
Collect & Infer - a fresh look at data-efficient
Reinforcement Learning

Martin Riedmiller
DeepMind, UK

Jost Tobias Springenberg
DeepMind, UK

Roland Hafner
DeepMind, UK

Nicolas Heess
DeepMind, UK

Abstract: This position paper proposes a fresh look at Reinforcement Learning
(RL) from the perspective of data-efficiency. RL has gone through three major
stages: pure on-line RL where every data-point is considered only once, RL with
a replay buffer where additional learning is done on a portion of the experience,
and finally transition memory based RL, where, conceptually, all transitions are
stored, and flexibly re-used in every update step. While inferring knowledge from
all stored experience has led to a tremendous gain in data-efficiency, the question
of how this data is collected has been vastly understudied. We argue that data-
efficiency can only be achieved through careful consideration of both aspects. We
propose to make this insight explicit via a paradigm that we call ’Collect and
Infer’, which explicitly models RL as two separate but interconnected processes,
concerned with data collection and knowledge inference respectively.

1 Introduction

Figure 1: Collect and Infer
Agent. Collect (upper part)
and Infer (lower part) interact
through a shared policy pool
and transition memory.

Data-efficiency in Reinforcement Learning (RL) can be loosely
characterized as ’getting the most out of the collected experience’.
Data-efficiency is critical in many real-world scenarios [1], where
gathering data is the main bottleneck (e.g. in robotics), but it is also,
arguably, a key property of Artificial General Intelligence (AGI).
From a data-efficiency perspective, reinforcement learning methods
have gone through three major stages. The original RL framework
was phrased in a pure ’online’ setting: the agent acts, observes the
reward and new state, updates its behaviour and acts again. This
view continues to be successful in settings where data is cheap, e.g.
if a simulator of the environment is available. The next stage was to
introduce a replay buffer [2], which stored a subset of the transitions
to enhance the learning signal by iterating over recent experience
multiple times. Building on previous work [3, 4], Ernst et al. [5]
and Riedmiller [6] independently suggested to take this idea to the
extreme, store all experience in a transition memory and re-use the
full data in every update step. This led to a breakthrough in data-efficiency and made the application
of model-free RL in the real world possible [7, 8]. Recent years have witnessed a revival of this idea
with off-policy actor-critic algorithms rapidly gaining importance [9, 10, 11, 12]. In parallel there
has been a growing interest in RL algorithms that can learn from fixed data sets entirely without
interaction (offline RL) [13, 14, 15, 16, 17, 18, 19].

We extrapolate from these developments and argue that a clear conceptual separation of the rein-
forcement learning process into two distinct sub-processes, data-collection and inference of knowl-
edge, will lead to further improvements in data efficiency and enhanced capabilities for the next
generation of RL agents. We refer to this perspective as the Collect and Infer (C&I) paradigm. It
assumes two sub-processes: acting (data collection), and learning (inference) which are decoupled
but connected through a transition memory into which all data resulting from environment interac-
tion is collected, and from which data is drawn for learning. A particular emphasis is put on how the
data is collected. This view of RL as two independent processes provides additional flexibility in
algorithm design and emphasizes that these processes can and should be optimized independently.
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This paper gives a light-weight overview of the core concepts and implications of the C&I paradigm.
We discuss recent examples from the literature, how these algorithms can be interpreted from the
C&I perspective, and where that perspective suggests changes or improvements. We conclude with
a discussion of research questions motivated by the paradigm.

2 The Collect and Infer paradigm and its implications

The key idea of the C&I paradigm is to separate Reinforcement Learning into two distinct but in-
terconnected processes: process 1 deals with collecting data into a transition memory by interacting
with the environment, process 2 infers knowledge about the environment by learning from the data
of said memory. This perspective provides us with a new handle on the question of data efficiency
which we can optimize by considering each process separately via the following objectives:

1. (O1) Given a fixed batch of data, what is the right learning setup, to get to the maximally
performing policy (optimal ’inference’)?

2. (O2) Given an ’inference’ process, what is the minimal set of data, to get to a maximally
performing policy (optimal ’collection’)?

The C&I perspective has several implications. While it does not prescribe a particular algorithmic
solution it encourages us to develop algorithms that satisfy the following desiderata:

1. Learning is done offline in a ’batch’ setting assuming fixed data as suggested by O1. Data
may have been collected by a behavior policy different from the one that is the learning
target [e.g. 20]. This enables utilization of the same data to optimize for multiple objectives
simultaneously, and coincides with interest in offline RL [13, 16, 18, 15, 19].

2. Data-collection is a process that should be optimized in its own right. Naive exploration
schemes that employ simple random perturbations of a task policy, such as epsilon greedy,
are likely to be inadequate. The behavior that is optimal for data collection in the sense of
O2 may be quite different from the optimal behavior for a task of interest.

3. Treating data-collection as a separate process offers novel ways to integrate known methods
like skills, model-based approaches, or innovative exploration schemes into the learning
process without biasing the final task solution.

4. Data collection may happen concurrently with inference (in which case the two processes
actively influence each other and we get close to online RL) or can be conducted separately.

5. C&I suggests a different focus for evaluation: in contrast to usual regret-based frameworks
for exploration, C&I does not aim to optimize task performance during collection. Instead,
we distinguish between a learning phase, during which a certain amount of data is collected,
and a deployment phase, during which the performance of the agent is assessed.

Collect and Infer has implications for agent architectures, and it suggests alternative solutions to a
number of problems that will become prominent as RL is applied to more challenging scenarios,
including multi-task, transfer or life-long learning [21]. The Scheduled Auxiliary Control (SAC-X)
architecture of Riedmiller et al. [20] exemplifies several of the above ideas. Its components are
an actor, a transition memory, one or more learners, a pool of candidate policies and a scheduler,
that selects policies for execution by the actor such as to collect experience that is informative for
learning one or multiple tasks. Although the SAC-X agent does not explicitly optimize O1 and O2,
it does satisfy several of the above desiderata insofar as it decouples data collection and learning
and optimizes data collection actively and separately from the task solutions. This is achieved as
follows: (a) The agent optimizes for several auxiliary objectives in parallel to the policies for the
primary tasks of interest. (b) This allows the agent to learn a set of auxiliary policies that can
facilitate learning of one or more main tasks. (c) These auxiliary policies are deployed to collect
better experience. (d) Knowledge is shared across tasks by sharing experience. (e) Execution of
auxiliary policies is actively scheduled to improve data collection for the main task. (f) This process
is optimized via a separate learning process. The use of auxiliary policies bears some similarity to
the role of skills in hierarchical architectures but there are two important differences: (1) Unlike
skills, auxiliary policies are not directly used as part of the solution for the main task. The task
policy is learned off-policy from the data collected with the auxiliary policies. (2) Execution of the
auxiliary policies is scheduled to improve data collection. Although SAC-X emphasizes knowledge

2



sharing via data, as discussed in e.g. [22], this can be flexibly combined with a direct reuse of learned
behavior representations such as skills.

3 A formal look at Collect and Infer
We provide a partial formalization of the ideas introduced in Section 2. We consider the standard
objective consisting of an agent characterized by policy π(a|s) acting in an environment E with
states s ∈ S, actions a ∈ A, transition probability distribution p(st+1|st, at), initial state distribution
p(s0), and reward function r. The goal is to find a policy maximizing the expected sum of rewards

J(πθ) = Eτ∼πθ

[∑T
t=0 r(st)

]
, (1)

where τ = [(s0, a0), (s1, a1), . . . ] is a trajectory of length T sampled according to p and π.

The main perspective change of C&I is that inference of the policy happens through optimization
of a ’surrogate objective’ defined in terms of a finite set of data. As a result, the optimization of the
data set itself becomes part of the learning process. Thus, C&I can be characterized in terms of two
operators: a) an ’Inference’ operator, I, that given a data set D, computes a policy πθ(a|s) and b) a
data generation operator, C, that generates the data set D.

More precisely, the collection operator C will generate a data set consisting of N trajectories, for
instance by executing a collection policy µ in E : Dc = {τ1, . . . , τN |τ i ∼ µ, p} = C(E , N).
The inference operator I optimizes π to find the maximum of the surrogate objective LI which is
defined in terms of dataDc: πθ = I(Dc) = argmaxπθ

LI(πθ,Dc), This allows us to express a joint
objective that couples (O1) – identifying an optimal policy given fixed data – and (O2) – identifying
an optimal collection process given an inference procedure:

O(C; I, N) = J(argmaxπθ
LI(πθ,Dc = C(E , N))). (2)

We measure the success of the policy inferred from the data collected by C. For any choice of
I, environment E , and fixed data budget N we can identify an optimal collection process via the
’outer’ optimization C∗ = argmaxC O(I, C, N), for instance by optimizing µ. Different choices
for I will lead to different algorithms with different requirements for C. For instance, we can obtain
an algorithm in which we first create a fixed dataset and then obtain the policy via offline RL.

In practice, in particular the optimization with respect to C may be intractable and heuristics may be
used instead. Furthermore, the collection process and the inference process may be tightly coupled
and proceed in an iterative scheme. For example, the collection process might depend on previous
estimates of an optimal policy (or previous data).

4 Collect & Infer and the state-of-the art in reinforcement learning

The example in Section 2 highlights that the C&I paradigm offers considerable flexibility. It sug-
gests an interpolation between pure offline (batch) and more conventional online learning scenarios,
and thus chimes naturally with the growing interest in data driven approaches, where large datasets
of experience are built up over time, which can then enable rapid learning of new behaviors with
only small amounts of online experience. Decoupling acting and learning, and the emphasis on
off-policy learning gives greater flexibility when designing exploration or other actively optimized
data collection strategies, including schemes for unsupervised RL and unsupervised skill discov-
ery. Considering data as a vehicle for knowledge transfer enables new algorithms for multi-task and
transfer scenarios. It finally suggests a different emphasis when thinking about meta-learning or
life-long learning scenarios. To enable rapid adaptation to a novel task we may, for instance, focus
on collecting a dataset that is suitable for learning new tasks offline, relying only on small amounts
of task-specific online experience [e.g. 23, 24, 16, 25]. And in a similar vein we may use historic ex-
perience to mitigate problems associated with catastrophic forgetting [e.g. 26]. Many of these ideas
are already present in the literature. However, we believe that embracing the versatility of off-policy
learning and a stricter separation between data collection and inference will lead to future gains:

Model-free off-policy algorithms have improved considerably and are now widely used [e.g 9, 10,
11, 27]. However, they often continue to operate in an online fashion, without a clear separation of
policy optimization and data collection. A more recent development are specialized algorithms that
successfully operate in fully offline settings where a policy is optimized from a fixed dataset without
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further interaction with the environment [15, 16, 18, 28]. Moving forward it will be important to
focus on algorithms that work well in both the online and the offline setting [e.g. 29, 30] and can,
for instance, combine large, stored ’offline’ datasets and smaller amounts of ’online’ experience.

The separation between the behavior that is executed and behavior that is optimized during learning
has been exploited in goal-conditional or multi-task settings [e.g. 31, 32] and hierarchical goal-
conditional [e.g. 33, 34] settings. More generally, there is growing interest in off-policy HRL algo-
rithms [e.g. 33, 35, 36, 37, 22, 38] and offline skill-learning architectures [e.g. 39, 40, 41, 42, 43, 44].
So far, online and offline skill-learning architectures have, however, remained largely disjoint, and
skills tend to be reused as part of a hierarchical target policy. The C&I paradigm encourages further
integration of online- and offline skill learning architectures, a shift from the use of skills for pol-
icy optimization towards data collection, and more generally novel synergies between transfer via
experience (data) and via parameterized representations [e.g. 24, 16, 25, 43]. This perspective also
naturally integrates the use of expert demonstrations (data) or controllers (policies) during learning.

Similar to skills, stored trajectory data can be used to learn dynamics models for model based policy
optimization [e.g. 9, 45, 46, 47]. The C&I paradigm suggests instead, to use such models for online
behavior optimization during data collection. This can have the benefit that model error does not
directly affect the learned policy [e.g. 48, 49, 50, 51], and that behavior can adapt rapidly, e.g. to
alternative rewards. More generally, the C&I paradigm naturally allows for multiple behavior rules
with different levels of amortization/’on-the-fly’ optimization (see also e.g. [29, 52]).

The C&I viewpoint emphasizes the optimization of data collection. While a fully Bayesian treat-
ment can provide an optimal trade-off between exploration and exploitation [53, 54] but it is usually
intractable. Various alternative objectives have been explored both in the supervised and unsu-
pervised setting. These include approximate treatments of uncertainty [e.g. 55, 56, 57], intrinsic re-
wards derived from sensor changes [e.g. 58, 59], motivated by empowerment or related information-
theoretic formulations [e.g. 60, 61, 62, 63] and curiosity-based objectives [e.g. 64, 65, 66, 67]. The
C&I model encourages further research into strategies for the acquisition of information it provides
a flexible framework that may facilitate a conceptual disentanglement of objectives, representations,
and execution strategies. Information acquisition strategies could be motivated by, or explicitly em-
ploy, Bayesian reasoning, but the framework does not narrowly prescribe this perspective. However,
separating data collection and processing disentangles the evidence from the inferred quantities.

5 Conclusions and outlook
C&I-paradigm aims to re-think data-efficient RL through a clear separation of data collection and
exploitation into two distinct but connected processes and to exploit the flexibility of off-policy RL
in agent design for problems as diverse as online RL, offline RL, or lifelong-learning. We hope this
will inspire and intensify a several research avenues, of which we just want to highlight a few:

• An optimal collect process in the sense of O2 is key for data-efficient agents and thus for
achieving AI. This requires awareness of the knowledge that the agent has already acquired.
A dedicated research agenda should consider: What is a good objective for collecting the
’right’ data? What surrogates could we use if the ’correct’ objective is impractical?

• Effective implementations of ’infer’, i.e. how to squeeze all of the knowledge out of ex-
isting data; how to learn efficiently and reliably from large existing datasets, and how to
optimally merge the on-line and the off-line viewpoint on data generation and exploitation?

• C&I emphasizes the reuse of previously collected experience. This raises the question
what other intermediate representations of knowledge, besides policies, can be extracted
from data and efficiently reintegrated into the process of data collection and inference (e.g.
skills, models, rewards) to improve the capabilities of the learning system?

C&I is not tailored to a particular learning scenario and its applications range from ’classical’ single
task learning scenarios to multi-task scenarios. Going forward, we see C&I as a natural basis for a
data-efficient learning agent, that treats data as a raw resource that can be flexibly transformed into
different types of representations that can be used, for instance, for action selection (e.g. policies),
or may facilitate future learning problems (e.g. models, perceptual representations, or skills). At any
given time, the agent may act to collect new data, either with the goal of improving its performance
on a particular, external task, or to simply learn more about its environment in a way that can be
exploited in the future.
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