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Figure 1: Samples from STARFlow-V in three tasks. All videos at 5 seconds with 16 FPS.

ABSTRACT

High-quality video generation at scale requires models that are strictly causal,
robust over long horizons, and fast at inference. We present STARFlow-V, a flow-
based autoregressive video generator that operates in compressed spatiotemporal
latents and is trained with exact likelihood end-to-end. Two design choices ensure
causality for autoregressive prediction while mitigating error propagation and en-
abling end-to-end training: (i) Global–Local architecture, which constrains each
token to depend only on the past along time while preserving rich within-frame
interactions; and (ii) noise-augmented training jointly with flow-score matching,
a lightweight causal denoiser that recovers clean samples from noisy generation.
To improve efficiency, STARFlow-V employs a video-aware fixed-point iteration
scheme that reformulates inner updates as parallelizable iterations without vio-
lating causal structure, yielding substantially faster inference. A deep–shallow
autoregressive-flow hierarchy further balances capacity and stability over long
videos. The same model natively supports both text-to-video (T2V) and text-
/image-to-video (TI2V) generation via unified conditioning, avoiding separate
pipelines. Empirically, STARFlow-V achieves strong visual fidelity and tempo-
ral consistency with markedly lower sampling cost compared to diffusion-only
or discrete AR baselines. By marrying causality, likelihood, and efficiency in a
single architecture, STARFlow-V helps pave the way toward a flow-based, scalable
paradigm for world modeling.
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1 INTRODUCTION

Generative modeling has advanced rapidly with breakthroughs across language (Achiam et al., 2023;
OpenAI, 2024a), images (Podell et al., 2023; Batifol et al., 2025; Wu et al., 2025), and videos (OpenAI,
2024b; Wan et al., 2025; DeepMind, 2025). Among these modalities, video is uniquely demanding:
beyond high perceptual quality, models must capture rich spatiotemporal structure, remain robust
over long horizons, and often operate causally for interactive or streaming use. Such capabilities are
central not only to creative media (Ye et al., 2025; Yuan et al., 2025), but also to emerging world
models that support simulation, robotics, and human–AI interaction (Ha & Schmidhuber, 2018; Yang
et al., 2023; Hu et al., 2023; Google DeepMind, 2024; Hafner et al., 2025).

Recent scaling of data, model capacity, and compute has pushed video generation to new levels
of fidelity (Yang et al., 2025; Kong et al., 2024; Kondratyuk et al., 2024; Yu et al., 2024; Wan
et al., 2025; Seawead et al., 2025; Gao et al., 2025). Diffusion-based approaches (Ho et al., 2020;
Rombach et al., 2022; Peebles & Xie, 2023; Lipman et al., 2023; Esser et al., 2024) dominate
quality by jointly denoising multiple frames; however, their training remains not end-to-end: frames
are corrupted at randomly sampled noise levels and a denoiser is learned to invert them, so each
update supervises only a single noise level, incurring high training cost (especially for video) and
multi-step sampling at inference. Moreover, parallel multi-frame denoising is inherently non-causal,
allowing future frames to influence earlier ones and complicating streaming or interactive generation.
Recent sequential/causally conditioned diffusion variants (Chen et al., 2024a; Huang et al., 2025)
alleviate non-causality via asynchronous noise schedules and post-training objectives, but they retain
diffusion’s training inefficiency and exhibit train–test mismatch during long-horizon rollout.

In this work, we revisit normalizing flows (Rezende & Mohamed, 2015; Dinh et al., 2014; 2016)—a
family of invertible, likelihood-based generative models, distinct from diffusion approaches, that
enable end-to-end training in continuous spaces—as a scalable foundation for video generation.
Earlier attempts, such as VideoFlow (Kumar et al., 2019), were constrained by model capacity and
the training practices of the time and saw no substantive follow-ups. In the image domain, recent
systems (Zhai et al.; Gu et al., 2025) show that, by parameterizing the “autoregressive normalizing
flow” with a Transformer, flows can scale competitively and approach diffusion-level quality.

Building on these insights, we present STARFlow-V, a normalizing-flow video generator operating
on a spatiotemporal latent space. Specifically, STARFlow-V introduces three core contributions:
(1) a global–local formulation that separates per-frame refinements from causal sequence modeling,
preserving universality while easing error accumulation and enabling streamable generation; (2)
noise-augmented training jointly with flow-score matching, a lightweight causal denoiser that recovers
clean samples from noisy generation; and (3) efficient inference algorithm via video-aware blockwise
Jacobi iteration and pipelined decoding that markedly reduces sampling latency. These advances
make autoregressive flow inference tractable at scale while keeping training strictly end-to-end. As
a result, STARFlow-V scales normalizing flows to high-fidelity, long-horizon video across various
senarios including text-to-video, image-to-video, and controllable generation.

Extensive experiments demonstrate that STARFlow-V achieves competitive visual quality and robust
generation compared to leading diffusion approaches,especially in autoregressive approaches. We
believe STARFlow-V opens up a new direction in video generative modeling combining the scalability
and expressivity of modern architectures with the principled advantages of end-to-end training in the
continuous space.

2 BACKGROUND

2.1 VIDEO GENERATIVE MODELS

Given N frames x1:N = (x1, . . . ,xN ) and optional conditioning C (e.g., text, image, audio, layout,
camera), video generative models seek to model the joint distribution of all frames p(x1:N | C)
and sample novel videos from the learned model. While earlier work explored GANs (Vondrick
et al., 2016; Tulyakov et al., 2018; Skorokhodov et al., 2022), VAEs (Babaeizadeh et al., 2018;
Castrejon et al., 2019; Wu et al., 2021), and discrete autoregressive models (Yan et al., 2021; Yu et al.,
2024; Kondratyuk et al., 2024), the field has largely converged on diffusion-based methods Ho et al.
(2022c;a). Spurred by the release of Sora (Brooks et al., 2024), DiT-style approaches (Peebles & Xie,
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2023) have shown strong generalization at scale (Gao et al., 2025; Wan et al., 2025; DeepMind, 2025).
A key distinction from prior paradigms is that training of diffusion-based models is Not End-to-End:
diffusion-based models corrupt frames with noise at randomly sampled levels and train a denoiser to
invert this process, optimizing an objective closely related to the lower bound of log p(x1:N | C).
This setup incurs high training cost—especially for video—since each update supervises only a single
noise level. At inference time, one sample by iteratively denoising from Gaussian noise.

Autoregressive Video Generation Diffusion-based video generation is typically non-causal: all
frames are corrupted with noise and denoised in parallel (Ho et al., 2022c). Yet many applications
demand causal, often interactive synthesis (e.g., online streaming, video games, robotics), where
frames must be produced sequentially. Autoregressive (AR) diffusion models (Chen et al., 2024a;
Song et al., 2025; Yin et al., 2025)—a line of work that combines chain-rule factorization with
diffusion—aim to alleviate prior limitations by introducing asynchronous, frame-wise noise schedules
during training, modeling each conditional p(xn | x<n) as a diffusion process. Despite their strengths,
AR generation typically suffers from exposure bias: during training, models condition on ground-truth
contexts, whereas at inference they must rely on their own (imperfect) predictions. This train–test
mismatch compounds over time, degrading long-horizon video quality. The non–end-to-end nature
of diffusion training further exacerbates this gap, though recent efforts such as Self-Forcing (Huang
et al., 2025) seek to mitigate it via sequential post-training with distillation objectives. However, they
are not readily applicable in the pre-training stage on raw video data.

Video Latent Space Directly modeling long-duration and high-resolution videos in pixel space
is computationally challenging. Therefore, recent models typically operate in a compressed latent
space (Rombach et al., 2022). In particular, video frames are encoded with a 3D causal variational
autoencoder (VAE) (Yang et al., 2025; Wan et al., 2025), compressing both spatial and temporal
dimensions while enforcing causality along the temporal axis. Throughout, we adopt latent-space
representations unless explicitly indicated.

2.2 SCALABLE NORMALIZING FLOWS

Normalizing flows (NFs; Rezende & Mohamed, 2015; Dinh et al., 2014; 2016; Kingma & Dhariwal,
2018; Ho et al., 2019) are likelihood-based generative models built from invertible transformations.
Given a continuous input x∼ pdata, x ∈ RD, an NF learns a bijection fθ : RD→RD that maps
data x to latents z = fθ(x). Unlike diffusion models, NFs are trained end-to-end via a tractable
maximum-likelihood objective derived from the change-of-variables formula:

LNF(θ) = Ex∼pdata
[log pNF(x; θ)] = Ex∼pdata

[
log p0

(
fθ(x)

)
+ log|det(Jfθ (x))|

]
, (1)

where the first term encourages mapping data to high-density regions of a simple prior p0 (e.g.,
standard Gaussian), and the Jacobian term Jf accounts for the local volume change induced by fθ,
preventing collapse. Once trained, sampling is immediate via inversion: draw z ∼ p0(z) and set
x = f−1

θ (z). Historically, however, NFs have been viewed as less competitive than diffusion models
due to architectural rigidity and training instability (Dinh et al., 2016).

Transformer Autoregressive Flows Recently, TARFlow (Zhai et al.) and its scalable extension,
STARFlow (Gu et al., 2025), have revisited normalizing flows as next-generation backbones for
generative modeling. Both methods instantiate autoregressive flows (AFs) (Kingma et al., 2016;
Papamakarios et al., 2017)—NFs whose invertible transformations are parameterized autoregres-
sively—and use causal Transformer blocks, in the style of LLMs, as their primary building units.

Formally, STARFlow (Gu et al., 2025) stacks T autoregressive flow blocks with alternating directions,
where each block applies an affine transform whose parameters are predicted by a causal Transformer
under a (self-exclusive) causal mask m:

z = fθ(x) =
[
x− µθ

(
x⊙m

)]
/σθ

(
x⊙m

)
, σθ(·) > 0, (2)

where x, z are the input and output of each block, ⊙ denotes the Hadamard product. As shown
in STARFlow (Gu et al., 2025), T ≥3 blocks suffice for universal density modeling where masks
alternate between left-to-right (→) and right-to-left (←) to capture bidirectional dependencies.

Video Generation with Normalizing Flows Despite STARFlow demonstrating competitive visual
quality with state-of-the-art diffusion (Podell et al., 2023; Esser et al., 2024) on large-scale text-to-
image tasks, evidence for normalizing flows in video generation remains sparse. To our knowledge, the
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only prior NF-based video model is VideoFlow (Kumar et al., 2019), which builds on Glow (Kingma &
Dhariwal, 2018) and is constrained by limited capacity, low resolution, and domain-specific settings.
Compared to images, video generation is substantially more challenging for NFs due to higher
spatiotemporal dimensionality. Nevertheless, we argue that scalable normalizing flows—exemplified
by STARFlow—are a natural fit for video modeling, especially in autoregressive settings.

3 STARFLOW-V

We propose STARFlow-V, a novel paradigm for video generation based on normalizing flows. While
inspired by STARFlow (Gu et al., 2025), STARFlow-V is not a direct port to the video domain; it
introduces architectural redesigns tailored to spatiotemporal data. In what follows, we present the
architecture and its autoregressive formulation (§ 3.1), the training procedure (§ 3.2), the inference
pipeline (§ 3.3), and applications enabled by our model (§ 3.4).

3.1 PROPOSED MODEL

For a video x ∈ RN×H×W×D, each frame xn is flatten into RHW×D, i.e., xn = (xn,1, . . . ,xn,HW ).
Concatenating across frames yields a sequence of total NHW tokens. As in standard practice,
we operate in a compressed latent space using a pretrained 3D causal VAE (Wan et al., 2025).
STARFlow-V models the joint distribution pθ(x) by an invertible mapping fθ through autoregressive
transformations (Eq. (2)). Following Gu et al. (2025), fθ is decomposed into a deep–shallow
architecture, fθ = fD ◦ fS : a small stack of shallow flow blocks with alternating (left-to-right /
right-to-left) masks maps the input to intermediate latents u = fS(x), and a deep causal-Transformer
flow fD then autoregressively maps u to the prior, producing z = fD(u). By change of variables,

pθ(x) = p0(z)
∣∣det JfD (u)∣∣ ∣∣det JfS (x)∣∣, (3)

where Jf denotes the Jacobian of f and p0 is a simple prior (e.g., standard Gaussian). This design
allocates most capacity to the deep block fD for semantics modeling while the shallow stack fS
ensures universal approximation of continuous densities. For conditional generation, the context C is
prepended only in the deep block.

Global-Local Architecture A naı̈ve implementation requires no change from the original STARFlow
other than lengthening the input sequence by the number of frames. By default, we assume that the
deep block fD follows a natural left-to-right order (causal across frames, raster order within each
frame), while the shallow stack fS alternates directions, beginning with the reverse order. Although
feasible, this setup yields a non-causal model—similar to standard diffusion-based video generators.

Observing that fD is inherently autoregressive and that fS mainly provides local refinements, we
adapt the design into a global–local structure: fS is restricted to operate within each frame, while only
fD propagates global video context in a causal manner. More specifically, Eq. (3) can be re-expressed
as an autoregressive factorization over frames xn:

pθ(x) =

N∏
n=1

pθ(xn | x<n) =

N∏
n=1

pD(un | u<n)
∣∣det JfS (xn)

∣∣, (4)

where un = fS(xn) denotes the local latents for frame xn. Here, the deep block is itself an
autoregressive flow, capturing both intra-frame raster ordering and inter-frame causal dependencies.

Formulating STARFlow-V in a global–local manner (Eq. (4)) yields several benefits:

(a) Universality. Eq. (4) preserves the universal approximation guarantee of STARFlow (Gu et al.,
2025): the local stack fS still realizes per-pixel infinite Gaussian mixtures via alternating causal
masks, so expressivity is not curtailed by restricting fS to within-frame contexts.

(b) Robustness. Intuitively, Eq. (4) can be viewed as a continuous language model for videos:
the deep-flow term pD(un | u<n) acts as a Gaussian next-token predictor (cf. the affine form
in Eq. (2)) in latent space, while the shallow flow supplies the Jacobian factor |det JfS (xn)|,
yielding a flexible density over x. Compared to modeling x directly (arbitrarily multimodal), the
latent u is unimodal at each step, easier to regress, and more tolerant to small prediction errors.
Crucially, the sampling phase via f−1

D conditions on previously generated latents rather than
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Figure 2: An illustrated pipeline of STARFlow-V which shows (1) the proposed global-local architec-
ture; (2) joint training with the learnable denoiser with the proposed Flow-score Matching.

pixels, so data-space errors do not propagate forward, mitigating the compounding error typical of
autoregressive diffusion. Unlike diffusion-style noise conditioning (Ho et al., 2022b; Chen et al.,
2024a), which compromises information to gain robustness and introduces extra parameters, our
mappings u↔ x are exactly invertible, avoiding information loss by construction.

(c) End-to-End Training. The overall model remains a valid flow. Consequently, all parameters
are trained by exact maximum likelihood via the change-of-variables objective—no per-step
denoising schedule or surrogate loss—simplifying optimization and reducing train–test mismatch.

(d) Streamable Generation. At inference time, f−1
D samples un causally (token-by-token, frame-

by-frame), and f−1
S decodes each frame independently given un. This process enables causal,

and potentially interactive video synthesis since later frames cannot influence earlier ones.

3.2 REVISITING NOISE-AUGMENTED TRAINING FOR VIDEOS

As observed by Zhai et al. (2024), injecting small noise into the data is crucial for stabilizing NF
training. Concretely, we learn STARFlow-V on a σ-smoothed density qσ(x̃) = (p ∗ N (0, σ2I))(x̃).
A side effect is that the model naturally generates slightly noisy samples, requiring a post-processing
steps to recover the clean ones.

Decoder Fine-tuning We initially followed STARFlow (Gu et al., 2025) adopting their strategy of
fine-tuning the VAE decoder to denoise noisy latents using a GAN objective (Rombach et al., 2022).
However, our preliminary experiments suggest that this approach is not readily applicable to 3D
causal VAEs: under Gaussian-noised latent inputs, the decoder fails to maintain temporal consistency
in the generated videos due to limited receptive fields.

Score-based Denoising Instead of decoder fine-tuning, TARFlow (Zhai et al., 2024) proposes to
denoise using the learned flow itself via score-based updates. For a noisy sample x̃ ∼ qσ, the
probability–flow ODE gives ∂σx̃ = −σ∇x̃ log qσ(x̃). So for sufficiently small σ, a single Euler step
yields the Tweedie estimator:

x ≈ x̃− σ ∂σx̃ = x̃+ σ2∇x̃ log qσ(x̃). (5)

With normalizing flows, we replace qσ by the learned density pθ, and compute ∇x̃ log pθ(x̃) via
automatic differentiation through the flow, which amounts to an additional forward–backward pass.
However, this score-based denoising presents two issues:

(a) Noisy gradients. The learned density pθ is imperfect; its score ∇x̃ log pθ(x̃) often contains
high-frequency noise, which manifests as bright speckle artifacts—especially for large motions.

(b) Non-causality of the score. Even if pθ is modeled causally, the score ∇x̃ log pθ(x̃) is, by
definition, global: the gradient at time n depends on likelihood terms involving future frames
m > n. This violates strict causality and undermines the promised streamable generation.
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Flow-Score Matching To address these issues, we introduce a neural denoiser sϕ trained alongside
the flow fθ to regress the model’s score:

Ldenoise(ϕ) = Ex, ϵ

∥∥ sϕ(x̃) − σ∇x̃ log pθ(x̃)
∥∥2
2
, x̃ = x+ ϵ, ϵ ∼ N (0, σ2I). (6)

At inference, we replace the raw score in the update (cf. Eq. (5)) with the learned denoiser sϕ. This
flow-score matching (FSM) is simple yet effective. First, the smooth inductive bias of neural networks
suppresses stochastic high-frequency artifacts in∇x̃ log pθ. Second, we can encode causality directly
in sϕ, re-ensuring streamable behavior. Concretely, we parameterize sϕ with a one–frame look-ahead
while remaining globally causal (one-step latency)1. We approximate the score at step n by

sϕ(x̃≤n+1) ≈
(
σ∇x̃ log pθ(x̃)

)
n
. (7)

Finally, we train sϕ jointly with fθ at minimal overhead: since fθ is trained by maximizing log pθ,
we cache the input gradients from the same backward pass and reuse it (detached) as the target for sϕ.

3.3 FAST INFERENCE

While STARFlow-V leverages parallel computation during training via causal masking, generation at
inference time is carried out sequentially (one token at a time) through multiple AF blocks, which
can be extremely computationally demanding for long video sequences. For instance, generating a 5s
480p video under 16 fps using a pre-trained 3B parameter model requires over 30 minutes, which is
far from real-time application. To enable fast inference, we introduce two strategies:

Nonlinear Jacobi Iteration Rather than sampling continuous tokens strictly autoregressively, we
accelerate inference by recasting inversion as solving a nonlinear fixed-point system with parallel
solvers such as Jacobi iteration (Porsching, 1969; Kelley, 1995), a strategy recently used to speed up
autoregressive models (Song et al., 2021; Teng et al., 2024; Liu & Qin, 2025; Zhang et al., 2025).
Specifically, the inverse of Eq. (2) can be written as the fixed-point equation

x = µθ(x⊙m) + σθ(x⊙m) · z, (8)

where m is a (self-exclusive) causal mask. This induces a triangular system that admits convergence
under nonlinear Jacobi iteration (Saad, 2003): starting from an initial sequence x(0), iterate x(k+1) =
µθ(x

(k) ⊙m) + σθ(x
(k) ⊙m) · z until a converge criterion is satisfied. We monitor a scale-

normalized residual, ∥x(k+1) − x(k)∥22/∥x(k+1)∥22 < τ with τ = 0.001 by default. In the worst case,
the iteration count scales with sequence length (e.g., near-Markovian process), but video generation
exhibits strong global structure, which substantially accelerates convergence. The procedure is also
CFG-compatible: following Gu et al. (2025), we compute the guided µ̂, σ̂ and substitute them.

To further accelerate sampling, we adopt a block-based Jacobi scheme in the spirit of Song et al.
(2021); Liu & Qin (2025). We partition the token sequence into contiguous blocks of size B and
process blocks sequentially. Within each block we run the Jacobi updates, while states from completed
blocks are cached as context (e.g., KV cache) for subsequent blocks—analogous to standard AR
inference. We also apply a video-aware initialization: for a new frame, x(0)

n+1 is initialized from the
previously converged frame x

(k)
n . Overall, we adopt block-based iteration within each AF block,

yielding ≈ 10× lower inference latency relative to standard autoregressive decoding.

Pipelined Decoding As described in § 3.1, the global–local design applies standard global left-
to-right autoregression in the deep block fD, while the shallow blocks fS traverse each frame
independently. This enables a pipelined schedule (analogous to pipeline parallelism (Huang et al.,
2019)): fD runs continuously without waiting on fS , and, in parallel, fS threads consume fD’s
outputs, immediately refine them, and then denoise. Because fD is typically the slowest stage,
end-to-end latency is dominated by the deep block.

3.4 VERSATILITY ACROSS TASKS

STARFlow-V is a versatile framework that can be trained for diverse video generation tasks. By
default, STARFlow-V is trained for text-to-video generation on large-scale text–video pairs. Without
modifying the backbone, we support the following settings:

1Strictly causal (≤ n) fails as temporal differences are pivotal to determining the denoising direction.
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(a) Image-to-Video Generation. We directly treat the first frame as observed conditioning. Owing
to the invertiblity, no separate encoder is required: we encode the observed frame via the flow
forward to initialize the KV cache; subsequent frames are then generated autoregressively.

(b) Long-Horizon (Streaming) Generation. Our model generates videos far longer than those
seen during training via a sliding-window (chunk-to-chunk) schedule in the deep block. After
producing a latent chunk u, we warm-start the next step by rebuilding the KV cache: we re-run
fD on the last ∆ latents (the overlap) and then continue autoregression to synthesize the next
N−∆ latents. fS then process the latents per frame, enabling streaming output. To mitigate
boundary mismatch, we randomly drop the first frame during training to simulate chunk restarts.

(c) Controllable Video Generation. For controllable synthesis (e.g., camera-aware generation using
poses/intrinsics), we freeze the backbone and train a control module that injects control tokens
into the autoregressive steps. This enables precise control without altering the core architecture.

4 EXPERIMENTAL SETUP

Datasets. We construct a diverse and high-quality collection of video datasets to train STARFlow-V.
Specifically, we leverage the high-quality subset of Panda-70M (Chen et al., 2024b) mixed with an
in-house stock video dataset, with a total number of 70M text-video pairs. For all videos, we keep
their raw captions, and apply a video captioner (Wang et al., 2024a) to generate a longer description
to cover the details. The ratio of training using raw and synthetic captions during training is 1 : 9.
Besides, following previous works (Lin et al., 2024), we additionally include image joint training
with 400M text-image pairs.
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Figure 3: Hyper-parameters of Parallel Iteration

Evaluation. We perform both quantitative
and qualitative evaluations on STARFlow-
V, and compare against baselines using
VBench (Huang et al., 2024), which benchmarks
text-to-video generation across 16 dimensions,
including quality, semantics, temporal consis-
tency, and spatial reasoning.

Model and Training Details. We adopt the 3D
Causal VAE from WAN2.22(Wan et al., 2025),
which compresses spatial dimensions by ×16
and the temporal dimension by ×4 into a 48-
channel latent space. We train progressively: we
initialize from an image (single-frame) model,
then scale to a 7B-parameter video model by in-
creasing the deep-block capacity. For resolution,
we use a curriculum from 384p to 480p while keeping the sequence length fixed at 81 frames.

Baselines. We compare STARFlow-V with two baselines: (i) WAN-2.1 Causal-FT, the autoregres-
sive variant of WAN (Wan et al., 2025) trained following the CausVid initialization strategy (Yin
et al., 2025); and (ii) NOVA (Deng et al., 2024), an autoregressive video generator that does not rely
on vector quantization.

5 RESULTS AND DISCUSSION

5.1 QUANTITATIVE RESULTS

Table 1 reports the text-to-video generation results on VBench (Huang et al., 2024). We show that
STARFlow-V achieves competitive performance compared to diffusion-based methods.

2https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B/blob/main/Wan2.2_VAE.pth
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Figure 4: STARFlow-V examples of text and image conditioned video generation with comparison
against baselines for both trained length (5s) and long-horizon generation (30s).

5.2 QUALITATIVE RESULTS

As illustrated in Fig. 4 (top block), STARFlow-V effectively handles both text-to-video (T2V) and
image-to-video (I2V) generation. The first two rows show text-conditioned result and

Moreover, STARFlow-V produces consistent and high-quality videos even for videos extended to
30 seconds. Compared to other autoregressive video models, STARFlow-V demonstrates stronger
robustness to exposure bias, which is a typical failure mode observed in autoregressive video
generation, while retaining sharp textures and high visual quality over a long horizon.

In the dog-with-sunglasses example (Fig. 4, middle block), NOVA generates frames that blur and
lose identity over time, while WAN 2.1-Causal FT suffers from severe artifacts and color distortions.
By contrast, STARFlow-V produces clean, stable, and consistent frames across the sequence.

5.3 ABLATION STUDY

Choice of Denoiser Fig. 5 provides ablation evidence on the choice of denoiser, illustrated with two
consecutive frames from three denoising strategies. Specifically, we show that Decoder-finetuning,
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Model Total Quality Semantic Aesthetic Object Multi Obj. Human Spatial Scene

Closed-source models
Gen-2 (Germanidis, 2023) 80.58 82.47 73.03 66.96 90.92 55.47 89.20 66.91 48.91
Gen-3 (Germanidis, 2024) 82.32 84.11 75.17 63.34 87.81 53.64 96.40 65.09 54.57
Veo3 (Google DeepMind, 2025) 85.06 85.70 82.49 63.81 93.89 82.20 99.40 84.26 57.43

Diffusion models
OpenSora-v1.1 (Zheng et al., 2024) 75.66 77.74 67.36 50.12 86.76 40.97 84.20 52.47 38.63
OpenSora-v1.2 (Zheng et al., 2024) 79.76 81.35 73.39 56.85 82.22 51.83 91.20 68.56 42.44
CogVideoX (Yang et al., 2024) 80.91 82.18 75.83 60.82 83.37 62.63 98.00 69.90 51.14
HunyuanVideo (Kong et al., 2024) 83.24 85.09 75.82 60.36 86.10 68.55 94.40 68.68 53.88
Wan2.1-T2V (Wan et al., 2025) 83.69 85.59 76.11 66.07 86.28 69.58 95.40 75.39 45.75

Autoregressive (Diffusion) models
CogVideo (Hong et al., 2022) 67.01 72.06 46.83 38.18 73.40 18.11 78.20 18.24 28.24
Emu3 (Wang et al., 2024b) 80.96 84.09 68.43 59.64 86.17 44.64 77.71 68.73 37.11
NOVA (Deng et al., 2024) 80.12 80.39 79.05 59.42 92.00 77.52 95.20 77.52 54.06
SkyReel-v2 (Chen et al., 2025) 83.90 84.70 80.80 - - - - - -
MAGI-1-distill (Teng et al., 2025) 77.92 80.98 65.68 62.43 82.37 35.08 84.20 57.75 26.28

Normalizing Flows
STARFlow-V (Ours) 78.67 80.24 72.37 54.48 86.65 53.48 94.00 49.84 47.08
STARFlow-V (Ours, with Rewriter) 79.53 80.78 74.55 59.73 80.51 56.04 97.20 66.53 50.76

Table 1: Text-to-video evaluation on VBench. The baseline data is sourced from the VBench
leaderboard (Huang et al., 2024).

Figure 5: Ablation Study for the choice of flow-score matching.

as in STARFlow (Gu et al., 2025), produces videos that lose temporal consistency, with evident
frame-to-frame jitter. Score-based denoising, which uses the raw flow score, shows bright speckle
artifacts—especially for large motions. In comparison, STARFlow-V shows temporally consistent
and artifact-free videos.

Hyper-parameters of Parallel Iteration We analyze how the block size influences the runtime
of the deep block. As shown in Fig. 3, larger group sizes increase parallelism but also introduce
higher per-iteration overhead, while smaller groups reduce overhead but limit parallel efficiency. Our
experiments reveal a favorable trade-off at moderate group sizes, which balances runtime efficiency
with generation quality. In particular, a block size of 64 achieves the most favorable efficiency, and
we adopt this setting for all experiments.

6 CONCLUSION AND LIMITATIONS

We presented STARFlow-V, an end-to-end video generative model based on normalizing flows.
Across text-to-video and image-to-video, STARFlow-V delivers strong long-horizon coherence
and fine-grained controllability, showing consistent gains over WAN-2.1 Causal-FT and NOVA
at 480p/81f while providing exact likelihoods and streamable decoding via blockwise Jacobi and
pipelined inference.

There are also limitations. (1) Throughput/latency. Despite the blockwise Jacobi acceleration and
pipelining, inference remains far from real time on commodity GPUs. (2) Data quality and scaling.
Progress is bounded by dataset noise and bias; we do not observe a clean scaling law under current
curation, which constrains further improvements.

Looking forward, we plan to (i) reduce latency with kernel-level optimizations and partial-update
decoders, (ii) study distillation and pruning to compress the deep block, and (iii) revisit dataset
curation and active data selection to enable clearer scaling behavior and higher fidelity at longer
durations and higher resolutions.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENTS

Ethic Considerations :Our video generative model has the potential to enable new forms of cre-
ativity, data augmentation, and simulation. However, it also raises important ethical concerns. In
particular, the ability to generate realistic video content carries risks of misuse, including the creation
of misleading or harmful media. Such risks highlight the importance of establishing safeguards
around model deployment and access.

The use of Large Language Model (LLM) A large language model (LLM) was employed solely
for stylistic polishing of the manuscript. It was not used for generating scientific content, conducting
analyses, or contributing to the conceptual development of this work. All technical ideas, methods,
and results are entirely the author’s own.

REPRODUCIBILITY STATEMENTS

We are committed to ensuring the reproducibility of our work. Upon acceptance, we will release the
complete codebase, including all training details, hyperparameters, and model configurations. For
privacy reasons, the raw data used in our experiments cannot be released. Theoretically, we confirm
that all variables used in the equations are well-defined to facilitate the reproducibility of our work.
Practically, to further enhance understanding, we provide extensive visual illustrations (e.g., Fig. 2)
to support reproducibility.
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