
Detecting Compute Structuring in AI Governance is likely feasible

Emmanouil Seferis * 1 Tim Fist * 2 3

Abstract
Compute structuring, a technique where AI devel-
opers split or modify compute workloads for the
purpose of avoiding regulation, poses a challenge
for AI governance techniques that rely on the com-
putational properties of AI workloads. This work
aims to explore the feasibility of detecting com-
pute structuring and to propose robust detection
methods. We do this by first exploring possible
forms of compute structuring. Using realistic as-
sumptions about cloud providers’ capabilities, we
derive a potential detection approach. Further,
we perform a comprehensive analysis of possible
adversary scenarios and show that our method
can detect them efficiently. Finally, we analyze
potential future trends in AI compute workloads
that could invalidate our proposed detection ap-
proach, and discuss possible adaptation and miti-
gation strategies. Overall, our study indicates that
compute structuring detection is probably both
feasible and practical to implement.

1. Introduction
1.1. Compute-based AI Governance

As AI models at the frontier of research (Bommasani et al.,
2021) like GPT-4 (Achiam et al., 2023), Claude (Anthropic,
2024), and others (Reid et al., 2024; Dubey et al., 2024) con-
tinue to demonstrate increasingly sophisticated capabilities,
the necessity for robust regulation and assurance of their
safe usage has become more pressing. Scaling laws (Vil-
lalobos, 2023), which observe that as models grow larger
and are trained on more data their performance continues to
improve, suggesting that this trend of increasing capabilities
is likely to persist. Therefore, it is imperative to establish
comprehensive governance frameworks to manage the risks
and ensure the beneficial deployment of these powerful AI

*Equal contribution 1Machine Learning Alignment & The-
ory (MATS) 2Institute for Progress (IFP) 3Center for a New
American Security (CNAS). Correspondence to: Tim Fist
<tim.fist@ifp.org>.

Workshop on Technical AI Governance (TAIG) at ICML 2025,
Vancouver, Canada. Copyright 2025 by the author(s).

systems.

Compute resources are pivotal in training frontier AI mod-
els, making them a critical focus for regulatory measures,
and are at the center of recent legislative efforts, such as
the EU AI Act (Commission, 2021) and the White House
AI executive order (House, 2023). These laws aim to over-
see and control the deployment of computational resources
to ensure AI systems are developed and used responsibly.
The rationale behind using compute as a regulatory tool is
well-founded, as detailed in (Sastry et al., 2024). The study
argues that by regulating access to and usage of compute re-
sources, authorities can effectively oversee the development
of AI models, preventing misuse and ensuring alignment
with safety standards.

One innovative proposal for AI governance is through the
utilization of cloud infrastructure, as discussed in a recent
paper (Heim et al., 2024). This approach advocates for
leveraging the centralized nature of cloud computing to
implement regulatory oversight mechanisms. By integrating
governance protocols within cloud platforms, regulators can
monitor and control the deployment of AI models more
efficiently.

1.2. The challenge of Compute Structuring

Most AI regulation proposals mainly rely on identifying
relevant workloads (such as frontier model pre-training),
and/or specifying a threshold in the total amount of compute
operations (OPs, integer or floating point), above which
additional measures need to be taken. Such measures could
include reporting requirements, or subjecting the model to
further red teaming and safety testing (Shevlane et al., 2023;
Kinniment et al., 2023; Phuong et al., 2024). However, this
approach could be susceptible to “compute structuring”,
a tactic that undermines regulatory efforts by distributing
computational workloads in a way that makes it difficult
to classify the workload (e.g. as model training or not),
and quantify the amount of compute it consumes (Reuel
et al., 2024) 1. In the context of AI, compute structuring can
manifest in several ways; tactics include splitting training

1This concept bears a striking resemblance to “transaction struc-
turing” in finance, where individuals break up large transactions
into smaller ones to avoid triggering reporting requirements meant
to prevent money laundering and tax evasion.

1

Detecting Compute Structuring

across multiple sequential or parallel jobs, using different
accounts or providers, or masking workloads as non-AI
tasks. These methods complicate oversight by fragment-
ing compute usage below regulatory thresholds, hindering
enforcement efforts.

1.3. Our Contribution

In this work, we argue that detecting compute structuring
is most likely technically feasible. To that end, we:

• First, building upon the proposal of (Heim et al., 2024),
we make a list of assumptions about cloud providers
for frontier AI training and their capabilities in tracking
key quantities needed for detecting compute structur-
ing. These include, for example, the ability of cloud
providers to estimate OPs, interconnect bandwidth,
memory allocation and internet traffic sizes. (Heim
et al., 2024) shows that the quantities are already col-
lected by cloud providers in a privacy-preserving way.

• Second, we compile a list of all possible compute
structuring methods and group them into categories.
Based on the core assumptions, we propose a set of
methodologies and algorithms to detect compute struc-
turing, within the same job, and across different jobs
and providers.

• We demonstrate that, under the assumptions stated,
our methodology can detect the compute structuring
methods listed. We perform an extensive analysis of
possible scenarios, attempting to capture all different
possibilities.

Overall, our argumentation shows that detecting compute
structuring is technically feasible. We hope that our work
can act as a stepping stone towards a technical implemen-
tation of compute structuring detection on cloud providers,
as well as informing policy and best practices in AI Gover-
nance.

2. Towards detecting Compute Structuring
In this section we present our approach towards detecting
compute structuring. First, we list a number of key as-
sumptions about frontier AI cloud providers that can be
leveraged for compute structuring detection. Then, we ana-
lyze the threat models we anticipate, and group them into
three main categories. Subsequently, we develop algorithms
for detecting and mitigating these threat models. Finally,
we demonstrate that our methodology succeeds against the
threat models under the specified assumptions, and under
which conditions they might fail.

2.1. Frontier AI cloud providers and key assumptions

Training frontier AI models is a costly and complex en-
deavor, with expenses reaching around $100 million and
expected to rise further (Cottier et al., 2024). As a result,
only a few companies can maintain the required infrastruc-
ture (Floerecke et al., 2023), while most developers access
these resources via cloud-based Infrastructure-as-a-Service
(IaaS) platforms.

Recognizing this trend, (Heim et al., 2024) propose us-
ing cloud providers as governance intermediaries, enabling
them to implement AI governance protocols and support
regulators in overseeing advanced AI development. Cloud
providers can serve as securers, record keepers, verifiers,
and enforcers.

Building on their work, we propose compute structuring
detection methods that leverage cloud providers’ existing
monitoring and record-keeping capabilities. We outline
key assumptions about their ability to track critical metrics
necessary for detecting such practices.

We present these assumptions below, and defer a detailed
discussion and justification in Appendix C.

A1: There are only a few cloud providers (< 10) who
have the capability of running frontier model training
workloads

A2: Cloud providers are able to record key metrics for
each submitted workload (such as OPs, bandwidth, traf-
fic and more), in a privacy-preserving manner

A3: Cloud providers can implement a know your cus-
tomer (KYC) scheme

A4: Cloud providers may report key information about
large enough workloads and their owners with each
other, or to a centralized regulating body

A5: Customers will want to train a new frontier model
within a reasonable amount of time

The above are the key assumptions we plan to use for de-
veloping our compute structuring detection methodologies.
Unlike other potentially stronger methods such as hardware
verification, which are currently not implemented, we see
that most pieces we need are already in place, and the above
assumptions can be materialized in a very short amount of
time.

2.2. Threat models and analysis

Before proceeding, we need to identify all plausible sce-
narios of compute structuring, and group them into main
categories. We outline the following main categories:

• Sequential Workloads: This involves breaking up

2

Detecting Compute Structuring

a large training task into multiple sequential work-
loads, each below the reporting threshold, and using
partially-trained model weights from previous work-
loads. The different sequential workloads could further
be assigned to different cloud accounts or providers,
attempting to additionally harden detection. This is the
most straightforward and economically feasible adver-
sary scenario, as the technical details of the workload
stay almost the same.

• Disaggregated Workloads: This category involves
splitting a large training task across multiple cloud ac-
counts/providers, where each serves as a data parallel
worker within a larger disaggregated training run, peri-
odically sharing weight updates. This group of threats
go into the category of federated / decentralized model
training.

• Masking: This scenario involves disguising the com-
putational signature of a workload to make it look less
like large model training, e.g. by using non-standard
bandwidth and memory access patterns. Examples
could be making a training job to look like inference /
model deployment (by adding “fake” internet traffic),
or like a large-scale non-AI related simulation, such
as weather or climate forecasting, graphics processing,
physics simulations, etc.

An important prerequisite towards detecting compute struc-
turing is the step of workload classification, e.g. recognizing
the type of a workload that is submitted / running (Reuel
et al., 2024), mostly between training, deployment / infer-
ence or non AI-related (Appendix A).

2.3. Detection Algorithms

Based on our assumptions about AI cloud providers and the
threat models identified, we now propose detection strate-
gies for compute structuring.

We start with the problem of workload classification, which
is generally an important problem in technical AI gover-
nance (Reuel et al., 2024), and serves as a foundation for
compute structuring detection. For our context the problem
can be simplified in the following two ways:

• We are mostly interested in grouping workloads into
three categories: “training”, “potentially training” and
“non-training”. As we’ll see below, these are the crucial
categorizations we need for detecting compute struc-
turing.

• We prefer to “err on the side of caution”: it’s better
to flag a workload as “potentially training” while it’s
not AI training, rather than the opposite. This is es-
pecially the case if we expect potentially severe risks

from future AI systems (Phuong et al., 2024). In the
case where a workload is flagged as being potentially
training, further inspections could be performed, such
as for example further regulator checking. Since we’re
dealing with just a few cloud providers and companies
that can finance frontier model training, we assume that
the cost of a false positive (assuming there’s training
when it’s not) is not too high.

With that, our approach for workload classification is out-
lines in alg. 1 (Appendix D) and works as follows: First,
we retrieve the customers identifying information, and the
characteristics of the intended workload, in terms of OPs
(C), the throughput R (OPs per second, or OP/s) and the
node-to-node bandwidth B (in bytes per second). Then, we
compare these values to some pre-specified thresholds. If
all are larger, we have a high degree of certainty that the
workload could be performing AI training. Otherwise, if
some but not all of the values exceed the threshold, we con-
servatively flag the workload as “potentially training”, to
be subjected to further inspection. Finally, if all values are
below the thresholds, we can say with high confidence that
the workload cannot perform AI training.

Thresholds C,R and B have to be suitably chosen by cloud
providers so that they are representative of relatively large
training runs - but also few orders of magnitude less than
the frontier-level thresholds. For example, according to
(House, 2023), any frontier model training using more than
Cmax = 1026 OPs has to be declared. Based on that, a
reasonable choice for C would be 1024. The reason for this
is that in compute structuring, it can be the case that multiple
training workloads are aggregated into a larger one, and we
need to account for that; this will become more apparent
shortly. On the other hand, R and B can be the same as the
thresholds we’ll select for the overall compute structuring
algorithm presented next, as these quantities (in contrary to
the overall compute) are not aggregative.

We use alg. 1 as a building block for our main algorithm for
compute structuring detection (alg. 2, Appendix D). Alg. 2
works as follows: First, using workload classification alg.
1, we analyze and collect all workloads from a given cus-
tomer that could be potentially training (have sufficiently
high total compute, throughput and node-node bandwidth).
Then, for all time intervals between the start of the earliest
workload and the finish of the last one, we analyze all se-
quential workloads, and calculate their combined compute
and throughput. Since sequential training workloads could
be a split-up training run, if the combined values exceed the
thresholds, we flag the workloads for further inspection.

Additionally, alg. 2 also addresses the scenario of data-
parallel workloads. Specifically, for all workloads that run
in parallel and could be potentially training, we measure
the size of data exchange between them. If this exceeds

3

Detecting Compute Structuring

some threshold, the workloads could be part of a joint data-
parallel run; in that case, we sum up their combined compute
OPs, and proceed similarly to the sequential case. Finally,
we perform a last check combining the above two cases
together.

For the thresholds here, C will be dictated by the corre-
sponding legislation (e.g. (House, 2023) or (Commission,
2021)). R will be selected sufficiently small such that a
frontier model cannot be trained faster than 3-4 years, as
required by assumption A5. B is similar as in the workload
classification case, and should be a value corresponding to
the bandwidth rate of state-of-the-art GPU connectors. Fi-
nally, D should be estimated by the size of frontier models
times the expected number of gradient updates, reduced by
few orders of magnitude for safety reasons.

2.4. Methodology Efficiency Demonstration / Analysis

In this section, we aim to analyze the effectiveness of the
proposed detection strategy against the threat scenarios pre-
viously outlined.

Claim 1: Workload classification by alg. 1 is effective To
see this, we note two insights: first in the context of com-
pute structuring, we do not need extremely precise workload
classification; our aim is to merely flag a workload as per-
forming potentially training. If we expect the capabilities of
future models to advance into potentially dangerous levels,
it’s crucial to not fail in detecting a training run, perhaps
at the cost of increasing the false alarms; it’s preferable to
do some unneeded inspections, rather than failing to detect
a malicious training run. The second insight is that any
masking attempt on a workload must necessarily be addi-
tive: that is, a malicious actor can append fake activity on
top of a workload, but: the needed compute, throughput and
bandwidth can never decrease by masking. Thus, if a work-
load exceeds these thresholds, it’ll be flagged as potential
training in all cases. The thresholds should be selected in
such a way that frontier-level training is infeasible below
them.

Claim 2: Alg. 2 is effective against sequential workloads
Indeed, since we monitor the throughput, it doesn’t make
any difference if the workloads are split or run as a single
one. If the individual workloads can be detected as training,
so will be the sequence.

Claim 3: Alg. 2 is effective against parallel workloads,
unless they can train almost independently In the context
of frontier training, data parallel model instances need to
communicate gradient updates with each other, typically
after each training step. Therefore, two such nodes will
communicate data of the order of the model size after each
batch. Normally this amount of data is massive, and this
is why AI data centers have to be concentrated in the same

location and connected by specialized high-bandwidth links.

A potential challenge in this setup comes from advances
in decentralized training. For example, (Douillard et al.,
2023; Jaghouar et al., 2024) demonstrated the feasibility of
decentralized model training for small LLMs in the range
of 100 million - 1 billion parameters. Their setup consists
of 4 decentralized servers with 8 AI accelerators each, that
perform gradient updates much more infrequent than after
each mini-batch. Using this, they manage to reduce the
node-node communication bandwidth by 500×. However,
this approach is still unlikely to work against alg. 2 for the
following reasons:

• In the context of frontier training, a communication
reduction of 1000× or more is still very large and de-
tectable (normally, a training tun should not exchange
any data with the outside world; this enables us to
flag any workload that has a training signature but also
exchanges data as suspicious. Moreover, the data ex-
change will happen in regular intervals (after a certain
number of training steps), giving us a recognizable
pattern.

• The decentralized training setups tested are many or-
ders of magnitude less than the state of the art, so
it’s yet unclear if such approaches will scale. Finally,
for frontier models, every decentralized job will be a
significant fraction of the frontier.

The only failure mode is if decentralized training turns out
to be possible with almost zero or very low data exchange
rates. For example, a scenario of this kind would be training
independent experts in the context of MoE and then combin-
ing them. (Sukhbaatar et al., 2024) claim that to be possible,
but again their setup is not comparable to the frontier; in the
case of frontier models, the only tested approach is training
the MoE model combined.

Thus, we see that our method can indeed detect all threat
models outlined, and we uncover the only possible failure
case. In Appendix F we try to address this, by describ-
ing how our methodology should adapt to potential future
advancements.

3. Conclusion
The aim of this work is to tackle compute structuring, a
potentially dangerous scenario in AI governance, where ad-
versaries manage to train frontier AI models while evading
regulations, by organizing the computation in specific ways.
In order to detect this, we list all possible threat models,
and propose an effective detection approach, relying on the
capabilities of frontier cloud providers. Further, we manage
to identify the possible future potential failure cases, and
outline a mitigation approach. We hope that our work can
aid towards developing successful AI governance methods
to ensure that AI remains safe and beneficial for all.

4

Detecting Compute Structuring

4. Acknowledgments
We would like to thank the Machine Learning Alignment
and Theory Program (MATS) for supporting this research,
and especially McKenna Fitzgerald, for her active support
and helpful discussions throughout the project. Moreover,
we would also like to thank the reviewers of the Technical
AI Governance (TAIG) Workshop for their thorough and
in-depth feedback.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,

Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., et al. Accurate structure prediction of
biomolecular interactions with alphafold 3. Nature, pp.
1–3, 2024.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, son-
net, haiku. Anthropic Technical Report, 2024.
URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Commission, E. Proposal for a regulation laying
down harmonised rules on artificial intelligence
(artificial intelligence act), 2021. URL https://
artificialintelligenceact.eu/the-act/.
Accessed: 2024-08-06.

Cottier, B., Rahman, R., Fattorini, L., Maslej, N., and Owen,
D. The rising costs of training frontier ai models, 2024.

Douillard, A., Feng, Q., Rusu, A. A., Chhaparia, R.,
Donchev, Y., Kuncoro, A., Ranzato, M., Szlam, A., and
Shen, J. Diloco: Distributed low-communication training
of language models. arXiv preprint arXiv:2311.08105,
2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Epoch AI. Key trends and figures in machine learning, 2023.
URL https://epochai.org/trends. Accessed:
2024-08-16.

Floerecke, S., Ertl, C., and Herzfeldt, A. Major drivers for
the rising dominance of the hyperscalers in the infrastruc-
ture as a service market segment. International Journal
of Cloud Computing, 12(1):23–39, 2023.

Gade, P., Lermen, S., Rogers-Smith, C., and Ladish, J. Badl-
lama: cheaply removing safety fine-tuning from llama
2-chat 13b. arXiv preprint arXiv:2311.00117, 2023.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Heim, L., Fist, T., Egan, J., Huang, S., Zekany, S., Trager, R.,
Osborne, M. A., and Zilberman, N. Governing through
the cloud: The intermediary role of compute providers in
ai regulation. arXiv preprint arXiv:2403.08501, 2024.

Ho, A., Besiroglu, T., Erdil, E., Owen, D., Rahman, R.,
Guo, Z. C., Atkinson, D., Thompson, N., and Sevilla, J.
Algorithmic progress in language models, 2024.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D., Hendricks, L., Welbl, J.,
Clark, A., et al. Training compute-optimal large language
models. arxiv 2022. arXiv preprint arXiv:2203.15556,
10, 2022.

House, T. W. Executive order on the safe, secure,
and trustworthy development and use of artificial
intelligence, executive order 14110, 2023. URL
https://www.whitehouse.gov/briefing-
room/statements-releases/2023/10/30/
executive-order-on-the-safe-secure-
and-trustworthy-development-and-use-
of-artificial-intelligence/. Accessed:
2024-08-06.

Jaghouar, S., Ong, J. M., and Hagemann, J. Opendiloco: An
open-source framework for globally distributed
low-communication training. arXiv preprint
arXiv:2407.07852, 2024.

Kinniment, M., Sato, L. J. K., Du, H., Goodrich, B., Hasin,
M., Chan, L., Miles, L. H., Lin, T. R., Wijk, H., Burget,
J., et al. Evaluating language-model agents on realis-
tic autonomous tasks. arXiv preprint arXiv:2312.11671,
2023.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162, 2018.

NVIDIA. A revolution in the making: How ai
and science can mitigate climate change, 2021.
URL https://blogs.nvidia.com/blog/ai-
science-climate-change/. Accessed: 2024-08-
16.

5

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://artificialintelligenceact.eu/the-act/
https://artificialintelligenceact.eu/the-act/
https://epochai.org/trends
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://blogs.nvidia.com/blog/ai-science-climate-change/
https://blogs.nvidia.com/blog/ai-science-climate-change/

Detecting Compute Structuring

OpenAI. Techniques for training large neural networks.
https://openai.com/index/techniques-
for-training-large-neural-networks/,
2022. Accessed: 2024-08-10.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Patel, Dylan and Nishball, Daniel. 100,000 h100
clusters: Power, network topology, ethernet vs in-
finiband, reliability, failures, checkpointing, 2024.
URL https://www.semianalysis.com/p/
100000-h100-clusters-power-network.
Accessed: 2024-09-11.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.,
Rothchild, D., So, D., Texier, M., and Dean, J. Carbon
emissions and large neural network training. arxiv 2021.
arXiv preprint arXiv:2104.10350.

Phuong, M., Aitchison, M., Catt, E., Cogan, S., Kaskasoli,
A., Krakovna, V., Lindner, D., Rahtz, M., Assael, Y., Hod-
kinson, S., et al. Evaluating frontier models for dangerous
capabilities. arXiv preprint arXiv:2403.13793, 2024.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Reuel, A., Bucknall, B., Casper, S., Fist, T., Soder, L., Aarne,
O., Hammond, L., Ibrahim, L., Chan, A., Wills, P., et al.
Open problems in technical ai governance. arXiv preprint
arXiv:2407.14981, 2024.

Sastry, G., Heim, L., Belfield, H., Anderljung, M.,
Brundage, M., Hazell, J., O’Keefe, C., Hadfield, G. K.,
Ngo, R., Pilz, K., et al. Computing power and the
governance of artificial intelligence. arXiv preprint
arXiv:2402.08797, 2024.

Sevilla, J., Besiroglu, T., Dudney, O., and Ho, A. The
longest training run, 2022. URL https://epochai.
org/blog/the-longest-training-run. Ac-
cessed: 2024-08-13.

Sevilla, J., Besiroglu, T., Cottier, B., You, J.,
Roldán, E., Villalobos, P., and Erdil, E. Can
ai scaling continue through 2030?, 2024. URL
https://epoch.ai/blog/can-ai-scaling-
continue-through-2030. Accessed: 2025-01-28.

Shevlane, T., Farquhar, S., Garfinkel, B., Phuong, M., Whit-
tlestone, J., Leung, J., Kokotajlo, D., Marchal, N., An-
derljung, M., Kolt, N., et al. Model evaluation for extreme
risks. arXiv preprint arXiv:2305.15324, 2023.

Sukhbaatar, S., Golovneva, O., Sharma, V., Xu, H., Lin,
X. V., Rozière, B., Kahn, J., Li, D., Yih, W.-t., Weston,
J., et al. Branch-train-mix: Mixing expert llms into a
mixture-of-experts llm. arXiv preprint arXiv:2403.07816,
2024.

Tamirisa, R., Bharathi, B., Phan, L., Zhou, A., Gatti, A.,
Suresh, T., Lin, M., Wang, J., Wang, R., Arel, R., et al.
Tamper-resistant safeguards for open-weight llms, 2024.
URL https://arxiv. org/abs/2408.00761, 2024.

Villalobos, P. Scaling laws literature review. Published
online at epochai. org, 2023.

6

https://openai.com/index/techniques-for-training-large-neural-networks/
https://openai.com/index/techniques-for-training-large-neural-networks/
https://www.semianalysis.com/p/100000-h100-clusters-power-network
https://www.semianalysis.com/p/100000-h100-clusters-power-network
https://epochai.org/blog/the-longest-training-run
https://epochai.org/blog/the-longest-training-run
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://epoch.ai/blog/can-ai-scaling-continue-through-2030

Detecting Compute Structuring

A. Terminology
Here we provide some background terminology about AI
data centers and workloads (Heim et al., 2024).

A Workload is a computational task to be performed on the
data center, such as for example training an AI model.

An OP is a single operation run on computer hardware,
typically a multiplication or addition of two numbers. AI
workloads typically require a large number of matrix mul-
tiplication operations, usually as floating-point (FLOP) or
integer operations.

AI accelerators are specialized chips to perform matrix
multiplications fast and parallelized, typically used in AI
training or interference; for example GPUs and TPUs. These
devices are optimized for AI training, featuring trillions of
matrix-multiply OPs per second (OP/s or FLOP/s), large
and fast memories to fit model parameters, and very fast
bandwidth interconnect for inter-device communication.

A node or server is a single computer within a data center
that contains multiple AI accelerators, as well as its own
dedicated CPU, memory and storage.

A (computing) cluster is a group of linked nodes that can
work together to process a workload.

Finally, a data center is a facility housing computing clus-
ters, as well as the equipment and infrastructure needed to
operate them.

Generally, AI workloads can belong in one of the following
categories (Heim et al., 2024):

• Design, in which AI researchers perform experiments
with new architectures, hyperparameters etc. These
are typically run at multiples in parallel, and at small
scales.

• Training, where the core model training is performed.
This step is also referred to as “pre-training”, to distin-
guish it from further fine-tuning steps.

• Enhancement, where a trained model is further fine-
tuned on smaller datasets, for example in order to re-
turn more coherent answers in the context of LLMs.
This step may also involve some form of Reinforce-
ment Learning (Ouyang et al., 2022).

• Deployment, in which a trained model is used to
make predictions (“inference”), typically served to cus-
tomers.

• Non-AI related, where we classify any other work-
loads. Those may also use AI accelerators in some
cases, but for other purposes (e.g. weather / physics
simulations, etc.).

Scenario A

Scenario B

Scenario C

T i m e / C o m pu t e Q ua n t i t y

Large Training Run

Small
Training Run

Small
Training Run

Fine-Tuning
Experiment

Model
Deployment

Fine-Tuning
Experiment

Fine-Tuning
Experiment Model Deployment

Figure 1. Example illustration of different workload types using
the same amount of compute (figure from (Heim et al., 2024)).

Figure 2. Illustration of different model parallelism types; each
color refers to one layer and dashed lines separate different AI
accelerators (figure from (OpenAI, 2022)).

Being able to distinguish the type of a workload is necessary
in performing compute accounting for a given AI developer.
For example, fig. 1 shows an example where the same
amount of compute is used in different ways for different
scenarios.

B. Basics on large AI training runs
The main challenge of frontier AI model training is to dis-
tribute massive computational loads across multiple nodes.
The basic setups are as follows (fig. 2):

Single node workload: This is the most basic scenario,
where the model can fit within a single AI accelerator. The
dataset is split in batches, and the model parameters are
updated on each batch, by performing stochastic gradient
descent (SGD) (Goodfellow et al., 2016), where we perform
a forward pass to get the model’s prediction, and a backward
pass to update the parameters towards decreasing the task
loss. For Transformer models, we can estimate the number
of OPs required for the forward and backward pass as 6N,
where N is the number of model parameters (Hoffmann
et al., 2022).

Data parallelism: In data parallelism, the dataset is split
across multiple AI accelerators, each of which holds a copy
of the entire model. Each accelerator processes a different
mini-batch of data, and the gradients are aggregated and

7

Detecting Compute Structuring

synchronized across all accelerators after each forward and
backward pass. In that way, multiple data batches can be
processed in parallel. This method is straightforward but can
become bandwidth-intensive as the model size increases,
requiring efficient communication between different AI ac-
celerators. For these reasons, AI accelerators within the
same server, as well as servers within the same cluster are
communicating with specialized high-bandwidth connec-
tions. The gradient accumulation across devices is typically
performed with a so-called AllReduce operation, where gra-
dients within servers and then across servers are summed in
an efficient, hierarchical fashion.

Model parallelism: In model parallelism, the model itself
is split across multiple AI accelerators. Each accelerator
handles only a part of the model, which allows the train-
ing of models that would otherwise be too large to fit into
the memory of a single GPU. However, model parallelism
introduces complexity in managing dependencies between
different parts of the model and often requires sophisticated
coordination to minimize idle time during training. In a
naive implementation, the accelerator computing the output
of the first layers would have to wait idle until the sub-
sequent accelerators compute the remaining forward and
backward passes, resulting in an inefficient hardware utiliza-
tion. To mitigate this, batches are typically further split into
micro-batches, so that each device can immediately start
computing the forward pass of the next micro-batch while
waiting for the backward pass of the previous ones.

Tensor parallelism: Tensor parallelism is another possibil-
ity for splitting a large model into multiple AI accelerators:
this time, instead of dedicating each layer to a different de-
vice, we can split the same layer across devices; each device
computes a part of the layer output, and the results are then
aggregated. As this needs to happen for each forward and
backward pass, efficient communication between accelera-
tors is crucial, even more than in the previous setups.

Pipeline parallelism: Finally, Model, Tensor and Data
parallelism can be combined together (especially for very
large frontier models) leading to Pipeline parallelism.

Expert parallelism: Additionally, in the case of Mixture
of Experts, each token may be computed by a different part
of the model. This on the one hand makes splitting a large
model across accelerators easier (as each accelerator can
implement only a single expert independently), but routing
between experts has to be implemented in a communication-
efficient manner.

To further optimize the training of large models, additional
methodologies have been proposed, such as mixed-precision
training (where e.g. we train a model using faster integer op-
erations instead of more expensive floating-point ones, with
minimal effect on model accuracy), check-pointing, trading

compute for memory and others. We refer the reader to
(OpenAI, 2022) for a gentle introduction, as well as (Dubey
et al., 2024) for an in-depth description of the hardware
setup and process to train the Llama-3 models.

Frontier AI model training and deployment involves multi-
ple challenges, including managing the specialized hardware
equipment, handling compute and energy costs, efficient
data management, device debugging and monitoring, and
more. Frontier AI data centers resolve these challenges for
their customers, providing them a simple abstraction to sub-
mit their workloads, and resource compartmentalization for
each workload.

C. Detailed Assumptions on AI Cloud
Providers

In the following, we discuss and elaborate further the as-
sumptions on AI cloud providers stated in the main text.

A1: There are only a few cloud providers (< 10) who
have the capability of running frontier model training
workloads

This is expected due to the rising cost of training frontier
models, the massive upfront cost of the (specialized) equip-
ment and operation / maintenance, as well as future chal-
lenges such as energy requirements. The precise number of
providers is not significant.

A2: Cloud providers are able to record key metrics for
each submitted workload, in a privacy-preserving man-
ner This assumption is analyzed in depth in (Heim et al.,
2024), where the authors remark that cloud providers are
already tracking most quantities needed; more specifically:

• Hardware configuration requested and time duration:
Customers need to declare upfront the hardware config-
uration they require (number of nodes, usage duration,
node and AI accelerator technical specifications) in or-
der to submit a workload. This information is needed
by the cloud provider to reserve the required resources
and assign them to the workload.

• Cluster-level technical information: network band-
width between nodes, data ingress/egress, energy con-
sumption: This information is already collected by
cloud providers for equipment monitoring purposes.

• Granular node-level data such as AI accelerator core
utilization or AI accelerator memory bandwidth uti-
lization: this information can be collected by existing
tools, and is collected by some cloud providers.

• Workload-level technical information (code, data, hy-
perparameters): These are not collected, as it would
violate the customer’s privacy. However, (Heim et al.,

8

Detecting Compute Structuring

High L
Measurements

Low Level
Measurements

How many other
nodes in the

cluster is a node
communicating

with?

What is the quantity

of on-chip operations

(e.g. multiplication,

addition) performed?

How much
power is being

consumed by an
AI accelerator?

How much data is
the AI accelerator
chip loading and

storing to memory?

How much
network traffic
is an individual
AI accelerator
transmitting?

Is a node 
(or set of nodes) communicating

with a node
outside the

cluster?

How much
hardware does

a customer
have access to?

Are data artifacts
such as model

weights produced
using the

provider’s API?

Do two nodes

have a network

link with each

other, or exist in

the same network

topology?

Figure 3. Illustration of possible compute usage metrics for AI
workload analysis, organized by granularity level (figure from
(Heim et al., 2024)).

2024) argues that this information could potentially
be hardware-attested if needed, by means of trusted
computation methodologies, in a privacy-preserving
way. The authors claim that the required technology
already exists, and would take 2-4 years to integrate in
AI accelerators and nodes.

The above measurements are depicted in fig. 3, from lower
to higher level of granularity.

A3: Cloud providers can implement a know your cus-
tomer (KYC) scheme

Cloud providers are already required to request and keep
track of customer identity verification, including data such
as name, billing address, credit card data, IP addresses, date
and time of access, device identifiers, language and more.
With these, cloud providers can essentially know which
customer runs which workloads.

A4: Cloud providers may report key information about
large enough workloads and their owners with each
other, or to a centralized regulating body

This is currently only partially implemented, and is the main
proposal of (Heim et al., 2024). Note that performing this
is easy, as cloud providers already collect the required in-
formation by assumptions A2 and A3. Moreover, this can
be done in a privacy-preserving manner, by e.g. employing
customer identifiers instead of legal names. The task can
be further facilitated by A1, as there exist only a few fron-
tier cloud providers who need to exchange data with each
other and with regulators. The main challenge to achieve
this is political / legislative, as different countries / regions
(USA, EU, China) with different jurisdiction will need to
coordinate with each other, and establish an international
regulatory body and a standardized procedure (Heim et al.,
2024). However, could providers may be willing to self-
regulate and exchange key information with each other prior
/ without the establishment of a regulation authority.

A5: Customers will want to train a new frontier model

Algorithm 1 Workload classification for compute structur-
ing

1: Input: workload information W (including workload
initial requirements and runtime measurements)

2: Constants: AI OPs threshold C, throughput thresh-
old R (in OP/s), inter-node bandwidth threshold B (in
GB/s)

3: Output: workload classification (“training”, “poten-
tially training”, “non-training”)

4: retrieve customer identifying information I ←
getCustomerID(W)

5: get workload declaration from customer d ←
getWDeclaration(W)

6: if d = “training” then
7: return “training”
8: end if
9: retrieve W ’s theoretical OPs CW , time duration tW and

node-node bandwidth BW

10: if CW ≥ C and CW /tW ≥ R and BW ≥ B then
11: return “training”
12: else if CW ≥ C or CW /tW ≥ R or BW ≥ B then
13: return “potentially training”
14: else
15: return “non-training”
16: end if

within a reasonable amount of time

Developing a frontier AI model is a difficult task, and apart
from training, it requires further steps that take time, such as
enhancement (fine-tuning), safety-testing and deployment.
The aim of our approach is not to make it impossible for
a malicious actor to train a frontier model at all (which is
infeasible), but to disallow them from doing so within a
reasonable amount of time. Following (Sevilla et al., 2022),
we assume that an AI developer will want to train their
model within a maximum time of around 18 months (the
typical duration is much shorter, about 100 days). If our
detection method can prevent this and force malicious actors
into much larger deployment times (3 years or more), we
consider this as “effectively safe”: within that time, the
state-of-the-art will shift, outpacing the malicious developer,
and the approach will give us sufficient time to react.

D. Complete Compute Structuring Detection
Algorithms

E. Analysis of False Positives
A potential challenge with the outlined approach is the pos-
sibility of raising too many False Positives, that is flagging
workloads as suspicious (frontier training run exceeding
regulatory threshold) when in fact they’re benign. In that

9

Detecting Compute Structuring

Algorithm 2 Compute Structuring detection

1: Input: customer ID ID, list of active workloads Wi

(currently running or submitted to be run in the future)
2: Constants: AI OPs threshold C, throughput thresh-

old R (in OP/s), inter-node bandwidth threshold B (in
GB/s), cluster-cluster communication size (GB) D

3: Output: customer classification (“benign”, “to-be-
inspected”)

4: get earliest workload starting time tstart and latest end-
ing time tend.

5: for all time intervals [ts, te], ts ≥ tstart, te ≤ tend do
6: gather all workloads Wall active within [ts, te]

flagged as “potentially training” by alg. 1
7: gather all subsets of workloads Ws that are sequential

in time, get total time duration tcomb and aggregated
compute Cs

8: if Cs ≥ C or Cs/tcomb ≥ R then
9: return “to-be-inspected”

10: end if
11: gather all subsets of active workloads Wp running in

parallel that exchange data with each other beyond
D, and aggregate their compute Cp

12: if Cp ≥ C or Cp/tcomb ≥ R then
13: return “to-be-inspected”
14: end if
15: gather both sequential and parallel workloads ex-

changing data beyond D, aggregate their compute
Csp

16: if Csp ≥ C or Csp/tcomb ≥ R then
17: return “to-be-inspected”
18: end if
19: end for

case, an implementation of the proposed methodology may
be opposed by frontier labs and other organizations at the
forefront of AI research. To investigate this possibility, in
this section we perform an analysis of the expected num-
ber of False Positives under different scenarios and realistic
assumptions.

We identify the following scenarios:

Model serving / inference: This is typically where the
largest usage of AI accelerators takes place (Epoch AI,
2023) (60% - 90%), in order to serve models to millions
of customers worldwide. Typically, during interference, in-
dependent copies of the model are served from different
servers, and these workloads are small individually, and
don’t exchange data with each other. Hence, alg. 1 and
2 will not flag them, resulting in no False Positives in this
case.

Model fine-tuning / experiments: Model fine-tuning and
other experiments that typically happen in AI labs are well

below the compute threshold limits. Moreover, these work-
loads are isolated, and don’t exchange data with each other.
Hence, our approach will not flag them, resulting in no False
Positives.

Non-AI large workloads: Alg. 1 and 2 will flag any work-
load that has a signature of a large AI training run, using a
large enough amount of compute, specialized accelerators
and interconnect bandwidth. Potentially, this could also flag
non-AI related workloads, such as weather or physics simu-
lations, or others. However, current non-AI large workloads
do not have the typical signature of AI training runs (they do
not need data-center GPUs, high interconnect, may also use
CPUs, etc), or in the case they use AI accelerators (such as
e.g. Neural Network - based weather simulations (NVIDIA,
2021)) the resources used are orders of magnitude below
frontier AI training runs. Thus, we expect that our approach
will result in only very few False Positives in this case. In
the Appendix, we list some of the currently largest High
Performance Computing (HPC) runs and inspect their dif-
ferences with Deep Learning training.

Independent training runs running in parallel: This is
another scenario, where an AI organization trains the dif-
ferent relatively large models in parallel, for example one
Large Language Model and one Protein Folding Model like
AlphaFold (Abramson et al., 2024). These are two inde-
pendent workloads that run in parallel and do not exchange
data with each other. Thus, alg. 1 and 2 will not flag them,
except if any individual workload exceeds the thresholds.
Hence, we do not expect False Positives in this setting.

Independent training runs happening sequentially: This
is the only case where our approach may raise significant
False Positives. For example, imagine an AI lab that runs
two large workloads sequentially, but each one is indepen-
dent from the other, e.g. one Large Language Model and
one Protein Folding Model. Since alg. 1 and 2 limit the
overall throughput of sequential workloads, they may flag
this scenario as a potentially single large training run in
case the combined workloads exceed the throughput and the
compute threshold, even if they’re independent in reality.
However, this will only happen if the individual workloads
are close enough to the threshold. It is unclear how often
this scenario happens.

Table 1 summarizes the above findings.

F. Limitations and Mitigation Strategy
As we saw previously, our proposal is effective against all
threat models within the current context of ML. However, it
may be the case that future advancements shift the landscape
and pose further challenges. Therefore, it’s important to
outline a continuous observation and mitigation approach.

10

Detecting Compute Structuring

Table 1. expected number of False Positives of alg. 1 and 2 for
different scenarios.

Scenario Expected number of
False Positives

Model serving / inference None or very few
Model fine-tuning / experi-
ments

None or very few

Non-AI large workloads None or very few
Independent training runs
happening in parallel

None or very few

Independent training runs
happening sequentially

False Positives in case of
large enough independent
sequential workloads. We
don’t expect this to happen
often.

Algorithmic Improvements The compute thresholds cur-
rently dictated by regulations such as (House, 2023) are
based on the current state of the art in ML training. How-
ever, works such as (Ho et al., 2024; Epoch AI, 2023) es-
timate a trend of around 3× algorithmic improvements in
AI training: that is, if training a model with some level of
capability requires x OPs today, it may require only x/3
next year.

To account for that, it’s crucial that our proposed strategy is
revisited at regular time intervals. Ideally, subject experts
should constantly monitor new developments in ML, esti-
mate trends, and regularly communicate with policy makers,
so that mitigation approaches can be adjusted as needed. On
the positive side, we see that the detection approach of alg.
2 remains valid in any case, and only the magnitude of the
thresholds may need to be adjusted.

Advances in Decentralized Training The only failure case
for our approach, as identified before, are future advance-
ments in decentralized frontier model training, where the
communication between the different parallel workloads
is almost zero. Furthermore, if the individual workloads
need not be large (say 10 times a 10× smaller workload,
but 100 times a 100× smaller workload) this would make
detection even more challenging. To mitigate this, it’s cru-
cial that government institutes monitor the state-of-the-art in
ML constantly and discuss with policy makers at a frequent
and regular basis. Also, such an advancements may make
hardware-based attestation methods necessary.

Easiness of safety fine-tuning removal for open-weight
models Although our work focuses mostly on the case of de-
tecting frontier model training, this is also a failure scenario
that needs to be discussed, in the case of open-weight fron-
tier AI models (Dubey et al., 2024). Namely, researchers
have demonstrated (Gade et al., 2023) that it can be easy and
cheap to remove the safety fine-tuning (enhancement step)

standard
workload

sequential
structuring

disaggregated
structuring

masking

Figure 4. Illustration of the different compute structuring scenar-
ios.

from LLMs. This can pose a significant threat if frontier AI
models are open-sourced in the future, as malicious actors
could bypass this security measure and then use them for
illegal actions. Ideally, the cost of removing the safeguards
should be comparable to training the model itself. A very
recent work (Tamirisa et al., 2024) proposes an approach
towards this direction, but its general efficacy on frontier
open-source models remains to be seen 2.

G. Additional Figures
A simple illustration of the identified compute structuring
scenarios can be seen in fig. 4:

H. A simple model for estimating the time, cost
and energy to train a frontier model

In this section, we aim to develop a simple model for es-
timating the time, cost and energy requirements of a large
transformer model training run, given the model and dataset
sizes, as well as some key information about the AI accel-
erators that are going to be used, such as their computing
speed in FLOPs per second, memory, bandwidth intercon-
nect speed and energy consumption.

Our goal is not to calculate the above quantities precisely
(as it could be challenging), but to find a reasonable estimate
that is correct within a relatively small correction factor (less

2Current open and closed-source models are arguably safe;
assuming that dangerous capabilities emerge at e.g. an 100×
compute increase than current LLMs, the difference when starting
from some current pre-trained model vs training from scratch is
negligible. Hence, this concern is mostly for future open-weight
models.

11

Detecting Compute Structuring

than an order of magnitude, ideally ±50%). To achieve this,
we’re going to do a series of simplifications:

• Focus on Data Parallelism and ignore Model and Ten-
sor Parallelism.

• Concentrate on Transformers, as they are the predom-
inant architecture for frontier models. According to
(Hoffmann et al., 2022), each token requires approx-
imately 6N parameters to perform the forward and
backward pass, where N is the number of model pa-
rameters.

• Use 16-bit (2-byte) floating point format (bfloat16) for
all numbers.

Our model will use the following parameters:

• N : Model size (number of parameters)

• D: Dataset size (number of tokens)

Additionally, we’ll assume the following parameters for the
training cluster:

• n: Number of AI accelerators (GPUs)

• F : GPU FLOPs per second (FLOP/s) in the bfloat16
format

• M : GPU memory in bytes

• B: GPU interconnect speed (in bytes/s). In the sim-
plified version of our model we won’t distinguish be-
tween inter-server and intra-server bandwidth (which
typically differ a bit), and take both to be the same as
the GPUs maximum data transfer rate

• W : GPU power consumption (in Watt)

Next, based on that, we present how our model estimates
the key quantities required.

Let’s start with the time required for training. A lower bound
(Tflop) of it is the time required to process all tokens; since
each token requires 6N FLOPs, and we have D tokens in
total, the total training FLOPs required are 6ND; paral-
lelizing this to n AI accelerators, each with F FLOP/s each,
gives us a total time of:

Tflop =
6ND

nF
(1)

Typically, only a fraction of the maximum possible FLOPs
of a GPU is utilized; this is accounted for by the Mean FLOP
Utilization factor, which for modern data center GPUs is

𝑔1 𝑔2 𝑔3 𝑔4

𝑔1,2 𝑔3,4

𝑔1,2,3,4

Figure 5. Illustration of gradient communication between GPU
devices (4 devices in this example). Initially, each GPU has a local
copy of the gradient for its own micro-batch (g1, ..., g4). At step
1, each accelerator synchronizes (averages) it’s gradient with its
neighbor, resulting in accumulated gradients g1,2, g3,4 that are
synchronized across “segments” of 2 devices. Then at step 2,
devices 1 and 3 (and simultaneously in parallel devices 2 and 4)
accumulate gradients g1,2 and g3,4 to produce the overall gradient
g1,2,3,4. A the number of synched devices doubles at each round,
we see that the overall number of steps needed is log2(n), where
n is the total number of AI accelerators.

estimated to be about aMFU = 40% (Patel, Dylan and
Nishball, Daniel, 2024). This means that the actual FLOP/s
we get can be estimated as F = aMFUFmax, where Fmax

is the maximum value specified by the manufacturer.

However, this estimate ignores the communication time
required after each model update (gradient step), where
all GPUs need to synchronize with each other and update
model parameters.

At each gradient step, accelerators need to send the content
of their memory to each other; this will require a time of
M/B seconds. It’s reasonable to assume that the memory
of each device will be almost fully utilized (as we want to
process as many tokens in parallel as possible), thus we
estimate here that the gradient parameters in each device
will take up almost the full memory.

Additionally, all n accelerators need to communicate their
gradients with each other. The most efficient way to do
this is with a tree-like structure, where at each step the
number of synched devices doubles. Overall, this requires a
communication time tcomm after each model update that is
equal to:

tcomm =
M

B
log2(n) (2)

12

Detecting Compute Structuring

Assuming that each GPU can perform computations and
communicate data in parallel, during a gradient update time
tcomm, the GPUs can process a batch size b of tokens, where
b can be found by the equation: 6Nb = nFtcomm (since
this is the number of FLOPs possible to perform within time
tcomm). Therefore, this limits the batch size to:

b =
nFtcomm

6N
=

nFM log2(n)

6NB
(3)

Hence, the time needed to process the entire dataset of D
tokens would be: Tcomm = D

b tcomm = 6ND
nF = Tflop; e.g.

in theory, communication latencies could be compensated
by a large enough batch size (b grows as B decreases, and
becomes arbitrarily large when B is close to zero).

However, in practice this is not the case: it turns out that
after some “critical batch size” bmax, increasing the batch
size further yields diminishing and even zero returns (Sevilla
et al., 2024; McCandlish et al., 2018). For GPT-4, the batch
size is estimated to be around 6 ·106 tokens, and this value is
regarded as close to the critical size for language modeling.
Therefore, a more reasonable estimate is:

b = min

(
nFM log2(n)

6NB
, bmax

)
(4)

Finally, the training time is estimated as:

T =
D

b
tcomm =

M ·D · log2(n)

B ·min
(

nFM ·log2(n)
6NB , bmax

) (5)

For the energy consumption, we simply multiply the con-
sumption in Watt per accelerator, by their number and train-
ing time. Additionally, we need to account for the fact that
the total power consumption of the data center does not
come only from the GPUs, but also from the rest of the
equipment, cooling etc. We can account for these by the
power usage effectiveness (PUE) coefficient aPUE , which
is estimated around aPUE = 1.3 for modern GPUs such as
the NVIDIA H100 (Patterson et al.). Hence, the used energy
is:

E = n · aPUEW · T (6)

The various training costs can then be estimated from these
figures. For example, the electricity cost is the energy used
divided by the cost per Joule (cJ):

Cenergy =
E

cJ
(7)

For example, for industrial electricity in the US we have
cJ = 0.08$/kWh = 2.22 · 10−8$/J3.

If the GPUs are rented from the cloud, the cost is calculated
by the GPU cost rate per second crent; for example, for
NVIDIA H100s, we have crent = 2.5$/h = 6.9 · 10−4$/s
for the cheapest option we found 4. The total cost is then:

Crent = nTcrent (8)

Finally, the hardware acquisition cost is

Chardware = nPGPUcadj (9)

where PGPU is the price per GPU, and cadj is a factor to
adjust for the additional data center and infrastructure costs,
and can be approximated by cadj ≈ 2 as a rule of thumb
(Patel, Dylan and Nishball, Daniel, 2024).

With that, we can now analyze some simple examples.

Example 1: GPT-4

For GPT-4, researchers estimate a model size N = 1012

parameters and D = 13 · 1012 tokens 5. The model was
trained on n = 104 NVIDIA H100 equivalents, for around
90 days. For the H100, we have F = 1980 · 1012 FLOP/s,
M = 80 · 109 bytes, B = 900 · 109 bytes/s from the specs
6. With that, our model gives:

T = 114 days, E = 2.49 · 107kWh,

Cenergy = 2 · 106$, Crent = 67.95 · 106$,
Chardware = 500 · 106$

(10)

These values are close to the public estimates.

Example 2: Llama 3.1 405b

For the largest Llama model, we have a size of N = 405·109
and D = 15.6 · 1012; the model was trained on a cluster of
n = 16 · 103 NVIDIA H100 GPUs. We get:

3https://www.statista.com/statistics/
1395805/monthly-electricity-price-
industrial-sector-united-states/

4https://lambdalabs.com/service/gpu-cloud
5https://the-decoder.com/gpt-4-

architecture-datasets-costs-and-more-
leaked/

6https://www.nvidia.com/en-us/data-
center/h100/

13

https://www.statista.com/statistics/1395805/monthly-electricity-price-industrial-sector-united-states/
https://www.statista.com/statistics/1395805/monthly-electricity-price-industrial-sector-united-states/
https://www.statista.com/statistics/1395805/monthly-electricity-price-industrial-sector-united-states/
https://lambdalabs.com/service/gpu-cloud
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/

Detecting Compute Structuring

T = 35 days, E = 1.21 · 107kWh,

Cenergy = 0.97 · 106$, Crent = 33.03 · 106$,
Chardware = 800 · 106$

(11)

These values are again close to the figures reported in the
paper; e.g. the training time was around 60 days. The
discrepancy is due to the fact that the training of Llama 3.1
was not as straightforward as described above, but was done
in different stages, where the first stage used half of the
available GPUs.

Example 3: the cluster of 4090s

An important threat model in AI governance is the pos-
sibility of model training using non-specialized or even
consumer-grade equipment. To estimate this, we run a hypo-
thetical scenario where one attempts to train a GPT-4 model
using a cluster of the most powerful consumer-grade GPUs,
the NVIDIA 4090.

For the 4090, we have the following data: F = 330 · 1012
FLOP/s (for the bfloat16 format) and M = 24 · 109 bytes
from the specs 7. For the bandwidth, technologies such
as the NVLink work only with data center GPUs. Here,
we’ll assume a high-end standard Ethernet connection of
B = 100Gbit/s = 12.5GB/s.

First, to get the same FLOP/s as the 10000 H100 clus-
ter, we need the following number of 4090s: n =
104FH100/F4090 = 6 · 104 GPUs. For the training time,
assuming the same aMFU coefficient (which is fairly opti-
mistic) we get:

T = 114 days, E = 9.6 · 107kWh, (12)

For the costs, we have the price PGPU = 1500$, and as-
sume crent = 0.3$/h = 8.3 · 10−5$/s. With these, we
get:

Cenergy = 7.67 · 106$, Crent = 49.22 · 106$,
Chardware = 180 · 106$

(13)

However, this simple model ignores multiple details that
would make a 4090 cluster much harder to use in practice:
the difficulty of coordinating that large number of devices
without specialized infrastructure and software, the much
higher expected failure rates of the devices (which is a
substantial challenge in large training runs), the difficulty

7https://www.nvidia.com/en-eu/geforce/
graphics-cards/40-series/rtx-4090/

of building cooling solutions for such a cluster, and many
more. Moreover, we see that the overall costs would still be
similar as before, even in this simplified setup. Yet on the
other hand, the calculation shows the hypothetical feasibility
of the setup, if one managed to solve the above technical
problems.

14

https://www.nvidia.com/en-eu/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-eu/geforce/graphics-cards/40-series/rtx-4090/

