
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

No-Regret Algorithms in non-Truthful Auctions with Budget
and ROI Constraints
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Abstract
Advertisers are increasingly using automated bidding to optimize

their ad campaigns on online advertising platforms. Autobidding

allows an advertiser to optimize her objective subject to various

constraints. In this paper, we design online autobidding algorithms

to optimize value subject to ROI and budget constraints.

We consider an item is being auctioned in each of 𝑇 rounds.

We focus on one buyer with budget and ROI constraints in the

stochastic setting: her value and highest competing bid faced are

drawn i.i.d. from some unknown (joint) distribution in each round.

We design low-regret bidding algorithms that bid on behalf of

this buyer. Our main result is an algorithm with full information

feedback (i.e., the highest competing bid is revealed after each

round) that guarantees a near-optimal �̃� (
√
𝑇 ) regret with respect

to the best Lipschitz function that maps values to bids. The class

of Lipschitz bidding functions is rich enough to best respond to

many correlation structures between value and highest competing

bid, e.g., positive or negative correlation. Our result applies to a

wide range of auctions, most notably any mixture of first- and

second-price auctions. In addition, our result holds for both value-

maximizing buyers and quasi-linear utility-maximizing buyers.

We also study the bandit setting, where the algorithm only ob-

serves whether the bidder wins the auction or not. In this setting,

we show an Ω(𝑇 2/3) regret lower bound for first-price auctions,

showing a significant disparity between the full information and

bandit settings. We also design an algorithm with a regret bound of

�̃� (𝑇 3/4) when the value distribution is known and is independent

of the highest competing bid.

Keywords
repeated auctions, online learning, first-price, budget constraint,

ROI constraint

1 Introduction
With the growth of online advertising markets in terms of both

complexity and scale, advertisers are increasingly turning towards

autobidding to optimize their ad campaigns on online advertising

platforms. Autobidding allows an advertiser to use an optimization

algorithm to generate bids on her behalf, rather than manually

bidding for each ad query. The advertiser provides high-level goals

and constraints to the autobidder, which bids on her behalf in order

to optimize her objective, while satisfying her constraints.

In this paper, we study the problem of designing algorithms

for autobidding on behalf of a buyer. We consider a stochastic

setting with 𝑇 rounds, in each of which one item is sold via an

auction. In each round, the information of this round, including

the buyer’s value and the highest competing bid, are drawn i.i.d.

from some unknown (joint) distribution. The autobidder submits

a bid to the auction based on her value and the history. If the bid

is at least the highest competing bid, the bidder wins the current

round and pays a price. The bidder has a budget constraint that

limits the total payment, as well as a Return-on-Investment (ROI)

constraint which requires that the total value in the winning rounds

is at least a fraction of the total payment. These are the two most

common constraints that bidders have in practice. In particular,

ROI constraint captures similar constraints used in practice like

target cost-per-acquisition (tCPA) and target return-on-ad-spend

(tROAS)
1
. Our goal is to design online bidding algorithms that

maximize the bidder’s objective subject to both budget and ROI

constraints. To quantify an algorithm’s performance, we use (addi-

tive) regret against the objective value obtained by the best bidding

strategy that knows the underlying distribution.

There has been a lot of recent work on the problem of designing

algorithms for autobidding in stochastic settings. One line of work

[6, 12] focuses on truthful auctions (e.g., second-price), which is

proved to be much easier than non-truthful auctions due to techni-

cal reasons that we discuss later. A different line of work focuses

on non-truthful auctions, with either a weak benchmark for regret,

namely the best constant pacing (also sometimes called uniform

bidding), where the bid is proportional to the value [14, 26], or have

regret bounds that scale with the number of values and bids, which

can be uncountably many [10].

In this paper, we study the problem of bidding in non-truthful

auctions and design no-regret algorithms against a stronger bench-

mark than the best constant pacing – our algorithms have low

regret compared to the best Lipschitz bidding function that maps
values to bids. Due to the generality of Lipschitz functions this

benchmark can best-respond to a range of different correlations be-

tween the buyer’s value and the highest competing bid, e.g. positive

correlation for some values and negative correlation for others.

Our results and techniques.Wefirst consider the full-information

setting where the bidder observes the highest-competing bid at the

end of each round. We prove that there is an algorithm that can

get near-optimal regret with respect to the best Lipschitz bidding

function. The main result for this setting is as follows:

Theorem 1.1 (Informal version of Theorem 4.1). There is
an algorithm that achieves ˜O(

√
𝑇 )2 regret while satisfying both the

budget and ROI constraints, with respect to the best Lipschitz bid-
ding function. The result applies to various classes of auctions (see
Assumption 3.1) including first-price auctions, second-price auctions
and a hybrid of both. The result applies to both value and quasi-linear
utility maximizing bidders.

To the best of our knowledge, this is the first algorithm that

achieves near-optimal regret bounds against the best Lipschitz

bidding function for non-truthful auctions under budget and/or

ROI constraints.
3
Our result applies to any input distribution under

mild assumptions (see Section 2).

1
For example, see the Google ads support page and Meta business help center

2 ˜O(
√
𝑇 ) = O(

√
𝑇 · poly(log(𝑇 ))) .

3
See Section 1.1 for comparisons with prior works.

1

https://support.google.com/google-ads/answer/2979071?hl=en
https://www.facebook.com/business/help/1619591734742116?id=2196356200683573
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Our algorithm is based on the primal/dual framework for online

learning with constraints [6, 7, 9, 10, 13, 20]. In this framework, to

manage global constraints, the ‘core’ algorithm deploys two com-

peting algorithms, each optimizing an unconstrained objective. On

one hand, the primal algorithm picks an action (subsequently used

in the actual bidding problem) to maximize a function similar to

the Lagrangian of the problem. On the other hand, the dual algo-

rithm picks Lagrangian multipliers to minimize the same function.

Guarantees for this sequential unconstrained stochastic zero-sum

game imply the guarantees for the original constrained problem.

While the dual algorithm uses a standard instance of Online

Gradient Descent to pick the scalars that represent the Lagrangian

multipliers, designing the primal algorithm is oftenmuchmore com-

plicated and requires knowledge specific to the original problem.

We develop the primal algorithm for our main result in Section 3.

Main Technical Challenges. Below we list some of the main

technical challenges that we need to tackle and give a brief outline

of our approach to solving them.

Lagrangian Maximization in Non-Truthful Auctions. To better ex-

plain the challenge, we first consider the problem where the auc-

tion used is a second-price auction. The part of the Lagrangian

function that depends on the primal algorithm’s bid 𝑏 takes the

following form (for either value or quasi-linear utility maximiza-

tion): 𝑟 (𝑏) = 1 [𝑏 ≥ 𝑑] (𝜒𝑣 −𝜓𝑑),where 𝑣 is the player’s value, 𝑑
is the (unknown) highest competing bid, and 𝜒,𝜓 are arbitrary

non-negative numbers that depend on the Lagrange multipliers.

Maximizing the above function turns out to be straightforward:

using 𝑏∗ = 𝑣
𝜒

𝜓
implies

4 𝑟 (𝑏∗) = (𝜒𝑣 − 𝜓𝑑)+, which guarantees

maximum reward. Since 𝑏∗ does not depend on the highest com-

peting bid 𝑑 , the primal algorithm can pick this bid to guarantee

zero regret for maximizing the Lagrangian; this subsequently leads

to low regret guarantees for the original problem with constraints.

In contrast to truthful auctions, for non-truthful auctions, the

bid that maximizes the Lagrangian cannot be calculated without

the highest competing bid. Therefore, the learner needs to learn

the best function that maps values to bids. However, learning the

best such function is unrealistic since it might be non-monotone

and discontinuous. Instead, we focus on a class of functions with

specific structures. Such a class used in previous work is the class of

pacing multipliers, Fmul, that map values to bids bymultiplying by a

constant number. Instead, we focus on the more general class of Lip-

schitz continuous functions, FLip, which provide a much stronger

benchmark to compete against, even in very simple settings where

values and highest competing bids are independent. For example,

if the highest competing bid is constant and the value is not, the

best response is a fixed bid, which cannot be expressed by the class

of pacing multipliers. In Appendix B we give a concrete example of

this and include some additional discussion on the limitations of

the pacing multiplier class Fmul.
The increased expressivity and complexity of FLip over Fmul can

also be observed when considering finite approximations of them.

Fmul can be approximated with accuracy 𝜀 using a set of sizeΘ(1/𝜀).
If this approximation results in O(𝑇𝜀) error over 𝑇 rounds (this is

not trivial, see our discussion on that next), along with many more

simplifying assumptions, using standard online learning algorithms

4
We denote 𝑥+ = max{0, 𝑥 }.

we get O(𝑇𝜀 +
√
𝑇 log(1/𝜀)) regret (

√
𝑇 log𝐾 is the regret of using

𝐾 different actions); optimizing over 𝜀 we get O(
√
𝑇 ) regret. In

contrast, approximating FLip with 𝜀 accuracy requires a set of size

exp(Θ(1/𝜀)), leading to O(𝑇𝜀 +
√
𝑇 log(exp(1/𝜀))) regret. This is

˜O(𝑇 2/3) if optimized over 𝜀, which is suboptimal.

The near-optimal
˜O(
√
𝑇 ) regret is achieved by utilizing the struc-

ture implied by the finite subset of FLip, similar to [11, 18]. More

specifically, we create a tree where the functions of the finite subset

of FLip are the leaves and smaller distance between two leaves

implies more similarity between the two corresponding functions.

This allows us to enhance the standard regret guarantees of learning

algorithms to get the improved result, found in Section 3.3.

Discretization Error and Safe bid. Our algorithms are based on dis-

cretizing the bidding space of real numbers. However, two bids

that are similar do not necessarily lead to similar reward, as the

reward of a round is not a continuous function of the bid. This has

been solved in previous works (e.g. Fikioris and Tardos [13], Han

et al. [18]) for first-price by noticing that using bid 𝑏 + 𝜀 instead
of 𝑏 still wins the auction and the price paid can only be 𝜀 more.

However, in this work we face one additional challenge: since our

primal algorithms aim to maximize the Lagrangian, the reward of

bid 𝑏 + 𝜀 might be negative, making bid 𝑏 much better if it does not
win the auction. This means that the error of discretizing our action

space is harder to handle. We tackle this by defining a general way

of transforming bids to “safe bids” that guarantee non-negative

reward that is at least as good as the original bid (Assumption 3.1),

which is crucial to getting optimal regret rates.

Time-Varying Range. The Lagrangian function that the primal al-

gorithm aims to maximize depends on the Lagrangian multipliers

picked by the dual algorithm. Thus the primal algorithm’s guar-

antees need to hold even against an adaptive adversary since no

assumptions can be made for the dual algorithm’s behavior, which

adapts to the primal’s decisions. While this challenge is not new

to online learning algorithms, a new problem that we face is that

the Lagrange multipliers control the range of the objective that the

primal algorithm has to maximize. For technical reasons (which we

discuss in Section 2), we cannot a priori upper bound these multi-

pliers. This means that the primal algorithm needs to maximize a

function whose range is time-varying and unknown. We develop

algorithms that tackle this problem and offer regret bounds that

match the bounds of algorithms that know this range in advance.

We first solve this problem in Section 3.2 and use a technique that

is very general and, we believe, is of independent interest.

From Standard Regret to Interval Regret. The ‘core’ algorithm re-

quires that the primal and dual algorithms have low interval regret,

i.e., low regret in every interval of rounds. This is not automatically

achieved by classic algorithms, e.g., the Hedge algorithm [16] has

linear interval regret. In Section 3.4, we offer a black-box reduction

to reduce the problem of standard regret minimization to interval

regret minimization with only
˜O(
√
𝑇 ) error, which also works for

the above time-varying range problem.

Bandit Information. In Section 5 we consider the bandit infor-

mation setting where the algorithm only observes whether the bid

wins the auction or not and the price she pays if she wins. In sharp

contrast to the full-information setting, we prove an Ω(𝑇 2/3) regret
lower bound for first-price auctions even in a simple setting when

2
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the value is constant. While this is known for quasi-linear utility

maximization Balseiro et al. [5], no results are known for value

maximization. Our lower bound is materialized in a very simple

setting, as showcased in the theorem that follows.

Theorem 1.2 (Informal version of Theorem 5.1). No algorithm
can always guarantee 𝑜 (𝑇 2/3) regret in value-maximizing first-price
auctions with bandit information, even when the value is constant,
the budget is Θ(𝑇 ), and there is no ROI constraint.

Our lower bound is based on a distribution of highest competing

bids that has the following property: for (almost) every pair of values

in the support, there is an optimal bidding strategy that uses only

those values. A small adversarial modification in the distribution

at a certain value ensures that (a) bidding at any other value is

sub-optimal and (b) the bidder wastes many rounds on sub-optimal

bids before finding the optimal one. This construction is inspired

by the Ω(𝑇 2/3) lower bound of [23] for revenue maximization in

posted-price mechanisms without constraints.

To complement our lower bound in Theorem 1.2, we present a

˜O(𝑇 3/4) regret upper bound in Theorem F.3.

Tight satisfaction of the ROI constraint. We remark that all

our regret upper bounds satisfy the ROI constraint exactly but

are based on similar results that approximately satisfy the ROI

constraint (i.e. have sublinear violation with high probability). In

Section 4, we present a black box reduction to turn any algorithm

with approximate satisfaction into one with exact satisfaction.

Finally, we note that the focus of our
˜O(
√
𝑇 ) regret bounds in the

full information setting (Section 3) is regret minimization. To get

this optimal information theoretic bound our algorithms require

exponential running time. In Appendix G, we present algorithms

that require polynomial time to run and offer the same guarantees

as Theorem 1.1 when the values and highest competing bids are

independent across rounds.

1.1 Related work
The most relevant paper to ours is Castiglioni et al. [10]. The algo-

rithm designed in our paper is based on the primal/dual framework

in [10]; we briefly introduce the framework in Section 2. They also

use the framework to design algorithms for bidding in first-price

auctions with budget and ROI constraints, albeit only for a finite

number of values and bids: their regret bound is
˜O(
√
𝑛𝑚𝑇 ) against

the best bid per value, where 𝑛 is the number of values and𝑚 is

the number of bids. In addition, their algorithm satisfies the ROI

constraint only approximately. In contrast, our results apply to

continuous distributions and strictly satisfy the ROI constraint.

Online bidding in non-truthful auctions.. Lucier et al. [26] de-
sign an algorithm for bidding in first and second price auctions

under budget and ROI constraints, that implies welfare guarantees

when used by every player (extending the result of Gaitonde et al.

[17]). In addition, [26] prove that their algorithm, when used in

a stochastic environment, has
˜O(𝑇 7/8) regret against the class of

pacing multipliers while satisfying both constraints strictly. Fikioris

and Tardos [14] also focus on welfare guarantees in first-price auc-

tions when budgeted players use arbitrary algorithms that have

no-regret against the class of pacing multipliers. In addition, they

design a full information algorithm that has
˜O(
√
𝑇 ) regret with re-

spect to the same class in the stochastic environment. Finally, Wang

et al. [31] study online learning in first-price auctions with budgets

but focus only on the independent values and highest competing

bids.

We defer further discussion about related work in Appendix A,

were we discuss online learning in truthful auctions, online bidding

without constraints, and online learning with or without budget

constraints.

2 Preliminaries
We consider the setting where a single bidder participates in 𝑇

sequential auctions. In each round 𝑡 ∈ [𝑇 ] there is a single item
being sold; a pair (𝑣𝑡 , 𝑑𝑡 ) is drawn i.i.d. from some unknown (joint)

distribution D, where 𝑣𝑡 ∈ [0, 1] indicates the bidder’s value, and
𝑑𝑡 ∈ [0, 1] is the highest competing bid

5
. The bidder submits a bid

𝑏𝑡 based on her value 𝑣𝑡 . The bidder wins this round if her bid is at

least
6
the highest competing bid 𝑑𝑡 ; we denote 𝑥𝑡 = 1 [𝑏𝑡 ≥ 𝑑𝑡 ]. If

the bidder wins the auction, then she pays a price 𝑝𝑡 = 𝑝 (𝑏𝑡 , 𝑑𝑡 ),
where 𝑝 (𝑏, 𝑑) ∈ [0, 1] is the payment function. For example, for first-

price auctions, 𝑝 (𝑏, 𝑑) = 𝑏; for second-price auctions, 𝑝 (𝑏, 𝑑) = 𝑑 ;
for any combination of the two auctions, 𝑝 (𝑏, 𝑑) = 𝑞 ·𝑏 + (1−𝑞) ·𝑑
for some 𝑞 ∈ [0, 1]. We note that the payment function 𝑝 is fixed

across all rounds and known to the bidder.

At the end of each round 𝑡 , the bidder observes information about

that round depending on the feedbackmodel. In the full-information

setting, the bidder observes the highest competing bid𝑑𝑡 withwhich

she can compute the outcome for any possible bid at this round. In

the bandit-information setting, the bidder only observes whether

she wins the auction or not (i.e. 𝑥𝑡 = 1 [𝑏𝑡 ≥ 𝑑𝑡 ]) and the payment

𝑝𝑡 if she wins. Our results hold for different objectives of the bidder,

who wants to maximize

∑
𝑡 ∈[𝑇 ] 𝑢𝑡 , where𝑢𝑡 is her per-round utility.

The focus of our paper is value-maximizing, where 𝑢𝑡 = 𝑣𝑡𝑥𝑡 , but

our results also hold when the bidder has a quasi-linear utility,

where 𝑢𝑡 = 𝑥𝑡 (𝑣𝑡 − 𝜈𝑝𝑡 ) for some 𝜈 ∈ [0, 1].
We assume that the bidder has a budget 𝐵. This is a strict upper

bound on her total payment. Namely, it must hold that her total

payment after𝑇 rounds is at most 𝐵, i.e.
∑
𝑡 ∈[𝑇 ] 𝑥𝑡𝑝𝑡 ≤ 𝐵. We define

𝜌 = 𝐵
𝑇
and note that w.l.o.g. we can assume that 𝜌 ≤ 1: any 𝜌 ≥ 1

implies that the bidder is effectively not budget constraint, since

𝑝 (·, ·) ≤ 1. The bidder must also satisfy a Return-On-Investment

(ROI) constraint: her total value in the winning rounds must be

at least a fraction of her total payment:

∑
𝑡 𝑥𝑡𝑣𝑡 ≥ 𝛾 ·

∑
𝑡 𝑥𝑡𝑝𝑡 , for

some 𝛾 ≥ 1. For the ROI constraint, we often allow approximate

satisfaction where

∑
𝑡 𝑥𝑡 (𝑣𝑡 − 𝛾𝑝𝑡 ) ≥ −𝑉 and 𝑉 is the violation

amount; often 𝑉 = O(
√
𝑇 ). W.l.o.g., we assume that 𝛾 = 1; any

other 𝛾 can be handled by rescaling the values
7
.

Benchmark. We want low regret when competing against a class

of bidding functions F that map values to bids. More specifically,

we assume that for every 𝑓 ∈ F , 𝑓 maps [0, 1] to [0, 1] and we

want the player’s resulting utility to be close to her utility if she

knew the distributionD in advance and she bid using the best fixed

5
One can think of the highest competing bid as the highest bid among other bidders

participating in the auction.

6
Our results easily extend to other tie breaking rules.

7
For any ROI 𝛾 > 1 we can rescale the values 𝑣′𝑡 := 𝑣𝑡 /𝛾 .

3
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functions from F . Since the bidder has to satisfy certain constraints,
the best response to a distribution D might be a distribution of

functions over F , not a single function. Our benchmark is the max-

imum expected average-per-round utility of the best distribution of

functions from F that satisfies the constraints in expectation. For

example, for a value maximizing player in first price auctions, i.e.,

𝑢𝑡 = 𝑣𝑡1 [𝑏𝑡 ≥ 𝑑𝑡 ] and 𝑝𝑡 = 𝑏𝑡 we have
OPT = sup

𝐹 ∈Δ(F)
E
𝑓 ∼𝐹

E
(𝑣,𝑑)∼D

[
𝑣 · 1 [𝑓 (𝑣) ≥ 𝑑]

]
s.t. E

𝑓 ∼𝐹
E

(𝑣,𝑑)∼D

[
𝑓 (𝑣) · 1 [𝑓 (𝑣) ≥ 𝑑]

]
≤ 𝜌

E
𝑓 ∼𝐹

E
(𝑣,𝑑)∼D

[
(𝑣 − 𝑓 (𝑣)) · 1 [𝑓 (𝑣) ≥ 𝑑]

]
≥ 0

(1)

For simplicity, we assume that the function 𝑓 (𝑣) = 0 always

belongs in F , making (1) always feasible.𝑇 · OPT is an upper bound

for the achievable total expected utility of any algorithm that satis-

fies the constraints [4, 9, 10]. We design algorithms that have low

regret with respect to 𝑇 · OPT (where OPT is defined analogously

depending on the buyer’s objective and auction format).

Primal/dual framework.Wenow briefly describe the primal/dual

framework where a constrained problem is solved by having two

learning algorithms, the primal and the dual, compete against each

other in a sequential unconstrained zero-sum game. Specifically

we will look at the results of [10] who develop such a framework

for budget and ROI constraints. We first discuss the assumptions

required on the input distribution and how these relate to our

setting of learning in sequential auctions. We then present the

guarantees that the primal algorithm must satisfy to get guarantees

for the original constrained problem. For simplicity, the rest of

this section focuses on value maximization and presents all the

assumptions in the context of auctions. We refer the reader to their

paper for a more comprehensive description of their techniques.

First, we illustrate the need of some assumptions on the distri-

bution D that generates 𝑣𝑡 , 𝑑𝑡 . Specifically, we assume that there

exists a bidding function that on expectation leads to 𝛽 more value

than payment, for some 𝛽 ≥ 0. Formally,

∃𝑓 ∈ F : E
(𝑣,𝑑)∼D

[(
𝑣 − 𝑝

(
𝑓 (𝑣), 𝑑

) )
1 [𝑓 (𝑣) ≥ 𝑑]

]
≥ 𝛽. (2)

Intuitively, this assumption implies that a learner who makes

wrong decisions and violates her ROI constraint can recover this

in later rounds. This assumption is similar to the one in [12], who

examine value maximization in repeated truthful auctions. Their

assumption is the same as (2) but for 𝑓 (𝑣) = 𝑣 . This might seem

stronger, since it implies (2) when the function 𝑓 (𝑣) = 𝑣 is contained
in F . However, the reverse also holds for truthful auctions, since
𝑓 (𝑣) = 𝑣 is optimal for maximizing quasi-linear utility.

We now show the basics of the primal/dual framework and the

guarantees the primal needs to satisfy to get guarantees for the orig-

inal problem. We first define the following function: L𝑡 (𝑏, 𝜆, 𝜇) =
1 [𝑏 ≥ 𝑑𝑡 ]

(
𝑣𝑡 − 𝜆𝑏 + 𝜇𝑣𝑡 − 𝜇𝑏

)
+ 𝜆𝜌 . This function is inspired by

the optimization problem in (1) (and would analogously be defined

for other objectives/pricing functions). 𝜆, 𝜇 are Lagrange multipliers

that correspond to the budget and ROI constraint, respectively. The

core algorithm of [10] runs two algorithms, the primal algorithm

that picks bids and the dual that picks Lagrange multipliers. On ev-

ery round 𝑡 , the primal (resp. dual) algorithm picks 𝑏𝑡 (resp. (𝜆𝑡 , 𝜇𝑡 ))

aiming to maximize (resp. minimize) L𝑡 (𝑏𝑡 , 𝜆𝑡 , 𝜇𝑡 ). Given their ac-

tions, each algorithm faces some regret. To get regret guarantees

for the original problem (value maximization under constraints) the

primal and dual algorithms must have with high probability low in-
terval regret, i.e., have low regret over every interval [𝜏1, 𝜏2] ⊆ [𝑇 ].
Before formally defining this, we point out one subtle detail.

In general, regret bounds depend on the range of values that the

objective function takes. This range for the primal algorithm in

our setting can be as high as 2𝜇𝑡 + 𝜆𝑡 + 1 in round 𝑡 . This depends

on the dual algorithm’s actions 𝜆𝑡 , 𝜇𝑡 , meaning we cannot know

max𝑡 {2𝜇𝑡 + 𝜆𝑡 + 1} in advance. One solution to this is to explicitly

upper bound 𝜆𝑡 and 𝜇𝑡 . To get meaningful regret guarantees such

an upper bound would be 𝜆𝑡 , 𝜇𝑡 ≤ 1

𝛽𝜌
. However, calculating 𝛽

requires D, as seen in (2), which is unknown.

[9] show that the above issue can be circumvented, if the primal

algorithm satisfies stronger interval regret bounds: with high prob-

ability, for every interval of rounds, the regret in those rounds is

small with respect to the best fixed action in that interval and the

maximum Lagrange multipliers seen so far. To formally define this,

first define𝑀𝑡 = max𝑡 ′≤𝑡 {2𝜇𝑡 ′ +𝜆𝑡 ′ +1}. We require that the primal

algorithm picks bids 𝑏1, . . . , 𝑏𝑇 such that for every 𝛿 ∈ (0, 1], with
probability at least 1 − 𝛿 it holds that for all ∀[𝜏1, 𝜏2] ⊆ [𝑇 ] :

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

L𝑡
(
𝑓 (𝑣𝑡 ), 𝜆𝑡 , 𝜇𝑡

)
−
𝜏2∑
𝑡=𝜏1

L𝑡 (𝑏𝑡 , 𝜆𝑡 , 𝜇𝑡 ) ≤ Reg𝛿 (𝑇,𝑀𝜏2
) (3)

Given the above guarantee for the primal and some mild condi-

tions on Reg, we get the guarantees for the original problem. More

specifically, we require that the dependence of𝑀 in Reg𝛿 (𝑇,𝑀) is
not worse than quadratic. Using this condition, both the regret of

the original problem and the violation of the ROI constraint are at

most Reg𝛿 (𝑇, 𝛿, 2

𝛽𝜌
). Formally, we have the following theorem.

Theorem 2.1 (Theorem 6.9 of [10], adapted to auctions).

Assume (2) is true for 𝛽 > 0, the dual algorithm is Online Gradi-
ent Descent, and (3) holds with Reg𝛿 (𝑇,𝑀) ≤ O

(
𝑀2Reg𝛿 (𝑇, 1)

)
.

Then, for every 𝛿 > 0, with probability at least 1 − 4𝛿 , the re-
gret of the core algorithm and the ROI violation is each at most

O
(
Reg𝛿

(
𝑇, 𝛿, 2

𝛽𝜌

)
+ 1

𝛽𝜌

√
𝑇 log(𝑇 /𝛿)

)
.

First, we note that [10] require a slightly more general condition

than the one in (2) for 𝛽 > 0; we present this in detail in Appendix C.

Second, we note that if |F | = 𝐾 was finite, we had bandit feed-

back, and a known upper bound �̄� for𝑀𝑇 then existing techniques

would allow us to get Reg𝛿 (𝑇,𝑀𝑡 ) = ˜O(�̄�
√
𝑇𝐾 log(1/𝛿)). In the

setting where there is no such upper bound, [10] offer an algorithm

with Reg𝛿 (𝑇,𝑀𝑡 ) = ˜O(𝑀2

𝑡

√
𝑇𝐾 log(1/𝛿)). While this regret bound

satisfies the requirements of Theorem 2.1, the quadratic dependence

on𝑀𝑡 is sub-optimal, making the resulting regret bound of the core

algorithm to be proportional to
1

𝛽2𝜌2
. One of the contributions of

the following sections is a general technique to get linear depen-

dence of𝑀𝑡 in Reg𝛿 (𝑇,𝑀𝑡 ), similar to knowing𝑀𝑡 in advance. This

leads to much improved regret bounds that scale with
1

𝛽𝜌
, which is

especially important when 𝛽 and 𝜌 are small.

4
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3 Primal algorithm designs with full
information

In this section, we design a primal algorithm that satisfies (3) for

sequential auctions. Our goal is to pick bids to maximize the La-

grangian L𝑡 (𝑏𝑡 , 𝜆𝑡 , 𝜇𝑡 ). For every round 𝑡 , we define for simplicity

𝑟𝑡 (·) to be the part of the Lagrangian that depends on the bid:

𝑟𝑡 (𝑏) = 1 [𝑏 ≥ 𝑑𝑡 ]
(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝 (𝑏, 𝑑𝑡 )

)
(4)

where 𝑑𝑡 ∈ [0, 1] is the highest competing bid, 𝑣𝑡 ∈ [0, 1] is the
value, 𝑝 (𝑏, 𝑑𝑡 ) is the payment of bid 𝑏, and 𝜒𝑡 ,𝜓𝑡 are non-negative

numbers that depend on the Lagrange multipliers 𝜆𝑡 (for budget

constraint) and 𝜇𝑡 (for ROI constraint) of round 𝑡 . For value max-

imizing, 𝜒𝑡 = 1 + 𝜇𝑡 and 𝜓𝑡 = 𝜆𝑡 + 𝜇𝑡 . For quasi-linear utility,
𝜒𝑡 = 1 + 𝜇𝑡 and 𝜓𝑡 = 𝜈 + 𝜆𝑡 + 𝜇𝑡 for some 𝜈 ∈ [0, 1]. To present

general results, we assume that 𝜒𝑡 ,𝜓𝑡 are arbitrarily picked by an

adaptive adversary with 𝜒𝑡 > 0 and𝜓𝑡 ≥ 0. We emphasize the lack

of an upper bound on 𝜒𝑡 ,𝜓𝑡 and recall (3), which requires that the

regret scales with the largest 𝜒𝑡 ,𝜓𝑡 seen so far. We overload the

notation of 𝑟𝑡 (·) to also take as an argument a bidding function

𝑓 : [0, 1] → [0, 1], in which case 𝑟𝑡 (𝑓 ) = 𝑟𝑡 (𝑓 (𝑣𝑡 )).
Our results apply to a wide range of price functions 𝑝 (·, ·) that

include any combination of first and second price. In particular,

𝑝 (·, ·) needs to satisfy the following assumption which we explain

after its formal statement.

Assumption 3.1. The pricing function 𝑝 (𝑏, 𝑑) satisfies: (i) 𝑝 (0, 0) =
0; (ii) 𝑝 (·, 𝑑) is non-decreasing and 1-Lipschitz continuous

8
for all

𝑑 ; (iii) for every 𝑡 , there exists a “safe” bid 𝑏◦𝑡 so that

(a) 𝑟𝑡 (𝑏◦𝑡 ) ≥ 0 for all 𝑑𝑡 .

(b) 𝑏◦𝑡 is a function of 𝑣𝑡 , 𝜒𝑡 ,𝜓𝑡 but not 𝑑𝑡 .

(c) for every bid 𝑏 such that inf𝑑𝑡 ∈[0,1] 𝑟𝑡 (𝑏) < 0, then for all 𝑑𝑡 it

holds 𝑟𝑡 (𝑏◦𝑡 ) ≥ 𝑟𝑡 (𝑏).

While Conditions (i) and (ii) are standard assumptions on the

payment function, Condition (iii) is less straightforward. In short,

the safe bid guarantees that our algorithm will never use 𝑏𝑡 with

𝑟𝑡 (𝑏𝑡 ) < 0. For every 𝑡 , we require that the function 𝑟𝑡 (𝑏) has a
“safe” bid 𝑏◦𝑡 such that: (a) 𝑏◦𝑡 guarantees a non-negative reward, (b)
𝑏◦𝑡 can be calculated using the information known before bidding,

and (c) 𝑏◦𝑡 guarantees reward that is at least the reward of any other
bid which has a negative reward for some 𝑑𝑡 . We emphasize that (c)

states that 𝑟𝑡 (𝑏◦𝑡 ) ≥ 𝑟𝑡 (𝑏) for all 𝑑𝑡 as long as 𝑟𝑡 (𝑏) < 0 for some

𝑑𝑡 . In Appendix D.1, we show that any mixture of first and second

price auction satisfies Assumption 3.1. In particular, the safe bid of

Condition (iii) in this case is 𝑏◦𝑡 = min

{ 𝜒𝑡
𝜓𝑡
𝑣𝑡 , 1

}
.

3.1 Overview of the Primal Algorithm Design
We now state the main result of the section: There is an algorithm

that has low interval regret with high probability. Our regret guar-

antee is with respect to the class of all 𝐿-Lipschitz continuous

functions for any 𝐿 ≥ 1, which we denote with F . In addition, our

regret bound in rounds up to 𝑡 scale linearly with respect to the

highest 𝜒,𝜓 seen so far:𝑈𝜏 = max𝑡 ≤𝜏 {𝜒𝑡 ,𝜓𝑡 }. Finally, we note that
our algorithm takes into advantage the fact that 𝜒𝑡 ,𝜓𝑡 are known

before bidding in round 𝑡 . This is important for various calculations,

8𝑔 : R→ R is 𝐿-Lipschitz continuous if |𝑔 (𝑥) − 𝑔 (𝑦) | ≤ 𝐿 |𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ R.

e.g., calculating the safe bid 𝑏◦𝑡 of a round. Outside of that, however,
𝜒𝑡 ,𝜓𝑡 are picked adversarially and are not known before round 𝑡 .

Theorem 3.2. Let F be the set of all 𝐿-Lipschitz continuous func-
tions from [0, 1] to [0, 1] for some 𝐿 ≥ 1. Assume that the payment
function satisfies Assumption 3.1. Assume that 𝜒𝑡 ,𝜓𝑡 , 𝑑𝑡 are picked
by an adaptive adversary and 𝜒𝑡 ,𝜓𝑡 are revealed after round 𝑡 −1. Let
𝑈𝜏2

= max𝑡 ≤𝜏2
{𝜒𝑡 ,𝜓𝑡 }. Then there exists an algorithm that generates

bids 𝑏1, . . . , 𝑏𝑇 such that for all 𝛿 > 0, with probability at least 1 − 𝛿
it holds that for all intervals [𝜏1, 𝜏2] ⊆ [𝑇 ]

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) −
𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑏𝑡 ) ≤ O
(
𝑈𝜏2

(√
𝐿𝑇 log𝑇 +

√
𝑇 log(𝑇 /𝛿)

) )
.

Theorem 3.2 satisfies (3) as well as the conditions of Theorem 2.1

getting the following theorem.

Theorem 3.3. There is an algorithm for value or quasi-linear util-
ity maximization when the payment function satisfies Assumption 3.1,
such that for every 𝛿 > 0, with probability at least 1−𝛿 the algorithm
has regret against the class of 𝐿-Lipschitz continuous functions and
ROI violation at most 1

𝜌𝛽
O(
√
𝐿𝑇 log𝑇 +

√
𝑇 log(1/𝛿)).

We note that the above algorithm, while providing an optimal

(up to O(log𝑇 )) information-theoretic bound, runs in exponential

time. In Appendix G we present a polynomial time algorithm with

matching regret which requires 𝑣𝑡 , 𝑑𝑡 to be independent.

There are a couple of technical challenges in order to get low re-

gret against F and prove Theorem 3.2. First, even for in-expectation

regret bound, we cannot directly use a standard algorithm like

Hedge, since F contains infinite actions. Instead, we work with

finite approximations of F ; for accuracy 𝜀 > 0 let F𝜀 ⊆ F such that

∀𝑓 ∈ F , ∃𝑓𝜀 ∈ F𝜀 : 𝑓 (𝑣) ≤ 𝑓𝜀 (𝑣) ≤ 𝑓 (𝑣) + 𝜀, ∀𝑣 ∈ [0, 1] (5)

i.e., for every 𝑓 in the original set F there exists some function 𝑓𝜀
in the new set F𝜀 such that 𝑓𝜀 is at least 𝑓 , but is never greater by

more than 𝜀. Previous work shows that there is always an F𝜀 with
|F𝜀 | ≤ exp(O(𝐿/𝜀)). [30, Corollary 2.7.2.]

The above bound on the cardinality of F𝜀 is exponential in 1/𝜀.
As explained in the introduction, using a standard online learning

algorithm could only prove O(𝑇 2/3) regret bounds. However, as
Theorem 3.2 suggests, we can get much stronger

˜O(
√
𝑇 ) regret

bounds. We solve this issue by utilizing the structure of F , similar

to [11, 18]. We create a hierarchical tree structure where the leaves

of the tree are the functions of F . Leaves whose distance is small

represent bidding functions that are close in 𝐿∞ distance. Next, a

non-leaf node above the leaf nodes can calculate a bidding function

by combining the bidding functions of its children. Because its

children are very ‘close,’ we can design algorithms so that the

output has small regret with respect to its best child. Similarly,

every non-leaf node does the same with its children, with nodes

closer to the root having larger regret. This results in O(
√
𝑇 ) regret

instead of O(𝑇 2/3). We develop this tree algorithm in Section 3.3.

In Section 3.2, we develop the algorithm that is used by the non-

leaf nodes and that utilizes the proximity of its children’s bids. We

present this algorithm in the general language of online learning.

The structure that this algorithm takes advantage of is that there

is a “good” action: it is at most Δ sub-optimal compared to any

other action, in every round. This leads to O(
√
Δ𝑇 log𝐾) regret,

5
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Figure 1: The algorithm structure of the entire primal/dual
framework in our setting.

which offers a great improvement over the regret of O(
√
𝑇 log𝐾)

that Hedge has when Δ ≪ 1.

Another technical challenge we face is regarding the discretiza-

tion error. A naive assumption is that using F𝜀 instead of F leads

to O(𝜀) error every round. However, this is not the case: Let 𝑓 , 𝑓𝜀
as described in (5). Using 𝑓𝜀 instead of 𝑓 in a round 𝑡 results in

at most 𝜓𝑡𝜀 error if bidding 𝑓 (𝑣𝑡 ) wins the auction (since 𝑓𝜀 (𝑣𝑡 )
also wins). However, if 𝑓 (𝑣𝑡 ) < 𝑑𝑡 ≤ 𝑓𝜀 (𝑣𝑡 ) it might be the case

that 𝑟𝑡 (𝑓 ) = 0 ≫ 𝑟𝑡 (𝑓𝜀 ). For example, consider first-price with

𝜒𝑡 = 𝜓𝑡 = 1, 𝑣𝑡 = 𝜀, 𝑓 (𝑣𝑡 ) = 1 − 𝜀, 𝑓𝜀 (𝑣𝑡 ) = 1, and 𝑑𝑡 = 1 − 𝜀/2, in
which case 𝑟𝑡 (𝑓𝜀 ) = −(1 − 𝜀) ≪ 𝑟𝑡 (𝑓 ) = 0.

The safe bids of Assumption 3.1 solve this discretization issue. If a

bid 𝑏+𝜀 is in danger of leading to a negative reward (i.e., inf𝑑𝑡 𝑟𝑡 (𝑏+
𝜀) < 0), we can use the safe bid instead to guarantee at least as

good reward for any 𝑑𝑡 , ensuring O(𝜀) less reward than 𝑟𝑡 (𝑏). We

present this in Section 3.3. We note that one can circumvent this

issue when maximizing quasi-linear utility with no constraints (i.e.,

when 𝜒𝑡 = 𝜓𝑡 = 1) by making sure that the class F contains only

functions such that 𝑓 (𝑣) ≤ 𝑣 , which is the solution of [18]. However,
we cannot limit F in such a way since 𝜒𝑡 ,𝜓𝑡 change dynamically.

Finally, to complete the proof of Theorem 3.2, in Section 3.4,

we reduce the problem of bounding interval regret to bounding

normal regret. The whole structure of our algorithm (including the

primal/dual framework) is shown in Fig. 1.

Our resulting primal algorithm works by chaining multiple sub-

algorithms, as shown in Fig. 1. The standard way to employ this

chaining is to use each algorithm’s outputting action. However,

since our goal is a regret bound with high probability, the suc-

cess of every algorithm is conditioned on the success of all its

sub-algorithms. This creates noise in the high probability bounds,

scaling with the number of sub-algorithms.

To overcome this challenge, we employ a different technique.

Instead of an action, each algorithm outputs the distribution from

which it would have sampled its action. These distributions satisfy

a regret bound with probability 1, making chaining multiple algo-

rithms much more stable since the sampling of an action happens

only once and not for every sub-algorithm.

3.2 Time-varying Ranges and Good Actions
In this section we develop the algorithm that we need for the non-

leaf nodes of the tree algorithm, which takes advantage of the

proximity of the rewards of its actions. We present the algorithm

ALGORITHM 1: Hedge for time-varying ranges and good actions

Input: Total rounds𝑇 , actions [𝐾 ], sub-optimality of good action Δ
Initialize cumulative reward of each action 𝑅0 (𝑎) = 0 ∀𝑎 ∈ [𝐾 ]
for 𝑡 ∈ [𝑇 ] do

Receive range [0,𝑈𝑡 ] and calculate step size 𝜂𝑡 =
1

𝑈𝑡

√
log𝐾

𝑇Δ
Calculate probability distribution

𝑝𝑡 (𝑎) = exp

(
𝜂𝑡𝑅𝑡−1 (𝑎)

)
/∑𝑎′ exp

(
𝜂𝑡𝑅𝑡−1 (𝑎′)

)
∀𝑎 ∈ [𝐾 ]

Sample and play action 𝑎𝑡 ∼ 𝑝𝑡 (𝑎)
Receive rewards 𝑟𝑡 : [𝐾 ] → [0,𝑈𝑡 ]
Update cumulative rewards 𝑅𝑡 (𝑎) = 𝑟𝑡 (𝑎) + 𝑅𝑡−1 (𝑎) ∀𝑎 ∈ [𝐾 ]

end

in the general language of online learning when there is a set [𝐾]
of actions and an arbitrary reward function 𝑟𝑡 (·) for every round 𝑡

which the learner observes after round 𝑡 .

There has been extensive work on this setting, under various

different assumptions that make the problem easier or harder. The

contribution of this section, Theorem 3.5, is twofold. First, our

algorithm is agnostic to the future range of the rewards. Specifically,

we assume that the reward of round 𝑡 is in the range [0,𝑈𝑡 ] for
some adversarially chosen 𝑈𝑡 > 0 and the learner observes 𝑈𝑡
when picking her action 𝑎𝑡 in round 𝑡 . We assume that𝑈1 ≤ 𝑈2 ≤
. . . ≤ 𝑈𝑇 = 𝑈 . If𝑈 is known in advance, then using Hedge leads to

regret that scales linearly with𝑈 . We achieve the same dependency

without knowing𝑈 . This also improves the quadratic dependency

on𝑈 of previous work [10, Theorem 8.1].

Our second contribution in online learning when there is a Δ-
good action. The formal definition is in Definition 3.4, but simply

put a Δ-good action is at most Δ ·𝑈𝑡 sub-optimal compared to any

other action in every round 𝑡 . Definition 3.4 extends the original

definition of [18] for time-varying reward ranges𝑈1, . . . ,𝑈𝑇 .

Definition 3.4 (Good action). For rewards 𝑟𝑡 : [𝐾] → [0,𝑈𝑡 ], a Δ-
good action 𝑔 ∈ [𝐾] satisfies 𝑟𝑡 (𝑔) ≥ 𝑟𝑡 (𝑎) −Δ𝑈𝑡 , ∀𝑎 ∈ [𝐾], 𝑡 ∈ [𝑇 ].

Taking 𝑈𝑡 = 1 yields the definition of [18]. Note that Δ ∈ [0, 1]
since 0 ≤ 𝑟𝑡 (𝑎) ≤ 𝑈𝑡 .

We now present the algorithm for the above setting. Our algo-

rithm is the Hedge algorithm but with a carefully selected step size

𝜂𝑡 . In particular, the probability of playing action 𝑎 in round 𝑡 is

proportional to exp(𝜂𝑡𝑅𝑡−1 (𝑎)), where 𝑅𝑡−1 (𝑎) =
∑
𝑡 ′≤𝑡−1

𝑟𝑡 ′ (𝑎)
and 𝜂𝑡 ∝ 1/𝑈𝑡 . We believe that this step size is of independent

interest and can be used in any online learning setting to get re-

gret bounds for time-varying ranges that match classical ones. Our

regret bound is O(𝑈
√
𝑇Δ log𝐾), which matches the one in [18],

without assuming𝑈𝑡 = 𝑈 for every 𝑡 and that𝑈 is known. The full

algorithm can be found in Algorithm 1.

We now present our regret bound. As mentioned before, we

bound the regret of the action distributions 𝑝1 (·), . . . , 𝑝𝑇 (·) that
Algorithm 1 generates instead of the regret of the sampled ac-

tions. This implies a matching bound on the expected regret. Using

standard concentration inequalities we can get bounds with high

probability. However, the most useful application of outputting

distributions instead of actions is that chaining multiple algorithms

becomes easier. This allows for stronger high-probability guaran-

tees: the overall regret bound is dependent only on one sampling

process, the one performed by the top-level algorithm.
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Theorem 3.5. Assume that an adaptive adversary picks the reward
function 𝑟𝑡 : [𝐾] → [0,𝑈𝑡 ] in every round 𝑡 , where 𝑈1 ≤ . . . ≤ 𝑈𝑇 .
Assume that there is a Δ-good action, with Δ ≥ 4 log𝐾/𝑇 . Then the
action distributions 𝑝1, . . . , 𝑝𝑇 of Algorithm 1 guarantee ∀𝜏 ∈ [𝑇 ]

max

𝑎∈[𝐾 ]

∑
𝑡 ∈[𝜏 ]

𝑟𝑡 (𝑎) −
∑
𝑡 ∈[𝜏 ]

∑
𝑎∈[𝐾 ]

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) ≤ 4𝑈𝜏
√
𝑇Δ log𝐾.

Algorithm 1 dynamically adapts to the time varying reward

ranges due to 𝜂𝑡 ∝ 1/𝑈𝑡 . Because of this, if the adversary picks

𝑈𝑡 ≫ 𝑈𝑡−1, our algorithm adapts to the new ranges and picks the

action of round 𝑡 accordingly. We believe this technique is very

versatile and can be used to modify existing no-regret algorithms

to work in the space of time-varying reward ranges. We show this

in the bandit information setting in Theorem F.4. We defer the full

proof of Theorem 3.5, along with the proofs of the other results

of this section to Appendix D. In Appendix D we also include a

high probability version of the above theorem, Theorem D.2 with

O(𝑈
√
𝑇Δ log(𝑇 /𝛿)) additional error. To retain regret that depends

on 𝑇Δ instead of 𝑇 , we cannot directly apply a standard concen-

tration inequality and instead show that our rewards have low

variance that depends on Δ to get the improved bound.

3.3 Algorithm for Lipschitz Bidding Functions
In this section we present the result that has low regret compared

to the best 𝐿-Lipschitz function in the class F , when maximizing

the reward function 𝑟𝑡 (·) as defined in (4).

The biggest novelty of this section is making sure that “similar”

bidding functions result in similar reward. To that end, let 𝑓 , 𝑓𝜀 :

[0, 1] → [0, 1] such that 𝑓 (𝑣) ≤ 𝑓𝜀 (𝑣) ≤ 𝑓 (𝑣) + 𝜀 for all 𝑣 ∈ [0, 1].
Bidding function 𝑓 is meant to represent an arbitrary function from

F while 𝑓𝜀 is meant to represent a function from F𝜀 , the discrete
cover of F . We want to have low error when using 𝑓𝜀 instead of 𝑓 .

As we discussed in Section 3.1, 𝑓𝜀 might lead to 𝑟𝑡 (𝑓𝜀 ) ≪ 𝑟𝑡 (𝑓 )
if 𝑓𝜀 (𝑣𝑡 ) ≥ 𝑑𝑡 > 𝑓 (𝑣𝑡 ). We solve this issue by ensuring the bids

we use never lead to negative reward, using Assumption 3.1. In

our learning algorithm, each “action” (e.g. the [𝐾] actions in The-

orem 3.5) represents a bidding function 𝑓𝜀 ∈ F𝜀 . However, using
the action that represents 𝑓𝜀 will not lead to bidding 𝑓𝜀 (𝑣𝑡 ). Instead,
when bid 𝑓𝜀 (𝑣𝑡 ) could lead to negative reward for some 𝑑𝑡 (recall

𝑑𝑡 is unknown when bidding) then we replace that bid with 𝑏◦𝑡 , the
safe bid of that round. Because of Assumption 3.1, we can both cal-

culate when bid 𝑓𝜀 (𝑣𝑡 ) could lead to negative reward and guarantee
that in that case the safe bid will lead to more reward. This trick

guarantees that the reward of the action that corresponds to 𝑓𝜀 is

at most max{𝜒𝑡 ,𝜓𝑡 } · 𝜀 worse than 𝑟𝑡 (𝑓 ). We emphasize that this

step is necessary to guarantee bounded discretization error.

After using the above trick, the functions of F𝜀 are placed on a

tree, with functions that are close in the tree implying that they are

close in 𝐿∞ distance. The resulting algorithm is similar to the one

in [18]. There are two key differences. First, the leaves of the tree

suggest bids that use the above modified bids to ensure no-negative

reward. Second, each non-leaf node combines the bids of its children

to create a new bid distribution by using Theorem 3.5 to adapt to

the time-varying ranges and take advantage of the Δ-good arm. We

next present the regret bound we get and defer the algorithm’s full

description and its proof in Appendix D.3.

Theorem 3.6. For 𝜏 ∈ [𝑇 ] let 𝑈𝜏 = max𝑡 ≤𝜏 {𝜒𝑡 ,𝜓𝑡 } and F be
the set of 𝐿-Lipschitz bidding functions for 𝐿 ≥ 1. There exists an
algorithm that generates bid distributions 𝑞𝑡 that with probability 1,

sup

𝑓 ∈F

𝜏∑
𝑡=1

𝑟𝑡 (𝑓 ) −
𝜏∑
𝑡=1

∑
𝑏

𝑞𝑡 (𝑏)𝑟𝑡 (𝑏) ≤ O
(
𝑈𝜏
√
𝐿𝑇 log𝑇

)
.

3.4 Reduction from Regret to Interval Regret
We now show how to turn the regret bound of Theorem 3.6 to

an interval regret bound. Recall that an interval regret bound is

required to apply Theorem 2.1. We achieve the desired result by

proving a general reduction from regret to interval regret, for any

online learning problem with full information feedback.

Our reduction combines multiple online learning algorithms.

Specifically, we consider 𝑇 different algorithms. The 𝑡-th algorithm

(𝑡 ∈ [𝑇 ]) “starts” in round 𝑡 and has low regret in the intervals

[𝑡, 𝑡 ′], for 𝑡 ′ > 𝑡 . For every interval, one of the 𝑇 algorithm has

low regret but it is unclear how to get a single algorithm with low

regret in every interval. We combine the output of each algorithm

into a single distribution of action, using another online learning

algorithm. For this meta-algorithm, we consider Algorithm 1, with

the 𝐾 = 𝑇 actions being the aforementioned 𝑇 algorithms. This

results in low interval regret with a O(
√
𝑇 log𝑇 ) additional error.

Before mentioning our full result, we note one additional tech-

nique we have to use. Under the above description, it is unclear how

the meta-algorithm handles inactive algorithms, i.e. algorithms that

have not been started yet. This is partially resolved by constraining

the meta-algorithm to sample only active algorithms. However, this

does not decide what is the reward assigned to inactive algorithms

(recall the final step of Algorithm 1). We resolve this by assigning

them reward equal to the expected reward of the meta-algorithm

under only the active algorithms. This reward structure ends up

being equivalent to re-sampling an action if a inactive algorithm is

sampled. We state the full result next.

Theorem 3.7. Let𝐴 be a set of actions and 𝑟𝑡 : 𝐴→ [0,𝑈𝑡 ] be the
reward function picked by an adaptive adversary. For every 𝜏1 ∈ [𝑇 ]
letA𝜏1

be an algorithm that generates distributions {𝑞𝜏1

𝑡 (·)}𝑡 ≥𝜏1
over

the actions 𝐴 such that for all 𝜏2 ≥ 𝜏1

sup

𝑎∈𝐴

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟𝑡 (𝑎) −
∑

𝑡 ∈[𝜏1,𝜏2 ]
E

𝑎∼𝑞𝜏1

𝑡

[𝑟𝑡 (𝑎)] ≤ Reg𝜏1
(𝜏2)

Then there is an algorithm that can generate action distributions
𝑞1 (·), . . . , 𝑞𝑇 (·) such that for all [𝜏1, 𝜏2] ⊆ [𝑇 ]:

sup

𝑎∈𝐴

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟𝑡 (𝑎)−
∑

𝑡 ∈[𝜏1,𝜏2 ]
E

𝑎∼𝑞𝑡
[𝑟𝑡 (𝑎)] ≤ Reg𝜏1

(𝜏2)+4𝑈𝜏2

√
𝑇 log𝑇 .

The full description of our algorithm is in Algorithm 3, which is

in Appendix D.4, along with the proof of Theorem 3.7. Combining

the above theorem with Theorem 3.6 gives the following result.

Corollary 3.8. In the same setting as Theorem 3.6, there is an
algorithm that generates distributions over bids 𝑞1 (·), . . . , 𝑞𝑇 (·) such
that with probability 1, for every 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 it holds

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) −
𝜏2∑
𝑡=𝜏1

∑
𝑏

𝑞𝑡 (𝑏)𝑟𝑡 (𝑏) ≤ O
(
𝑈𝜏2

√
𝐿𝑇 log𝑇

)
7
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Corollary 3.8 immediately implies Theorem 3.2 using standard

concentration inequalities. We include these calculations in Appen-

dix D for completeness.

4 Exact satisfaction of the ROI constraint
In this section we show how we can turn every algorithm that

has an approximate satisfaction of the ROI constraint into one

with exact satisfaction. This reduction (Lemma 4.2), together with

Theorem 3.3, lead to the following theorem.

Theorem 4.1. In the same setting as Theorem 3.3, there exists an
algorithm that always satisfies the budget and ROI constraints and
with probability 1 − 𝛿 has regret 1

𝛽2𝜌
O(
√
𝐿𝑇 log𝑇 +

√
𝑇 log(1/𝛿)).

Theorem 4.1 follows from the following lemma, which combines

two algorithms to get the desired reduction from approximate sat-

isfaction of the ROI constraint to an exact one. One algorithm

maximizes the objective and has low ROI violation with high prob-

ability. The other algorithm is much simpler: it maximizes value

minus payment, i.e., the ROI constraint. By running the second

algorithm for enough rounds, we can accumulate enough ‘slack’ to

mitigate the violation caused by the first algorithm.

Lemma 4.2. Assume that there is an algorithm A1 such that for
every 𝛿 > 0, with probability at least 1 − 𝛿 , when running on any set
of rounds T1 ⊆ [𝑇 ] it generates bids that have
• regret at most Reg𝛿 ( |T1 |).
• total ROI violation at most 𝑉𝛿 ( |T1 |).

and another algorithm A2 such that
• its bid 𝑏𝑡 in round 𝑡 satisfies 1 [𝑏𝑡 ≥ 𝑑𝑡 ] (𝑣𝑡 − 𝑝 (𝑏𝑡 , 𝑑𝑡 )) ≥ 0.
• for every 𝛿 > 0, with probability at least 1 − 𝛿 , when run in
any set of rounds T2 ⊆ [𝑇 ] it generates bids {𝑏𝑡 }𝑡 ∈T2 such that∑
𝑡 ∈T2 1 [𝑏𝑡 ≥ 𝑑𝑡 ] (𝑣𝑡 − 𝑝 (𝑏𝑡 , 𝑑𝑡 )) ≥ 𝑄𝛿 ( |T2 |).

Consider bidding 0 on rounds where the remaining budget is less than
1, usingA1 on rounds 𝑡 when

∑
𝑡 ′≤𝑡−1

1 [𝑏𝑡 ≥ 𝑑𝑡 ] (𝑣𝑡 −𝑝 (𝑏𝑡 , 𝑑𝑡 )) ≥
1, and A2 on other rounds. This yields exact satisfaction of the ROI
constraint. Moreover, for any 𝛿 > 0, with probability at least 1 − 2𝛿 it
has regret at most Reg𝛿 (𝑇 ) + 2𝑄−1

𝛿

(
𝑉𝛿 (𝑇 ) + 2

)
where 𝑄−1

𝛿
(·) is the

inverse function of 𝑄𝛿 (·).
The conditions of the two algorithms sketch the lemma’s proof

(the full proof is in Appendix E, alongwith the proof of Theorem 4.1).

A1 violates the ROI constraint by at most 𝑉 (𝑇 ) (for simplicity we

drop the dependence on 𝛿) and the second algorithm, in order

to make up that violation, needs to be run for about 𝑄−1 (𝑉 (𝑇 ))
rounds. This has two effects on the total regret. First, A1 is run for

𝑄−1 (𝑉 (𝑇 )) fewer rounds, potentially missing out on any reward on

those rounds. Second, A2 can use at most 𝑄−1 (𝑉 (𝑇 )) of the bud-
get, making the overall algorithm have to stop at most 𝑄−1 (𝑉 (𝑇 ))
rounds earlier. This entails the desired bound.

We briefly explain how we get Theorem 4.1 from Lemma 4.2.

Theorem 3.3 satisfies the constraints for A1. A2 is the algorithm

of Theorem 3.2 by setting 𝜒𝑡 = 𝜓𝑡 = 1 in 𝑟𝑡 (·) of (4). This makes

Reg(𝑇1) = 𝑉 (𝑇1) = 1

𝜌𝛽
˜O(𝑇1) and 𝑄 (𝑇2) = 𝛽𝑇2 − ˜O(

√
𝑇2); the last

equality follows from the assumption on 𝛽 , (see Equation (2)).

Necessity of 𝛽 . In Appendix E we present an example that shows

dependency on 𝛽 is necessary in our regret bounds. Specifically, as 𝛽

decreases, the regret of any algorithm that exactly satisfies the ROI

constraint increases polynomially in 1/𝛽 . We show this for second-

price auctions, to simplify the problem of regret minimization.

Theorem 4.3. In second-price auctions any algorithm with strict
satisfaction of the ROI constraint cannot guarantee regret less than

(1 − 2𝛽)
√
𝑇 1

2𝜋𝛽 (1−𝛽) when compared to the optimum LP value (e.g.,

see (1)) for every constant 𝛽 < 1/2.

5 Bandit information
In this section we study online learning in the bandit informa-

tion setting. After bidding on round 𝑡 , the bidder does not ob-

serve the highest competing bid 𝑑𝑡 . Instead, she only gets to ob-

serve a Boolean value that indicates whether she wins this round,

along with the price she paid if she wins, i.e., 1 [𝑏𝑡 ≥ 𝑑𝑡 ] and
1 [𝑏𝑡 ≥ 𝑑𝑡 ] 𝑝 (𝑏𝑡 , 𝑑𝑡 ). Note that this setting is completely different

between first-price and second-price auctions. In second-price, if

the bidder wins a certain round, she gets to observe 𝑑𝑡 and the

same is true whenever 𝑝 (𝑏, 𝑑) = 𝑞𝑏 + (1−𝑞)𝑑 for 𝑞 > 0. In contrast,

when the bidder participates in strictly first-price auctions, she can

never observe 𝑑𝑡 . Next, we show that this is a crucial distinction

that makes first-price auctions much harder: any algorithm has to

suffer Ω(𝑇 2/3) regret,in contrast to the
˜O(
√
𝑇 ) regret bounds for

second-price auctions [6, 12]. To complement the negative result,

in Appendix F.2 we offer an algorithm with
˜O(𝑇 3/4) regret.

Regret Lower Bound. An Ω(𝑇 2/3) bound is known for quasi-

linear utility maximization and no constraints by [5], which follows

from the matching bound of [23]. Instead, we show a lower bound

for value maximization with a budget constraint. In particular, our

lower bound holds even if the value is fixed across rounds.

Theorem 5.1. There exists an instance in first-price auctions with
no ROI constraint, 𝜌 = 1/4, and 𝑣𝑡 = 1 such that, any value-
maximizing algorithm with only bandit feedback has regret Ω(𝑇 2/3).

The problem described in Theorem 5.1 seems straightforward at

first glance: the buyer wants to maximize the number of wins while

adhering to the budget constraint. For example, if the CDF of 𝑑𝑡 is

continuous and strictly increasing, one could consider that the bid

𝑏∗ such that𝑏∗ P [𝑏∗ ≥ 𝑑𝑡 ] = 𝜌 , i.e., the bid that depletes the budget
in expectation, is optimal. The problem of (approximately) finding

such a bid 𝑏∗ is not hard, since it can be reduced to the problem of

noisy binary search [21]. However, while this approach would work

for second-price auctions, it does not work for first-price auctions.

The reason is that our original hypothesis, that a single bid every

round is optimal, is erroneous. There are strictly increasing and

continuous CDFs for 𝑑𝑡 where, to maximize the number of wins

while staying within budget, the bidder needs to use two distinct

bids. In particular, the value of using the optimal two bids and the

single optimal bid can be as big as a factor of 2.

In our proof we study a CDF 𝐹 for 𝑑𝑡 where there are infinite

pairs of bids that, if mixed properly, attain the optimal solution.

Next, an adversary perturbs 𝐹 by moving some mass to some bid 𝑏∗

from bid 𝑏∗ + 𝜀, making bid 𝑏∗ more ‘valuable’. This entails that any

algorithm that does not use 𝑏∗ enough faces considerable regret.

The proof is completed by arguments similar to the ones in [23]: the

bandit information that the bidder receives requires any algorithm

to waste multiple rounds using sub-optimal bids before finding 𝑏∗.
We include the full proof in Appendix F.1.
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A Further Related Work
Online bidding in truthful auctions: Feng et al. [12] study on-

line bidding in sequential truthful auctions under budget and ROI

constraints in a stochastic environment. Their algorithm guaran-

tees
˜O(
√
𝑇 ) regret with respect to the best bidding sequence and

satisfies exactly both the ROI and budget constraints. Their results

are an extension of the results of Balseiro and Gur [6], Balseiro et al.

[7] where they study the same setting without ROI constraints. On

the other hand, our paper studies a more general class of (possibly)

non-truthful auctions and provides an algorithm that has the same

regret guarantee. Balseiro and Gur [6], Balseiro et al. [7] also study

the adversarial setting, where the value and the highest competing

bid are not sampled by a stationary distribution but are picked by

an adversary. In this setting, it is impossible to achieve regret that

is sublinear in𝑇 , so they bound the competitive ratio, i.e. the multi-

plicative error, instead. Aside from truthful auctions, [7] also extend

these guarantees to settings where the learner gets to observe every

parameter of a round before picking a decision, e.g., in auctions

observe the highest competing bid before bidding.

Online bidding without constraints: Another line of work

studies online bidding without constraints. [18] study quasi-linear

utility maximization in first-price auctions, while [11] study the

maximization of arbitrary Lipschitz continuous functions. Both use

an algorithm with a tree structure similar to ours; we comment on

the similarity/differences in Section 3.3. Balseiro et al. [5] study con-

textual online learning, which result into a
˜O(𝑇 2/3) regret bound

for quasi-linear utility maximizers in first-price auctions with ban-

dit feedback. More recently, Kumar et al. [25] develop a O(
√
𝑇 )

regret algorithm for first-price auctions with finite number of po-

tential bids; they probive a O(log𝑇 ) regret for stochasitc inputs.
Kleinberg and Leighton [23] study online pricing, where the learner

wants to learn how to price an item to maximize revenue; one of

their results implies that the above regret bound is tight.

Online learning with budgets: Bandits with Knapsacks is a
class of online learning problems where the learner has a general

action space and multiple budget constraints [1, 2, 4, 13, 20, 22].

Bernasconi et al. [8], Kumar and Kleinberg [24], Slivkins et al. [29]

study the same setting when the budget can also increase in some

rounds.

Online learning without constraints: Finally, the problem of

online learningwithout constraints has received extensive attention.

[19] and [28] are excellent textbooks. The most commonly used

algorithms for settings with finite number of actions are Hedge for

full information feedback [16] and EXP3 for bandit feedback [3].

For online convex optimization (where there are infinite number

of actions) the most commonly used algorithm is Online Gradient

Descent [32].

B Limitation of Pacing multipliers
Gap between Lipschitz bidding functions and Pacing multi-
pliers. Consider a value maximizer in first-price auctions with

total budget 𝑇 /2. Assume that her values are either 1/2 or 1, each

with probability 1/2. Also assume that the highest competing bid

every round is 1/2. The best Lipschitz bidding function is to bid 1/2
every round: this stays within budget (in expectation) and leads to

a total value of
3

4
𝑇 . In contrast, no fixed pacing multiplier can win

all rounds and stay within budget. In particular the only pacing

multipliers worth considering is bidding half or all of the value.

In turns out that the best the bidder can do is bid her value with

probability 1/2 and half her value with probability 1/2, leading to

total value
5

8
𝑇 . This proves that the difference between the two

benchmarks is
1

8
𝑇 , even in this very simple example.

ROI Constraint for Pacing Multiplier in first-price auctions.
Another example that showcases the limitation of the best Pacing

multiplier benchmark is value maximizing in first-price auctions.

Here, an online learner who wants to compete against the best

pacing multiplier does not have to consider the ROI constraint at

all. This follows because the optimal such bidding would never

use a pacing multiplier that would violate that constraint (i.e., bid

above the value). In contrast, an optimal general bidding function

for value maximization might bid above the bidder’s value in some

rounds, as long as it wins other rounds where the bid is sufficiently

less than the value.

C Deferred Text of Section 2
We now present the assumption that [10] make for their results.

They assume that there must exist a distribution 𝐹 ∈ Δ(F ) of
functions such that if the player bids according to 𝐹 then for some

𝛼 ≥ 0 on expectation: (a) the payment of the player is no more than

𝜌 −𝛼 , and (b) the value earned by the player is at least the payment

plus 𝛼 . Formally, ∃𝐹 ∈ Δ(F ):

E
𝑓 ∼𝐹

E
(𝑣,𝑑)

[(
𝑣 − 𝑝

(
𝑓 (𝑣), 𝑑

) )
1 [𝑓 (𝑣) ≥ 𝑑]

]
≥ 𝛼 and

E
𝑓 ∼𝐹

E
(𝑣,𝑑)

[
𝑝
(
𝑓 (𝑣), 𝑑

)
1 [𝑓 (𝑣) ≥ 𝑑]

]
≤ 𝜌 − 𝛼

(6)

The above conditions imply that substituting 𝐹 in problem (1),

both constraints are satisfied with a slack of 𝛼 . In the absence of a

ROI constraint, we would have 𝛼 = 𝜌 . Given (6) and that 𝛼 > 0, the

regret bounds of [10] depend on 𝛼 and become worse as 𝛼 becomes

smaller.

We now prove how (2) implies (6) with 𝛼 = 𝛽𝜌 . We require that

the function 𝑓 (𝑣) = 0 is included in F and bidding 0 guarantees 0

payment. Let 𝑓𝛽 be the bidding function that makes the guarantee

in (2). We define 𝐹 to be the following distribution of functions: 𝑓𝛽
with probability 𝜌 and the 0 bid with probability 1 − 𝜌 . In this case

we have

E
𝑓 ∼𝐹

E
(𝑣,𝑑)

[ (
𝑣 − 𝑝

(
𝑓 (𝑣), 𝑑

)
)
)
1 [𝑓 (𝑣) ≥ 𝑑]

]
≥ 𝜌 E

(𝑣,𝑑)

[ (
𝑣 − 𝑝

(
𝑓𝛽 (𝑣), 𝑑

)
)
)
1
[
𝑓𝛽 (𝑣) ≥ 𝑑

] ]
≥ 𝜌𝛽

where the first inequality holds by 1 [0 ≥ 𝑑] 𝑝 (0, 𝑑) = 0 and the

second by (2). This proves the first inequality of (6). For the second
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constraint of (6) we have

E
𝑓 ∼𝐹

E
(𝑣,𝑑)

[
𝑝
(
𝑓 (𝑣), 𝑑

)
)1 [𝑓 (𝑣) ≥ 𝑑]

]
‘
′

= 𝜌 E
(𝑣,𝑑)

[
𝑝
(
𝑓𝛽 (𝑣), 𝑑

)
)1

[
𝑓𝛽 (𝑣) ≥ 𝑑

] ]
≤ 𝜌 (1 − 𝛽)

where in the last inequality we used by (2) and 𝑣 ≤ 1. The above

two inequalities prove (6) for 𝛼 = 𝜌𝛽 , as claimed.

D Deferred Proofs and Text of Section 3
In this section we present the deferred proofs and text of Section 3.

D.1 Deferred Proof for safe bid in auctions
Here, we show that any mixture of first and second-price auction

satisfies Assumption 3.1 and more specifically Condition (iii).

We start with first-price auctions, i.e., 𝑝 (𝑏, 𝑑) = 𝑏. For simplicity,

we start with a simpler safe bid than the one we claimed in the main

body of the paper, 𝑏◦𝑡 = 0. Conditions (a) and (b) are obvious. For

Condition (c) we notice that inf𝑑𝑡 𝑟𝑡 (𝑏) < 0 ⇐⇒ 𝜓𝑡𝑏 > 𝜒𝑡𝑣𝑡 . For

such bids 𝑏, 𝑟𝑡 (𝑏) ≤ 0 for all 𝑑𝑡 which makes Condition (c) follow

from 𝑟𝑡 (0) ≥ 0.

We now move to second-price, i.e., 𝑝 (𝑏, 𝑑) = 𝑑 , where a safe bid
is 𝑏◦𝑡 = min

{ 𝜒𝑡
𝜓𝑡
𝑣𝑡 , 1

}
. Condition (b) follows from definition and

Condition (a) follows by calculating 𝑟𝑡 (𝑏◦𝑡 ) = (𝜒𝑡𝑣𝑡 −𝜓𝑡𝑑𝑡 )+. For
condition (c), we notice that inf𝑑𝑡 𝑟𝑡 (𝑏) < 0 ⇐⇒ 𝑏 >

𝜒𝑡
𝜓𝑡
𝑣𝑡 ; this

is because 𝑟𝑡 (𝑏) < 0 ⇐⇒ 𝑏 ≥ 𝑑𝑡 > 𝜒𝑡
𝜓𝑡
𝑣𝑡 and the last inequality

can be satisfied iff 𝑏 >
𝜒𝑡
𝜓𝑡
𝑣𝑡 . For such 𝑏, 𝑟𝑡 (𝑏◦𝑡 ) < 𝑟𝑡 (𝑏) would hold

only if the bid 𝑏◦𝑡 could win an auction that 𝑏 would not, which is

impossible since 𝑏 > 𝑏◦𝑡 ; this implies (c).

We note that the above safe bid 𝑏◦𝑡 satisfies something much

stronger than Condition (c), as we mentioned in Section 1. For

every 𝑑𝑡 , it holds that 𝑏
◦
𝑡 ∈ arg max𝑏 𝑟𝑡 (𝑏).

We now focus on the most general case, a mix of first and second

price, i.e., 𝑝 (𝑏, 𝑑) = 𝑞𝑏 + (1 − 𝑞)𝑑 for some 𝑞 ∈ [0, 1]. Here the safe
bid for second-price also works here: 𝑏◦𝑡 = min

{ 𝜒𝑡
𝜓𝑡
𝑣𝑡 , 1

}
. In this

case 𝑟𝑡 (𝑏◦𝑡 ) = (1 − 𝑞) (𝜒𝑡𝑣𝑡 −𝜓𝑡𝑑𝑡 )+, which proves Condition (b).

Similar to before, inf𝑑𝑡 𝑟𝑡 (𝑏) < 0 ⇐⇒ 𝑏 >
𝜒𝑡
𝜓𝑡
𝑣𝑡 in which case an

analysis like the ones above proves Condition (c).

D.2 Deferred Proofs from Section 3.2
We first prove Theorem 3.5, the main theorem of Section 3.2.

Proof of Theorem 3.5. We first shift the rewards: since Hedge

remains the same if a (possibly time-dependent) constant is added

to the rewards, we set for all 𝑡, 𝑎

𝑟𝑡 (𝑎) ← 𝑟𝑡 (𝑎) + Δ𝑈𝑡 − max

𝑎′∈[𝐾 ]
𝑟𝑡 (𝑎′)

This means that now the rewards are 𝑟𝑡 : [𝐾] → [−(1−Δ)𝑈𝑡 ,Δ𝑈𝑡 ]
and specifically for the good action, 𝑟𝑡 (𝑔) ≥ 0.

Now let𝑊𝑡 =
∑
𝑎 exp(𝜂𝑡𝑅𝑡−1 (𝑎)) and 𝜃 =

√
log𝐿

𝑇Δ . Notice that

the probability to play action 𝑎 in round 𝑡 is 𝑝𝑡 (𝑎) = exp(𝜂𝑡𝑅𝑡−1 (𝑎))
𝑊𝑡

.

We have that

1

𝑊𝑡

∑
𝑎

exp(𝜂𝑡𝑅𝑡 (𝑎)) (7)

=
∑
𝑎

exp(𝜂𝑡𝑅𝑡−1 (𝑎))
𝑊𝑡

exp(𝜂𝑡𝑟𝑡 (𝑎))

=
∑
𝑎

𝑝𝑡 (𝑎) exp(𝜂𝑡𝑟𝑡 (𝑎))

≤ exp

(
𝜂𝑡 (1 − 𝜂𝑡𝑈𝑡 )

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) + 𝜂2

𝑡𝑈𝑡Δ𝑈𝑡

)
= exp

(
𝜂𝑡 (1 − 𝜃 )

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) + 𝜃2Δ

)
(8)

where we get the last equality by substituting 𝜂𝑡 =
𝜃
𝑈𝑡

and in order

to prove the last inequality we first prove the following proposition.

Proposition D.1. Let 𝑋 be a random variable such that E [𝑋 ] =
𝑥 , 𝑐1 ≤ 𝑋 ≤ 𝑐2, with 𝑐2 ≥ 0. Then, for any 0 < 𝜂 ≤ 1

max{ |𝑐1 |, |𝑐2 | } ,

E [exp(𝜂𝑋 )] ≤ exp

(
𝜂𝑥 (1 − 𝜂 (𝑐2 − 𝑐1)) + 𝜂2𝑐2 (𝑐2 − 𝑐1)

)
.

Proof. Let 𝜎2 = E
[
(𝑋 − 𝑥)2

]
and 𝑐 = max{|𝑐1 |, |𝑐2 |}. We have

that

E [exp(𝜂𝑋 )] = E [exp(𝜂 (𝑋 − 𝑥))] exp(𝜂𝑥)

≤ exp

(
𝜎2

𝑐2

(
𝑒𝜂𝑐 − 1 − 𝜂𝑐

) )
exp(𝜂𝑥)

≤ exp

(
𝜎2

𝑐2
𝜂2𝑐2

)
exp(𝜂𝑥)

= exp

(
𝜎2𝜂2

)
exp(𝜂𝑥)

where the first inequality follows from Bernstein’s inequality
9
and

the last inequality follows by the fact that since 𝜂𝑐 ≤ 1 we get

𝑒𝜂𝑐 ≤ 1 + 𝜂𝑐 + (𝜂𝑐)2. We now bound

𝜎2 = E
[
(𝑋 − 𝑥)2

]
≤ E

[
(𝑐2 − 𝑋 )2

]
≤ (𝑐2 − 𝑐1) E [𝑐2 − 𝑋 ] = (𝑐2 − 𝑐1) (𝑐2 − 𝑥)

where the first inequality follows from the fact that E
[
(𝑋 − 𝑦)2

]
is minimized when 𝑦 = 𝑥 = E [𝑋 ], i.e., when it is equal to the

variance. The second inequality follows from 𝑐2−𝑋 ≥ 0 and𝑋 ≥ 𝑐1.

Rearranging proves the proposition. □

Now the inequality in (7) follows from the proposition by setting

𝑋 = 𝑟𝑡 (𝑎) with probability 𝑝𝑡 (𝑎), 𝑐1 = −(1 − Δ)𝑈𝑡 , and 𝑐2 = Δ𝑈𝑡
and noticing that 𝜂𝑡 =

𝜃
𝑈𝑡
≤ 1

𝑈𝑡
= 1

𝑐2−𝑐1

≤ 1

max{ |𝑐1 |, |𝑐2 | } .
Taking the logarithm of (7) we get

1

𝜂𝑡
log

( ∑
𝑎 exp(𝜂𝑡𝑅𝑡 (𝑎))∑
𝑎 exp(𝜂𝑡𝑅𝑡−1 (𝑎))

)
≤ (1 − 𝜃 )

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) +𝑈𝜃Δ

or equivalently

1

𝜂𝑡
log

∑
𝑎 exp(𝜂𝑡𝑅𝑡 (𝑎))

𝐾
− 1

𝜂𝑡
log

∑
𝑎 exp(𝜂𝑡𝑅𝑡−1 (𝑎))

𝐾

≤ (1 − 𝜃 )
∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) +𝑈𝜃Δ
(9)

9
See Lemma 7.26 in https://www.stat.cmu.edu/~larry/=sml/Concentration.pdf.
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In the above equation we use the fact that

1

𝜂𝑡
log

∑
𝑎 exp(𝜂𝑡𝑅𝑡 (𝑎))

𝐾
≥ 1

𝜂𝑡+1
log

∑
𝑎 exp(𝜂𝑡+1𝑅𝑡 (𝑎))

𝐾

which follows from the fact that 𝜂𝑡+1 ≥ 𝜂𝑡 and the fact that the

function (
1

𝐾

𝐾∑
𝑖=1

𝑥
𝜂

𝑖

)1/𝜂

is increasing in 𝜂 for 𝑥𝑖 > 0. This makes the previous inequality

1

𝜂𝑡+1
log

∑
𝑎 exp(𝜂𝑡+1𝑅𝑡 (𝑎))

𝐾
− 1

𝜂𝑡
log

∑
𝑎 exp(𝜂𝑡𝑅𝑡−1 (𝑎))

𝐾

≤ (1 − 𝜃 )
∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) +𝑈𝜃Δ

Fix 𝜏 ∈ [𝑇 ]. We add the above for all 𝑡 ∈ [𝜏 − 1] along with (9)

for 𝑡 = 𝜏 and simplify the telescopic sum to get

1

𝜂𝜏
log

∑
𝑎 exp(𝜂𝜏𝑅𝜏 (𝑎))

𝐾
− 1

𝜂1

log

∑
𝑎 exp(0)
𝐾

≤ (1 − 𝜃 )
∑
𝑡 ∈[𝜏 ]

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) +𝑈𝜃𝑇Δ

Using the fact that

∑
𝑎 exp(𝜂𝜏𝑅𝜏 (𝑎)) ≥ exp

(
𝜂𝜏𝑅
∗
𝜏

)
(where 𝑅∗𝜏 =

max𝑎 𝑅𝜏 (𝑎)) and substituting 𝜂𝜏 = 𝜃
𝑈𝜏

and 𝜃 =

√
log𝐾

𝑇Δ we get

𝑅∗𝜏 −𝑈𝜏
√
𝑇Δ log𝐾 ≤ (1 − 𝜃 )

∑
𝑡 ∈[𝜏 ]

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) +𝑈𝜏
√
𝑇Δ log𝐾

(10)

Using the fact that 𝑅∗𝜏 ≥ 0 (since the reward of the good arm is

always non-negative) we can use (10) to prove∑
𝑡 ∈[𝜏 ]

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) ≥ −
2

1 − 𝜃 𝑈𝜏
√
𝑇Δ log𝐾 ≥ −4𝑈𝜏

√
𝑇Δ log𝐾

(11)

where we use the fact that 𝜃 =

√
log𝐾

𝑇Δ ≤ 1/2 since Δ ≥ 4 log𝐾

𝑇
. We

rearrange the terms in (10) to get

𝑅∗𝜏 −
∑
𝑡 ∈[𝜏 ]

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎) ≤ 2𝑈𝜏
√
𝑇Δ log𝐾 − 𝜃

∑
𝑡 ∈[𝜏 ]

∑
𝑎

𝑝𝑡 (𝑎)𝑟𝑡 (𝑎)

≤ 2𝑈𝜏
√
𝑇Δ log𝐾 + 4𝜃𝑈𝜏

√
𝑇Δ log𝐾

≤ 4𝑈𝜏
√
𝑇Δ log𝐾

where for the second inequality we used (11) and for the final

inequality we used 𝜃 ≤ 1

2
. This proves the theorem. □

We now state and prove the high probability version of Theo-

rem 3.5.

Theorem D.2. In the same setting as Theorem 3.5, Algorithm 1
guarantees the following high probability bound: for every 𝛿 > 0

probability at least 1 − 𝛿 , it holds that
∀𝜏 ∈ [𝑇 ] : max

𝑎∈[𝐾 ]

∑
𝑡 ∈[𝜏 ]

𝑟𝑡 (𝑎) −
∑
𝑡 ∈[𝜏 ]

𝑟𝑡 (𝑎𝑡 )

≤ 4𝑈𝜏

(√
𝑇Δ log𝐾 +max

{√
𝑇Δ log(𝑇 /𝛿), log(𝑇 /𝛿)

})
The high probability bound does not follow from a simple applica-

tion of the Azuma-Heoffding inequality, since the range of

∑
𝑡 𝑟𝑡 (𝑎𝑡 )

can be Ω(𝑈𝑇 ) making the resulting error O(𝑈
√
𝑇 log(1/𝛿)) and

not O(
√
𝑇Δ log(1/𝛿)) like in the above. Instead, we use Freedman’s

inequality, which offers a bound based on

∑
𝑡 Var[𝑟𝑡 (𝑎𝑡 )] which we

prove is O(𝑈 2𝑇Δ). This allows us to get the improved dependence

on Δ.

Proof of Theorem D.2. For every 𝑡 , let 𝑋𝑡 =
∑
𝑎 𝑝𝑡 (𝑎)𝑟𝑡 (𝑎)

and 𝑌𝑡 =
∑𝑡
𝜏=1
(𝑋𝜏 − 𝑟𝜏 (𝑎𝜏 )). The theorem follows by showing

that for every 𝛿 > 0

P

[
∀𝜏 ∈ [𝑇 ] : 𝑌𝜏 ≤ 4𝑈𝜏 max

{√
𝑇Δ log(𝑇 /𝛿), log(𝑇 /𝛿)

}]
≥ 1 − 𝛿.

We are going to use Freedman’s inequality [15, Theorem 1.6] on

the sequence 𝑌0, 𝑌1, . . . which we first prove is a martingale with

respect to the the history of the rounds (we denote with E[𝑡]· the
expectation conditioned on the history of the rounds up to 𝑡 , i.e.,

the actions that the player and the adversary has take up to 𝑡 ): for

every 𝑡 ≥ 1

E𝑡−1 [𝑌𝑡 − 𝑌𝑡−1] = E𝑡−1 [𝑋𝑡 − 𝑟𝑡 (𝑎𝑡 )] = 0

where the last inequality holds because 𝑎𝑡 = 𝑎 with probability

𝑝𝑡 (𝑎). This proves the martingale property. We now notice that

|𝑌𝑡 − 𝑌𝑡−1 | ≤ 𝑈𝑡 and that

E𝑡−1

[
(𝑌𝑡 − 𝑌𝑡−1)2

]
= E𝑡−1

[
(𝑋𝑡 − 𝑟𝑡 (𝑎𝑡 ))2

]
≤ E𝑡−1

[
(Δ𝑈𝑡 − 𝑟𝑡 (𝑎𝑡 ))2

]
≤ 𝑈𝑡 E𝑡−1 [Δ𝑈𝑡 − 𝑟𝑡 (𝑎𝑡 )] = Δ𝑈 2

𝑡 −𝑈𝑡𝑋𝑡
where we notice that in the first inequality we use the fact that

E𝑡−1 [𝑟𝑡 (𝑎𝑡 )] = 𝑋𝑡 and that E𝑡−1

[
(𝑋𝑡 − 𝑟𝑡 (𝑎𝑡 ))2

]
is the conditional

variance of 𝑟𝑡 (𝑎𝑡 ), which means that E𝑡−1

[
(𝑐 − 𝑟𝑡 (𝑎𝑡 ))2

]
is mini-

mized when 𝑐 = E𝑡−1 [𝑟𝑡 (𝑎𝑡 )] = 𝑋𝑡 . For the second inequality we

used that −(1 − Δ)𝑈𝑡 ≤ 𝑟𝑡 (𝑎) ≤ Δ𝑈𝑡 . We now have that∑
𝑡 ∈[𝜏 ]

E𝑡−1

[
(𝑌𝑡 − 𝑌𝑡−1)2

]
≤

∑
𝑡 ∈[𝜏 ]

(Δ𝑈 2

𝑡 −𝑈𝑡𝑋𝑡 ) = 𝑈 2

𝜏𝑇Δ −𝑈𝜏
∑
𝑡 ∈[𝜏 ]

𝑋𝑡

≤ 𝑈 2

𝜏𝑇Δ −𝑈𝜏

(
max

𝑎∈[𝐾 ]

𝑇∑
𝑡=1

𝑟𝑡 (𝑎) − 4𝑈𝜏
√
𝑇Δ log𝐾

) (
Theorem 3.5

)
≤ 𝑈 2

𝜏𝑇Δ + 4𝑈 2

𝜏

√
𝑇Δ log𝐾

(
𝑟𝑡 (𝑔) ≥ 0

)
≤ 3𝑈 2

𝜏𝑇Δ

(
log𝐾 ≤ 𝑇Δ

4

)
Now using Freedman’s inequality gives us that for all 𝜀 > 0

P [𝑌𝜏 < 𝜀] ≥ 1 − exp

(
− 𝜀2/2

3𝑈 2

𝜏𝑇Δ +𝑈𝜏𝜀/3

)
Let 𝛿 > 0 such that

𝜀 = 𝑈𝜏 max

{√
12

√
𝑇Δ log(1/𝛿), 4

3

log(1/𝛿)
}
. (12)

This and a union bound over all 𝜏 proves the lemma as long as we

prove that

𝜀2/2
3𝑈 2

𝜏𝑇Δ +𝑈𝜏𝜀/3
≥ log(1/𝛿)

or equivalently

𝜀2 ≥ 6𝑈 2

𝜏𝑇Δ log(1/𝛿) + 2

3

𝑈𝜏𝜀 log(1/𝛿)
12
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The above inequality is true because, by the definition of 𝛿 in

(12),

𝜀2 ≥ 12𝑈 2

𝜏𝑇Δ log(1/𝛿) and 𝜀 ≥ 4

3

𝑈𝜏 log(1/𝛿)

Multiplying the second inequality with 𝜀 and adding them gives us

the desired bound on 𝜀2
. □

D.3 Deferred Proof and Algorithm of Section
3.3

As we mention at the beginning of Section 3, we focus on subsets

of F that approximate F and have finite cardinality. We use a

slightly different notation and define the sets F0, F1, . . . , F𝑀 (for

some𝑀 ∈ N) such that for every 𝑖 = 0, . . . , 𝑀 it holds that

∀𝑓 ∈ F , ∃𝑓 ′ ∈ F𝑖 : 𝑓 (𝑣) ≤ 𝑓 ′(𝑣) ≤ 𝑓 (𝑣)+2
−𝑖 , ∀𝑣 ∈ [0, 1] . (13)

As we mentioned in Section 3.3, instead of directly using a func-

tion 𝑓𝑀 ∈ F𝑀 and its bid 𝑓𝑀 (𝑣𝑡 ) in round 𝑡 , we modify that bid,

since for certain values of 𝑑𝑡 , 𝑟𝑡 (𝑓𝑀 ) might be negative. This is

where we use Assumption 3.1 and define

𝑏
𝑓𝑀
𝑡 =

{
𝑓𝑀 (𝑣𝑡 ), if inf𝑑𝑡 𝑟𝑡

(
𝑓𝑀 (𝑣𝑡 )

)
≥ 0

𝑏◦𝑡 , if inf𝑑𝑡 𝑟𝑡
(
𝑓𝑀 (𝑣𝑡 )

)
< 0

(14)

where𝑏◦𝑡 is as defined in Assumption 3.1, depending on the payment

function. 𝑏
𝑓𝑀
𝑡 is never worse than 𝑓𝑀 (𝑣𝑡 ), since 𝑟𝑡 (𝑏

𝑓𝑀
𝑡 ) ≥ 𝑟𝑡 (𝑓𝑀 )

and 𝑟𝑡 (𝑏 𝑓𝑀𝑡 ) ≥ 0, which follow from Assumption 3.1. This guaran-

tees that our reward is always non-negative, which as we discussed

in Section 3.1 is the key to bidding according to F𝑀 and have

O(2−𝑀 ) error compared to using the full F .
We use the functions in F0, F1, . . . , F𝑀 to create a tree. For 𝑖 =

0, . . . , 𝑀 the 𝑖-th level of the tree has |F𝑖 | nodes, each representing

an 𝑓𝑖 ∈ F𝑖 . We connect these nodes by defining each node’s parent:

for every 𝑖 = 1, . . . , 𝑀 and 𝑓𝑖 ∈ F𝑖 , 𝑃 (𝑓𝑖 ) is the parent of 𝑓𝑖 such
that 𝑃 (𝑓𝑖 ) ∈ F𝑖−1 and ∥ 𝑓𝑖 − 𝑃 (𝑓𝑖−1)∥∞ ≤ 2

−𝑖+1
. We note that such

a 𝑃 (𝑓𝑖 ) always exists because of (13). The parent function 𝑃 (·)
subsequently defines the children C(𝑓𝑖 ) and leaves L(𝑓𝑖 ) of a node
𝑓𝑖 , 𝑖 = 0, . . . , 𝑀 − 1. Finally, we assume that |F0 | = 1 (which does

not violate (13)), making the tree have a unique root.

Using this tree, in every round 𝑡 the algorithm creates a dis-

tribution of bids in the following way. First, each leaf 𝑓𝑀 ∈ F𝑀
calculates the bid 𝑏

𝑓𝑀
𝑡 as defined in Eq. (14); this bid defines a trivial

bid distribution 𝑞
𝑓𝑀
𝑡 (·) which suggests the bid 𝑏

𝑓𝑀
𝑡 with probability

1. On the 𝑖-th level where 𝑖 < 𝑀 , each non-leaf node 𝑓𝑖 ∈ F𝑖 uses a
distribution 𝑝

𝑓𝑖
𝑡 (·) over its children C(𝑓𝑖 ) and the bid distribution

𝑞
𝑓𝑖+1
𝑡 (·) of each child 𝑓𝑖+1 ∈ C(𝑓𝑖 ) to define its own bid distribution

𝑞
𝑓𝑖
𝑡 (·). This node 𝑓𝑖 runs an instance of Algorithm 1 to calculate

the distribution over its children 𝑝
𝑓𝑖
𝑡 (·). This recursive calculation

defines the bid distribution of the root, 𝑞
𝑓0
𝑡 (·) = 𝑞𝑡 (·), which is the

output of the algorithm.

We show the full algorithm in Algorithm 2, which has one slight

modification compared to the process described above: each non-

leaf node considers one more bid in addition to the bids suggested

by its children. This bid is the maximum bid suggested by any of its

leaves. This additional bid is key to the guarantee of our algorithm

since it is the action that is Δ-good (recall Definition 3.4). This

allows us to use the improved regret bound of Theorem 3.5 which

is crucial: a node on the 𝑖-th level can have as many as Θ(exp

(
2
𝑖
)
)

children, which, if Δ was a constant, would lead to terrible regret

bounds. Instead, we show that the additional action makes Δ ≈ 2
−𝑖

which makes the regret of every non-leaf node
˜O(
√
𝑇 ).

ALGORITHM 2: Tree algorithm
Input: Number of rounds𝑇 , Lipschitz parameter 𝐿, number of levels

of tree𝑀

For every 𝑖 = 0, 1, . . . , 𝑀 , let F𝑖 be as described in (13)

// Description of tree structure

Let 𝑃 (𝑓𝑖 ) ∈ F𝑖−1 such that ∥𝑃 (𝑓𝑖 ) − 𝑓𝑖 ∥∞ ≤ 2
−𝑖+1

, ∀𝑖 = 1, . . . , 𝑀 ,

𝑓𝑖 ∈ F𝑖 // Parent of 𝑓𝑖

for 𝑖 = 𝑀 − 1, 𝑀 − 2, . . . , 0 and 𝑓𝑖 ∈ F𝑖 do
Let C(𝑓𝑖 ) = {𝑓𝑖+1 ∈ F𝑖+1 : 𝑓𝑖 = 𝑃 (𝑓𝑖+1) } // Children of 𝑓𝑖

Let L(𝑓𝑖 ) =
⋃
𝑓𝑖+1∈C(𝑓𝑖 ) L(𝑓𝑖+1) // Leaves of 𝑓𝑖

Let A(𝑓𝑖 ) be an instance of Algorithm 1, Δ = 2
−𝑖+3

and

𝐾 = |C (𝑓𝑖 ) | + 1 // Algorithm for 𝑓𝑖, with actions its

children and the good action

end
for 𝑡 ∈ [𝑇 ] do

Receive 𝑣𝑡 , 𝜒𝑡 ,𝜓𝑡 and calculate𝑈𝑡 = max𝜏≤𝑡 {𝜒𝜏 ,𝜓𝜏 } // 𝑈𝑡 is

the upper bound of rewards

For every 𝑓𝑀 ∈ F𝑀 calculate 𝑏
𝑓𝑀
𝑡 as in Eq. (14) // Improve bid

𝑓𝑀 (𝑣𝑡 ) using safe bid

and let 𝑞
𝑓𝑀
𝑡 ( ·) be the bid distribution that bids 𝑏

𝑓𝑀
𝑡 with

probability 1 // 𝑓𝑀’s suggestion

// Recursive construction of bid distributions

for 𝑖 = 𝑀 − 1, 𝑀 − 2, . . . , 0 and 𝑓𝑖 ∈ F𝑖 do
Calculate 𝑔

𝑓𝑖
𝑡 = max𝑓𝑀 ∈L(𝑓𝑖 ) 𝑏

𝑓𝑀
𝑡 // 𝑓𝑖’s good bid

Get 𝑝
𝑓𝑖
𝑡 ( ·) from A(𝑓𝑖 ) after passing𝑈𝑡 // Distribution

over C(𝑓𝑖 ) ∪
{
𝑔
𝑓𝑖
𝑡

}
Calculate bid distribution 𝑞

𝑓𝑖
𝑡 ( ·) over bids

{
𝑏
𝑓𝑀
𝑡

}
𝑓𝑀 ∈L(𝑓𝑖 )

where 𝑞
𝑓𝑖
𝑡

(
𝑏
𝑓𝑀
𝑡

)
equals

𝑝
𝑓𝑖
𝑡

(
𝑔
𝑓𝑖
𝑡

)
1

[
𝑔
𝑓𝑖
𝑡 = 𝑏

𝑓𝑀
𝑡

]
+

∑
𝑓𝑖+𝑖 ∈C(𝑓𝑖 )

𝑝
𝑓𝑖
𝑡 (𝑓𝑖+1)𝑞

𝑓𝑖+1
𝑡

(
𝑏
𝑓𝑀
𝑡

)
end
Sample and use bid 𝑏𝑡 ∼ 𝑞𝑓0𝑡 ( ·) = 𝑞𝑡 ( ·) // Sample bid

according to the root

Receive 𝑑𝑡 // Get 𝑑𝑡, making 𝑟𝑡 ( ·) calculable

// Update algorithms of non-leaf nodes

for 𝑖 = 0, 1, . . . , 𝑀 and 𝑓𝑖 ∈ F𝑖 do
Let 𝑟𝑡

(
𝑔
𝑓𝑖
𝑡

)
= 𝑟𝑡

(
𝑔
𝑓𝑖
𝑡

)
// Reward of good bid

Let 𝑟𝑡 (𝑓𝑖+1) =
∑
𝑏 𝑞

𝑓𝑖+1
𝑡 (𝑏)𝑟𝑡 (𝑏) , for every 𝑓𝑖+1 ∈ C𝑖+1

// Reward of each child of 𝑓𝑖

Pass above 𝑟𝑡 ( ·) to A(𝑓𝑖 ) // Update 𝑓𝑖’s algorithm

end
end

We now use Algorithm 2 to prove Theorem 3.6.

Proof of Theorem 3.6. Fix 𝑀 = ⌈log
2

√
𝑇 ⌉. We first make the

observation that Algorithm 2 is well defined: in order to calculate

𝑏
𝑓𝑀
𝑡 for every 𝑓𝑀 ∈ F𝑀 we only need knowledge of 𝑣𝑡 , 𝜒𝑡 ,𝜓𝑡 and not

𝑑𝑡 , as explained in Assumption 3.1. We also note that the rewards
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𝑟𝑡 (·) that are fed into each A(𝑓𝑖 ) are in the range [0,𝑈𝑡 ] and𝑈1 ≤
𝑈2 ≤ . . ., as needed for the guarantee of Theorem 3.5. The lower

bound for the rewards comes from the fact that every bid used

in round 𝑡 is 𝑏
𝑓𝑀
𝑡 for some 𝑓𝑀 ∈ F𝑀 , which because of (14) and

Assumption 3.1 guarantees non-negative reward. The upper bound

follows from the definition of 𝑟𝑡 (·) and the fact that values and bids
are in [0, 1].

We now show that for every 𝑖 < 𝑀 and 𝑓𝑖 ∈ F𝑖 , the good bid, 𝑔𝑓𝑖𝑡 ,
is 2
−𝑖+3

-good with respect to the bids used by 𝑓𝑖 , i.e.
{
𝑏
𝑓𝑀
𝑡

}
𝑓𝑀 ∈L(𝑓𝑖 ) .

We prove that

𝑟𝑡

(
𝑔
𝑓𝑖
𝑡

)
≥ 𝑟𝑡

(
𝑏
𝑓𝑀
𝑡

)
− 2
−𝑖+3𝑈𝑡 , ∀𝑓𝑀 ∈ L(𝑓𝑖 ) (15)

which implies 𝑟𝑡
(
𝑔
𝑓𝑖
𝑡

)
≥ 𝑟𝑡

(
𝑓𝑖+1

)
− 2
−𝑖+3𝑈𝑡 for all 𝑓𝑖+1 ∈ C(𝑓𝑖 ),

since 𝑟𝑡
(
𝑔
𝑓𝑖
𝑡

)
= 𝑟𝑡

(
𝑔
𝑓𝑖
𝑡

)
and 𝑟𝑡

(
𝑓𝑖+1

)
is a convex combination of

{𝑟𝑡
(
𝑏
𝑓𝑀
𝑡

)
}𝑓𝑀 ∈L(𝑓𝑖 ) .

Fix 𝑓𝑀 ∈ L(𝑓𝑖 ). We distinguish two cases to prove (15) for this

𝑓𝑀 :

• If 𝑏
𝑓𝑀
𝑡 loses the auction in round 𝑡 (𝑏

𝑓𝑀
𝑡 < 𝑑𝑡 ), then 𝑟𝑡 (𝑏 𝑓𝑀𝑡 ) = 0

and (15) follows from 𝑟𝑡 (𝑔𝑓𝑖𝑡 ) ≥ 0.

• If 𝑏
𝑓𝑀
𝑡 wins the auction in round 𝑡 , then 𝑔

𝑓𝑖
𝑡 ≥ 𝑏

𝑓𝑀
𝑡 and therefore

𝑔
𝑓𝑖
𝑡 alsowins the auction in round 𝑡 . Thismeans that 1

[
𝑏
𝑓𝑀
𝑡 ≥ 𝑑𝑡

]
=

1

[
𝑔
𝑓𝑖
𝑡 ≥ 𝑑𝑡

]
= 1 and so, in order to prove (15) we have to prove

that the payment of 𝑔
𝑓𝑖
𝑡 is not more than the payment of 𝑏

𝑓𝑀
𝑡

plus 2
−𝑖+3

. The last statement follows from the Lipschitzness of

𝑝 (·, 𝑑𝑡 ) (Assumption 3.1) and the fact that |𝑔𝑓𝑖𝑡 − 𝑏
𝑓𝑀
𝑡 | ≤ 2

−𝑖+3

which follows by the following: For every 𝑓𝑀 , 𝑓
′
𝑀
∈ L(𝑓𝑖 ) it holds

that

𝑓𝑀 − 𝑓 ′𝑀
∞ ≤ 2

−𝑖+3
since

∥ 𝑓𝑖 − 𝑓𝑀 ∥∞ ≤
𝑀−𝑖−1∑
𝑗=0

𝑃 𝑗+1 (𝑓𝑀 ) − 𝑃 𝑗 (𝑓𝑀 )∞
≤
𝑀−𝑖−1∑
𝑗=0

2
−𝑀+𝑗+2 ≤ 2

−𝑖+2

where 𝑃 𝑗 (·) is the application of the parent function 𝑃 𝑗 times,

the first inequality uses the triangle inequality, and the second

uses the definition of the the parent function 𝑃 . The fact that𝑓𝑀 − 𝑓 ′𝑀
∞ ≤ 2

−𝑖+3
follows from the above using the triangle

inequality and the fact that |𝑔𝑓𝑖𝑡 − 𝑏
𝑓𝑀
𝑡 | ≤ 2

−𝑖+3
follows from the

fact that 𝑔
𝑓𝑖
𝑡 = 𝑏

𝑓 ′
𝑀

𝑡 for some 𝑓 ′
𝑀
∈ L(𝑓𝑖 ).

Now we summarize the setting of each algorithm A(𝑓𝑖 ), for
𝑓𝑖 ∈ F𝑖 , 𝑖 < 𝑀 :

• The reward range is [0,𝑈𝑡 ] in round 𝑡 , where𝑈𝑡 = max{𝜒𝑡 ,𝜓𝑡 }.
• In every round there is an action that is Δ𝑖 -good, where Δ𝑖 :=

2
−𝑖+3

.

• There are at most 𝐾𝑖 actions, where 𝐾𝑖 := exp

(
𝐶Lip𝐿2

𝑖+1) + 1 ≤
exp

(
𝐶Lip𝐿2

𝑖+2)
where last inequality holds because 𝐶Lip𝐿 ≥ 1.

Let �̃�𝑇 (𝑓𝑖 ) =
∑𝑇
𝑡=1

𝑟𝑡 (𝑓𝑖 ) denote the total reward of algorithm

A(𝑓𝑖 ) and similarly define �̃�𝑇 (𝑔𝑓𝑖 ) the total reward of the good bids
ofA(𝑓𝑖 ). Because of the guarantee of each algorithm (Theorem 3.5)

we have that with probability 1:

max

𝑓𝑖+1∈C(𝑓𝑖 )∪{𝑔 𝑓𝑖 }
�̃�𝑇 (𝑓𝑖+1) −

∑
𝑓𝑖+1∈C(𝑓𝑖 )∪{𝑔 𝑓𝑖 }

𝑝
𝑓𝑖
𝑡 (𝑓𝑖+1)�̃�𝑇 (𝑓𝑖+1)

≤ 4𝑈
√
𝑇Δ𝑖 log𝐾𝑖 ≤ 23𝑈

√
𝐶Lip𝐿𝑇

(16)

We now bound the error because we bid according to the bidding

functions F𝑀 and not F . For any 𝑓 ∈ F let 𝑓𝑀 ∈ F𝑀 be such that

𝑓𝑀 ≥ 𝑓 and ∥ 𝑓 − 𝑓𝑀 ∥∞ ≤ 2
−𝑀

. For every round 𝑡 we have

𝑟𝑡 (𝑓 )

= 1 [𝑓 (𝑣𝑡 ) ≥ 𝑑𝑡 ]
(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓 (𝑣𝑡 ), 𝑑𝑡

) )
≤ 1 [𝑓𝑀 (𝑣𝑡 ) ≥ 𝑑𝑡 ]

(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓 (𝑣𝑡 ), 𝑑𝑡

) )+
≤ 1 [𝑓𝑀 (𝑣𝑡 ) ≥ 𝑑𝑡 ]

(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓𝑀 (𝑣𝑡 ), 𝑑𝑡

) )+
+𝜓𝑡 𝑓𝑀 (𝑣𝑡 ) −𝜓𝑡 𝑓 (𝑣𝑡 )

≤ 1 [𝑓𝑀 (𝑣𝑡 ) ≥ 𝑑𝑡 ]
(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓𝑀 (𝑣𝑡 ), 𝑑𝑡

) )+
+𝑈𝑡2−𝑀

=
(
𝑟𝑡 (𝑓𝑀 )

)+ +𝑈𝑡2−𝑀 ≤ 𝑟𝑡 (𝑓𝑀 ) +𝑈𝑡2−𝑀
where in the first inequality we used that 𝑓𝑀 ≥ 𝑓 , in the second

inequality that 𝑝 (·, 𝑑𝑡 ) is 1-Lipschitz, in the third that ∥ 𝑓 − 𝑓𝑀 ∥∞ ≤
2
−𝑀

, and in the final one that 𝑟𝑡 (𝑓𝑀 ) ≥ (𝑟𝑡 (𝑓𝑀 ))+; recall that
𝑟𝑡 (𝑓𝑀 ) = 𝑟𝑡 (𝑏

𝑓𝑀
𝑡 ).

The above implies

sup

𝑓 ∈F

𝑇∑
𝑡=1

𝑟𝑡 (𝑓 ) ≤ max

𝑓𝑀 ∈F𝑀
�̃�𝑡 (𝑓𝑀 ) +𝑈𝑇 2

−𝑀
(17)

Let 𝑓 ∗
𝑀

be a maximizer of the r.h.s. in the inequality above and

for every 𝑖 < 𝑀 , let 𝑓 ∗
𝑖
be the ancestor of 𝑓 ∗

𝑀
in the 𝑖-th level. Using

this notation we prove

sup

𝑓 ∈F

𝑇∑
𝑡=1

𝑟𝑡 (𝑓 ) − �̃�𝑇 (𝑓0) ≤ 𝑈𝑇 2
−𝑀 + �̃�𝑇 (𝑓 ∗𝑀 ) − �̃�𝑡 (𝑓0)

= 𝑈𝑇 2
−𝑀 +

𝑀−1∑
𝑗=0

(
�̃�𝑇 (𝑓 ∗𝑗+1) − �̃�𝑇 (𝑓

∗
𝑗 )

)
≤ 𝑈𝑇 2

−𝑀 +
𝑀−1∑
𝑗=0

23𝑈
√
𝐶Lip𝐿𝑇

= 𝑈𝑇 2
−𝑀 + 23𝑈𝑀

√
𝐶Lip𝐿𝑇

where the first inequality holds by (17) and the second one by (16).

Picking𝑀 = ⌊log
2

√
𝑇 ⌋ the above becomes

sup

𝑓 ∈F

𝑇∑
𝑡=1

𝑟𝑡 (𝑓 ) − �̃�𝑇 (𝑓0) ≤ 2𝑈
√
𝑇 + 23

2 log 2

𝑈
√
𝐶Lip𝐿𝑇 log𝑇

The above is the claimed regret bound since 𝑟𝑡 (𝑓0) =
∑
𝑏 𝑞

𝑓0
𝑡 𝑟𝑡 (𝑏).

□

D.4 Deferred Proofs and Algorithm of Section
3.4

We first present in Algorithm 3 the reduction from standard no-

regret to no interval regret. We use that to prove Theorem 3.7.
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ALGORITHM 3: Reduction from regret to interval regret

Input: Number of rounds𝑇 , action space 𝐴, algorithms

{
A𝜏1

}
𝜏1∈[𝑇 ]

over action space 𝐴

Initialize an instance A of Algorithm 1 with Δ = 1 and 𝐾 = 𝑇

for 𝑡 ∈ [𝑇 ] do
Receive reward range [0,𝑈𝑡 ]
for 𝜏1 ≤ 𝑡 do

Pass𝑈𝑡 to A𝜏1
and receive 𝑞

𝜏1

𝑡 ( ·) // Distribution over

actions of A𝜏1

end
Pass𝑈𝑡 to A and receive 𝑝𝑡 ( ·) // Distribution over

algorithms of A

Calculate for every action 𝑎: 𝑞𝑡 (𝑎) =
∑
𝜏

1
≤𝑡 𝑝𝑡 (𝜏1 )𝑞

𝜏
1

𝑡 (𝑎)∑
𝜏

1
≤𝑡 𝑝𝑡 (𝜏1 )

// Distribution of actions by sampling an algorithm

A𝜏1
, 𝑡 ≤ 𝜏1 and then an action from 𝑞𝜏1

𝑡 ( ·)
Sample and output 𝑎𝑡 ∼ 𝑞𝑡 ( ·)
Receive function 𝑟𝑡 : 𝐴→ [0,𝑈𝑡 ]
Pass 𝑟𝑡 ( ·) to A𝜏1

for 𝜏1 ≤ 𝑡 // A𝜏1
internal update

Calculate 𝑟𝑡 (𝜏1) = E
𝑎∼𝑞𝜏1

𝑡
[𝑟𝑡 (𝑎) ] for 𝜏1 ≤ 𝑡 // Expected

reward of 𝑞𝜏1

𝑡 ( ·)
Calculate 𝑟 ∅𝑡 = E𝑎∼𝑞𝑡 [𝑟𝑡 (𝑎) ] // Expected reward of 𝑞𝑡 ( ·)
Update A with reward 𝑟𝑡 (𝜏1) for 𝜏1 ≤ 𝑡 // A update for

active algorithms

and with reward 𝑟 ∅𝑡 for 𝜏1 ≤ 𝑡 // A update for inactive

algorithms

end

Proof of Theorem 3.7. We first extend the definition of 𝑟𝑡 (·)
for inactive algorithms. This makes

𝑟𝑡 (𝜏1) =
{
E
𝑎∼𝑞𝜏1

𝑡
[𝑟𝑡 (𝑎)] , if 𝜏1 ≤ 𝑡

𝑟 ∅𝑡 , if 𝜏1 > 𝑡
.

Nowwe re-write 𝑟 ∅𝑡 , the expected reward if the action is sampled

according to 𝑞𝑡 (·):

𝑟 ∅𝑡 = E𝑎∼𝑞𝑡 [𝑟𝑡 (𝑎)] =
1∑

𝜏1≤𝑡 𝑝𝑡 (𝜏1)
∑
𝜏1≤𝑡

(
𝑝𝑡 (𝜏1)𝑟𝑡 (𝜏1)

)
. (18)

We notice that 𝑟𝑡 (·) has the same reward range as 𝑟𝑡 (·). Theo-
rem 3.5 for algorithmA gives us a regret guarantee by every round

𝜏2:

max

𝜏1∈[𝑇 ]

∑
𝑡 ∈[𝜏2 ]

𝑟𝑡 (𝜏1) −
∑
𝑡 ∈[𝜏2 ]

∑
𝜏1∈[𝑇 ]

𝑝𝑡 (𝜏1)𝑟𝑡 (𝜏1) ≤ 4𝑈𝜏2

√
𝑇 log𝑇

which implies that for all intervals [𝜏1, 𝜏2] ⊆ [𝑇 ]∑
𝑡 ∈[𝜏2 ]

𝑟𝑡 (𝜏1) −
∑
𝑡 ∈[𝜏2 ]

∑
𝜏1∈[𝑇 ]

𝑝𝑡 (𝜏1)𝑟𝑡 (𝜏1) ≤ 4𝑈𝜏2

√
𝑇 log𝑇 (19)

We are going to show that (19) implies our theorem. First we

prove that for every round 𝑡 ,∑
𝜏1∈[𝑇 ]

𝑝𝑡 (𝜏1)𝑟𝑡 (𝜏1) =
∑
𝜏1≤𝑡

𝑝𝑡 (𝜏1)𝑟𝑡 (𝜏1) +
∑
𝜏1>𝑡

𝑝𝑡 (𝜏1)𝑟 ∅𝑡

= 𝑟 ∅𝑡
∑
𝜏1≤𝑡

𝑝𝑡 (𝜏1) + 𝑟 ∅𝑡
∑
𝜏1>𝑡

𝑝𝑡 (𝜏1)

= 𝑟 ∅𝑡
where the second equality holds by (18).

The above and the fact that 𝑟𝑡 (𝜏1) = 𝑟 ∅𝑡 for 𝜏1 > 𝑡 makes (19)

imply that for all intervals [𝜏1, 𝜏2] ⊆ [𝑇 ]∑
𝑡<𝜏1

𝑟𝑡 (∅) +
∑

𝑡 ∈[𝜏1,𝜏2 ]
𝑟𝑡 (𝜏1) −

∑
𝑡 ∈[𝜏2 ]

𝑟𝑡 (∅) ≤ 4𝑈𝜏2

√
𝑇 log𝑇

or equivalently that for all such intervals [𝜏1, 𝜏2] ⊆ [𝑇 ]∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟𝑡 (𝜏1) −
∑

𝑡 ∈[𝜏1,𝜏2 ]
𝑟𝑡 (∅) ≤ 4𝑈𝜏2

√
𝑇 log𝑇 .

Given the regret bound of each algorithm A𝜏1
by round 𝜏2 the

above implies that for all intervals [𝜏1, 𝜏2] ⊆ [𝑇 ]
sup

𝑎

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟𝑡 (𝑎) −
∑

𝑡 ∈[𝜏1,𝜏2 ]
𝑟𝑡 (∅) ≤ 4𝑈𝜏2

√
𝑇 log𝑇 + Reg𝜏1

(𝜏2) .

which is the desired regret bound. □

Using a simple concentration inequality and the union bound,

we prove Theorem 3.2 from Corollary 3.8.

Proof of Theorem 3.2. Fix 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 . For 𝑡 ∈ [𝜏1, 𝜏2],
define 𝑋𝑡 = 𝑟𝑡 (𝑏𝑡 ) −

∑
𝑏 𝑞𝑡 (𝑏)𝑟𝑡 (𝑏) and𝑀𝑡 =

∑
𝑡 ′∈[𝜏1,𝑡 ] 𝑋𝑡 . We no-

tice that the sequence𝑀𝑡 is a martingale with respect to the history

of the previous roundsH𝑡−1 (player’s and adversary’s decisions):

for every 𝑡

E

[
𝑀𝑡 −𝑀𝑡 − 1

���H𝑡−1

]
= E

[
𝑋𝑡

���H𝑡−1

]
= 0

In addition we notice that |𝑋𝑡 | ≤ 𝑈𝑡 since 𝑟𝑡 (𝑏) ∈ [0,𝑈𝑡 ]. This
allows us to use Azuma’s inequality, proving that for every 𝛿 ∈
[0, 1], with probability at least 1 − 𝛿 it holds

𝑀𝜏2
≥ −𝑈𝜏2

√
2(𝜏2 − 𝜏1) log(1/𝛿)

which implies that with probability at least 1 − 𝛿
𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑏𝑡 ) −
𝜏2∑
𝑡=𝜏1

∑
𝑏

𝑞𝑡 (𝑏)𝑟𝑡 (𝑏) ≥ −𝑈𝜏2

√
2𝑇 log(1/𝛿)

Using the union bound over all 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 we get that for

every 𝛿 ∈ [0, 1] with probability at least 1 − 𝛿 it holds that for all
1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑏𝑡 ) −
𝜏2∑
𝑡=𝜏1

∑
𝑏

𝑞𝑡 (𝑏)𝑟𝑡 (𝑏) ≥ −𝑈𝜏2

√
2𝑇 log

(𝑇
2

)
𝛿

Using Corollary 3.8 we get the theorem. □

E Deferred Proofs of Section 4
We first prove the reduction of how to turn approximate ROI satis-

faction to an exact one.

Proof of Lemma 4.2. We first notice that since A2 never has

value less than payment andA1 is run only when the accumulated

value is at least 1 higher than the payment, the ROI constraint is

never going to be violated. Now we need to prove the total value

guarantee.

Assume that the high probability bounds of the two algorithms

are true (which happens with probability at least 1 − 2𝛿 for any 𝛿

due to the union bound). Let 𝜏 be the last round when algorithm

A2 is run. Let T1 be the rounds up to 𝜏 where algorithm A1 is run

and T2 be the rounds up to 𝜏 where algorithm A2 is run; note that

|T2 | is the total number of rounds A2 is run in total. We now have∑
𝑡 ∈[𝜏 ]

1 [𝑏𝑡 ≥ 𝑑𝑡 ] (𝑣𝑡 − 𝑝 (𝑏𝑡 , 𝑑𝑡 )) ≥ 𝑄𝛿 ( |T2 |) −𝑉𝛿 ( |T1 |)
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where the inequality follows from the ROI guarantees of the two

algorithms. Using the fact that on round 𝜏 we run A2 which upper

bounds the above quantity by 2 we get

𝑄𝛿 ( |T2 |) ≤ 2 +𝑉𝛿 ( |T1 |) ≤ 2 +𝑉𝛿 (𝑇 )
Using the definition that 𝑄−1

𝛿
(𝑉𝛿 (𝑇, )) is the solution to 𝑄𝛿 (·) =

𝑉𝛿 (𝑇 ) we get
|T2 | ≤ 𝑄−1

𝛿
(𝑉𝛿 (𝑇 ))

This proves that the total number of rounds A1 was run is at

least𝑇 −𝑄−1

𝛿
(1 +𝑉 (𝑇 )). This means that the total regret is at most

Reg𝛿

(
𝑇 −𝑄−1

𝛿
(1 +𝑉 (𝑇 ))

)
+ 2𝑄−1

𝛿
(1 +𝑉𝛿 (𝑇 ))

where the second term represents the roundsA2 was run instead of

A1 and the loss because of the budget consumption ofA2, which is

at most𝑄−1

𝛿
(𝑉𝛿 (𝑇 )) making the overall algorithm run out of budget

𝑄−1

𝛿
(𝑉𝛿 (𝑇 )) rounds earlier, missing out on that much utility. □

We now prove Theorem 4.1.

Proof of Theorem 4.1. As we explained in Section 4 there are

algorithms that satisfy the assumptions of Lemma 4.2 with

Reg𝛿 (𝑇 ) = 𝑉𝛿 (𝑇 ) =
1

𝜌𝛽
O

(√
𝐿𝑇 log𝑇 +

√
𝑇 log(1/𝛿)

)
and

𝑄𝛿 (𝑇2) = 𝛽𝑇2 − O
(√
𝐿𝑇2 log𝑇2 +

√
𝑇2 log(𝑇2/𝛿)

)
= Ω(𝛽𝑇2)

where the last inequality follows from

𝛽 = 𝜔

(√
𝐿

𝑇
log𝑇 +

√
log(𝑇 /𝛿)

𝑇

)
since otherwise the regret statement is vacuous.

The theorem follows by algebraic calculations. □

We now prove Theorem 4.3.

Proof of Theorem 4.3. Each round the value/highest-competing-

bid distribution is the following

(𝑣𝑡 , 𝑑𝑡 ) =
{
(1, 0), w.p. 𝛽(

1−2𝛽

1−𝛽 , 1
)
, w.p. 1 − 𝛽

It is not hard to see that the LP optimum bids 1 every round and

on expectation has reward OPT = 1 − 𝛽 and ROI violation of 0.

Let 𝑅𝑡 be the cumulative “ROI amount” that any algorithm has

collected in round 𝑡 , i.e. the total value minus the total price paid.

Because the algorithm needs to satisfy the ROI constraint with

probability 1, for all rounds it must hold that𝑅𝑡 ≥ 0. This means that

the best any algorithm can do is to bid 1 in round 𝑡 if 𝑅𝑡−1 ≥ 𝛽

1−𝛽
(thus guaranteeing to always win) or bid less than 1 if 𝑅𝑡−1 <

𝛽

1−𝛽
(thus guaranteeing to win only if 𝑑𝑡 = 0).

Let 𝑁𝑡 be the number of rounds the algorithm bid less than 1 and

missed an item with 𝑑𝑡 = 1. The regret of the algorithm is 𝑁𝑇
1−2𝛽

1−𝛽
so we need to calculate E [𝑁𝑇 ].

Let 𝑅′𝑡 be the cumulative “ROI amount” if the algorithm won

every item. We notice that

𝑅𝑡 − 𝑅′𝑡 =
𝛽

1 − 𝛽 𝑁𝑡

since the difference does not change from round to round if the

algorithm wins the item but increases if the the algorithms misses

a high value item. Since 𝑅𝑡 ≥ 0 and it holds that

𝑁𝑇 = min

𝑡
𝑁𝑡 ≥ −

1 − 𝛽
𝛽

min

𝑡
𝑅′𝑡

We now note that 𝑅′𝑡 is an unbiased random walk, since

𝑅′𝑡 − 𝑅′𝑡−1
=

{
1, w.p. 𝛽
𝛽

1−𝛽 , w.p. 1 − 𝛽

and E[𝑅′𝑡 −𝑅′𝑡−1
] = 0 and Var[𝑅′𝑡 −𝑅′𝑡−1

] = 𝛽

1−𝛽 . We will show that

E
[
min𝑡 𝑅

′
𝑡

]
≤ −

√
𝑇

𝛽

2𝜋 (1−𝛽) , which in turn implies that

E [𝑁𝑇 ] ≥
1 − 𝛽
𝛽

√
𝑇

𝛽

2𝜋 (1 − 𝛽) =

√
𝑇

1 − 𝛽
2𝜋𝛽

which implies that the expected regret of the algorithm wrt to the

LP optimum is

(1 − 2𝛽)
√
𝑇

1

2𝜋𝛽 (1 − 𝛽)
which proves the theorem.

We now prove that E
[
min𝑡 𝑅

′
𝑡

]
≤ −

√
𝑇

𝛽

2𝜋 (1−𝛽) 𝑠 . We have that

E

[
min

𝑡=0,...,𝑇
𝑅′𝑡

]
= E

[
min

𝑡=0,...,𝑇
min

{
0, 𝑅′𝑡

}]
≤ E

[
min

{
0, 𝑅′𝑇

}]
= −1

2

E
[��𝑅′𝑇 ��]

≈ −1

2

E

[�����𝐺
(
0,

√
𝑇

𝛽

1 − 𝛽

)�����
]

= −1

2

√
𝑇

𝛽

1 − 𝛽

√
2

𝜋

where the second equality holds becauseE
[
𝑅′
𝑇

]
= E

[
max{0, 𝑅′

𝑇
}
]
+

E
[
min{0, 𝑅′

𝑇
}
]
= 0 andE

[��𝑅′
𝑇

��] = E
[
max{0, 𝑅′

𝑇
}
]
−E

[
min{0, 𝑅′

𝑇
}
]
,

the next one by the Central Limit Theorem for large 𝑇 , and the last

equality uses standard facts of 𝐺
(
0,

√
𝑇

𝛽

1−𝛽
)
, the 0-mean Gaussian

with standard deviation

√
𝑇

𝛽

1−𝛽 .

We note that instead of using the central limit theorem one could

explicitly use the fact that 𝑅′
𝑇
= 𝑀

(
1 + 𝛽

1−𝛽
)
−𝑇 𝛽

1−𝛽 where𝑀 is a

binomial random variable with 𝑇 tries and probability of success 𝑏

to calculate

E
[��𝑅′𝑇 ��] =

(
1 + 𝛽

1 − 𝛽

)
E [|𝑀 −𝑇𝛽 |]

=

(
1 + 𝛽

1 − 𝛽

)
2⌈𝑇𝛽⌉ (1 − 𝛽)𝑇+1−⌈𝑇𝛽 ⌉𝛽 ⌈𝑇𝛽 ⌉

(
𝑇

⌈𝑇𝛽⌉

)
=

√
2𝛽

𝜋 (1 − 𝛽)
√
𝑇 − O

(
1

√
𝑇

)
which leads to a similar bound. □
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F Deferred Proofs and Algorithm of Section 5
We first present in Appendix F.1 the deferred proof of Theorem F.4,

the lower bound on the regret for budgeted first-price auctions with

only bandit information. Next we present an upper bound on the

regret, in Appendix F.2.

F.1 Deferred Proof for Regret Lower Bound
In this section we prove Theorem 5.1.

Proof of Theorem 5.1. Fix the player’s budget, 𝜌 = 1/4. Define
the following

• 𝐾 = 2𝑇 1/3
for some positive 𝑐 that will be defined later.

• 𝜀 = 1

3𝐾
.

• For 𝑖 = 0, 1, 2, . . . , 𝐾 let 𝑑𝑖 = 1/3 + 𝑖𝜀. Note 𝑑0 = 1/3 and

𝑑𝐾 = 2/3.
We will consider that 𝑑𝑡 can only be 0, 1, or one of the values in

{𝑑𝑖 }𝑖=0,...,𝐾−1; note that even though we defined the value 𝑑𝐾 , 𝑑𝑡
cannot take that value. We will consider different distributions that

can generate 𝑑𝑡 , each specified by a CDF. We first define the base

CDF-like distribution:

𝐹b (𝑥) =
3

4 − 𝑥 (20)

We usePb andEb to denote the probability and expectationwhen

𝑑𝑡 is generated by 𝐹b, whichmeans that for any𝑥 = 0, 𝑑0, 𝑑1, . . . , 𝑑𝐾−1,

Pb [𝑑𝑡 ≤ 𝑥] = 𝐹b (𝑥) and Pb [𝑑𝑡 ≤ 1] = 1. More precisely, even

though we do not use the description of the probability density

function, we have

Pb [𝑑𝑡 = 𝑥] =



𝐹b (0) = 3/4 , if 𝑥 = 0

𝐹b (𝑑0) − 𝐹b (0) = 3/44 , if 𝑥 = 𝑑0 = 1/3
𝐹b (𝑑𝑖 ) − 𝐹b (𝑑𝑖−1) = Θ(𝜀) , if 𝑥 = 𝑑𝑖 , 𝑖 ∈ [𝐾 − 1]
1 − 𝐹b (𝑑𝐾−1) , if 𝑥 = 1

0 , otherwise

.

We note that 𝐹b (𝑑𝐾−1) < 𝐹b (𝑑𝐾 ) = 1/10; this guarantees that

our distribution is well defined.

Given the base CDF 𝐹b we now define a different CDF-like func-

tion, 𝐹 𝑗 for every 𝑗 = 0, 1, . . . , 𝐾−1. The distribution of𝑑𝑡 associated

with 𝐹 𝑗 is going to be identical to the one associated with 𝐹b. except

for the probability of

𝐹 𝑗 (𝑥) =
{
𝐹b (𝑥), if 𝑥 ∉ [𝑑 𝑗 , 𝑑 𝑗+1)
𝐹b (𝑑 𝑗+1), if 𝑥 ∈ [𝑑 𝑗 , 𝑑 𝑗+1)

(21)

We useP𝑗 and E𝑗 to denote the probability and expectationwhen

𝑑𝑡 is generated by 𝐹 𝑗 . This means that P𝑗 [𝑑𝑡 ≤ 𝑥] = Pb [𝑑𝑡 ≤ 𝑥]
for all 𝑥 = 0, 𝑑0, 𝑑1, . . . , 𝑑 𝑗−1, 𝑑 𝑗+1, . . . , 𝑑𝐾−1, 1 and P𝑗

[
𝑑𝑡 ≤ 𝑑 𝑗

]
=

Pb
[
𝑑𝑡 ≤ 𝑑 𝑗+1

]
.

We are going to assume that before round 𝑡 , 𝑗 is picked adver-

sarially. We now prove what a lower bound on the value of the

optimal solution under 𝐹 𝑗 .

Lemma F.1. When 𝑑𝑡 is generated according to 𝐹 𝑗 for any 𝑗 =

0, . . . , 𝐾 − 1 as explained above, then the value of the optimal solution
is

OPT𝑗 ≥
13

16

𝑇 + 3

32

𝑇𝜀

Proof. We consider the strategy that bids 𝑑 𝑗 with probability

11−3(𝑖+1)𝜀
12(1+3𝑖𝜀) and bids 0 otherwise. The expected per round payment

of this strategy is

11 − 3(𝑖 + 1)𝜀
12(1 + 3𝑖𝜀) 𝑑 𝑗𝐹 𝑗 (𝑑 𝑗 ) =

11 − 3(𝑖 + 1)𝜀
12(1 + 3𝑖𝜀)

(
1

3

+ 𝑖𝜀
)

3

4 − ( 1
3
+ (𝑖 + 1)𝜀)

=
1

4

which means it satisfies the budget constraint in expectation, since

𝜌 = 1/4. The expected per-round value of this solution is

11 − 3(𝑖 + 1)𝜀
12(1 + 3𝑖𝜀) 𝐹 𝑗 (𝑑 𝑗 ) +

(
1 − 11 − 3(𝑖 + 1)𝜀

12(1 + 3𝑖𝜀)

)
𝐹 𝑗 (0)

=
11 − 3(𝑖 + 1)𝜀

12(1 + 3𝑖𝜀)
3

4 − ( 1
3
+ (𝑖 + 1)𝜀)

+
(
1 − 11 − 3(𝑖 + 1)𝜀

12(1 + 3𝑖𝜀)

)
3

4

=
13

16

+ 3𝜀

16(1 + 3𝑖𝜀) ≥
13

16

+ 3𝜀

16(1 + 3𝐾𝜀)

where the last inequality follows from 𝑖 ≤ 𝐾 . Substituting 𝜀 = 1

3𝐾
we get the lemma. □

In round 𝑡 the player bids 𝑏𝑡 and observes 𝑥𝑡 ∈ {0, 1} (if she
won or not). We are going to assume that the player runs some

deterministic algorithm, which comes w.l.o.g. since the environ-

ment is randomized. This means that the player’s bid 𝑏𝑡 in round

𝑡 is a deterministic function of 𝑥1, . . . , 𝑥𝑡−1. We denote 𝑥 = 𝑥1:𝑇 .

We also assume w.l.o.g. that the player’s bids are always one of

0, 𝑑0, . . . , 𝑑𝐾−1, 1, since any other bid is suboptimal. Let 𝑁𝑖 be the

total number of times the player bids 𝑑𝑖 and𝑀𝑖 be the total number

of times the player bids 𝑑𝑖 and wins. We prove the following.

Lemma F.2. Let 𝑔 : {0, 1}𝑇 → R be a function defined on 𝑥 . Then,
for every 𝑗 , it holds that��E𝑗 𝑔(𝑥) − Eb 𝑔(𝑥)�� ≤ (

max

𝑥
|𝑔(𝑥) |

)
𝜀

√
2Eb

[
𝑀𝑗

]
Proof. For any 𝑗 and 𝑖 we have��E𝑗 𝑓 (𝑥) − Eb 𝑓 (𝑥)�� =

������ ∑
𝑥 ∈{0,1}𝑇

𝑓 (𝑥)
(
P𝑗 [𝑥] − Pb [𝑥]

) ������
≤

(
max

𝑥
|𝑓 (𝑥) |

) ∑
𝑥 ∈{0,1}𝑇

��P𝑗 [𝑥] − Pb [𝑥]
��

=

(
max

𝑥
|𝑓 (𝑥) |

) ��𝜇 𝑗 − 𝜇b��
1

where 𝜇 𝑗 and 𝜇b are the probability distributions on 𝑥 given that

𝑑𝑡 is sampled from 𝐹 𝑗 and 𝐹b, respectively. Using the properties of

the KL divergence, we have that��𝜇 𝑗 − 𝜇b��2
1
≤ 2𝐷KL

(
𝜇b

 𝜇 𝑗 )
Now fix some sequence 𝑥 . Conditioned on 𝑥1:𝑡−1, 𝑏𝑡 is determin-

istic. In addition, if 𝑏𝑡 ≠ 𝑑 𝑗 it holds

𝜇b (𝑥𝑡 = 1|𝑥1:𝑡−1) = 𝜇 𝑗 (𝑥𝑡 = 1|𝑥1:𝑡−1)

which, if 𝑏𝑡 ≠ 𝑑 𝑗 , implies

𝐷KL
(
𝜇b (𝑥𝑡 = ·|𝑥1:𝑡−1)

 𝜇 𝑗 (𝑥𝑡 = ·|𝑥1:𝑡−1)
)
= 0

17



1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

When 𝑏𝑡 = 𝑑 𝑗 it holds that

𝜇b (𝑥𝑡 = 1|𝑥1:𝑡−1) = 𝐹b (𝑑 𝑗 ) =
3

4 − (𝑑0 + 𝑗𝜀)

𝜇 𝑗 (𝑥𝑡 = 1|𝑥1:𝑡−1) = 𝐹 𝑗 (𝑑 𝑗 ) = 𝐹b (𝑑 𝑗+1) =
3

4 − (𝑑0 + ( 𝑗 + 1)𝜀)
which implies that if 𝑏𝑡 = 𝑑 𝑗

𝐷KL
(
𝜇b (𝑥𝑡 = ·|𝑥1:𝑡−1)

 𝜇 𝑗 (𝑥𝑡 = ·|𝑥1:𝑡−1)
)

= 𝐷KL
(
Bern(𝐹b (𝑑 𝑗 ))


Bern(𝐹b (𝑑 𝑗+1))

)
= 𝐹b (𝑑 𝑗 ) log

𝐹b (𝑑 𝑗 )
𝐹b (𝑑 𝑗+1)

+ (1 − 𝐹b (𝑑 𝑗 )) log

1 − 𝐹b (𝑑 𝑗 )
1 − 𝐹b (𝑑 𝑗+1)

≤ 𝐹b (𝑑 𝑗 )
(
𝐹b (𝑑 𝑗 )
𝐹b (𝑑 𝑗+1)

− 1

)
+ (1 − 𝐹b (𝑑 𝑗 ))

(
1 − 𝐹b (𝑑 𝑗 )

1 − 𝐹b (𝑑 𝑗+1)
− 1

)
= 3

𝜀2

(1 − 𝑑 𝑗 ) (4 − 𝑑 𝑗+1)2
≤ 81

100

𝜀2

where Bern(𝑝) is a Bernoulli random variable with mean 𝑝 , the

first inequality follows by using log𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0 and the

last inequality follows by using 𝑑 𝑗 , 𝑑 𝑗+1 ≤ 2/3. This implies that

for any 𝑏𝑡 ,

𝐷KL
(
𝜇b (𝑥𝑡 = ·|𝑥1:𝑡−1)

 𝜇 𝑗 (𝑥𝑡 = ·|𝑥1:𝑡−1)
)
≤ 81

100

𝜀21
[
𝑏𝑡 (𝑥) = 𝑑 𝑗

]
Taking expectations over 𝑥 ∼ 𝜇b and adding over 𝑡 we get

𝐷KL
(
𝜇b

 𝜇 𝑗 ) ≤ 81

100

𝜀2 Eb
[
𝑁 𝑗

]
≤ 99

100

𝜀2 Eb
[
𝑀𝑗

]
≤ 𝜀2 Eb

[
𝑀𝑗

]
where the last inequality follows from the fact that Eb

[
𝑀𝑗

]
=

𝐹b (𝑑 𝑗 ) Eb
[
𝑁 𝑗

]
and 𝐹b (𝑑 𝑗 ) ≥ 9/11. Combining this with what we

proved before we get��E𝑗 𝑓 (𝑥) − Eb 𝑓 (𝑥)�� ≤ (
max

𝑥
|𝑓 (𝑥) |

)
𝜀

√
2Eb

[
𝑀𝑗

]
which proves the claim. □

Now note that since the agent’s payment is at least 𝑑 𝑗𝑀𝑗 , it must

always hold 𝑑 𝑗𝑀𝑗 ≤ 𝑇𝜌 , implying 𝑀𝑗 ≤ 𝑇𝜌/𝑑 𝑗 ≤ 3

4
𝑇 . Applying

Lemma F.2 for 𝑓 (𝑥) = 𝑀𝑗 we get that for any 𝑗

E𝑗 𝑀𝑗 ≤ Eb𝑀𝑗 +
3

√
2

4

𝑇𝜀
√
Eb𝑀𝑗

We notice that because it must hold

∑
𝑗 𝑑 𝑗𝑀𝑗 ≤ 𝑇𝜌 , there must

be some 𝑗 such that Eb𝑀𝑗 ≤ 3

4𝐾
𝑇 . Fix that 𝑗 and use that in the

above inequality, making the above inequality for that 𝑗

E𝑗 𝑀𝑗 ≤
3𝑇

4𝐾
+ 3

√
2

4

𝑇𝜀

√
3𝑇

4𝐾
=

3

4

𝑇

𝐾
+ 3

√
6

8

𝑇 3/2𝜀
√
𝐾

Recalling that 𝐾 = 2𝑇 1/3
and 𝜀 = 1/(3𝐾) we get

E𝑗 𝑀𝑗 ≤
3

8

𝑇 2/3 +
√

3

16

𝑇

Since E𝑗 𝑀𝑗 = 𝐹 𝑗 (𝑑 𝑗 ) E𝑗 𝑁 𝑗 and 𝐹 𝑗 (𝑑 𝑗 ) = 3

4−𝑑 𝑗+1 ≥ 9/11 (which

follows from 𝑑 𝑗+1 ≥ 1/3) the above becomes

E𝑗 𝑁 𝑗 ≤
33

56

𝑇 2/3 + 11

√
3

144

𝑇 := 𝑈𝑇 (22)

Using the above upper bound on E𝑗 𝑁 𝑗 , we are going to upper

bound the value the player can earn in the 𝑗-th instance. To do that,

we are going to consider that the player knows that she is playing

against the distribution of P𝑗 [·] but is restricted by (22). In addition,
we consider that the player can satisfy the budget constraint in

expectation, since this only increases the budget she can earn. Given

this setting, the player’s value is upper bounded by the following

LP, where 𝑛𝑖 represents the expected number of times the player

bids 𝑑𝑖 , ℓ0 is the expected number of times the player bids 0, and ℓ1
is the expected number of times the player bids 1:

max

ℓ0,ℓ1,𝑛0,...,𝑛𝐾−1

𝐹 𝑗 (0)ℓ0 + ℓ1 +
𝐾−1∑
𝑖=0

𝐹 𝑗 (𝑑𝑖 )𝑛𝑖

ℓ1 +
𝐾−1∑
𝑖=0

𝑑𝑖𝐹 𝑗 (𝑑𝑖 )𝑛𝑖 ≤
𝑇

4

ℓ0 + ℓ1 +
𝐾−1∑
𝑖=0

𝑛𝑖 ≤ 𝑇

𝑛 𝑗 ≤ 𝑈𝑇
We upper bound the value of the above using its dual:

min

𝜆,𝜇,𝜈
𝜆
𝑇

4

+ 𝜇𝑇 + 𝜈𝑈𝑇

𝜇 ≥ 𝐹 𝑗 (0)
𝜆 + 𝜇 ≥ 1

𝜆𝑑𝑖𝐹 𝑗 (𝑑𝑖 ) + 𝜇 ≥ 𝐹 𝑗 (𝑑𝑖 ), ∀𝑖 ≠ 𝑗

𝜆𝑑 𝑗𝐹 𝑗 (𝑑 𝑗 ) + 𝜇 + 𝜈 ≥ 𝐹 𝑗 (𝑑 𝑗 )
We notice that the solution 𝜆 = 1/4, 𝜇 = 3/4, 𝜈 = 𝜀/4 is feasible

(which follows from some simple but lengthy algebra). This means

that the player’s expected reward is at most

𝑇

(
13

16

+ 𝑈𝜀
4

)
Using Lemma F.1 we get that the expected regret it at least

Reg ≥ 3

32

𝑇𝜀 − 𝜀
4

(
33

56

𝑇 2/3 + 11

√
3

144

𝑇

)
=

1

64

𝑇 2/3 − 11

448

𝑇 1/3 − 11

√
3

3456

𝑇 2/3
(
𝜀 =

𝑇−1/3

6

)
≈ 0.01𝑇 2/3 − 0.02𝑇 1/3

which is Ω(𝑇 2/3), as promised. □

F.2 Regret Upper bound for Bandit information
In this section we present and prove an upper bound on the regret

when learning with bandit feedback. Our regret bound is in the

order of
˜O(𝑇 3/4), which is slightly higher than the lower bound in

Theorem 5.1. It remains to be interesting open question to achieve

the optimal O(𝑇 2/3) regret bound.

Theorem F.3. There is a polynomial time algorithm for value or
quasi-linear utility maximization under Assumption 3.1 such that, for
every 𝛿 > 0 with probability at least 1−𝛿 its regret and ROI violation
is at most

1

𝛽𝜌
O

((
𝐿1/4𝑇 3/4 +𝑇 1/2𝐿1/2

)
log

𝐿𝑇

𝛿

)
.

In addition, if 𝛽 = Ω
(
𝑇−1/4+𝜀 (𝐿1/4 + 𝐿1/2𝑇−1/4)

√
log(𝑇𝐿/𝑑)

)
for

some constant 𝜀 > 0, the above can be turned in an algorithm with
exact ROI satisfaction regret that is 1/𝛽 times worse.

Theorem F.3 is based on the following theorem, Theorem F.4,

which offers an algorithm with
˜O(
√
𝑇𝐾) high probability interval

regret bound for the Lagrangian.
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ALGORITHM 4: No interval regret algorithm for bandit information

with for time-varying ranges

Input: Number of rounds𝑇 , number of actions 𝐾

Set 𝜎 = 1

𝑇
, 𝜉 = 1

2

√
𝑇𝐾

, 𝜃 = 1√
𝑇𝐾

Initialize weight for each action 𝑤1 (𝑎) = 1 ∀𝑎 ∈ [𝐾 ]
for 𝑡 ∈ [𝑇 ] do

Calculate 𝑝𝑡 (𝑎) = 𝑤𝑡 (𝑎)∑
𝑎′ 𝑤𝑡 (𝑎)

Sample and play 𝑎𝑡 ∼ 𝑝𝑡 ( ·)
Receive ℓ𝑡 (𝑎𝑡 )
Calculate ℓ̃𝑡 (𝑎) = ℓ𝑡 (𝑎)

𝑝𝑡 (𝑎)+𝜉 1 [𝑎 = 𝑎𝑡 ] for all 𝑎 ∈ [𝐾 ]
Receive loss range [0,𝑈𝑡+1 ] and calculate 𝜂𝑡+1 = 𝜃

𝑈𝑡+1
Calculate 𝑤𝑡+1 (𝑎) =
(1−𝜎)𝑤𝑡 (𝑎) exp

(
−𝜂𝑡+1 ℓ̃𝑡 (𝑎)

)
+ 𝜎
𝐾

∑
𝑎′ 𝑤𝑡 (𝑎′) exp

(
−𝜂𝑡+1 ℓ̃𝑡 (𝑎′)

)
end

To use this algorithm, we discretize the interval [0, 1] into 𝑁
values {𝑖/𝑁 }𝑖∈[𝑁 ] and 𝐾 bids { 𝑗/𝐾}𝑗 ∈[𝐾 ] . Then for each 𝑖 ∈ [𝑁 ]
we run an instance of the algorithm of Theorem F.4, which is used

for round 𝑡 when 𝑣𝑡 ≤ 𝑖/𝑁 < 𝑣𝑡 + 1/𝑁 and outputs a bid 𝑗𝑡/𝐾 .
As in Section 3, we do not directly use the bid suggested by these

algorithms, since it might lead to a negative reward in 𝑟𝑡 (·); we
use the safe bid of Assumption 3.1 when it is possible to get a

negative reward. This roughly leads to a total regret bound of

˜O(
√
𝑇𝑁𝐾), along with a discretization error of O(𝑇 (𝐿/𝑁 + 1/𝐾)).

Appropriately picking 𝑁,𝐾 gives the regret bound.

Theorem F.4 provides the 𝑈𝜏2

˜O(
√
𝑇𝐾) interval regret bound for

every interval [𝜏1, 𝜏2]. The algorithm used is similar to the EXP-SIX

algorithm that [27] uses to bound the regret of the best sequence

of actions and that [10] use to bound the interval regret. However,

our algorithm is not the same as EXP-SIX: we modify the algorithm

to get a regret bound that scales linearly with𝑈𝜏2
instead of𝑈 2

𝜏2

as

shown in [10].

Theorem F.4. Suppose there are𝐾 actions and the reward of round
𝑡 , 𝑟𝑡 : [𝐾] → [0,𝑈𝑡 ], is picked by an adaptive adversary. There
exists an algorithm that generates actions 𝑎1, . . . , 𝑎𝑇 such that for
every 𝛿 > 0, with probability at least 1 − 𝛿 , we have that for all
1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇

max

𝑎∈[𝐾 ]

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑎) −
𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑎𝑡 ) ≤ O
(
𝑈𝜏2
·
(√
𝑇𝐾 + 𝐾

)
log

𝑇𝐾

𝛿

)
We first present the algorithm for Theorem F.4 which low inter-

val regret. The algorithm is a modification of the algorithm of [27]

so that it works for time-varying ranges. We present the algorithm

in Algorithm 4.

We now prove Theorem F.4.

Proof of Theorem F.4. First we define

𝑝 ′𝑡+1 (𝑎) =
𝑝𝑡 (𝑎) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎)

)∑
𝑎′ 𝑝𝑡 (𝑎′) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎′)

)
Next we show that for every 𝑎∗∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) − ℓ̃𝑡 (𝑎∗) ≤
1

𝜂𝑡
log

(
𝑝 ′
𝑡+1 (𝑎

∗)
𝑝𝑡 (𝑎∗)

)
+ 𝜂𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)

(23)

First we notice that

∑
𝑎

𝑝𝑡 (𝑎) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎)

)
≤ 1 − 𝜂𝑡

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) +
𝜂2

𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)
(

𝑥≥0 =⇒
𝑒−𝑥 ≤1−𝑥+𝑥2/2

)
≤ exp

(
−𝜂𝑡

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) +
𝜂2

𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)
) (

1 + 𝑥 ≤ 𝑒𝑥
)

Using the definition of 𝑝 ′
𝑡+1 (𝑎

∗) in the l.h.s. of the inequality above

we get

exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎∗)

) 𝑝𝑡 (𝑎∗)
𝑝 ′
𝑡+1 (𝑎∗)

≤ exp

(
−𝜂𝑡

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) +
𝜂2

𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)
)

Taking a logarithm and rearanging we get (23).

We now notice that

𝑝𝑡+1 (𝑎∗)

=
𝑤𝑡+1 (𝑎∗)∑
𝑎𝑤𝑡+1 (𝑎)

=
(1 − 𝜎)𝑤𝑡 (𝑎∗) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎∗)

)
+ 𝜎
𝐾

∑
𝑎′ 𝑤𝑡 (𝑎′) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎′)

)∑
𝑎

(
(1 − 𝜎)𝑤𝑡 (𝑎) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎)

)
+ 𝜎
𝐾

∑
𝑎′ 𝑤𝑡 (𝑎′) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎′)

) )
=
(1 − 𝜎)𝑤𝑡 (𝑎∗) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎∗)

)
+ 𝜎
𝐾

∑
𝑎′ 𝑤𝑡 (𝑎′) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎′)

)∑
𝑎𝑤𝑡 (𝑎) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎)

)
=
(1 − 𝜎)𝑝𝑡 (𝑎∗) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎∗)

)
+ 𝜎
𝐾

∑
𝑎′ 𝑝𝑡 (𝑎′) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎′)

)∑
𝑎 𝑝𝑡 (𝑎) exp

(
−𝜂𝑡 ℓ̃𝑡 (𝑎)

)
≥ (1 − 𝜎)𝑝 ′𝑡+1 (𝑎

∗) + 0

Bounding 𝑝 ′
𝑡+1 (𝑎

∗) in (23) we get

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎)−ℓ̃𝑡 (𝑎∗) ≤
1

𝜂𝑡
log

(
𝑝𝑡+1 (𝑎∗)
(1 − 𝜎)𝑝𝑡 (𝑎∗)

)
+𝜂𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)

Let 𝐼 = [𝜏1, 𝜏2]; summing the above for all 𝑖 ∈ 𝐼 we get

∑
𝑡 ∈𝐼

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) −
∑
𝑡 ∈𝐼

ℓ̃𝑡 (𝑎∗)

≤
∑
𝑡 ∈𝐼

1

𝜂𝑡
log

(
𝑝𝑡+1 (𝑎∗)
(1 − 𝜎)𝑝𝑡 (𝑎∗)

)
+

∑
𝑡 ∈𝐼

𝜂𝑡

2

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎)
(24)

19



2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Now we focus on∑
𝑡 ∈𝐼

1

𝜂𝑡
log

(
𝑝𝑡+1 (𝑎∗)
(1 − 𝜎)𝑝𝑡 (𝑎∗)

)
=

log 𝑝𝜏2+1 (𝑎∗)
𝜂𝜏2

−
log

(
(1 − 𝜎)𝑝𝜏1

(𝑎∗)
)

𝜂𝜏1

+
∑

𝑡 ∈𝐼\{𝜏1 }
log

(
𝑝

1/𝜂𝑡−1

𝑡 (𝑎∗)

(1 − 𝜎)1/𝜂𝑡 𝑝1/𝜂𝑡
𝑡 (𝑎∗)

)

≤ 0 −
log

(
(1 − 𝜎) 𝜎

𝐾

)
𝜂𝜏1

+
∑

𝑡 ∈𝐼\{𝜏1 }
log

©«
𝑝

1

𝜂𝑡−1

− 1

𝜂𝑡

𝑡 (𝑎∗)
(1 − 𝜎)1/𝜂𝑡

ª®®¬
≤ −

log

(
(1 − 𝜎) 𝜎

𝐾

)
𝜂𝜏1

+
∑

𝑡 ∈𝐼\{𝜏1 }

(
1

𝜂𝑡−1

− 1

𝜂𝑡

)
log

𝜎

𝐾

+
∑

𝑡 ∈𝐼\{𝜏1 }

1

𝜂𝑡
log

1

1 − 𝜎

= −𝑈𝜏1

log

(
(1 − 𝜎) 𝜎

𝐾

)
𝜃

+ 1

𝜃
log

𝜎

𝐾

∑
𝑡 ∈𝐼\{𝜏1 }

(𝑈𝑡−1 −𝑈𝑡 )

+𝑈𝜏2

|𝐼 | − 1

𝜃
log

1

1 − 𝜎

≤ −𝑈𝜏2

log

(
(1 − 𝜎) 𝜎

𝐾

)
𝜃

−
𝑈𝜏2

𝜃
log

𝜎

𝐾
+𝑈𝜏2

|𝐼 | − 1

𝜃
log

1

1 − 𝜎

= 𝑈𝜏2

(
√
𝑇𝐾 log

𝐾𝑇

1 − 1

𝑇

+
√
𝑇𝐾 log(𝑇𝐾) +𝑇 3/2√𝐾 log

1

1 − 1

𝑇

)
= 𝑈𝜏2

√
𝑇𝐾

(
log

𝐾𝑇 2

𝑇 − 1

+ log(𝑇𝐾) +
√
𝑇 log

𝑇

𝑇 − 1

)
≤ 𝑈𝜏2

√
𝑇𝐾

(
2 log

(
𝐾𝑇 2

)
+ 2

1

√
𝑇

)
≤ 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾)

)
(25)

where in the first inequality we use 𝑝𝑡 (𝑎) ∈
[
𝜎
𝐾
, 1

]
. in the second

inequality that 𝑝𝑡 (𝑎) ≥ 𝜎
𝐾
, in the equality after that the fact that

𝜂𝑡 = 𝜃
𝑈𝑡

, in the second to last equality that 𝜎 = 1

𝑇
and 𝜃 = 1√

𝐾𝑇
,

and in the second to last inequality that log
𝑇
𝑇−1
≤ 2

𝑇
.

Now we bound∑
𝑎

𝑝𝑡 (𝑎)ℓ̃2

𝑡 (𝑎) =
∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎)
ℓ𝑡 (𝑎)

𝑝𝑡 (𝑎) + 𝜉
≤ 𝑈𝑡

∑
𝑎

ℓ̃𝑡 (𝑎) (26)

Using (25) and (26) in (24), and substituting 𝜂𝑡 = 𝜃/𝑈𝑡 we get∑
𝑡 ∈𝐼

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) −
∑
𝑡 ∈𝐼

ℓ̃𝑡 (𝑎∗) ≤ 𝑈𝜏2
𝑋 + 𝜃

2

∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎) (27)

Using a slight modification of [27, Corollary 1] we get that

P

[
∀𝑎 ∈ [𝐾] :

∑
𝑡 ∈𝐼

(
ℓ̃𝑡 (𝑎) − ℓ𝑡 (𝑎)

)
≤ 𝑈𝜏2

log(𝐾/𝛿)
2𝜉

]
≥ 1 − 𝛿 (28)

Now we bound∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) = 𝑝𝑡 (𝑎𝑡 )
ℓ𝑡 (𝑎𝑡 )

𝑝𝑡 (𝑎𝑡 ) + 𝜉

≥ ℓ𝑡 (𝑎𝑡 ) − ℓ𝑡 (𝑎𝑡 )
𝜉

𝑝𝑡 (𝑎𝑡 ) + 𝜉
= ℓ𝑡 (𝑎𝑡 ) − 𝜉

∑
𝑎

ℓ̃𝑡 (𝑎)
(29)

We now combine all the above to bound the regret. Assume that

(28) is true; for every 𝑎∗ ∈ [𝐾]:∑
𝑡 ∈𝐼

(
ℓ𝑡 (𝑎𝑡 ) − ℓ𝑡 (𝑎∗)

)
≤

∑
𝑡 ∈𝐼

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) + 𝜉
∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎) −
∑
𝑡 ∈𝐼

ℓ𝑡 (𝑎∗)
(
by (29)

)
≤

∑
𝑡 ∈𝐼

∑
𝑎

𝑝𝑡 (𝑎)ℓ̃𝑡 (𝑎) + 𝜉
∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎) −
∑
𝑡 ∈𝐼

ℓ̃𝑡 (𝑎∗)

+𝑈𝜏2

log(𝐾/𝛿)
2𝜉

(
by (28)

)
≤ 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾)

)
+ 𝜃

2

∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎)

+ 𝜉
∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎) +𝑈𝜏2

log(𝐾/𝛿)
2𝜉

(
by (27)

)
= 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾)

)
+𝑈𝜏2

log(𝐾/𝛿)
2𝜉

+
(
𝜃

2

+ 𝜉
) ∑
𝑡 ∈𝐼

∑
𝑎

ℓ̃𝑡 (𝑎)

≤ 𝑈𝜏2
O

(√
𝑇𝐾 log(𝑇𝐾)

)
+𝑈𝜏2

log(𝐾/𝛿)
2𝜉

+
(
𝜃

2

+ 𝜉
)
𝐾

(
𝑈𝜏2
|𝐼 | +𝑈𝜏2

log(𝐾/𝛿)
2𝜉

) (
by (28)

)
= 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾)

)
+𝑈𝜏2

√
𝑇𝐾 log(𝐾/𝛿)

+ 1

√
𝑇𝐾

𝐾

(
𝑈𝜏2

𝑇 +𝑈𝜏2

√
𝑇𝐾 log(𝐾/𝛿)

) (
𝜉= 1

2

√
𝑇𝐾

𝜃= 1√
𝑇𝐾

)
= 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾/𝛿)

)
+𝑈𝜏2

√
𝐾
√
𝑇

(
𝑇 +
√
𝑇𝐾 log(𝐾/𝛿)

)
= 𝑈𝜏2

O
(√
𝑇𝐾 log(𝑇𝐾/𝛿) + 𝐾 log(𝐾/𝛿)

)
which proves the desired bound. □

We now proceed to prove Theorem F.3.

Proof of Theorem F.3. Fix𝑁 = ⌈𝐿3/4𝑇 1/4⌉ and𝐾 = ⌈𝑇 1/4/𝐿1/4⌉.
Let 𝑣𝑖 = 𝑖/𝑁 for 𝑖 ∈ [𝑁 ] and ˜𝑏 𝑗 = 𝑗/𝑁 for 𝑗 ∈ [𝑁 ]. For every
𝑖 ∈ [𝑁 ] define 𝑟 𝑖𝑡 : [𝐾] → R≥0 such that

𝑟 𝑖𝑡 ( 𝑗) = 1

[
˜𝑏𝑡, 𝑗 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖 −𝜓𝑡𝑝 ( ˜𝑏𝑡, 𝑗 , 𝑑𝑡 )

)
where

˜𝑏𝑡, 𝑗 is either ˜𝑏 𝑗 or the safe bid of 𝑟 𝑖𝑡 (·).
Define for every round 𝑖𝑡 = ⌈𝑣𝑡𝑁 ⌉ (i.e. the 𝑖 that corresponds

to the value that is closest and above to 𝑣𝑡 ). Fix 𝑖 ∈ [𝑁 ] and let

T𝑖 ⊆ [𝑇 ] be the rounds where 𝑖 = 𝑖𝑡 ; let 𝑇𝑖 = |T𝑖 |. Let A𝑖 be an
instance of Algorithm 4 which is run only on rounds T𝑖 . A𝑖 has
𝐾 actions. The reward of the 𝑗-th action in round 𝑡 is 𝑟 𝑖𝑡 ( 𝑗). Let
𝑗𝑡 be the output of A𝑖 in a round 𝑡 ∈ T𝑖 , which we use to bid

˜𝑏𝑡, 𝑗𝑡 . Because of Theorem F.4 we have that for every 𝛿 > 0 with
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probability at least 1 − 𝛿 , for every 𝜏1 ≤ 𝜏2

max

𝑗 ∈[𝐾 ]

∑
𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]

𝑟 𝑖𝑡 ( 𝑗) −
∑

𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]
𝑟 𝑖𝑡 ( 𝑗𝑡 )

≤ 𝑈𝜏2
O

((√
𝑇𝑖𝐾 + 𝐾

)
log

𝑇𝑖𝐾

𝛿

)
We do the above process for every 𝑖 and use it as an algorithm

10
.

Doing this for every 𝑖 and using the union bound we get that for

every 𝛿 > 0 with probability at least 1 − 𝛿 , for every 𝑖 ∈ [𝑁 ] and
𝜏1 ≤ 𝜏2

max

𝑗 ∈[𝐾 ]

∑
𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗) −

∑
𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑡 )

≤ 𝑈𝜏2
O

((√
𝑇𝑖𝐾 + 𝐾

)
log

𝑇𝑖𝐾𝑁

𝛿

)
= 𝑈𝜏2

O©«©«
√
𝑇𝑖
𝑇 1/4

𝐿1/4 +
𝑇 1/4

𝐿1/4
ª®¬ log

𝐿𝑇

𝛿

ª®¬
(
𝑁= ⌊𝐿3/4𝑇 1/4 ⌋
𝐾= ⌊𝑇 1/4/𝐿1/4 ⌋

)
(30)

Fix 𝜏1, 𝜏2. We want to use (30) to upper bound

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) −
𝜏2∑
𝑡=𝜏1

𝑟𝑡 ( ˜𝑏𝑡, 𝑗𝑡 )

Fix 𝑓 ∈ F and define 𝑗1, . . . , 𝑗𝑁 ∈ [𝐾] such that
˜𝑏 𝑗𝑖 (recall

˜𝑏 𝑗 = 𝑗/𝐾) is the bid that is above 𝑓 (𝑣) for every 𝑣 ∈ (𝑣𝑖−1, 𝑣𝑖 ] and
as small as possible, i.e., for all 𝑖 ∈ [𝑁 ] it holds

˜𝑏 𝑗𝑖 =

⌈
𝐾 sup

𝑣∈(�̃�𝑖−1,�̃�𝑖 ]
𝑓 (𝑣)

⌉
/𝐾

We notice that for all 𝑖 ∈ [𝑁 ] and 𝑣 ∈ (𝑣𝑖−1, 𝑣𝑖 ]: ˜𝑏 𝑗𝑖 ∈ [𝑓 (𝑣), 𝑓 (𝑣) +
𝐿
𝑁
+ 1

𝐾
] (by 𝐿-Lipschitz of 𝑓 ). We now have

𝑟𝑡
(
𝑓
)
= 1 [𝑓 (𝑣𝑡 ) ≥ 𝑑𝑡 ]

(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓 (𝑣𝑡 ), 𝑑𝑡

) )
≤ 1

[
˜𝑏 𝑗𝑖𝑡 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖𝑡 −𝜓𝑡𝑝

(
˜𝑏 𝑗𝑖𝑡 −

𝐿

𝑁
− 1

𝐾
,𝑑𝑡

))+
≤ 1

[
˜𝑏 𝑗𝑖𝑡 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖𝑡 −𝜓𝑡𝑝

(
˜𝑏 𝑗𝑖𝑡 , 𝑑𝑡

))+
+𝜓𝑡

(
𝐿

𝑁
+ 1

𝐾

)
≤ 𝑟

𝑖𝑡
𝑡 ( 𝑗𝑖𝑡 ) +𝜓𝑡

(
𝐿

𝑁
+ 1

𝐾

)
where the last inequality follows because the bid that corresponds

to 𝑗𝑖𝑡 in round 𝑡 is the safe bid of that round whose reward is non-

negative and at least as good as
˜𝑏 𝑗𝑖𝑡 ’s. Summing the above over

𝑡 ∈ [𝜏1, 𝜏2] and taking a sup over 𝑓 and a max over 𝑗1, . . . , 𝑗𝑁 we

10
For rounds where 𝑣𝑡 = 0 we have not defined an algorithm; in those rounds we can

bid 0 (which is optimal) to guarantee no regret; for simplicity however we assume that

𝑣𝑡 > 0.

get

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 )

≤ max

𝑗1,..., 𝑗𝑁

𝜏2∑
𝑡=𝜏1

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑖𝑡 ) +𝑈𝜏2

𝑇

(
𝐿

𝑁
+ 1

𝐾

)
=

∑
𝑖∈[𝑁 ]

max

𝑗 ∈[𝐾 ]

∑
𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗) +𝑈𝜏2

𝑇

(
𝐿

𝑁
+ 1

𝐾

)
≤

∑
𝑖∈[𝑁 ]

max

𝑗 ∈[𝐾 ]

∑
𝑡 ∈T𝑖∩[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗) +𝑈𝜏2

2𝑇
3

4 𝐿
1

4

(
𝑁 ≥𝐿

3

4𝑇
1

4

𝐾≥𝑇
1

4 /𝐿
1

4

)
≤

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑡 )

+
∑
𝑖∈[𝑁 ]

𝑈𝜏2
O©«©«

√√
𝑇𝑖
𝑇

1

4

𝐿
1

4

+ 𝑇
1

4

𝐿
1

4

ª®¬ log

𝐿𝑇

𝛿

ª®¬
+𝑈𝜏2

2𝑇
3

4 𝐿
1

4

(
by (30)

)
=

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑡 )

+𝑈𝜏2
O

((
𝐿

1

4𝑇
3

4 + (𝑇𝐿)
1

2

)
log

𝐿𝑇

𝛿
+𝑇

3

4 𝐿
1

4

)
=

∑
𝑡 ∈[𝜏1,𝜏2 ]

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑡 )

+𝑈𝜏2
O

((
𝐿

1

4𝑇
3

4 + (𝑇𝐿)
1

2

)
log

𝐿𝑇

𝛿

)
(31)

where the second to last inequality we substituted 𝑁 = ⌊𝐿3/4𝑇 1/4⌋
and we used the fact that

∑
𝑖

√
𝑇𝑖 ≤

√
𝑁𝑇 since

∑
𝑖 𝑇𝑖 = 𝑇 . By

noticing that 𝑟 𝑖𝑡 ( 𝑗𝑡 ) ≤ 𝑟𝑡 ( ˜𝑏𝑡, 𝑗𝑡 ) + 𝑈𝑡 (1/𝐾 + 1/𝑁 ) and bounding

𝑇 (1/𝑁 + 1/𝐾) = O(𝐿1/4𝑇 3/4) we get the high probability interval

regret bound on the rewards 𝑟𝑡 (·). Using Theorem 2.1 we get the

desired result.

The tight satisfaction of the ROI constraint follows by using

Lemma 4.2. The first algorithm is the one we describe above. The

second algorithm is the primal algorithm described above with 𝜒𝑡 =

𝜓𝑡 = 1, which achieves𝑄 (𝜏, 𝛿) = 𝜏𝛽−O((𝐿1/4𝜏3/4 + 𝜏1/2𝐿1/2) log
𝐿𝑇
𝛿
).

□

G Polynomial time algorithm for full
information feedback

In this section, we present a polynomial time algorithm that has

regret guarantees matching the ones in Theorems 3.3 and 4.1, when

the value and the highest competing bid are independent.

Theorem G.1. Assume that the value 𝑣𝑡 and highest competing
bid 𝑑𝑡 are sampled independently. There is a polynomial time algo-
rithm with full information feedback for value or quasi-linear utility
maximization when the payment function satisfies Assumption 3.1
such that, for every 𝛿 > 0 with probability at least 1 − 𝛿 , the al-
gorithm has regret against the class of 𝐿-Lipschitz continuous func-
tions and ROI violation at most 1

𝛽𝜌
O(

√
𝑇 log(𝑇𝐿/𝛿)). In addition, if

𝛽 = Ω
(
𝑇−1/2+𝜀

log(𝑇𝐿/𝛿)
)
for some constant 𝜀 > 0, it can be turned
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into an algorithm with exact ROI satisfaction and with regret that is
1/𝛽 times worse.

The algorithm for the above theorem is similar to the one in

Theorem F.3: discretize the values and run a separate online learning

algorithm for each of those values. The important difference is that,

instead of running/updating each algorithm only when we observe

its corresponding value, we run every algorithm in every round

𝑡 , even if the value 𝑣𝑡 is completely different than the one the

algorithm represents. This allows each algorithm to run for many

more rounds, making it ‘learn’ faster. The assumption that 𝑣𝑡 and

𝑑𝑡 are independent is crucial since the 𝑑𝑡 of every round can be

used for every algorithm.

We note that the above technique cannot directly be used for

bandit information, since we do not observe 𝑑𝑡 and therefore the

observed reward is dependent on the bidding. [5] use this technique,

along with the assumption that the value distribution is known,

to get regret bounds that would imply to
˜O
(
𝑇 2/3

)
regret for ban-

dit information. However, their bounds are only in expectation

and for the entire horizon, not every interval. We leave as future

work extending these techniques to get regret matching the one in

Theorem 5.1.

Proof. We use a scheme similar to the one used in the proof of

Theorem F.3. Fix 𝑁 = ⌊𝐿𝑇 ⌋ and𝐾 = 𝑇 . Let 𝑣𝑖 = 𝑖/𝑁 for 𝑖 ∈ [𝑁 ] and
˜𝑏 𝑗 = 𝑗/𝑁 for 𝑗 ∈ [𝑁 ]. For every 𝑖 ∈ [𝑁 ] define 𝑟 𝑖𝑡 : [𝐾] → R≥0

such that

𝑟 𝑖𝑡 ( 𝑗) = 1

[
˜𝑏𝑡, 𝑗 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖 −𝜓𝑡𝑝 ( ˜𝑏𝑡, 𝑗 , 𝑑𝑡 )

)
where

˜𝑏𝑡, 𝑗 is either ˜𝑏 𝑗 or the safe bid (Assumption 3.1) of 𝑟 𝑖𝑡 (·).
Define for every round 𝑖𝑡 = ⌈𝑣𝑡𝑁 ⌉ (i.e. the 𝑖 that corresponds

to the value that is closest and above to 𝑣𝑡 ). For every 𝑖 ∈ [𝑁 ]
let A𝑖 be an instance of the algorithm in Theorem 3.5 for Δ = 1

with 𝐾 actions that has also been modified to have low interval

regret, using Theorem 3.7. Unlike the bandit setting, here we run

A𝑖 even in rounds where 𝑖𝑡 ≠ 𝑖 . In every round A𝑖 outputs an
action 𝑗𝑖𝑡 ∈ [𝐾] which corresponds to the bid

˜𝑏𝑡, 𝑗𝑖𝑡
. The reward of

the 𝑗-th action in round 𝑡 is 𝑟 𝑖𝑡 ( 𝑗). The bid we use in round 𝑡 is the

one suggested by algorithm A𝑖𝑡 , ˜𝑏
𝑡, 𝑗
𝑖𝑡
𝑡

.

Using Theorems 3.5 and 3.7, an application of Azuma’s inequality

and a union bound over 𝑖 , we have that with probability at least

1 − 𝛿 for every 1 ≤ 𝜏1 < 𝜏2 ≤ 𝑇 and every 𝑖 ∈ [𝑁 ]:

max

𝑗 ∈[𝐾 ]

𝜏2∑
𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗) −
𝜏2∑
𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) ≤ 𝑈𝜏2
O

(√
𝑇 log(𝑇𝐾𝑁 /𝛿)

)
(32)

Fix 𝜏1, 𝜏2. To get our regret bound we have to upper bound

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) −
𝜏2∑
𝑡=𝜏1

∑
𝑖

1 [𝑖𝑡 = 𝑖] 𝑟𝑡 ( ˜𝑏𝑡, 𝑗𝑖𝑡 )

Fix 𝑓 ∈ F and define 𝑗1, . . . , 𝑗𝑁 ∈ [𝐾] such that for all 𝑖 ∈ [𝑁 ]

˜𝑏 𝑗𝑖 =

⌈
𝐾 sup

𝑣∈(�̃�𝑖−1,�̃�𝑖 ]
𝑓 (𝑣)

⌉
/𝐾

We notice that for all 𝑖 ∈ [𝑁 ] and 𝑣 ∈ (𝑣𝑖−1, 𝑣𝑖 ]: ˜𝑏 𝑗𝑖 ∈ [𝑓 (𝑣), 𝑓 (𝑣) +
𝐿
𝑁
+ 1

𝐾
] (by 𝐿-Lipschitz of 𝑓 ). We now have

𝑟𝑡
(
𝑓
)
= 1 [𝑓 (𝑣𝑡 ) ≥ 𝑑𝑡 ]

(
𝜒𝑡𝑣𝑡 −𝜓𝑡𝑝

(
𝑓 (𝑣𝑡 ), 𝑑𝑡

) )
≤ 1

[
˜𝑏 𝑗𝑖𝑡 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖𝑡 −𝜓𝑡𝑝

(
˜𝑏 𝑗𝑖𝑡 −

𝐿

𝑁
− 1

𝐾
,𝑑𝑡

))+
≤ 1

[
˜𝑏 𝑗𝑖𝑡 ≥ 𝑑𝑡

] (
𝜒𝑡𝑣𝑖𝑡 −𝜓𝑡𝑝

(
˜𝑏 𝑗𝑖𝑡 , 𝑑𝑡

))+
+𝜓𝑡

(
𝐿

𝑁
+ 1

𝐾

)
≤ 𝑟

𝑖𝑡
𝑡 ( 𝑗𝑖𝑡 ) +𝜓𝑡

(
𝐿

𝑁
+ 1

𝐾

)
where in the second to last inequality we used the fact that 𝑝 (·, 𝑑)
is 1-Lipschitz and in the last inequality follows because the bid that

corresponds to 𝑗𝑖𝑡 in round 𝑡 is the safe bid of that round whose

reward is non-negative and at least as good as
˜𝑏 𝑗𝑖𝑡 ’s. Summing the

above over 𝑡 ∈ [𝜏1, 𝜏2] and taking a sup over 𝑓 and a max over

𝑗1, . . . , 𝑗𝑁 we get

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) ≤ max

𝑗1,..., 𝑗𝑁

𝜏2∑
𝑡=𝜏1

𝑟
𝑖𝑡
𝑡 ( 𝑗𝑖𝑡 ) +𝑈𝜏2

𝑇

(
𝐿

𝑁
+ 1

𝐾

)
≤

∑
𝑖∈[𝑁 ]

max

𝑗∗∈[𝐾 ]

𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗∗) + 2𝑈𝜏2
(33)

where in the last inequality we used that 𝑁 ≥ ⌊𝑇𝐿⌋ and 𝐾 = 𝑇 .

We nowprove a high probability bound on

∑𝜏2

𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗∗),
for a fixed 𝑗∗. Using Azuma’s inequality we can prove that for all

𝛿 > 0 with probability at least 1 − 𝛿 ,
𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗∗) ≤
𝜏2∑
𝑡=𝜏1

P [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗∗) + O
(
𝑈𝜏2

√
𝑇 log(1/𝛿)

)
Note that to use Azuma’s inequality we have to rely on the fact

that 𝑖𝑡 and 𝑟
𝑖
𝑡 ( 𝑗∗) are independent conditioned on the history of

rounds up to 𝑡 − 1, since 𝑟 𝑖𝑡 ( 𝑗∗) does not depend on 𝑣𝑡 but only 𝑑𝑡
By letting P [𝑖𝑡 = 𝑖] = 𝑞𝑖 and taking a union bound over all

𝑗∗ ∈ [𝐾] and all 𝑖 ∈ [𝑁 ], we have that with probability at least

1 − 𝛿 for all 𝑗∗
1
, 𝑖 , and 𝜏1, 𝜏2 we have

𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗∗) ≤
𝜏2∑
𝑡=𝜏1

𝑞𝑖𝑟
𝑖
𝑡 ( 𝑗∗) + O

(
𝑈𝜏2

√
𝑇 log (𝑇𝐾𝑁 /𝛿)

)
Substituting 𝑁 and 𝐾 , the above makes (33)

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) ≤
∑
𝑖∈[𝑁 ]

𝑞𝑖 max

𝑗∗∈[𝐾 ]

𝜏2∑
𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗∗) + O
(
𝑈𝜏2

√
𝑇 log (𝑇𝐿/𝛿)

)
(34)

We now bound 𝑞𝑖 max𝑗∗
∑𝜏2

𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗∗) for some 𝑖 . By (32) we have

𝑞𝑖 max

𝑗∗

𝜏2∑
𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗∗) ≤ 𝑞𝑖

𝜏2∑
𝑡=𝜏1

𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) + 𝑞𝑖𝑈𝜏2
O

(√
𝑇 log(𝑇𝐿/𝛿)

)
≤

𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) + 𝑞𝑖𝑈𝜏2
O

(√
𝑇 log(𝑇𝐾𝑁 /𝛿)

)
+ 𝑞𝑖𝑈𝜏2

O
(√
𝑇 log(𝑇𝐿/𝛿)

)
=

𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) + 𝑞𝑖𝑈𝜏2
O

(√
𝑇 log(𝑇𝐿/𝛿)

)
where in the last inequality we used Azuma’s inequality, which

heavily depends on the fact that 𝑖𝑡 and 𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) are independent
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conditioned on the history of rounds up to 𝑡 − 1, since 𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 ) does
not depend on 𝑣𝑡 but only 𝑑𝑡 . Plugging the above into (34) we get

sup

𝑓 ∈F

𝜏2∑
𝑡=𝜏1

𝑟𝑡 (𝑓 ) ≤
∑
𝑖∈[𝑁 ]

𝜏2∑
𝑡=𝜏1

1 [𝑖𝑡 = 𝑖] 𝑟 𝑖𝑡 ( 𝑗𝑖𝑡 )

+𝑈𝜏2
O

(√
𝑇 log(𝑇𝐿/𝛿)

)
By noticing that 𝑟 𝑖𝑡 ( 𝑗𝑡 ) ≤ 𝑟𝑡 ( ˜𝑏𝑡, 𝑗𝑡 )+𝑈𝑡 (1/𝐾+1/𝑁 ) and bounding

𝑇 (1/𝑁 + 1/𝐾) = O(1) we get the𝑈𝜏2
O

(√
𝑇 log(𝑇𝐿/𝛿)

)
high proba-

bility interval regret bound on the rewards 𝑟𝑡 (·). Using Theorem 2.1

we get the desired result.

The tight satisfaction of the ROI constraint follows by using

Lemma 4.2. The first algorithm is the one we describe above. The

second algorithm is the primal algorithm described above with

𝜒𝑡 = 𝜓𝑡 = 1, which achieves 𝑄 (𝜏, 𝛿) = 𝜏𝛽 − O(
√
𝜏 log(𝜏𝐿/𝛿)). □
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