END-TO-END VIDEO GENERATIVE MODELING WITH SCALABLE NORMALIZING FLOWS

Anonymous authors

Paper under double-blind review

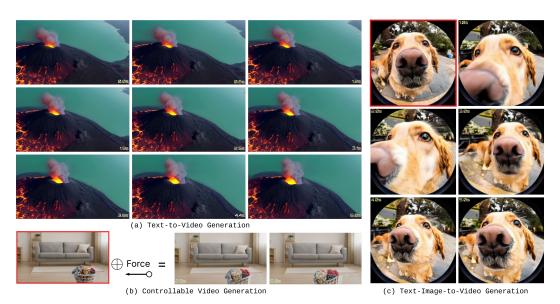


Figure 1: Samples from STARFlow-V in three tasks. All videos at 5 seconds with 16 FPS.

ABSTRACT

High-quality video generation at scale requires models that are strictly causal, robust over long horizons, and fast at inference. We present STARFlow-V, a flowbased autoregressive video generator that operates in compressed spatiotemporal latents and is trained with exact likelihood end-to-end. Two design choices ensure causality for autoregressive prediction while mitigating error propagation and enabling end-to-end training: (i) Global-Local architecture, which constrains each token to depend only on the past along time while preserving rich within-frame interactions; and (ii) noise-augmented training jointly with flow-score matching, a lightweight causal denoiser that recovers clean samples from noisy generation. To improve efficiency, STARFlow-V employs a video-aware fixed-point iteration scheme that reformulates inner updates as parallelizable iterations without violating causal structure, yielding substantially faster inference. A deep-shallow autoregressive-flow hierarchy further balances capacity and stability over long videos. The same model natively supports both text-to-video (T2V) and text-/image-to-video (TI2V) generation via unified conditioning, avoiding separate pipelines. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with markedly lower sampling cost compared to diffusion-only or discrete AR baselines. By marrying causality, likelihood, and efficiency in a single architecture, STARFlow-V helps pave the way toward a flow-based, scalable paradigm for world modeling.

1 Introduction

Generative modeling has advanced rapidly with breakthroughs across language (Achiam et al., 2023; OpenAI, 2024a), images (Podell et al., 2023; Batifol et al., 2025; Wu et al., 2025), and videos (OpenAI, 2024b; Wan et al., 2025; DeepMind, 2025). Among these modalities, *video* is uniquely demanding: beyond high perceptual quality, models must capture rich spatiotemporal structure, remain robust over long horizons, and often operate causally for interactive or streaming use. Such capabilities are central not only to creative media (Ye et al., 2025; Yuan et al., 2025), but also to emerging *world models* that support simulation, robotics, and human–AI interaction (Ha & Schmidhuber, 2018; Yang et al., 2023; Hu et al., 2023; Google DeepMind, 2024; Hafner et al., 2025).

Recent scaling of data, model capacity, and compute has pushed video generation to new levels of fidelity (Yang et al., 2025; Kong et al., 2024; Kondratyuk et al., 2024; Yu et al., 2024; Wan et al., 2025; Seawead et al., 2025; Gao et al., 2025). *Diffusion-based* approaches (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023; Lipman et al., 2023; Esser et al., 2024) dominate quality by jointly denoising multiple frames; however, their training remains *not end-to-end*: frames are corrupted at randomly sampled noise levels and a denoiser is learned to invert them, so each update supervises only a single noise level, incurring high training cost (especially for video) and multi-step sampling at inference. Moreover, parallel multi-frame denoising is inherently *non-causal*, allowing future frames to influence earlier ones and complicating streaming or interactive generation. Recent sequential/causally conditioned diffusion variants (Chen et al., 2024a; Huang et al., 2025) alleviate non-causality via asynchronous noise schedules and post-training objectives, but they retain diffusion's training inefficiency and exhibit train–test mismatch during long-horizon rollout.

In this work, we revisit *normalizing flows* (Rezende & Mohamed, 2015; Dinh et al., 2014; 2016)—a family of invertible, likelihood-based generative models, distinct from diffusion approaches, that enable *end-to-end* training in continuous spaces—as a scalable foundation for video generation. Earlier attempts, such as VideoFlow (Kumar et al., 2019), were constrained by model capacity and the training practices of the time and saw no substantive follow-ups. In the image domain, recent systems (Zhai et al.; Gu et al., 2025) show that, by parameterizing the "autoregressive normalizing flow" with a Transformer, flows can scale competitively and approach diffusion-level quality.

Building on these insights, we present STARFlow-V, a normalizing-flow video generator operating on a spatiotemporal latent space. Specifically, STARFlow-V introduces **three** core contributions: (1) a *global–local* formulation that separates per-frame refinements from causal sequence modeling, preserving universality while easing error accumulation and enabling streamable generation; (2) noise-augmented training jointly with *flow-score matching*, a lightweight causal denoiser that recovers clean samples from noisy generation; and (3) efficient inference algorithm via video-aware blockwise Jacobi iteration and pipelined decoding that markedly reduces sampling latency. These advances make autoregressive flow inference tractable at scale while keeping training strictly end-to-end. As a result, STARFlow-V scales normalizing flows to high-fidelity, long-horizon video across various senarios including text-to-video, image-to-video, and controllable generation.

Extensive experiments demonstrate that STARFlow-V achieves competitive visual quality and robust generation compared to leading diffusion approaches, especially in autoregressive approaches. We believe STARFlow-V opens up a new direction in video generative modeling combining the scalability and expressivity of modern architectures with the principled advantages of end-to-end training in the continuous space.

2 BACKGROUND

2.1 VIDEO GENERATIVE MODELS

Given N frames $x_{1:N} = (x_1, \ldots, x_N)$ and optional conditioning C (e.g., text, image, audio, layout, camera), video generative models seek to model the joint distribution of all frames $p(x_{1:N} \mid C)$ and sample novel videos from the learned model. While earlier work explored GANs (Vondrick et al., 2016; Tulyakov et al., 2018; Skorokhodov et al., 2022), VAEs (Babaeizadeh et al., 2018; Castrejon et al., 2019; Wu et al., 2021), and discrete autoregressive models (Yan et al., 2021; Yu et al., 2024; Kondratyuk et al., 2024), the field has largely converged on diffusion-based methods Ho et al. (2022c;a). Spurred by the release of Sora (Brooks et al., 2024), DiT-style approaches (Peebles & Xie,

2023) have shown strong generalization at scale (Gao et al., 2025; Wan et al., 2025; DeepMind, 2025). A key distinction from prior paradigms is that training of diffusion-based models is *Not End-to-End*: diffusion-based models corrupt frames with noise at randomly sampled levels and train a denoiser to invert this process, optimizing an objective closely related to the lower bound of $\log p(x_{1:N} \mid C)$. This setup incurs high training cost—especially for video—since each update supervises only a single noise level. At inference time, one sample by iteratively denoising from Gaussian noise.

Autoregressive Video Generation Diffusion-based video generation is typically non-causal: all frames are corrupted with noise and denoised in parallel (Ho et al., 2022c). Yet many applications demand causal, often interactive synthesis (e.g., online streaming, video games, robotics), where frames must be produced sequentially. Autoregressive (AR) diffusion models (Chen et al., 2024a; Song et al., 2025; Yin et al., 2025)—a line of work that combines chain-rule factorization with diffusion—aim to alleviate prior limitations by introducing asynchronous, frame-wise noise schedules during training, modeling each conditional $p(\boldsymbol{x}_n \mid \boldsymbol{x}_{< n})$ as a diffusion process. Despite their strengths, AR generation typically suffers from exposure bias: during training, models condition on ground-truth contexts, whereas at inference they must rely on their own (imperfect) predictions. This train—test mismatch compounds over time, degrading long-horizon video quality. The non—end-to-end nature of diffusion training further exacerbates this gap, though recent efforts such as Self-Forcing (Huang et al., 2025) seek to mitigate it via sequential post-training with distillation objectives. However, they are not readily applicable in the pre-training stage on raw video data.

Video Latent Space Directly modeling long-duration and high-resolution videos in pixel space is computationally challenging. Therefore, recent models typically operate in a compressed latent space (Rombach et al., 2022). In particular, video frames are encoded with a 3D causal variational autoencoder (VAE) (Yang et al., 2025; Wan et al., 2025), compressing both spatial and temporal dimensions while enforcing causality along the temporal axis. Throughout, we adopt latent-space representations unless explicitly indicated.

2.2 SCALABLE NORMALIZING FLOWS

Normalizing flows (NFs; Rezende & Mohamed, 2015; Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018; Ho et al., 2019) are likelihood-based generative models built from invertible transformations. Given a continuous input $\boldsymbol{x} \sim p_{\text{data}}$, $\boldsymbol{x} \in \mathbb{R}^D$, an NF learns a bijection $f_{\theta} : \mathbb{R}^D \to \mathbb{R}^D$ that maps data \boldsymbol{x} to latents $\boldsymbol{z} = f_{\theta}(\boldsymbol{x})$. Unlike diffusion models, NFs are trained *end-to-end* via a tractable maximum-likelihood objective derived from the change-of-variables formula:

$$\mathcal{L}_{NF}(\theta) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}}[\log p_{NF}(\boldsymbol{x}; \theta)] = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}}[\log p_0(f_{\theta}(\boldsymbol{x})) + \log|\det(J_{f_{\theta}}(\boldsymbol{x}))|], \quad (1)$$

where the first term encourages mapping data to high-density regions of a simple prior p_0 (e.g., standard Gaussian), and the Jacobian term J_f accounts for the local volume change induced by f_{θ} , preventing collapse. Once trained, sampling is immediate via inversion: draw $z \sim p_0(z)$ and set $x = f_{\theta}^{-1}(z)$. Historically, however, NFs have been viewed as less competitive than diffusion models due to architectural rigidity and training instability (Dinh et al., 2016).

Transformer Autoregressive Flows Recently, TARFlow (Zhai et al.) and its scalable extension, STARFlow (Gu et al., 2025), have revisited normalizing flows as next-generation backbones for generative modeling. Both methods instantiate autoregressive flows (AFs) (Kingma et al., 2016; Papamakarios et al., 2017)—NFs whose invertible transformations are parameterized autoregressively—and use causal Transformer blocks, in the style of LLMs, as their primary building units.

Formally, STARFlow (Gu et al., 2025) stacks T autoregressive flow blocks with alternating directions, where each block applies an affine transform whose parameters are predicted by a causal Transformer under a (self-exclusive) causal mask m:

$$z = f_{\theta}(x) = [x - \mu_{\theta}(x \odot m)] / \sigma_{\theta}(x \odot m), \quad \sigma_{\theta}(\cdot) > 0,$$
 (2)

where x, z are the input and output of each block, \odot denotes the Hadamard product. As shown in STARFlow (Gu et al., 2025), $T \ge 3$ blocks suffice for universal density modeling where masks alternate between left-to-right (\rightarrow) and right-to-left (\leftarrow) to capture bidirectional dependencies.

Video Generation with Normalizing Flows Despite STARFlow demonstrating competitive visual quality with state-of-the-art diffusion (Podell et al., 2023; Esser et al., 2024) on large-scale text-to-image tasks, evidence for normalizing flows in video generation remains sparse. To our knowledge, the

only prior NF-based video model is VideoFlow (Kumar et al., 2019), which builds on Glow (Kingma & Dhariwal, 2018) and is constrained by limited capacity, low resolution, and domain-specific settings. Compared to images, video generation is substantially more challenging for NFs due to higher spatiotemporal dimensionality. Nevertheless, we argue that scalable normalizing flows—exemplified by STARFlow—are a natural fit for video modeling, especially in autoregressive settings.

3 STARFLOW-V

We propose STARFlow-V, a novel paradigm for video generation based on normalizing flows. While inspired by STARFlow (Gu et al., 2025), STARFlow-V is not a direct port to the video domain; it introduces architectural redesigns tailored to spatiotemporal data. In what follows, we present the architecture and its autoregressive formulation (§ 3.1), the training procedure (§ 3.2), the inference pipeline (§ 3.3), and applications enabled by our model (§ 3.4).

3.1 PROPOSED MODEL

For a video $x \in \mathbb{R}^{N \times H \times W \times D}$, each frame x_n is flatten into $\mathbb{R}^{HW \times D}$, i.e., $x_n = (x_{n,1}, \dots, x_{n,HW})$. Concatenating across frames yields a sequence of total NHW tokens. As in standard practice, we operate in a compressed latent space using a pretrained 3D causal VAE (Wan et al., 2025). STARFlow-V models the joint distribution $p_{\theta}(x)$ by an invertible mapping f_{θ} through autoregressive transformations (Eq. (2)). Following Gu et al. (2025), f_{θ} is decomposed into a deep-shallow architecture, $f_{\theta} = f_D \circ f_S$: a small stack of shallow flow blocks with alternating (left-to-right / right-to-left) masks maps the input to intermediate latents $u = f_S(x)$, and a deep causal-Transformer flow f_D then autoregressively maps u to the prior, producing $z = f_D(u)$. By change of variables,

$$p_{\theta}(\boldsymbol{x}) = p_{0}(\boldsymbol{z}) \left| \det J_{f_{D}}(\boldsymbol{u}) \right| \left| \det J_{f_{S}}(\boldsymbol{x}) \right|, \tag{3}$$

where J_f denotes the Jacobian of f and p_0 is a simple prior (e.g., standard Gaussian). This design allocates most capacity to the deep block f_D for semantics modeling while the shallow stack f_S ensures universal approximation of continuous densities. For conditional generation, the context C is prepended only in the deep block.

Global-Local Architecture A naïve implementation requires no change from the original STARFlow other than lengthening the input sequence by the number of frames. By default, we assume that the deep block f_D follows a natural left-to-right order (causal across frames, raster order within each frame), while the shallow stack f_S alternates directions, beginning with the reverse order. Although feasible, this setup yields a non-causal model—similar to standard diffusion-based video generators.

Observing that f_D is inherently autoregressive and that f_S mainly provides local refinements, we adapt the design into a *global-local* structure: f_S is restricted to operate within each frame, while only f_D propagates global video context in a causal manner. More specifically, Eq. (3) can be re-expressed as an autoregressive factorization over frames x_n :

$$p_{\theta}(\boldsymbol{x}) = \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}_n \mid \boldsymbol{x}_{< n}) = \prod_{n=1}^{N} p_{D}(\boldsymbol{u}_n \mid \boldsymbol{u}_{< n}) \big| \det J_{f_S}(\boldsymbol{x}_n) \big|, \tag{4}$$

where $u_n = f_S(x_n)$ denotes the local latents for frame x_n . Here, the deep block is itself an autoregressive flow, capturing both intra-frame raster ordering and inter-frame causal dependencies.

Formulating STARFlow-V in a *global–local* manner (Eq. (4)) yields several benefits:

- (a) **Universality.** Eq. (4) preserves the universal approximation guarantee of STARFlow (Gu et al., 2025): the local stack f_S still realizes per-pixel infinite Gaussian mixtures via alternating causal masks, so expressivity is not curtailed by restricting f_S to within-frame contexts.
- (b) **Robustness.** Intuitively, Eq. (4) can be viewed as a **continuous language model for videos**: the deep-flow term $p_D(\boldsymbol{u}_n \mid \boldsymbol{u}_{< n})$ acts as a *Gaussian next-token predictor* (cf. the affine form in Eq. (2)) in latent space, while the shallow flow supplies the Jacobian factor $|\det J_{f_S}(\boldsymbol{x}_n)|$, yielding a flexible density over \boldsymbol{x} . Compared to modeling \boldsymbol{x} directly (arbitrarily multimodal), the latent \boldsymbol{u} is unimodal at each step, easier to regress, and more tolerant to small prediction errors. Crucially, the sampling phase via f_D^{-1} conditions on previously generated *latents* rather than

217

218219

220 221

222

223

224225

226227

228

229

230231232

233

234

235

237

238

239

240 241

242

243244

245246

247

249250

251

253

254

255

256

257

258

259260

261

262

264 265

266

267

268

269

Figure 2: An illustrated pipeline of STARFlow-V which shows (1) the proposed global-local architecture; (2) joint training with the learnable denoiser with the proposed Flow-score Matching.

pixels, so data-space errors do not propagate forward, mitigating the compounding error typical of autoregressive diffusion. Unlike diffusion-style noise conditioning (Ho et al., 2022b; Chen et al., 2024a), which compromises information to gain robustness and introduces extra parameters, our mappings $u \leftrightarrow x$ are exactly invertible, avoiding information loss by construction.

- (c) **End-to-End Training.** The overall model remains a valid flow. Consequently, all parameters are trained by exact maximum likelihood via the change-of-variables objective—no per-step denoising schedule or surrogate loss—simplifying optimization and reducing train–test mismatch.
- (d) **Streamable Generation.** At inference time, f_D^{-1} samples u_n causally (token-by-token, frame-by-frame), and f_S^{-1} decodes each frame independently given u_n . This process enables causal, and potentially interactive video synthesis since later frames cannot influence earlier ones.

3.2 REVISITING NOISE-AUGMENTED TRAINING FOR VIDEOS

As observed by Zhai et al. (2024), injecting *small* noise into the data is crucial for stabilizing NF training. Concretely, we learn STARFlow-V on a σ -smoothed density $q_{\sigma}(\tilde{x}) = (p * \mathcal{N}(0, \sigma^2 I))(\tilde{x})$. A side effect is that the model naturally generates slightly noisy samples, requiring a post-processing steps to recover the clean ones.

Decoder Fine-tuning We initially followed STARFlow (Gu et al., 2025) adopting their strategy of fine-tuning the VAE decoder to denoise noisy latents using a GAN objective (Rombach et al., 2022). However, our preliminary experiments suggest that this approach is not readily applicable to 3D causal VAEs: under Gaussian-noised latent inputs, the decoder fails to maintain temporal consistency in the generated videos due to limited receptive fields.

Score-based Denoising Instead of decoder fine-tuning, TARFlow (Zhai et al., 2024) proposes to denoise using the *learned flow* itself via score-based updates. For a noisy sample $\tilde{x} \sim q_{\sigma}$, the probability–flow ODE gives $\partial_{\sigma}\tilde{x} = -\sigma\nabla_{\tilde{x}}\log q_{\sigma}(\tilde{x})$. So for sufficiently small σ , a single Euler step yields the Tweedie estimator:

$$x \approx \tilde{x} - \sigma \partial_{\sigma} \tilde{x} = \tilde{x} + \sigma^2 \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}).$$
 (5)

With normalizing flows, we replace q_{σ} by the learned density p_{θ} , and compute $\nabla_{\tilde{x}} \log p_{\theta}(\tilde{x})$ via automatic differentiation through the flow, which amounts to an additional forward–backward pass. However, this score-based denoising presents two issues:

- (a) Noisy gradients. The learned density p_{θ} is imperfect; its score $\nabla_{\tilde{x}} \log p_{\theta}(\tilde{x})$ often contains high-frequency noise, which manifests as bright speckle artifacts—especially for large motions.
- (b) Non-causality of the score. Even if p_{θ} is modeled causally, the score $\nabla_{\tilde{x}} \log p_{\theta}(\tilde{x})$ is, by definition, global: the gradient at time n depends on likelihood terms involving future frames m > n. This violates strict causality and undermines the promised streamable generation.

Flow-Score Matching To address these issues, we introduce a neural denoiser s_{ϕ} trained alongside the flow f_{θ} to regress the model's score:

$$\mathcal{L}_{\text{denoise}}(\phi) = \mathbb{E}_{\boldsymbol{x},\,\boldsymbol{\epsilon}} \| s_{\phi}(\tilde{\boldsymbol{x}}) - \sigma \nabla_{\tilde{\boldsymbol{x}}} \log p_{\theta}(\tilde{\boldsymbol{x}}) \|_{2}^{2}, \qquad \tilde{\boldsymbol{x}} = \boldsymbol{x} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^{2} I).$$
 (6)

At inference, we replace the raw score in the update (cf. Eq. (5)) with the learned denoiser s_{ϕ} . This flow-score matching (FSM) is simple yet effective. First, the smooth inductive bias of neural networks suppresses stochastic high-frequency artifacts in $\nabla_{\tilde{x}} \log p_{\theta}$. Second, we can encode causality directly in s_{ϕ} , re-ensuring streamable behavior. Concretely, we parameterize s_{ϕ} with a one-frame look-ahead while remaining globally causal (one-step latency). We approximate the score at step p by

$$s_{\phi}(\tilde{\mathbf{x}}_{\leq n+1}) \approx \left(\sigma \nabla_{\tilde{\mathbf{x}}} \log p_{\theta}(\tilde{\mathbf{x}})\right)_{n}.$$
 (7)

Finally, we train s_{ϕ} jointly with f_{θ} at **minimal overhead**: since f_{θ} is trained by maximizing $\log p_{\theta}$, we cache the input gradients from the same backward pass and reuse it (detached) as the target for s_{ϕ} .

3.3 FAST INFERENCE

While STARFlow-V leverages parallel computation during training via causal masking, generation at inference time is carried out sequentially (one token at a time) through multiple AF blocks, which can be *extremely* computationally demanding for long video sequences. For instance, generating a 5s 480p video under 16 fps using a pre-trained 3B parameter model requires over 30 minutes, which is far from real-time application. To enable fast inference, we introduce two strategies:

Nonlinear Jacobi Iteration Rather than sampling continuous tokens strictly autoregressively, we accelerate inference by recasting inversion as solving a nonlinear fixed-point system with parallel solvers such as Jacobi iteration (Porsching, 1969; Kelley, 1995), a strategy recently used to speed up autoregressive models (Song et al., 2021; Teng et al., 2024; Liu & Qin, 2025; Zhang et al., 2025). Specifically, the inverse of Eq. (2) can be written as the fixed-point equation

$$\boldsymbol{x} = \mu_{\theta}(\boldsymbol{x} \odot \boldsymbol{m}) + \sigma_{\theta}(\boldsymbol{x} \odot \boldsymbol{m}) \cdot \boldsymbol{z}, \tag{8}$$

where m is a (self-exclusive) causal mask. This induces a *triangular* system that admits convergence under nonlinear Jacobi iteration (Saad, 2003): starting from an initial sequence $\mathbf{x}^{(0)}$, iterate $\mathbf{x}^{(k+1)} = \mu_{\theta}(\mathbf{x}^{(k)} \odot \mathbf{m}) + \sigma_{\theta}(\mathbf{x}^{(k)} \odot \mathbf{m}) \cdot \mathbf{z}$ until a converge criterion is satisfied. We monitor a scalenormalized residual, $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2^2 / \|\mathbf{x}^{(k+1)}\|_2^2 < \tau$ with $\tau = 0.001$ by default. In the worst case, the iteration count scales with sequence length (*e.g.*, near-Markovian process), but video generation exhibits strong global structure, which substantially accelerates convergence. The procedure is also *CFG-compatible*: following Gu et al. (2025), we compute the guided $\hat{\mu}$, $\hat{\sigma}$ and substitute them.

To further accelerate sampling, we adopt a block-based Jacobi scheme in the spirit of Song et al. (2021); Liu & Qin (2025). We partition the token sequence into contiguous blocks of size B and process blocks sequentially. Within each block we run the Jacobi updates, while states from completed blocks are cached as context (e.g., KV cache) for subsequent blocks—analogous to standard AR inference. We also apply a video-aware initialization: for a new frame, $\boldsymbol{x}_{n+1}^{(0)}$ is initialized from the previously converged frame $\boldsymbol{x}_n^{(k)}$. Overall, we adopt block-based iteration within each AF block, yielding $\approx 10 \times$ lower inference latency relative to standard autoregressive decoding.

Pipelined Decoding As described in § 3.1, the global-local design applies standard global left-to-right autoregression in the deep block f_D , while the shallow blocks f_S traverse each frame independently. This enables a pipelined schedule (analogous to pipeline parallelism (Huang et al., 2019)): f_D runs continuously without waiting on f_S , and, in parallel, f_S threads consume f_D 's outputs, immediately refine them, and then denoise. Because f_D is typically the slowest stage, end-to-end latency is dominated by the deep block.

3.4 VERSATILITY ACROSS TASKS

STARFlow-V is a versatile framework that can be trained for diverse video generation tasks. By default, STARFlow-V is trained for text-to-video generation on large-scale text-video pairs. Without modifying the backbone, we support the following settings:

¹Strictly causal ($\leq n$) fails as temporal *differences* are pivotal to determining the denoising direction.

- (a) **Image-to-Video Generation.** We directly treat the first frame as observed conditioning. Owing to the invertibility, *no separate encoder is required*: we encode the observed frame via the flow forward to initialize the KV cache; subsequent frames are then generated autoregressively.
- (b) **Long-Horizon (Streaming) Generation.** Our model generates videos far longer than those seen during training via a sliding-window (chunk-to-chunk) schedule in the deep block. After producing a latent chunk u, we warm-start the next step by rebuilding the KV cache: we re-run f_D on the last Δ latents (the overlap) and then continue autoregression to synthesize the next $N-\Delta$ latents. f_S then process the latents per frame, enabling streaming output. To mitigate boundary mismatch, we randomly drop the first frame during training to simulate chunk restarts.
- (c) **Controllable Video Generation.** For controllable synthesis (e.g., camera-aware generation using poses/intrinsics), we freeze the backbone and train a control module that injects control tokens into the autoregressive steps. This enables precise control without altering the core architecture.

4 EXPERIMENTAL SETUP

 Datasets. We construct a diverse and high-quality collection of video datasets to train STARFlow-V. Specifically, we leverage the high-quality subset of Panda-70M (Chen et al., 2024b) mixed with an in-house stock video dataset, with a total number of 70M text-video pairs. For all videos, we keep their raw captions, and apply a video captioner (Wang et al., 2024a) to generate a longer description to cover the details. The ratio of training using raw and synthetic captions during training is 1:9. Besides, following previous works (Lin et al., 2024), we additionally include image joint training with 400M text-image pairs.

Evaluation. We perform both quantitative and qualitative evaluations on STARFlow-V, and compare against baselines using VBench (Huang et al., 2024), which benchmarks text-to-video generation across 16 dimensions, including quality, semantics, temporal consistency, and spatial reasoning.

Model and Training Details. We adopt the 3D Causal VAE from WAN2.2 2 (Wan et al., 2025), which compresses spatial dimensions by $\times 16$ and the temporal dimension by $\times 4$ into a 48-channel latent space. We train progressively: we initialize from an image (single-frame) model, then scale to a 7B-parameter video model by increasing the deep-block capacity. For resolution,

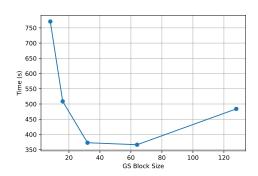


Figure 3: Hyper-parameters of Parallel Iteration

we use a curriculum from 384p to 480p while keeping the sequence length fixed at 81 frames.

Baselines. We compare STARFlow-V with two baselines: (i) **WAN-2.1 Causal-FT**, the autoregressive variant of WAN (Wan et al., 2025) trained following the CausVid initialization strategy (Yin et al., 2025); and (ii) **NOVA** (Deng et al., 2024), an autoregressive video generator that does not rely on vector quantization.

5 RESULTS AND DISCUSSION

5.1 QUANTITATIVE RESULTS

Table 1 reports the text-to-video generation results on VBench (Huang et al., 2024). We show that STARFlow-V achieves *competitive* performance compared to diffusion-based methods.

²https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B/blob/main/Wan2.2_VAE.pth

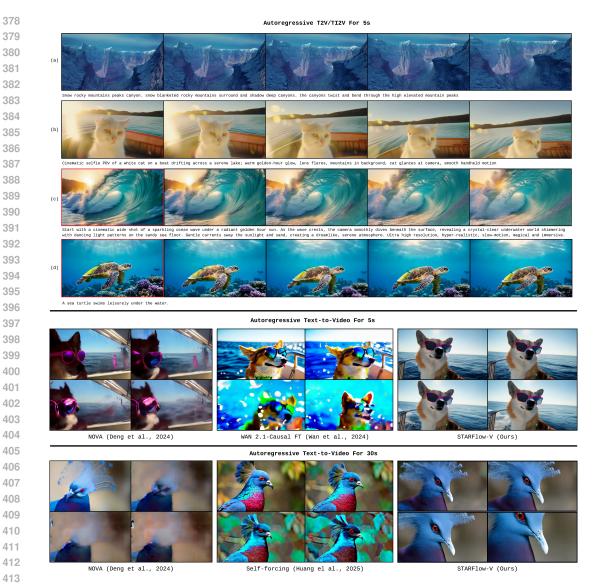


Figure 4: STARFlow-V examples of text and image conditioned video generation with comparison against baselines for both trained length (5s) and long-horizon generation (30s).

QUALITATIVE RESULTS 5.2

391

400

403

407

411

414

415 416 417

418

419

420 421

422

423

424 425

426

427

428 429

430

431

As illustrated in Fig. 4 (top block), STARFlow-V effectively handles both text-to-video (T2V) and image-to-video (I2V) generation. The first two rows show text-conditioned result and

Moreover, STARFlow-V produces consistent and high-quality videos even for videos extended to 30 seconds. Compared to other autoregressive video models, STARFlow-V demonstrates stronger robustness to exposure bias, which is a typical failure mode observed in autoregressive video generation, while retaining sharp textures and high visual quality over a long horizon.

In the dog-with-sunglasses example (Fig. 4, middle block), NOVA generates frames that blur and lose identity over time, while WAN 2.1-Causal FT suffers from severe artifacts and color distortions. By contrast, STARFlow-V produces clean, stable, and consistent frames across the sequence.

5.3 ABLATION STUDY

Choice of Denoiser Fig. 5 provides ablation evidence on the choice of denoiser, illustrated with two consecutive frames from three denoising strategies. Specifically, we show that Decoder-finetuning,

Model	Total	Quality	Semantic	Aesthetic	Object	Multi Obj.	Human	Spatial	Scene
Closed-source models									
Gen-2 (Germanidis, 2023)	80.58	82.47	73.03	66.96	90.92	55.47	89.20	66.91	48.91
Gen-3 (Germanidis, 2024)	82.32	84.11	75.17	63.34	87.81	53.64	96.40	65.09	54.57
Veo3 (Google DeepMind, 2025)	85.06	85.70	82.49	63.81	93.89	82.20	99.40	84.26	57.43
Diffusion models									
OpenSora-v1.1 (Zheng et al., 2024)	75.66	77.74	67.36	50.12	86.76	40.97	84.20	52.47	38.63
OpenSora-v1.2 (Zheng et al., 2024)	79.76	81.35	73.39	56.85	82.22	51.83	91.20	68.56	42.44
CogVideoX (Yang et al., 2024)	80.91	82.18	75.83	60.82	83.37	62.63	98.00	69.90	51.14
HunyuanVideo (Kong et al., 2024)	83.24	85.09	75.82	60.36	86.10	68.55	94.40	68.68	53.88
Wan2.1-T2V (Wan et al., 2025)	83.69	85.59	76.11	66.07	86.28	69.58	95.40	75.39	45.75
Autoregressive (Diffusion) models									
CogVideo (Hong et al., 2022)	67.01	72.06	46.83	38.18	73.40	18.11	78.20	18.24	28.24
Emu3 (Wang et al., 2024b)	80.96	84.09	68.43	59.64	86.17	44.64	77.71	68.73	37.11
NOVA (Deng et al., 2024)	80.12	80.39	79.05	59.42	92.00	77.52	95.20	77.52	54.06
SkyReel-v2 (Chen et al., 2025)	83.90	84.70	80.80	-	-	-	-	-	-
MAGI-1-distill (Teng et al., 2025)	77.92	80.98	65.68	62.43	82.37	35.08	84.20	57.75	26.28
Normalizing Flows									
STARFlow-V (Ours)	78.67	80.24	72.37	54.48	86.65	53.48	94.00	49.84	47.08
STARFlow-V (Ours, with Rewriter)	79.53	80.78	74.55	59.73	80.51	56.04	97.20	66.53	50.76

Table 1: **Text-to-video evaluation on VBench.** The baseline data is sourced from the VBench leaderboard (Huang et al., 2024).

Figure 5: Ablation Study for the choice of flow-score matching.

as in STARFlow (Gu et al., 2025), produces videos that lose temporal consistency, with evident frame-to-frame jitter. Score-based denoising, which uses the raw flow score, shows bright speckle artifacts—especially for large motions. In comparison, STARFlow-V shows temporally consistent and artifact-free videos.

Hyper-parameters of Parallel Iteration We analyze how the block size influences the runtime of the deep block. As shown in Fig. 3, larger group sizes increase parallelism but also introduce higher per-iteration overhead, while smaller groups reduce overhead but limit parallel efficiency. Our experiments reveal a favorable trade-off at moderate group sizes, which balances runtime efficiency with generation quality. In particular, a block size of 64 achieves the most favorable efficiency, and we adopt this setting for all experiments.

6 CONCLUSION AND LIMITATIONS

We presented STARFlow-V, an end-to-end video generative model based on normalizing flows. Across text-to-video and image-to-video, STARFlow-V delivers strong long-horizon coherence and fine-grained controllability, showing consistent gains over WAN-2.1 Causal-FT and NOVA at 480p/81f while providing exact likelihoods and streamable decoding via blockwise Jacobi and pipelined inference.

There are also limitations. (1) *Throughput/latency*. Despite the blockwise Jacobi acceleration and pipelining, inference remains far from real time on commodity GPUs. (2) *Data quality and scaling*. Progress is bounded by dataset noise and bias; we do not observe a clean scaling law under current curation, which constrains further improvements.

Looking forward, we plan to (i) reduce latency with kernel-level optimizations and partial-update decoders, (ii) study distillation and pruning to compress the deep block, and (iii) revisit dataset curation and active data selection to enable clearer scaling behavior and higher fidelity at longer durations and higher resolutions.

ETHIC STATEMENTS

Ethic Considerations: Our video generative model has the potential to enable new forms of creativity, data augmentation, and simulation. However, it also raises important ethical concerns. In particular, the ability to generate realistic video content carries risks of misuse, including the creation of misleading or harmful media. Such risks highlight the importance of establishing safeguards around model deployment and access.

The use of Large Language Model (LLM) A large language model (LLM) was employed solely for stylistic polishing of the manuscript. It was not used for generating scientific content, conducting analyses, or contributing to the conceptual development of this work. All technical ideas, methods, and results are entirely the author's own.

REPRODUCIBILITY STATEMENTS

We are committed to ensuring the reproducibility of our work. Upon acceptance, we will release the complete codebase, including all training details, hyperparameters, and model configurations. For privacy reasons, the raw data used in our experiments cannot be released. Theoretically, we confirm that all variables used in the equations are well-defined to facilitate the reproducibility of our work. Practically, to further enhance understanding, we provide extensive visual illustrations (e.g., Fig. 2) to support reproducibility.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey Levine. Stochastic variational video prediction. In *International Conference on Learning Representations* (*ICLR*), 2018. doi: 10.48550/arXiv.1710.11252. URL https://openreview.net/forum?id=rk49Mg-CW.
- Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow matching for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506, 2025.
- Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. 2024. URL https://openai.com/research/video-generation-models-as-world-simulators.
- Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for video prediction. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 7608–7617, 2019.
- Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in Neural Information Processing Systems*, 37:24081–24125, 2024a.
- Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengcheng Ma, et al. Skyreels-v2: Infinite-length film generative model. *arXiv preprint arXiv:2504.13074*, 2025.
- Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao, Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, et al. Panda-70m: Captioning 70m videos with multiple cross-modality teachers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13320–13331, 2024b.
- Google DeepMind. Veo 3: Ai video generator with audio. https://deepmind.google/models/veo/, 2025. Accessed: 2025-08-25.

- Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
 arXiv preprint arXiv:2412.14169, 2024.
 - Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. *arXiv preprint arXiv:1410.8516*, 2014.
 - Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv* preprint arXiv:1605.08803, 2016.
 - Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.
 - Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models. *arXiv* preprint arXiv:2506.09113, 2025.
 - Anastasis Germanidis. Gen-2: Generate novel videos with text, images or video clips, 2023.
 - Anastasis Germanidis. Introducing gen-3 alpha: A new frontier for video generation, 2024.
 - Google DeepMind. Genie 2: A large-scale foundation world model. https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/, 2024. Blog.
 - Google DeepMind. Veo 3 Technical Report. https://storage.googleapis.com/deepmind-media/veo/Veo-3-Tech-Report.pdf, 2025. Accessed: Sep 24, 2025.
 - Jiatao Gu, Tianrong Chen, David Berthelot, Huangjie Zheng, Yuyang Wang, Ruixiang Zhang, Laurent Dinh, Miguel Angel Bautista, Josh Susskind, and Shuangfei Zhai. Starflow: Scaling latent normalizing flows for high-resolution image synthesis. *arXiv preprint arXiv:2506.06276*, 2025.
 - David Ha and Jurgen Schmidhuber. World models. NeurIPS, 2018. doi: 10.1007/bfb0007224.
 - Danijar Hafner et al. Mastering diverse control tasks through world models. *Nature*, 2025. Also available as arXiv:2301.04104 (DreamerV3).
 - Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-based generative models with variational dequantization and architecture design. In *International conference on machine learning*, pp. 2722–2730. PMLR, 2019.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
 - Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video generation with diffusion models. *arXiv* preprint arXiv:2210.02303, 2022a.
 - Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded diffusion models for high fidelity image generation. *J. Mach. Learn. Res.*, 23:47–1, 2022b.
 - Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–8646, 2022c.
 - Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.
 - Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. *arXiv preprint arXiv:2309.17080*, 2023.

- Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging the train-test gap in autoregressive video diffusion. *arXiv preprint arXiv:2506.08009*, 2025.
 - Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism. *Advances in neural information processing systems*, 32, 2019.
 - Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21807–21818, 2024.
 - Carl T Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.
 - Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in neural information processing systems*, 31, 2018.
 - Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. *Advances in neural information processing systems*, 29, 2016.
 - Dan Kondratyuk, Lijun Yu, Xiuye Gu, Jose Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language model for zero-shot video generation. In *International Conference on Machine Learning*, pp. 25105–25124. PMLR, 2024.
 - Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.
 - Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk Kingma. Videoflow: A conditional flow-based model for stochastic video generation. *arXiv* preprint arXiv:1903.01434, 2019.
 - Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model. *arXiv* preprint arXiv:2412.00131, 2024.
 - Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.
 - Ben Liu and Zhen Qin. Accelerate tarflow sampling with gs-jacobi iteration. *arXiv preprint* arXiv:2505.12849, 2025.
 - OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024a. Accessed: April 12, 2025.
 - OpenAI. Video generation models as world simulators. https://openai.com/index/video-generation-models-as-world-simulators/, 2024b.
 - George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density estimation. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 2338–2347, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/6clda886822c67822bcf3679d04369fa-Abstract.html.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

- TA Porsching. Jacobi and gauss–seidel methods for nonlinear network problems. *SIAM Journal on Numerical Analysis*, 6(3):437–449, 1969.
- Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 1530–1538, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/rezende15.html.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
- Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation foundation model. *arXiv preprint arXiv:2504.08685*, 2025.
- Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video generator with the price, image quality and perks of stylegan2. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3626–3636, 2022.
- Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann. History-guided video diffusion. *arXiv preprint arXiv:2502.06764*, 2025.
- Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward computation via parallel nonlinear equation solving. In *International Conference on Machine Learning*, pp. 9791–9800. PMLR, 2021.
- Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, WQ Zhang, Weifeng Luo, et al. Magi-1: Autoregressive video generation at scale. arXiv preprint arXiv:2505.13211, 2025.
- Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Accelerating auto-regressive text-to-image generation with training-free speculative jacobi decoding. *arXiv preprint arXiv:2410.01699*, 2024.
- Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and content for video generation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1526–1535, June 2018.
- Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In *Advances in Neural Information Processing Systems*, volume 29, 2016. doi: 10.48550/arXiv. 1609.02612. URL https://papers.nips.cc/paper_files/paper/2016/hash/04025959b191f8f9de3f924f0940515f-Abstract.html.
- Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
- Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and evaluating large video description models. *arXiv preprint arXiv:2407.00634*, 2024a.
- Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv preprint arXiv:2409.18869*, 2024b.
- Bohan Wu, Suraj Nair, Roberto Martín-Martín, Li Fei-Fei, and Chelsea Finn. Greedy hierarchical variational autoencoders for large-scale video prediction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2318–2328, June 2021.
- Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*, 2025.

- Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021. doi: 10.48550/arXiv.2104.10157.
- Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In *NeurIPS 2023 Workshop on Generalization in Planning*, 2023.
- Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Zixuan Ye, Huijuan Huang, Xintao Wang, Pengfei Wan, Di Zhang, and Wenhan Luo. Stylemaster: Stylize your video with artistic generation and translation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2630–2640, 2025.
- Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 22963–22974, 2025.
- Lijun Yu, José Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion-tokenizer is key to visual generation. In *ICLR*, 2024.
- Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12978–12988, 2025.
- Shuangfei Zhai, Ruixiang ZHANG, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng, Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, and Joshua M Susskind. Normalizing flows are capable generative models. In *Forty-second International Conference on Machine Learning*.
- Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng, Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing flows are capable generative models. *arXiv preprint arXiv:2412.06329*, 2024.
- Jiaru Zhang, Juanwu Lu, Ziran Wang, and Ruqi Zhang. Inference acceleration of autoregressive normalizing flows by selective jacobi decoding. *arXiv preprint arXiv:2505.24791*, 2025.
- Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. *arXiv* preprint arXiv:2412.20404, 2024.