategies based on entropy bonuses, identifying limitations
and suggesting directions for future work.

1 Introduction

Reinforcement learning (RL) has been successful in complex decision-making problems, including playing
games (Mnih et al., 2015; Silver et al., 2017), operating power systems (Aittahar et al., 2024), controlling
robots (Kalashnikov et al., 2018), and trading electricity (Boukas et al., 2021).

Reinforcement learning algorithms interact with an environment to gather information about this environ-
ment, which in turn enables to compute and follow an optimal policy. This interaction creates a trade-off
between exploration and exploitation. In short, to eventually compute a good policy, an agent must obtain
additional information about the environment by taking actions that are likely not optimal. In algorithms
where this trade-off is explicit, exploration is well understood and has been the subject of many works (Dann
et al., 2017; Azar et al., 2017; Neu & Pike-Burke, 2020). In policy-gradient algorithms, one often can not
distinguish exploration from exploitation. Nevertheless, a key theoretical requirement for convergence to
globally (or even locally) optimal solutions is that policies remain sufficiently stochastic during the learning
procedure (Bhandari & Russo, 2019; Bhatt et al., 2019; Agarwal et al., 2020; Zhang et al., 2021a; Bedi et al.,
2022). Interestingly, neither softmax nor Gaussian policies guarantee enough stochasticity to ensure (fast)
convergence (Mei et al., 2020; 2021; Bedi et al., 2022). This requirement for stochasticity in policy gradients
is often loosely called exploration and understood as the need to infinitely sample each state-action pair.

The need for sufficient policy randomness has long been known by practitioners, who have attempted to meet
this requirement in policy-gradient methods with reward shaping. In these approaches, a learning objective
that promotes or hinders behaviors by assigning reward bonuses to some states and actions is optimized as
a surrogate for the policy return. Such bonuses typically encourage actions that reduce uncertainty of the
agent about its environment (Pathak et al., 2017; Burda et al., 2018; Zhang et al., 2021c) or that maximize
the entropy of states or actions (Williams & Peng, 1991; Bellemare et al., 2016; Haarnoja et al., 2019; Hazan
et al., 2019; Lee et al., 2019; Islam et al., 2019; Guo et al., 2021; Zhang et al., 2021b).

Optimizing surrogate learning objectives that include reward bonuses appears particularly effective for solving
challenging tasks, typically those with complex dynamics or sparse rewards. The connection between such
objectives and exploration has nevertheless long been limited to intuition, and the lack of theoretical analysis
has led to common folklore that seeks to justify their practical efficiency. Research on these objectives has
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mainly focused on entropy regularization (an exploration-based reward shaping technique in which the policy
entropy is added to the learning objective). This line of work includes the empirical study of Ahmed et al.
(2019), which concludes that entropy regularization helps provide smoother objective functions. The same
strategy has been reinterpreted as a robust optimization method by Husain et al. (2021) and, equivalently,
as a two-player game by Brekelmans et al. (2022). Bolland et al. (2023) further argue that optimizing an
entropy-regularized objective is equivalent to maximizing the return of another policy with larger variance.
Finally, convergence rates for policy-gradient algorithms with entropy regularization have recently been
derived (Cen et al., 2022; Zhang et al., 2021a). More general studies of learning dynamics have examined the
influence of baselines in policy-gradient methods (Chung et al., 2021) and potential-based reward shaping
strategies that do not modify the learning objective (Ng et al., 1999; Wiewiora et al., 2003; Harutyunyan
et al., 2015; Forbes et al., 2024). All of these studies remain restricted to particular learning objectives and
the literature still lacks unified explanations of the improvements intrinsic reward bonuses can provide, the
conditions under which they arise, and systematic ways to compare different bonuses, among others. This
work aims to take a step toward answering these questions.

Before delving into our contributions, we recall that the convergence of stochastic ascent methods is driven
by the objective function and how the ascent directions are estimated. First, the objective function shall be
(pseudo) concave to find its global maximum (Bottou, 1998). Second, the convergence rate is influenced by
the distribution of the stochastic ascent estimates (Chen & Luss, 2018; Ajalloeian & Stich, 2020). In this
paper, we rigorously study policy-gradient methods with exploration-based reward shaping through the lens
of these two optimization theory aspects. To that end, we first introduce two new criteria that relate the
return of a policy to the learning objective with exploration bonuses, and their respective optima. Second, we
introduce two additional criteria on the distribution of the gradient estimates of the learning objective and
their likelihood of providing directions in which the learning objective and the return increase. Importantly,
these criteria are general to any reward-shaping strategy, and highlight the importance of reward shaping
that modify the optimal control behavior, in opposition to the literature on potential-based reward shaping.
The influence of some exploration bonuses are illustrated and discussed in the light of these four criteria. In
practice, finding good exploration strategies is problem specific and we thus introduce a general framework
for the study and interpretation of exploration in policy-gradient methods instead of trying to find the best
exploration method for a given task.

The paper is organized as follows. In Section 2, we provide the background about policy gradients and
exploration. Section 3 focuses on the effect of exploration on the learning objective while Section 4 is
dedicated to the effect on the gradient estimates used in the policy-gradient algorithms. Both sections
include illustrations on pathological examples, and Section 5 presents extended experiments1. Conclusions
and future works are discussed in Section 6.

2 Background

Let us introduce Markov decision processes and policy gradients with intrinsic exploration.

2.1 Markov Decision Processes

We study problems in which an agent makes sequential decisions in a stochastic environment (Sutton &
Barto, 2018). The environment is modeled as an infinite-time Markov decision process (MDP) composed
of a state space S, an action space A, an initial state distribution with density p0, a transition distribution
(modeling the dynamics) with conditional density p, a bounded reward function ρ, and a discount factor
γ ∈ [0, 1). When an agent interacts with the MDP, first an initial state s0 ∼ p0(·) is sampled, then, at each
time step t, the agent provides an action at ∈ A, leading to a new state st+1 ∼ p(·|st, at). Finally, a reward
rt = ρ(st, at) ∈ R is observed after each action at.

A policy π ∈ Π = S → P(A) is a mapping from the state space S to the set of probability measures on the
action space P(A), where π(a|s) is the associated conditional probability of action a in state s. The function
J : Π→ R is defined as a function mapping any policy π to the expected discounted sum of rewards gathered

1Experimental details and implementations can be found at https://github.com/anonymized.
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by an agent interacting with the MDP by sampling actions from π. We call the return of the policy π the
value provided by that function

J(π) = 1
1− γ E

s∼dπ,γ(·)
a∼π(·|s)

[ρ(s, a)] , (1)

where dπ,γ(s) = (1−γ)
∑∞

∆=0 γ
∆pπ∆(s) is the state-visitation measure ∀s ∈ S, and pπ∆ is the state probability

after ∆ time steps following the policy π. In reinforcement learning, we seek to find an optimal policy π∗ ∈ Π
maximizing the expected discounted sum of rewards J .

2.2 Policy-Gradient Algorithms

Policy-gradient algorithms (locally) optimize a parameterized policy πθ to find the parameter θ∗ that maxi-
mizes the return of the policy. Naively maximizing the return may provide suboptimal results. This problem
is mitigated in practice by exploration strategies, which typically consist of optimizing surrogate learning
objectives that encourage certain behaviors. In this work, we consider reward-shaping strategies in which
the expected discounted sum of rewards is extended by K additional reward terms ρinti , called intrinsic
motivation terms, and we optimize the learning objective

L(θ) = 1
1− γ E

s∼dπθ,γ(·)
a∼πθ(·|s)

[
ρ(s, a) +

K−1∑
i=0

λiρ
int
i (s, a)

]
= J(πθ) + J int(πθ) , (2)

where λi are non-negative weights for each intrinsic reward, and J int(πθ) is the intrinsic return of the policy.
The parameter maximizing the learning objective is denoted by θ†, which we distinguish from the optimal
policy parameter θ∗. Most of the intrinsic motivation terms can be classified into the following two groups.

Uncertainty-based motivations. It is common to provide bonuses for performing actions that reduce
the agent uncertainty about an internal environment model (Pathak et al., 2017; Burda et al., 2018; Zhang
et al., 2021c). The intrinsic motivation terms are then proportional to the prediction errors of that model,
which is typically learned.

Entropy-based motivations. It is also common to motivate agents to visit states and/or select actions
that are less likely. It is typically achieved using intrinsic rewards that depend on the policy (Williams &
Peng, 1991; Haarnoja et al., 2019) or on the state-visitation measure (Bellemare et al., 2016; Haarnoja et al.,
2019; Hazan et al., 2019; Lee et al., 2019; Islam et al., 2019)

ρa(s, a) = − log πθ(a|s) Ja(πθ) ∝ Es∼dπθ,γ(·) [Ha (πθ(a|s))] (3)
ρs(s, a) = − log dπθ,γ(z) Js(πθ) ∝ Hz (dπθ,γ(z)) , (4)

where z = φ(s) is a feature built from the state s, and where Hx(q(x)) is the entropy of q. The corresponding
intrinsic returns, Ja(πθ) and Js(πθ), are maximized for policies with actions uniformly distributed in each
state, and for policies that visit every feature uniformly, respectively. Importantly, these rewards require
estimating the distribution over the states and/or actions, which implicitly depends on the policy parameter
θ. Notice that the first technique is usually referred to as entropy regularization.

In this work, we consider on-policy policy-gradient algorithms, which were, among others, reviewed by
Duan et al. (2016) and Andrychowicz et al. (2020). These algorithms optimize differentiable parameterized
policies with gradient-based local optimization. They iteratively approximate an ascent direction d̂, relying on
samples from the policy in the MDP, and update the parameters in that ascent direction, or in a combination
of previous ascent directions (Hinton et al., 2012; Kingma & Ba, 2014). For the sake of simplicity and without
loss of generality, we consider that the ascent direction d̂ is the sum of an estimate of the gradient of the
return ĝ ≈ ∇θJ(πθ) and an estimate of the gradient of the intrinsic return î ≈ ∇θJ int(πθ). In practice, the
first may be unbiased, while the second is computed by neglecting some partial derivatives of θ and is thus
biased, typically neglecting the influence of the policy on the intrinsic reward.
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3 Study of the Learning Objective

In this section, we study the influence of the exploration terms on the learning objective defined in equation
(2). We define two criteria under which the learning objective can be globally optimized by ascent methods
and under which the solution is close to an optimal policy. We then graphically illustrate how exploration
modifies the learning objective to remove local extrema.

3.1 Policy-Gradient Learning Objective

Policy-gradient algorithms using exploration maximize the learning objective function L as defined in equa-
tion (2). We introduce two criteria related to this learning objective to study the performance of the
policy-gradient algorithm. First, we say that a learning objective L is ε-coherent when its global maximum
is in an ε-neighborhood of the return of an optimal policy. Second, we call learning objectives that have a
unique maximum and no other stationary point pseudoconcave.

Coherence criterion. A learning objective L is ε-coherent if, and only if,

J(πθ∗)− J(πθ†) ≤ ε , (5)

where θ∗ ∈ arg maxθ J(πθ) and where θ† ∈ arg maxθ L(θ).

Pseudoconcavity criterion. A learning objective L is pseudoconcave if, and only if,

∃! θ† : ∇L(θ†) = 0 ∧ L(θ†) = max
θ

L(θ) . (6)

If the pseudoconcavity criterion is satisfied, there is a single optimum, and it is thus possible to globally
optimize the learning objective function by (stochastic) gradient ascent (Bottou, 2010)2. If the learning
objective is furthermore ε-coherent, the latter solution is also a near-optimal policy, where ε is the bound on
the suboptimality of its return.

Let us finally recall a theorem of Ng et al. (1999).

Consistency Theorem. The learning objective L is ε-coherent, with ε = 0, in any MDP with state space
S, action space A and discount factor γ, if, and only if, J(πθ) = L(θ) for all θ. Furthermore, the intrinsic
rewards are potential-based.

This theorem establishes a trade-off between the coherence and pseudoconcavity criteria. Either an explo-
ration method guarantees coherence with ε = 0 in any MDP, but then the learning objective equals the
return and the pseudoconcavity criterion is violated when the return is not pseudoconcave itself. Otherwise,
the pseudoconcavity criterion is satisfied, but then the exploration method is MDP-dependent or coherence
is guaranteed at best with ε > 0.

3.2 Illustration of the Effect of Exploration on the Learning Objective

Exploration is of paramount importance in environments with complex dynamics and reward functions,
where locally optimal policies may exist (Lee et al., 2019; Liu & Abbeel, 2021; Zhang et al., 2021b). In the
following, we first define such an environment and a policy parameterization that will serve as an example
to illustrate the effect of exploration on the optimization process. For the sake of the analysis, we then
represent the learning objectives associated with different exploration strategies, and depict their global and
local optima. Learning objectives with a single optimum satisfy the pseudoconcavity criterion. In addition,
we represent the neighborhood Ω of the optimal policy parameters such that any learning objective with its
global maximum within this region is coherent for a given ε. In light of the coherence and the pseudoconcavity
criteria, we finally elaborate on the policy parameters computed by stochastic gradient ascent algorithms.

2For the sake of keeping discussions simple, the definition of pseudoconcavity is simplified (Mangasarian, 1975), and additional
assumptions on the stochastic gradient estimates are neglected. Furthermore, the literature studying policy-gradient algorithms
usually rely on the more complex Polyak-Lojasiewicz inequality (gradient dominance) to guarantee convergence of gradient
ascent instead of the pseudoconcavity.
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We consider the environment illustrated in Figure 1a, where a car moves in a valley (Bolland et al., 2023). We
denote by x and v the position and speed of the car, which together compose its state s = (x, v). The valley
contains two valley floors, located at xinitial = −3 and xtarget = 3, separated by a peak. The car starts at
rest v0 = 0 at the higher floor x0 = xinitial and receives rewards proportional to the depth of the valley at its
current position. The reward function is shown in Figure 1b. We consider a policy πK,σ(a|s) = N (a|µK(s), σ)
with µK(s) = K×(x−xtarget), parameterized by the vector θ = (K,σ). It corresponds to a noisy proportional
controller. Figure 1c illustrates the contour map of the return, annotated with local optima, and shows in
green the set of near-optimal policies. The optimal policy drives the car to reach the lowest floor in xtarget.
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Figure 1: Illustration of the hill environment in Figure 1a and its reward function in Figure 1b. In Figure
1c, the return of the policy πK,σ with the global and local maximum represented in black and grey, together
with their respective return values. In green Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ε = 1}.

Figure 2 illustrates the learning objective with the intrinsic rewards ρs(s, a) = − log dπK,σ,γ(φ(s)), from
equation (4), and ρa(s, a) = − log πK,σ(a|s), from equation (3), for different values of the corresponding
weights λs and λa. Here, the feature is the position in the valley φ(s) = x. On the one hand, the smaller the
exploration weights, the closer the parameter θ† maximizing the learning objective is to θ∗, and the smaller
ε for which coherence is guaranteed. Furthermore, the return of the policy corresponding to θ† is then also
higher. In the particular case depicted in the figure, we observe that, only for the smallest weights, the
parameter θ† maximizing the learning objective, represented by a black dot, is inside the green set Ω, such
that ε-coherence is guaranteed for ε = 1. On the other hand, as the weights increase, we observe that the
learning objective eventually becomes pseudoconcave. As explained, this comes at the cost of a higher ε for
guaranteeing ε-coherence; there is thus a trade-off between the two criteria. In Figure 2b, we observe that
in this environment, there is a learning objective that satisfies both the pseudoconcavity criterion and the
ε-coherence criterion for ε = 1. Indeed, there is a single global maximum represented by a black dot, which
is part of the set Ω.

Shaping the reward function with an exploration strategy based on the state-visitation entropy appears to
be a good solution for optimizing the policy. However, a notable drawback is that the reward depends
on the policy, and its (gradient) computation requires estimating a complex probability measure. In this
example, the intrinsic reward function itself was estimated by Monte Carlo sampling for each parameter,
which would not scale for complex problems and requires approximations and costly evaluation strategies.
In Section 5, we extend the study to more complex environments, where the policy is a neural network and
the state-visitation probability is approximated.

The observations suggest that well-chosen exploration strategies can lead to learning objective functions
that satisfy the two criteria defined in the previous section, thereby guaranteeing that policies that are
suboptimal by at most ε can be computed by local optimization. When designing exploration strategies, it
is essential to keep in mind that we modify the learning objective so that the algorithms can converge to
optimal policy parameters, which can be achieved when both criteria are satisfied. While strategies such as
enforcing entropy can be effective in some environments, they are only heuristic strategies and should not
be relied upon exclusively. Furthermore, as illustrated, both criteria may be subject to a trade-off. In more
complex environments, an efficient exploration strategy may require balancing both criteria, e.g., through a
schedule on the learning objective weights.
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Figure 2: Contour map of (scaled) learning objective functions for different values of λs and λa. The darker
the map, the larger the learning objective value. The black dot is the parameter θ† globally maximizing the
learning objective and the grey dot is the local (non-global) maximum of the learning objective if it exists.
Both are labeled with the return values of the corresponding policies. The green area represents the set
Ω = {θ′|maxθ J(πθ)− J(πθ′) ≤ ε = 1}.

4 Study of the Ascent Direction Distribution

Optimizing pseudoconcave functions with stochastic ascent methods is guaranteed to converge (at a certain
rate) under assumptions about the distribution of the gradient estimates (Bottou, 2010; Chen & Luss,
2018; Ajalloeian & Stich, 2020). In this section, we study the influence of the exploration terms on this
distribution in the context of policy gradients. More precisely, we study the probabilities of improving the
learning objective and the return through stochastic ascent steps. Intuitively, these probabilities should be
sufficiently large for the algorithm to be efficient. We formalize this intuition and illustrate how exploration
can increase them, leading to more efficient algorithms.

4.1 Policy-Gradient Estimated Ascent Direction

In general, ascent algorithms update parameters in a direction d̂ to locally improve an objective function f .
The quality of these algorithms can therefore be studied (for a small step size α → 0) through the random
variable representing the amount by which the objective increases for each θ

X = f(θ + αd̂)− f(θ) = α 〈d̂,∇θf(θ)〉 , (7)

where 〈·, ·〉 is the Euclidean scalar product. This variable depends on the random event d̂.

The convergence of ascent algorithms is usually studied by bounding the suboptimality of f(θ) as a function
of the number of ascent steps. In this active field of research, the rates are characterized by assumptions on
d̂ or, equivalently, on X. Depending on the assumptions, the efficiency of algorithms is, for example, studied
as a function of the statistical moments of the ascent estimate or of the probability of alignment between
the gradient and the estimate. We choose to work in the context in which gradient estimates have positive
expected improvements E[X] > 0 (e.g., because the estimates are unbiased), and we quantify whether this
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expectation is positive due to rare realizations of large values of X. Intuitively, an algorithm with positive
expected improvements E[X] > 0 should theoretically converge but may be inefficient in practice if positive
events X > 0 rarely occur. Below, we study the influence of such events, typically observed in sparse-reward
environments, and the chosen context is sufficient to assess efficiency without more assumptions. Further
work may proceed differently to derive convergence rates or quantify other phenomena.

In the following, we introduce two new criteria on the probability of improvement P (X > 0), which we
empirically validate later. First, we define an exploration strategy as δ-efficient if, and only if, following the
ascent direction d̂ ≈ ∇θL(θ) has a probability of at least δ of increasing the learning objective L(θ) almost
everywhere. Second, an exploration strategy is δ-attractive if, and only if, there exists a neighborhood of θ†
containing the parameter θint that maximizes the intrinsic return J int, where the probability of increasing
the return by following d̂ is almost everywhere at least equal to δ. Note that each probability measure and
random variable are functions of θ, which we do not explicitly write to keep the notation simple.

Efficiency criterion. An exploration strategy is δ-efficient if, and only if,

∀∞θ : P(D > 0) ≥ δ , (8)

where D = 〈d̂,∇θL(θ)〉.

Attraction criterion. An exploration strategy is δ-attractive if, and only if,

∃B(θ†) : θint ∈ B(θ†) , (9)

such that

∀∞θ ∈ B(θ†) : P(G > 0) ≥ δ , (10)

where θint = argmaxθJ int(πθ), B(θ†) is a ball centered in θ†, and G = 〈d̂,∇θJ(πθ)〉.

The efficiency criterion quantifies how often a stochastic gradient ascent step improves the learning objective.
The larger, the better the learning objective and its stochastic ascent direction approximations. The rationale
behind the attraction criterion is that, in many exploration strategies, the intrinsic reward is dense, and it
is then presumably easy to optimize the intrinsic return in the sense that P( 〈̂i,∇θJ int(πθ)〉 > 0) is large. It
implies that it is easy to locally improve the learning objective by (solely) increasing the value of the intrinsic
motivation terms. It furthermore implies that policy-gradient algorithms may tend to converge towards θint
rather than θ† when P( 〈d̂,∇θJ(πθ)〉 > 0) is small. If the attraction criterion is satisfied for large δ, the
latter is less likely to happen as policy gradients will eventually tend to improve the return of the policy if
the parameter approaches θint and enters the ball B(θ†); eventually converging towards θ†.

These two new criteria on d̂ are independent of the previous ones on L, which only captured the quality of
the deterministic learning objective functions. In the particular cases where the learning objectives L are
ε-coherent, for ε = 0, and pseudoconcave, e.g., with potential-based intrinsic rewards, only the distribution
of estimates d̂ can explain why some algorithms outperform others. Finally, the value of δ in the two new
criteria could be related to the variance of the estimate d̂ (e.g., via Cantelli’s concentration inequalities).

4.2 Illustration of the Effect of Exploration on the Estimated Ascent Direction

Exploration is usually promoted and tested for problems where the reward function is sparse, typically in
maze environments (Islam et al., 2019; Liu & Abbeel, 2021; Guo et al., 2021). In this section, we first
introduce a new maze environment with sparse rewards to illustrate the influence of exploration on the
gradient estimates of the learning objective. To this end, we present two learning objective functions and
elaborate on the influence of exploration on the performance of policy-gradient algorithms in light of the
efficiency and attraction criteria.

Let us consider a maze environment consisting of a horizontal corridor composed of S ∈ N tiles. The state of
the environment is the index of the tile s ∈ {1, . . . , S}, and the actions consist of going left a = −1 or right
a = +1. When an action is taken, the agent stays idle with probability p = 0.7, and moves with probability
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1 − p = 0.3 in the direction indicated by the action, then s′ = min(S,max(1, s + a)). The agent starts in
state s = 1, and the target state s = S = 15 is absorbing. A zero reward is observed except when the agent
reaches the target state, where a reward of r = 100 is observed. A discount factor of γ = 0.99 is considered.
Finally, we study the policy that moves right with probability θ and left with probability 1− θ, with density

πθ(a|s) =
{

θ if a = +1
1− θ if a = −1 . (11)

The return J(πθ) is represented in black in Figure 3a as a function of θ along with two intrinsic returns,
Ja(πθ) in orange and Js(πθ) in blue. The intrinsic reward ρa(s, a) = − log πθ(a|s), from equation (3), and
the intrinsic reward ρs(s, a) = − log dπθ,γ(s), from equation (4) are used, respectively. In Figure 3b, we
illustrate the return of the policy without exploration J(πθ), along with two learning objective functions,
La(θ) and Ls(θ), using as exploration strategies the intrinsic returns Ja(πθ) and Js(πθ). We observe that
the return is a pseudoconcave function with respect to θ and the optimal parameter is θ∗ = 1. In addition,
the two learning objectives satisfy the ε-coherence criterion for ε = 0, implying that θ∗ = θ†, and also satisfy
the pseudoconcavity criterion. It is important to note that with regard to the discussion from Section 3,
there is no interest in optimizing the learning objectives rather than directly optimizing the return, as the
latter is already pseudoconcave. In the following, we illustrate how choosing a correct exploration strategy
still deeply influences the policy-gradient algorithms when it comes to building gradient estimates.
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(a) Return functions.
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(b) Learning objective functions.

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.0

0.2

0.4

0.6

0.8

1.0
Ba

Bs
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Figure 3: Figure 3a represents the return of the policy along with two intrinsic return functions. In Figure
3b the return is also represented together with two learning objective functions, corresponding to the two
intrinsic returns. Figure 3c illustrates the probability (estimated by Monte-Carlo) of positive stochastic
gradient (derivative) estimates J(πθ), La(θ), and Ls(θ). At the top of the figure, the intervals Ba =
[θint,a, θ†,a] and Bs = [θint,s, θ†,s] are represented. These intervals represent the smallest balls containing
the parameters maximizing the intrinsic return and the learning objective, for both exploration strategies.

Let us compute the estimates ĝ and d̂ relying on REINFORCE (Williams, 1992) by sampling 8 histories of
length T = 100. In this particular environment, P(D > 0) equals P(G > 0), and equals the probability that
the derivative is positive. We represent in Figure 3c this probability for the return and for both learning
objectives. First, we see that the learning objectives are more efficient than the return, meaning they are
δ-efficient for larger values of δ. Depending on the parameter value, the objective La(θ) or Ls(θ) is best in
that regard. Second, concerning the attraction criterion, we represent at the top of Figure 3c the intervals
Ba = [θint,a, θ†,a] and Bs = [θint,s, θ†,s]. They correspond to the smallest balls containing the maximizers of
the intrinsic return and of the learning objective. Let the minima of the orange and blue curves over these
intervals be denoted by δa and δs. By definition of the attraction criterion, it is thus satisfied for any values
of δ at most equal to δa and δs, for La(θ) and Ls(θ), respectively. All these observations can eventually be
explained because the computation of ĝ is always zero when the target is not sampled in the histories, which
is highly likely for policies with small values of θ. Algorithms relying on intrinsic exploration would compute
optimal policies efficiently where naive optimization without exploration would fail or be sample inefficient.

We have empirically shown that a well-chosen exploration strategy in policy gradients may not only remove
local extrema from the objective function, but may also increase the probability that stochastic ascent steps
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improve the objective function and eventually the return. Under the previous assumptions, this probability
measures the efficiency of algorithms. Furthermore, among different learning objectives respecting the co-
herence and pseudoconcavity criteria, it is best to choose one that has high values for δ in both the efficiency
and attraction criteria. In Section 5, we extend the study to more complex environments and policies.

The problem discussed in this section strongly relates to overfitting or generalization in reinforcement learn-
ing. In situations where the same state and action pairs are repeatedly sampled with high probability, the
policy may appear optimal by neglecting the rewards observed in state and action pairs sampled with low
probability. The gradient estimates will then be zero with high probability, and the gradient updates will
not lead to policy improvements. In the previous example, gradient estimates computed from policies with
a small parameter value θ wrongly indicate that a stationary point has been reached as they equal zero with
high probability. We quantify this effect with a novel definition of local optimality. We define as locally
optimal policies over a space with probability ∆ the policies that maximize the reward on expectation over
a set of states and actions observed in a history with probability at least ∆. Formally, a policy π is locally
optimal over a space with probability ∆ if, and only if,

∃E ∈

X
∣∣∣ E
s∼dπ,γ(·)
a∼π(·|s)

[
1 [(s, a) ∈ X ]

]
≥ ∆

 : π ∈ arg max
π′

E
s∼dπ

′,γ(·)
a∼π′(·|s)

[
1 [(s, a) ∈ E ] ρ(s, a)

]
. (12)

In the case of sparse rewards, many policies observe with high probability state and action pairs with zero
rewards and are locally optimal for large probabilities ∆. Typically, in the previous example, the joint
set {1, . . . , S − 2} × {−1, 1} is a set of state and action pairs E that satisfies the definition in equation
(12) for large values ∆ when θ is small. As we have shown, exploration mitigates the convergence of
policy-gradient algorithms towards these locally optimal policies. Note that assuming a non-zero reward is
uniformly distributed over the state and action space, exploration policies with uniform probabilities over
visited states and actions are the best choice for sampling non-zero rewards with high probability. It can
thus be considered the best choice of exploration to reduce the probability that the stochastic gradient ascent
steps do not increase the objective value. Such initial policy may be learned as suggested by Lee et al. (2019).

5 Extended Experiments

In this section, we introduce complex environments and parameterize policies with neural networks. We then
learn the policy parameters using policy gradients and intrinsic exploration bonuses. We discuss convergence
results based on the four criteria introduced in the paper. In this context, it is impractical to naively evaluate
the different criteria for each policy parameter, and we are restricted to a local evaluation of the criteria on
the basis of statistics computed during optimization.

Let us adapt environments from the MiniGrid suite of environments (Chevalier-Boisvert et al., 2023). Each
environment corresponds to a maze in which an agent moves, aiming to reach a target position. The agent
may choose as actions to turn left, turn right, move forward, or stay idle. We consider two reward settings:
dense and sparse. In the first, rewards of −1 are received for every non-idle move, and a reward of 1000
is received upon reaching the target position. In the second setting, zero rewards are received everywhere,
except upon reaching the target position, where a bonus of 1000 is provided. We consider γ = 0.98.

In the following, the policy is parameterized with a fully connected neural network taking as input the position
pair and the orientation of the agent, and outputting a categorical distribution over actions. The network is
composed of three hidden layers of 64 neurons with ReLU activation functions. The policy is optimized in
the different environments and reward settings. To that end, we consider three learning-objective functions:
J(πθ), La(θ), and Ls(θ), respectively with λa = 0.5 and λs = 0.25. For the last objective, the state-visitation
density estimator is a ten-component Gaussian mixture model that maximizes the likelihood of the sampled
batch. The optimization is performed using the Adam update rule (Kingma & Ba, 2014), with REINFORCE
ascent directions computed over 32 histories of constant length T = 100, and with a learning rate (step size)
equal to 0.0005. The length T of the histories is chosen such that the realized value of T from a geometric
distribution with success probability parameter 1− γ has at least a cumulative probability of 0.85.

9
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We first consider the environments in the dense-reward setting and discuss convergence in light of the
pseudoconcavity and ε-coherence criteria. In Figure 4, we provide the evolution of the return of the policies
when optimizing the three objectives J(πθ), La(θ), and Ls(θ) for the different environments. On the one
hand, in the MiniGrid-Empty-8x8-v0 and MiniGrid-FourRooms-v0 environments, optimizing the return
provides high-performing policies, and the policies resulting from the optimization of the other learning
objectives are suboptimal. The difference in performance is justified by the ε-coherence criterion, where ε
is the bound on the best policy that can be found when optimizing the learning objective (assuming that
the global optimum of each objective is found). On the other hand, in the other environments, optimizing
the return often leads to convergence to locally optimal parameters (or saddle points). These parameters
correspond to idling policies and are locally optimal due to the action penalization incurred when moving.
The policies obtained when optimizing La(θ) and Ls(θ) no longer fall into the previous local optima. The
latter illustrates the validity of the pseudoconcavity criterion in that region of the parameter space. Note
that when optimizing La(θ), the policy tends to converge towards another local optimum where actions are
uniformly distributed. We nevertheless hypothesize that it is a local optimum in the sense of equation (12).
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Figure 4: Return of policies during optimization in the dense minigrid environments. In blue, the return
J(πθ) is optimized; in orange, the learning objective La(θ) is optimized; and in green, the learning objective
Ls(θ) is optimized by performing Adam steps in REINFORCE directions. Note that the median, worst, and
best cases over five runs are represented for the different curves.

In the previous experiments, the local optima arise due to the negative rewards associated with idle actions.
If we consider the sparse-reward setting, we could then assume that directly optimizing the return is sufficient
to find high-performing policies. We use the same parameters as previously and provide the evolution of
the return of the policies when optimizing the three objectives J(πθ), La(θ), and Ls(θ) for the different
environments in Figure 5. On the one hand, for most environments, regardless of the learning objective,
the resulting policy has a high return. Note that the ε-coherence can again be illustrated, as the policies
resulting from the optimization of the return perform better than the others. On the other hand, for
the MiniGrid-Empty-16x16-v0 and MiniGrid-SimpleCrossingS11N5-v0 environments, a high-performing
policy can only be found when optimizing the learning objective Ls(θ). We illustrate in the following that
these results can be justified by the efficiency and attraction criteria.

In Figure 6a, we show the probability of improving the return J(πθ) and the learning objective Ls(θ)
for each parameter obtained during their respective optimization by stochastic gradient ascent steps (i.e.,
SGA following respectively ĝ ≈ ∇θJ(πθ) and d̂ ≈ ∇θLs(θ)). The improvement probability is higher for
the learning objective than for the return. In other words, for these parameters, the efficiency δ of the
learning objective is much higher than that of the return, which justifies the failure of optimization without
exploration in Figure 5. In Figure 6b, we again show the probability of improving the return J(πθ) and
the learning objective Ls(θ), but for each parameter obtained during the stochastic gradient ascent steps
on Ls(θ) (i.e., SGA following d̂ ≈ ∇θLs(θ)). The probability of improving the return when optimizing the
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Figure 5: Return of policies during optimization in the sparse minigrid environments. In blue, the return
J(πθ) is optimized; in orange, the learning objective La(θ) is optimized; and in green, the learning objective
Ls(θ) is optimized performing Adam steps in REINFORCE directions. Note that the median, worst, and
best cases over five runs are represented for the different curves.

learning objective is small at the beginning and increases after some iterations. This indicates that after
some iterations, the attraction criterion holds for a large δ. The return thus eventually starts increasing,
and optimizing Ls(θ) provides a high-performing policy, as can be seen in Figure 5.
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(a) SGA following ĝ and d̂
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Figure 6: In Figure 6a, we show the estimated probability of improving the return J(πθ) and the learning
objective Ls(θ) when following their REINFORCE gradient estimates. In Figure 6b, we show the estimated
probability of improving the return J(πθ) and the learning objective Ls(θ) when following the REINFORCE
gradient estimate of the learning objective Ls(θ). Probabilities were estimated based on the frequencies of
improving the objective functions by more than 0.2 after following 5 Adam ascent steps.
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6 Conclusion

In conclusion, this research takes a step toward dispelling misunderstandings about exploration through the
study of its effects on the performance of policy-gradient algorithms. More specifically, we distinguish two
effects exploration has on the optimization. First, it modifies the learning objective to remove local extrema.
Second, it modifies the gradient estimates and increases the likelihood that the update steps lead to improved
returns. These two phenomena are studied through four criteria that we introduce and illustrate.

These ideas apply to other direct policy optimization algorithms. Indeed, the four criteria do not assume
any structure on the learning objective and can thus be straightforwardly applied to any objective function
optimized by a direct policy search algorithm. In particular, for off-policy policy-gradient methods, we may
simply consider that the off-policy objective is itself a surrogate or that the gradients of the return are biased
estimates based on past histories. Ideas introduced in this work also apply to other reinforcement learning
techniques. Typically, for value-based RL with sparse-reward environments, convergence to a value function
that outputs zero is expected with high probability. This is mostly due to the low probability of sampling
non-zero rewards via Monte Carlo. Similar discussion and analysis as in Section 4 then apply.

Our framework opens the door to further theoretical analysis, and the potential development of new criteria.
We believe that deriving practical conditions on the exploration strategies and the scheduling of the intrinsic
return to guarantee fast convergence should be the focus of attention. It could be achieved by bounding the
policy improvement in expectation, which is nevertheless usually a hard task without strong assumptions.
We further believe that we provide a new lens on exploration that is necessary for interpreting and developing
exploration strategies, in the sense of optimizing surrogate learning objective functions.
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