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Abstract

This paper addresses the challenge of achieving high-quality and fast image gener-
ation that aligns with complex human preferences. While recent advancements in
diffusion models and distillation have enabled rapid generation, the effective inte-
gration of reward feedback for improved abilities like controllability and preference
alignment remains a key open problem. Existing reward-guided post-training ap-
proaches targeting accelerated few-step generation often deem diffusion distillation
losses indispensable. However, in this paper, we identify an interesting yet funda-
mental paradigm shift: as conditions become more specific, well-designed reward
functions emerge as the primary driving force in training strong, few-step image
generative models. Motivated by this insight, we introduce Reward-Instruct, a
novel and surprisingly simple reward-centric approach for converting pre-trained
base diffusion models into reward-enhanced few-step generators. Unlike existing
methods, Reward-Instruct does not rely on expensive yet tricky diffusion distillation
losses. Instead, it iteratively updates the few-step generator’s parameters by directly
sampling from a reward-tilted parameter distribution. Such a training approach
entirely bypasses the need for expensive diffusion distillation losses, making it
favorable to scale in high image resolutions. Despite its simplicity, Reward-Instruct
yields surprisingly strong performance. Our extensive experiments on text-to-image
generation have demonstrated that Reward-Instruct achieves state-of-the-art results
in visual quality and quantitative metrics compared to distillation-reliant methods,
while also exhibiting greater robustness to the choice of reward function.

1 Introduction
High-quality, controllable, and fast image generation stands as a paramount goal in the field of
Artificial Intelligence Generated Content (AIGC). Recent advancements in diffusion models [57, 18,
53] and, particularly, diffusion distillation [56, 28] have yielded impressive few-step image generators
capable of rapid synthesis of photo-and-movie-realistic images and videos [47, 48, 68, 30, 32]. While
these advancements have significantly improved generation speed and visual fidelity, how to achieve
improved controllability and alignment with complex human preferences remains challenging.

Inspired by the success of reinforcement learning (RL) and more general reward-driven methodologies
in large-language models [73, 36, 1], the image generation community has made considerable
strides in developing effective reward functions for images. These rewards, broadly include any
discriminative model capable of evaluating image quality or adherence to specific criteria, offer a
promising avenue for guiding generative models towards desired attributes, such as human preferences,
instruction following, as well as safety. Yet, the optimal strategies for effectively integrating and
leveraging these reward signals in image generation workflows are still actively being investigated.
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Figure 1: 4-step samples at 1024 resolution generated by Reward-Instruct. The Reward-Instruct
here is trained from SD3-medium purely by reward maximization.

Current standard practices for incorporating reward signals into image generation pipelines pre-
dominantly occur as a post-training stage. These methods generally fall into two main categories:
(1). integrating reward optimization directly into a pre-trained diffusion model, often followed by
a distillation process for efficient sampling, as exemplified by SDE control and other reward-based
post-training techniques [13, 8]; (2). Developing methods that post-train some already distilled,
fast sampling models by applying reward fine-tuning methods together with expensive diffusion
distillation losses. Typical works on this line are Diff-Instruct++ (DI++) [27]. However, both lines
of approaches are considered computationally demanding and not inherently designed for directly
converting pre-trained base diffusion models into few-step, reward-enhanced generators. Furthermore,
despite the seemingly good metrics on benchmarks, close examination of state-of-the-art reward-
enhanced few-step generators reveals evidence of reward hacking — certain artifacts or repeated
objects in the background, as illustrated in Fig. 2.

Achieving reward-enhanced fast image generation hinges on two key driving forces: the knowledge
embedded within the base pre-trained generative model and the knowledge derived from reward
signals. While language modeling has demonstrated the primacy of the latter, reward signals, such
reward-centric approaches remain underexplored in image modeling, as diffusion distillation losses
are often considered indispensable in current works. With these observations, we are strongly
motivated by an important scientific problem:

• Can we develop a reward-centric training approach, that can result in fast generation
speed without the need of tricky yet expensive diffusion distillation losses?

In this paper, we give a positive answer to this question and introduce a reward-centric method for
training few-step generative models. Our journey starts with an analysis in Section 3, which shows
that the post-training of DI++ is largely driven by reward signals, rather than the diffusion distillation
objective for preserving knowledge of the image distribution from pretrained base models. This
points towards a phase transition to modern conditional generation tasks — the increasing specificity
and diversity of desired conditions or reward signals are causing a fundamental shift in the generation
process, moving away from primarily modeling the conditional distribution and towards regularized
reward maximization.

Taking this perspective to its logical conclusion, we propose a novel reward-centric approach termed
Reward-Instruct (RI), which is capable of efficiently training few-step generative models using
reward. Fundamentally differs from existing approaches [27, 23], our methods directly operate
on the base diffusion model and performs a direct reward maximization with simple yet effective
regularization without the explicit requirement of a separate distillation loss or training images.
Specifically, we start from a few-step sampler from pretrained diffusion models with enhanced
stochasticity (via random η sampling in Section 3.2.1) at each step. Our subsequent training process
can be conceptually understood as directly sampling from a reward-tilted distribution within the
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wearing glasses in a suit
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A dog that has been 
meditating all the time

A alpaca made of colorful 
building blocks, cyberpunk Prompts without stars

Figure 2: Samples are taken from the corresponding papers of
DI++ and RG-LCM. It can be observed that certain artifacts
exist in samples, e.g., repeated text/objects in the background.
We hypothesize this comes from reward hacking.
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generator’s parameter space. Such a simple reward-centric design significantly improves the training
efficiency, training stability, resulting in state-of-the-art results in few-step text-to-image generation
with high visual quality (Fig. 1). Particularly, our method outperforms previous methods that combine
diffusion distillation and reward learning regarding visual quality and machine metrics (Fig. 5 and
Table 1), while being more robust to the reward choice (Fig. 6).

2 Preliminary
Diffusion Models. Diffusion models (DMs) [53, 18, 57] define a forward diffusion process that
xt = αtx+ σtϵ, where x is sampled from the data distribution, and σt specifies the noise schedule.
By training a denoising function to predict the added noise, the model implicitly learns the score
of the data distribution, enabling the generation of new samples by simulating a reverse stochastic
differential equation or ordinary differential equation [57, 54, 25, 70, 65]. Conditional generation is
often achieved through techniques like classifier-free guidance (CFG), which modulates the denoising
process based on the desired conditions [57, 54, 25, 70, 65, 31]. As illustrated in [27], CFG can be
seen as an implicit reward on condition alignment.

Preference Alignment with Diffusion Distillation. Currently several methods [27, 29, 23] have been
proposed for developing preference align few-step text-to-image models. Their approach can be sum-
marized as a combination of distillation loss and reward loss: minθL(θ) = Ldistill(xθ)−R(xθ, c),
where xθ denotes the model samples and R(xθ, c) denotes the reward measure the alignment be-
tween xθ and condition c. The distillation loss can be consistency distillation [23] or reverse-KL
divergence [27]. The previous method either requires real data for training [23], or requires training
an extra online score model [27]. These components increase the complexity of the post-training and
serve solely as an overly complicated regularization.

3 Reward-Instruct: A Reward-Centric Approach to Image Generation

3.1 Discriminative vs Generative: The Phase Transition
The concerning phenomenon of reward hacking, as visually evidenced in Fig. 2, strongly suggests
a potential imbalance where the generation process becomes excessively driven by reward models,
potentially at the expense of image quality and generalization. To further verify this, our examination
of the gradient norms of the reward loss and the distillation loss in our re-implementation of DI++ [27],
shown in Figure 3, clearly indicates that updates in DI++ are overwhelmingly dominated by the
reward term, relegating the diffusion distillation objective to a secondary role.

Extending this observation, we observe similar phenomena when considering a generalized concept
of rewards that encompasses any discriminative model capable of judging the goodness of generated
samples. In modern text-to-image generation models, various guidance modules for aligning con-
ditions [19, 2, 33] are disproportionately amplified compared with the seemingly more important
diffusion generation component. For instance, large CFG coefficients are indispensable (7.5 by
default in Stable Diffusion [46] and 100 in DreamFusion [42]). When dealing with strong conditions,
such as generating an image of “a red cube on top of a blue sphere behind a green pyramid”, a higher
CFG value leads to more semantically compliant images.

These findings prompt a fundamental rethinking of conditional generation tasks with strong conditions,
such as aligning to various reward functions in text-to-image generation. For these tasks, we usually
model the conditional density p(x|y) through the decomposition p(x|y) ∝ p(x) · p(y|x), where
the terms correspond to the marginal density and discriminative model respectively. In diffusion
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Figure 4: Samples with 100 NFE and 7.5 CFG by varying the η in sampling. The samples are
generated from the same initial noise.

models, learning the marginal density p(x) is usually the main focus while the condition part is
usually handled by CFG or external guidance in diffusion models [2, 33]. However, as conditions get
stronger and more complicated, the conditional distribution may be ill-conditioned to estimate, since
the sample size for each condition is oftentimes only 1.

This leads us to the key insight: for tasks with strong conditions, there is a fundamental shift in the
nature of the problem — moving away from directly estimating the conditional distribution towards
what is more accurately described as regularized rewards maximization, where the discriminative
part p(y|x) captured by various rewards becomes the primary driving force, and the base generative
model acts as a regularizer. In the following section, we will formally reformulate the problem of
conditional generation with rewards.

3.2 Regularized Reward Maximization for Image Generation

Let R(x) denote a reward function mapping Rd → R. We can characterize the reward-centric
generation task as searching in the image domain for samples that maximize rewards, which is
naturally an optimization problem. To characterize the image domain constraint, consider having
access to the image likelihood p(x) for natural images. If p(x) is below a certain threshold, x can be
deemed outside the image domain. Therefore, we can rethink the generation as a regularized reward
maximization problem with the following objective:

max
x∈Rd

R(x) s.t. p(x) ≤ c. (3.1)

where c > 0 is some threshold. With this formulation, there are two important design choices to
consider: (1) How to parameterize images? (2) How to effectively optimize the generator while
preventing reward hacking? We will demonstrate in later sections that with a well-parameterized
generator and proper regularization, we can achieve state-of-the-art text-to-image generation with
only a few reward functions, without relying on diffusion distillation.

3.2.1 Parameterizing Images with Generator

To achieve fast image generation, a natural strategy is to utilize GAN-style generators that directly
transform random noise into images. With this formulation, the optimization problem shifts from
the image space to the generator’s parameter space. Ideally, the generator should have large-enough
capacity and a reasonable initial grasp of the image distribution. We address this by proposing the
use of an unrolled few-step sampler directly from pre-trained diffusion models. Conveniently, the
number of unrolled steps allows us to control both the generator’s capacity and its initial knowledge.

Specifically, we parameterize the generator gθ,η to accept K noisy levels of a diffusion model as
inputs, creating a network that progresses from noise to obtain clean samples in K steps. The specific
parameterization is as follows:

gθ,η(z) = gθ,σ1,η ◦ gθ,σ2,η... ◦ gθ,σK ,η(z), gθ,σk,η(xk) =
√

1− σ2
k−1

xk − σkϵθ(xk)√
1− σ2

k

+ σk−1ϵ̂η (3.2)

where ϵ̂η = ηϵθ(xk) +
√

1− η2ϵ, σK := 1 and z, ϵ ∼ N (0, I). We can use a pre-trained score net
as the initialization for enough model capacity and better initial images. Our optimization target is θ,
which can be the full score network parameters or low-rank adaptation of them (LoRA) [20].

Random η-Sampling. The η plays an important role in our parameterized generator gθ,η. In
particular, when η = 1, the generator is parameterized into the discrete format of DDIM sampler [54].
In practice, we find that varying η in diffusion sampling results in significant differences in the style
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and layout of the generated images, as shown in Fig. 4. Motivated by this, we propose to parameterize
our generator by inputting random η at each step for augmenting the generator distribution that allows
the generator explore more diverse area:

gθ,η(z) = gθ,σ1,η1 ◦ gθ,σ2,η2 ... ◦ gθ,σK ,ηK (z), (3.3)

where ηi ∼ U [0, 1] and i = 1, 2, ..,K. After training, we can fix a η ∈ [0, 1] in sampling. The
design can effectively augment the generator distribution by randomly adding stochastic, serving as
an effective regularization to enhance performance.

3.2.2 Optimization as Sampling from Reward-tilted Distribution

The generator gθ,η(z) initialized from the base diffusion model provides a non-trivial starting point
for reward-centric training. We aim to adjust the parameter θ such that generated images are more
preferred by the rewards. Formally, we can define the target θ∗ to be distributed following a reward-
informed posterior distribution

p∗(θ) ∝ p0(θ) exp{R̄(θ)},
where R̄(θ) = Ez,η[R(gθ,η(z))] and p0(θ) is the initial distribution from the base diffusion models,
which can be viewed as the likelihood to specify the image domain likelihood. For simplicity, we
choose p0(θ) to be a Gaussian distribution centered in the pretrained θ0 with variance σ2I . More
advanced prior distributions will definitely lead to better performance.
Remark 3.1. The above formulation is similar to existing works in reward-driven approaches [40,
39, 51, 44, 8]. Given a base generative model with base distribution p0(x), the reward-tilted target is
usually defined as p∗(x) ∝ p0(x) exp {R(x)}. The key difference is that our formulation is on the
generator parameter space.

With the target distribution p∗ specified, a straight-forward method to obtain θ∗ ∼ p∗(θ) using stochas-
tic Langevin dynamics. Concretely, starting from θ(0) = θ0, θ(t+1) can be iteratively calculated via
the stochastic gradient Langevin dynamics (SGLD) [59]

θ(t+1) − θ(t) = λ∇ log
(
p0(θ

(t)) exp{R̄(θ(t))
)
+
√
2λϵt

= λ∇R̄(θ(t))︸ ︷︷ ︸
Rewards

maximization

− λ

2σ2
∇∥θ(t) − θ0∥22 +

√
2λϵt︸ ︷︷ ︸

Regularization

, (3.4)

where λ is the learning rate and ϵt ∼ N(0, 1) is a random noise. As can be seen above, each update
constitutes of reward maximization and regularization. The regularization is also two-fold, one being
an l2-penalty or weight decay, the other one being random noise perturbation.

3.3 Elucidating the Design Space of Reward-Instruct

By incorporating all aforementioned designs, we have developed a surprisingly simple yet effective
reward-centric approach to fast image generation. Rooted in regularized reward maximization,
we call our method Reward-Instruct and it is a framework that directly converts pre-trained base
diffusion models into reward-enhanced few-step generators. Detailed algorithms are summarized in
Algorithm 1 in the Appendix.

Such a simple reward-centric design significantly improves the training efficiency, training stability,
resulting in state-of-the-art results in few-step text-to-image generation. Fig. 5 illustrates the qualita-
tive comparisons among other methods. Detailed comparison for computation cost are deferred to
Appendix B.1. Next, We proceed to explore the various facets of its design space.

3.3.1 Form of Regularization

The primary role of regularization is to constrain the generator’s distribution to the vicinity of
the image manifold, thus avoiding reward hacking. In our formulation, the specific form of the
θ-regularization is dependent on the form of p0(θ). Choosing Gaussian distribution will give rise
to l2 regularization. This is very similar to the KL penalty in RL to control the update to be not
too large [36]. The random noises introduced in the SGLD sampling algorithm also provide a
regularization effect against reward hacking. Its effect is ablated in Appendix B.2.
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Figure 5: Qualitative comparisons of Reward-Instruct against distillation based and diffusion based
models on SD-v1.5 backbone. All images are generated by the same initial noise. We surprisingly
observe that our proposed Reward-Instruct has better image quality and text-image alignment com-
pared to prior distillation-based reward maximization methods in 4-step text-to-image generation.

Diffusion distillation as regularization. More closely related to our generator parameterization,
existing works such as RG-LCM [23] and DI++ [27] introduce reward maximization into diffusion
distillation. These methods typically require training an additional score model for the distilled
generator to ensure its closeness to the original model, which is memory and computation-intensive.
Surprisingly, we found that the reward gradient dominates throughout the training process, turning
diffusion distillation into a sort of costly regularization role (Fig. 3). Specifically, the RG-LCM and
DI++ employ HPS v2.0 [61] or Image Reward [62] as the reward loss in their original approach, but
we discovered that if the reward is set to HPS v2.1, it would cause the generators of RG-LCM and
DI++ to collapse into undesirable distributions, as shown in Fig. 6.

Built upon the above formulation and regularization techniques, we found that our method integrated
with HPS v2.1 can generate high-quality images, suffering less from artifacts compared to RG-LCM
and DI++ (Fig. 7), where each regularization effectively improves image quality. This indicates the
importance of proper regularization in reward maximization. However, we found that optimization
with a single explicit reward still suffers from the over-saturation issue. To address this, we suggest
maximizing multiple explicit rewards. This indicates the importance of proper regularization in
reward maximization.

3.3.2 Power of Multiple Rewards

Thanks to a plethora of preference data and powerful RL methods, we have access to a diverse
collection of learned reward models. Although learning from a zoo of pre-trained models has long
been studied in various vision tasks [60, 9, 4, 10], utilizing multiple reward models is relatively
underexplored. Denote R1(x), . . . , Rm(x) as the reward functions, each with its own set of modes,
some genuinely good and some corresponding to artifacts. Our assumption is that the good ones are
associated with the ground truth, while the bad ones are random and not shared with other reward
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Figure 6: The prior distillation-based reward maximization methods collapse when the reward is
chosen to be HPS v2.1. In contrast, our Reward-Instruct still works well, benefiting from the proposed
effective regularization technique.
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Figure 7: Four-step samples generated by Reward-Instruct. We observed that the quality of the image
monotonically increases with the gradual increment of the reward count.

functions. Therefore, with a diverse collection of different reward functions focusing on different
aspects of the data, images preferred by all of them tend to be good.

Therefore, the goal of utilizing multiple rewards is to find common data modes that have high
rewards from different perspectives. This design can effectively prevent the model from hacking each
individual reward, therefore significantly stabilizing the training process. We can extend (3.1) to be

max
x∈Rd

m∑
i=1

ωiRi(x) s.t. p(x) ≤ c, (3.5)

where ωi’s are positive weights for balancing the rewards. However, all we have is a gradient
pointing towards the direction of the steepest climb. How to find the most effective direction is of
critical importance. In practice, we found that optimizing multiple rewards with a naive weighted
combination may fail to maximize all rewards in the training process. As shown in Fig. 9, the clip
score does not converge to a high value.

To balance the learning of different rewards, we suggest gradient normalization, normalizing the
gradients from each reward and forming the average direction. Therefore, we can choose the weights
ωi in (3.1) as

ωi = ω̂i/sg(||
∂Ri(g(z))

∂g(z)
||2). (3.6)

This is equal to setting a dynamic weighting. Note that the normalizing operation is also performed
for the implicit reward (CFG). Fig. 9 shows that after applying the gradient normalization, we can
maximize multiple rewards well. Fig. 7 demonstrates that the image quality and image-text alignment
become significantly better when we maximize multiple rewards.

The Complementary Effect of Rewards. Since the common modes of multiple rewards tend to be
more well-behaved than those from signal rewards, the combination of multiple rewards in (3.6) also
serves as a kind of implicit regularization for the generator. To verify this, we maximize HPS, image
reward, and clip score separately, without using random-η sampling. We find that individual rewards
perform poorly, but when combined, they can generate images of reasonable quality as shown in
Fig. 8, which highly emphasizes the complementarity between rewards and their effectiveness as
implicit regularization.
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Figure 8: The complementary effect of different reward. We do not use random η sampling and set
small weight regularization in training here to highlight the complementary effect between rewards.
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Figure 9: Training progress of various metrics
over iterations. It can be seen that the normal-
ized gradient shows better performance. This is
evaluated on 1k prompts from HPS benchmark.
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Figure 10: Comparison on the convergence
speed between RI and RI+. We note that each
training iteration of RI+ takes only 65% of the
time required by RI.

3.4 Reward-Instruct+: Additional Supervision on Intermediate Steps

The reward supervision in Reward-Instruct is only at the final generated samples in an end-to-end
fashion, which is similar to the DeepSeek-R1 [7]. To further enhance performance, we can incorporate
extra supervision into intermediate generation steps to form Reward-Instruct+.

Although Reward-Instruct is already capable of generating high-quality images in a setting where
only reward maximization is considered, the reward signal is only provided at the end. This leads
to two issues: on one hand, the efficiency of reward maximization is low because there is no direct
reward signal feedback during the process; on the other hand, the gradient needs to be backpropagated
through the entire generator, resulting in high memory usage and significant computational costs.

To address the above issues, we propose learning the generator with intermediate supervision as well,
forming Reward-Instruct+. We rewrite the generator as follows:

xk+1 = sg(gθ,σk+2,ηk+2 ◦ gθ,σk+3,ηk+2 ... ◦ gθ,σK ,ηK (z)),

xk =
√

1− σ2
k

xk+1 − σk+1ϵθ(xk+1)√
1− σ2

k+1

+ σk ϵ̂ηk , x
(k)
0 =

xk+1 − σk+1ϵθ(xk+1)√
1− σ2

k+1

(3.7)

where k = 1, 2, ...,K, ηi ∼ U [0, 1], ϵ̂ηk = ηkϵθ(xk+1) +
√
1− η2kϵ, σK := 1 and z, ϵ ∼ N (0, I).

For computing CFG, we diffuse samples from xk. The k is randomly sampled during training. The
update of θ has the same form as Eq. (3.4), differing in how to obtain samples.

By doing so, we can effectively supervise the intermediate process in the generation process. Fig. 10
shows that after applying the intermediate supervision, the convergence speed of Reward-Instruct+
has significantly improved compared to Reward-Instruct. Moreover, training RI+ is more efficient
than RI, since each training iteration of RI+ takes only 65% of the time required by RI.

Comparison on Generation Path Between Reward-Instruct and Reward-Instruct+. Reward-
Instruct and Reward-Instruct+ are significantly different and it is interesting to explore the generation
paths corresponding to these two models. In Fig. 16, we can observe that Reward-Instruct+ generates
much clearer images during the early process compared to Reward-Instruct. Although Reward-
Instruct+ struggles with severe artifacts in the early stages of generation, surprisingly, these artifacts
are gradually removed rather than accumulating throughout the process. In contrast, Reward-Instruct’s
path progresses from blurry to clear, with less affected by artifacts during the process.

4 Evaluations
To verify the effectiveness of the Reward-Instruct and Reward-Instruct+, we compare them with
previous distillation-based reward maximization methods. We put the experiment details in the
Appendix.
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Table 1: Comparison of machine metrics on text-to-image generation across SOTA methods. We
highlight the best among fast sampling methods. The FID is measured based on COCO-5k dataset.

Model Type Backbone NFE HPS↑ Aes↑ CS↑ FID↓ Image Reward↑
Base Model (Realistic-vision) SD-v1.5 50 30.19 5.87 34.28 29.11 0.81

Hyper-SD [45]
Distillation + Reward

SD-v1.5 4 30.24 5.78 31.49 30.32 0.90
RG-LCM [23] SD-v1.5 4 31.44 6.12 29.14 52.01 0.67
DI++ [27] SD-v1.5 4 31.83 6.09 29.22 55.52 0.72

ReFL [62] Reward Centric SD-v1.5 50 31.82 5.97 31.78 39.38 1.16
DRaFT [5] SD-v1.5 50 33.10 6.18 30.70 37.10 0.85

Reward-Instruct (Ours) Reward Centric SD-v1.5 4 33.70 6.11 32.13 33.79 1.22
Reward-Instruct+ (Ours) SD-v1.5 4 34.37 6.20 32.97 37.53 1.27

Base Model SD3-Medium 56 31.37 5.84 34.13 28.72 1.07
Reward-Instruct (Ours) Reward Centric SD3-Medium 4 34.04 6.27 33.89 31.97 1.13

w/ Dreamshaper Image Editing: squirrel -> cat w/ ControlNet: Canny -> Image

Figure 11: Qualitative comparison against competing methods and applications in downstream tasks.

Table 3: Ablation study on the proposed components in our Reward-Instruct.
Model Backbone Steps HPS↑ Aes↑ CS↑ FID↓ Image Reward↑
Reward-Instruct (Ours) SD-v1.5 4 33.70 6.11 32.13 33.79 1.22

Reward-Instruct w/ single reward SD-v1.5 4 32.08 5.80 31.01 38.21 0.89
Reward-Instruct w/o random-η-sampling SD-v1.5 4 33.41 6.12 32.11 36.90 1.18
Reward-Instruct w/o weight regularization SD-v1.5 4 34.26 6.12 32.45 39.25 1.27

Metric. We assess image quality using the Aesthetic Score (AeS) [50], image-text alignment and
human preference with the Human Preference Score (HPS) v2.1 [61] and Image Reward, and image-
text alignment with the CLIP score (CS) [16]. Additionally, we use zero-shot FID on the COCO-5k
dataset for a more comprehensive evaluation.

Qualitative Results. We present the qualitative results in Fig. 5. It can be observed that our
proposed Reward-Instruct and Reward-Instruct+, without using a distillation loss, demonstrate better
image quality and text-image alignment compared to existing distillation-based reward maximization
methods and RL-based finetuning methods. We also include additional visualization regarding
complex prompts in Fig. 15.

Table 2: User Preference Study.
Model NFE User Preference↑
Base Model 50 41.7%
RI (Ours) 4 58.3%

User Study. To further verify the effectiveness of our
proposed method without concern for reward-hacking, we
conduct a user study on SD-v1.5 backbone. We refer
to Section B.2 for details of the user study. The results
in Table 2 show that our method outperforms the base
diffusion model.

Quantitative Results. We present the quantitative results in Table 1. Our proposed Reward-
Instruct and Reward-Instruct+ achieve state-of-the-art (SOTA) performance across various text-image
alignment and human preference metrics. Notably, our model also achieves a zero-shot COCO FID
comparable to the original model, which demonstrates that our method does not suffer from artifacts.

Ablation Study. We provide quantitative results about removing one technique at a time to show the
effectiveness. The results in Table 3 demonstrate the critical role of each component: 1) Multiple
rewards: Improves both rewards and FID, mitigating artifacts and reward hacking. 2) Random-
sampling: Maintains similar reward performance but significantly improves FID, aiding to find
better mode with fewer artifacts. 3) Weight regularization: Trades slight reward gains for better FID,
ensuring the generator stays within the image manifold.

Additional Application. We show our Reward-Instruct’s capabilities in various tasks: 1) Image-to-
Image Editing: As shown in Fig. 11, Reward-Instruct performs high-quality image editing [35] in
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just four steps; 2) Compatibility with ControlNet and Base Models: Illustrated in Fig. 11, Reward-
Instruct-LoRA is compatible with ControlNet [69] and works seamlessly with various fine-tuned
base models (e.g., Dreamshaper from SD 1.5), preserving their unique styles.

5 Discussion
Our work targets a reward-centric approach to photo-realistic image generation. Our proposed
Reward-Instruct demonstrates that via regularized reward maximization, we can convert pretrained
base diffusion models to reward-aligned few-step generators, without diffusion distillation losses or
training images. Our method enables 4-step 1024px generation (Fig. 1), matching or exceeding both
the inference speed and sample quality of previous approaches. In Appendix C, we further explore
more application scenarios and extensions where our method can shine.

Our approach is inspiring but have its limitations. For instance, our method relies on trained
differentiable reward functions. It’s an interesting future work to extend such a reward-centric
approach to include black-box reward functions. It would be exciting to explore DPO-style [44]
pipelines that directly fine-tune generators with raw preference data, and extending these principles
to other generative domains like video and 3D content. Moreover, our Reward-Instruct framework
can potentially work with any few-step generator and doesn’t have to relate to diffusion models but
this is not explored in the current work. Making this investigating is an important extension.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction part outlines the paper’s structure. The abstract summarizes
the main body of this work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed our limitations in the Discussion section, and those limita-
tions leads to future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This work doesn’t contain any theorem. However, for math derivations,
necessary details are included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the main part, we discussed the algorithm and experiment setup. More
details for reproducibility is included in the appendix. Furthermore, we will release codes if
got accepted.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide code and data for reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment settings and details are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Most experiments are very expensive to run and do not have multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information on the computer resources is discussed in detail in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
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Justification: We discussed it in the appendix.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in this paper have been properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets in the submission phase.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Related Works

Few-Step Diffusion Sampling. Despite significant advancements in training-free accelerated sam-
pling of DMs [25, 71, 64, 52, 34], diffusion distillation [26] is dispensable for satisfactory few-step
Sampling. Typically, the distilled sampler involves a single or multiple transformations from random
noise to images. Among various approaches, trajectory matching [56, 21, 55, 15, 48] and distribution
matching [68, 28, 72, 49, 63, 30] are the most popular methods for diffusion distillation in few-step
diffusion sampling. Very recently, trajectory distribution matching [32] has shown its promising
performance in distillation.

Preference Alignment for Text-to-Image Models. In recent years, significant efforts have been
made to align diffusion models with human preferences. These approaches can be broadly categorized
into three main lines of work: 1) fine-tuning DMs on carefully curated image-prompt datasets [6, 41];
2) maximizing explicit reward functions, either through multi-step diffusion generation outputs [43, 5,
22, 17] or policy gradient-based reinforcement learning (RL) methods [14, 3, 67]. 3) implicit reward
maximization, exemplified by Diffusion-DPO [58] and Diffusion-KTO [66], directly utilizes raw
preference data without the need for explicit reward functions.

Reward driven image generation. There is an active line of research investigating using various
rewards in the post-training process for improved image alignment. For instance, [13] proposed
to fine-tune DDPM samplers via policy gradient, achieving good few-step sampling performance.
[8] considered reward fine-tuning diffusion models or flow models via stochastic optimal control
(SOC), and proposed Adjoint Matching which outperforms existing SOC algorithms. ReNO [12]
optimizes the initial noise by maximizing multiple rewards for enhanced performance given a frozen
one-step generator. Our Reward-Instruct significantly differs from existing works in that it is the first
reward-driven few-step image generation method that directly converts pretrained diffusion models
to reward-enhanced few-step generators, without relying on complicated diffusion distillation or
training data.

Another closely related work is “Referee can play” [24], where the authors emphasized the importance
of discriminative models in conditional generation and presented a text-to-image generation pipeline
by inverting Vision Language Models (VLMs). Specifically, they utilized the decoder from stable
diffusion and optimized the latent for maximizing the alignment score given by VLMs. On a high-
level, the VLMs employed in [24] can also be viewed as reward models, providing matching scores
for text-image pairs. Even though [24] provides an interesting proof-of-concept demonstration, it
lacks a systematic formulation and its generating process has major downsides in real-world scenarios.
(1) The optimization process is highly sensitive to initialization and hyperparameter choices, which is
not robust. (2) To generate a new image, they have to do hundreds of function evaluations (NFEs),
which is computationally intensive. Visual comparisons are illustrated in Figure 12.

A brown jacket and a black hat A black squirrel and a brown nut

Referee Can Play

Reward-Instruct

Figure 12: Comparison with Referee can play [24]. The baseline samples are taken from their paper.
It can be seen that our Reward-Instruct has significantly better visual quality.
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Algorithm 1 Reward-Instruct

Require: Generator fθ, Pre-trained score fψ , Reward models {ri}, desired sampling steps K, total
iterations N , learning rate λ.

Ensure: optimized generator fθ.
1: Initialize weights θ by ψ;
2: for i← 1 to N do
3: Sample noise ϵ from standard normal distribution;
4: Sample x with initialized noise ϵ from generator fθ by K steps via random-η sampling.
5: # Compute regularization loss
6: Lreg ← ∥θ − ψ∥22
7: # Compute Rewards
8: Lreward ← −

∑
i

ω̂i

sg(|| ∂Ri(x)

∂x ||2)
Ri(x, y)

9: # Compute CFG guidance loss
10: Sample xt ∼ q(xt|x)
11: cfg_grad← ∇xt

log pψ(c|xt)
12: Lcfg ← ∥xt − sg(xt + cfg_grad)∥22
13: # Compute Total Loss and Update
14: Ltotal ← ωregLreg + Lreward + ωcfgLcfg
15: Update θ using SGLD step with temperature τ : θ ← θ − λ

τ∇θLtotal +
√
2λϵ.

16: end for

Listing 1: Torch-style pseudo code of SGLD step with temperature τ .
1 loss.backward ()
2 noise_scale = (2 * learning_rate * tau) ** 0.5 / learning_rate
3 for param in model.parameters ():
4 with torch.no_grad ():
5 if param.grad is not None:
6 noise_para = torch.randn_like(param.grad.data) *

noise_scale
7 param.grad.data.add_(noise_para)
8 optimizer.step()
9 optimizer.zero_grad ()

B Experiment Details

Baseline Models. We perform experiments on SD-v1.5 [46] and SD3-medium [11], including both
UNet and MM-DiT [11, 38] architectures, indicating the broad applicability of our approach.

Experiment Setting. Training is performed on the JourneyDB dataset [37] using prompts, without
requiring images, as our method is image-free. We primarily compare with previous distillation-based
reward maximization methods. For Hyper-SD, we use the public checkpoint, while for RG-LCM and
DI++, we reproduce their methods. We adopt the AdamW optimizer with β1 = 0.9, β2 = 0.95, and
the learning rate of 2e− 5. We use a batch size of 256.

Details of User Study. We randomly selected 20 prompts for image generation. Around 20 user
responses are collected on 20 pairs in total. We note that multiple users review the same pair of
images, which potentially reduces evaluation bias.

B.1 Training Efficiency of Reward-Instruct

Our proposed Reward-Instruct is efficient to train, since it does not require training images and
does not require online auxiliary models during training. And its overall training cost is also not
expensive compared to multi-step RL-based methods and distillation-based RL methods, as shown in
the Table 4.
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Method Few-step Image-Free Single Trainable Network Training Cost

DRaFT ✗ ✓ ✓ 72 Hours
ReFL ✗ ✓ ✓ 64 Hours

RG-LCM ✓ ✗ ✓ 20 Hours
DI++ ✓ ✓ ✗ 36 Hours

Reward-Instruct (Ours) ✓ ✓ ✓ 28 Hours
Table 4: Comparison on the training efficiency. Our method is efficient for training and deploying in
various aspects. The training cost is measured by GPU hours on RTX-4090. We use the same batch
size and iterations for each method.

A squirrel in a car An airplane flying A pretty mountain A rabbit looks 
like a cat

w/o regularization loss w/ regularization loss

A squirrel in a car An airplane flying A pretty mountain A rabbit looks 
like a cat

Figure 13: The effect of regularization loss. Images are from the same initial noise.

A spider man A photo of a cat A bat man A corgi eating 
popcorn

w/o sgld update w/ sgld update

A spider man A photo of a cat A bat man A corgi eating 
popcorn

Figure 14: The effect of SGLD update. Images are from the same initial noise.

Table 5: Comparison between Reward-Instruct using different rewards.

Model Backbone Steps HPS↑ Aes↑ CS↑ FID↓ Image Reward↑
Reward-Instruct (Ours) SD-v1.5 4 33.70 6.11 32.13 33.79 1.22
Reward-Instruct w/ HPS + Clip Score + AeS (Ours) SD-v1.5 4 32.35 6.21 32.43 31.26 1.01

B.2 Additional Ablation

The Indispensability of Weight Regularization. The regularization loss is the key to learning a
good generator. Without weight regularization, even if we employ multiple rewards, the generator
can easily converge to an undesirable distribution, which underscores the importance of explicitly
regularizing the generator, as shown in Fig. 13.

The Indispensability of SGLD’s randomness. The SGLD randomness also serves as a key to
regularize the generator. We observe that by introducing SGLD’s randomness in learning, the model
is more robust to avoid artifacts. Under larger reward weightings, without SGLD’s randomness, the
model may generate some repeated objects in the background related to the prompts, as shown in
Fig. 14.

Different Rewards for Training Reward-Instruct. We provided additional experiments incorporat-
ing Aesthetic Score (AeS) in Table 5. The results demonstrate that incorporating AeS — a reward
focused solely on image aesthetics — maintains strong performance and even improves the zero-shot
FID (from 33.79 to 31.26). This improvement may stem from AeS’s complementary effect, as it
emphasizes visual aesthetics differently from HPS and CLIP, potentially enhancing the regularization
effect. These findings suggest that other rewards can indeed be effective to train our Reward-Instruct.

Verify the Complementarity of Rewards. We can assess the complementarity of the rewards to
some extent by examining their correlations on a validation set. Specifically, we computed the
Pearson correlation among the rewards used during training, utilizing the COCO5k dataset. The
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HPS Image Reward Clip Score

HPS 1 0.51 0.46
Image Reward 0.51 1 0.41
Clip Score 0.46 0.41 1

Table 6: Pearson correlation between rewards computed on the COCO5k dataset

Pixel art style of a 
snowboarder in mid-air 
performs a trick on a black 
rail, wearing a blue sweatshirt 
and black pants, with arms 
outstretched. The serene 
snowy landscape background, 
dotted with trees, 
complements the  scene. 

An extreme close-up of an 
gray-haired man with a beard 
in his 60s, he is deep in 
thought pondering the history 
of the universe as he sits at a 
cafe in Paris, his eyes focus on 
people offscreen as they walk 
as he sits mostly motionless, 
he is dressed in a wool coat 
suit coat with a button-down 
shirt , he wears a brown beret 
and glasses and has a very 
professorial appearance.

A close-up photo of a 
a woman. She wore a 
blue coat with a gray 
dress underneath. She 
has blue eyes and 
blond hair, and wears a 
pair of earrings. 

A stylish woman walks down 
a Tokyo street filled with 
warm glowing neon and 
animated city signage. She 
wears a black leather 
jacket, a long red dress, 
and black boots, and 
carries a black purse. She 
wears sunglasses and red 
lipstick. She walks 
confidently and casually. 
The street is damp and 
reflective, creating a 
mirror effect of the 
colorful lights. Many 
pedestrians walk about.

Figure 1: Samples generated by R0 (4 NFE) with long and complex prompts. The R0 here is post-trained from SD3-medium.Figure 15: Samples generated by Reward-Instruct (4 NFE) with long and complex prompts. The
Reward-Instruct here is post-trained from SD3-medium.

RI+ RI

TT 3/4T 1/2T 0 TT 3/4T 1/2T 0

Figure 16: Path comparison between Reward-Instruct and Reward-
Instruct+. The prompt is “Two dogs, best quality".

w/ high-resolution guidancewo/ high-resolution guidance

Figure 17: The effect of high-
resolution guidance loss. Im-
ages are from the same noise.

results in Table 6 indicate that correlations among the different rewards are positive and relatively
strong.

C More Applications for Reward-Instruct

C.1 Super-resolution

Tackling High-Resolution Generation. Existing reward functions for text-to-image generation
are mostly trained on low-resolution inputs (e.g., 224×224 pixels). This creates a fundamental
limitation: directly optimizing such rewards during high-resolution (e.g., 1024×1024 pixels) synthesis
struggles to preserve fine-grained details. To address this, we propose training a high-resolution
classifier as a complementary guidance signal. This classifier explicitly prioritizes perceptual quality
in high-resolution outputs.
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Implicit High-Resolution Classifier. We can form a high-resolution classifier via the Bayesian rule:

log p(HighRes|xt) = log
p(xt|HighRes)p(HighRes)

p(xt|LowRes)
, (C.1)

where xt denotes the noisy samples at timesteps t. Its gradient can be obtained as follows:

∇xt log p(HighRes|xt) = ∇xt log(xt|HighRes)−∇xt log p(xt|LowRes). (C.2)

The∇xt
log p(xt|HighRes) can be directly replaced by the original diffusion model, since it has the

capability to generate high-resolution images. For obtaining∇xt log p(xt|LowRes), we can finetune
the pre-trained diffusion over low-resolution data. By doing so, we can obtain a powerful Implicit
classifier for high-resolution guidance. Fig. 17 shows that after applying the implicit high-resolution
guidance proposed by us, the generated images are significantly clearer.

D Limitations

Our model, akin to most text-to-image diffusion models, may not always perform perfectly regarding
fairness and the accurate depiction of specific details. We intend to investigate these outstanding
challenges within the generation field in our subsequent research. The goal of this future work will
be to improve the model’s proficiency in text generation, ensure fairer outcomes, and provide finer
control over generated details.

E Broader Impacts

This work introduces Reward-Instruct, a reward-centric approach for developing efficient text-to-
image models. From a positive perspective, although this is an academic study, we believe that the
proposed Reward-Instruct could be widely adopted in industry. Conversely, if these swift generation
models are exploited by individuals with malicious intent, they could also streamline and expedite
the production of detrimental content. While our work is centered on scientific inquiry, we are
committed to implementing measures to mitigate the spread of harmful information, such as by
removing inappropriate content in the dataset.

F Safeguards

The Reward-Instruct is trained on the prompt of JourneyDB dataset [37], which has undergone
rigorous human and machine-based filtering to ensure that there are no harmful or violent prompts in
the dataset.
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