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ABSTRACT

Multimidal Large Language Models (MLLMs) have demonstrated impressive ca-
pabilities in textual and 2D visual reasoning, yet their ability to understand and
reason over 3D data remains limited. The issues become more challenging for
understanding standalone 3D point cloud due to the high interclass confusion. In
this work, we propose Point-Graph LLM (PGLLM), a framework that enables
more effective 3D point cloud understanding by integrating in-context prompt-
ing and score refinement at test-time, respecting supporting data manifold. Our
method first employs a pre-trained point cloud encoder which are used to construct
a graph where edges encode visual similarity. Each support point cloud sample
is converted to a textual caption via pre-trained PointLLM. For a test query, the
graph is used to retrieve relevant neighbors whose captions serve as contextual
demonstrations for a second stage LLM for final reasoning, a process we term in-
context guidance. Furthermore, we introduce a confidence score refinement mech-
anism based on label propagation to enhance the reliability of LLM predictions for
classification and out-of-distribution (OOD) detection tasks. All above optimiza-
tions are carried out fully at test-time. Extensive experiments across diverse 3D
datasets and tasks demonstrate that PGLLM consistently improves accuracy and
robustness over prior baselines with very almost no additional computation cost,
showcasing a promising direction toward native 3D reasoning with MLLMs.

1 INTRODUCTION

While multimodal large language models (MLLMs) have revolutionized textual and 2D visual rea-
soning, their ability to interpret and reason about 3D environments remains fundamentally limited.
Recent efforts [Tang et al.| (2024); Q1 et al.| (2024a) have explored 3D understanding with MLLMs
by equipping them with mechanisms to perceive 3D information, often through auxiliary modal-
ities or intermediate representations. Typically, these approaches operate by either projecting 3D
point clouds into 2D images |[Zhu et al.{(2023)) or by piping pre-extracted features into the language
model [Xu et al.| (2024); |Guo et al.| (2023). While these pipelines demonstrate promising results,
they fall short in granting MLLMs direct access to the underlying geometric structure of 3D data.
Consequently, enabling MLLMs to natively process and reason over rich 3D point cloud information
remains an open and challenging research question.

A notable step in this direction is PointLLM (Xu et al.|2024), which introduces a framework capable
of understanding colored 3D object point clouds in response to human instructions. PointLLM
fuses geometric, appearance, and linguistic information by coupling a point cloud encoder with
a pre-trained LLM such as LLaMA (Touvron et al. 2023). To handle downstream tasks such
as classification or captioning, PointLLM adopts a two-stage pipeline, where the PointLLM first
generates a textual description, and a second stage LLM interprets this output for final task-specific
predictions. While this method demonstrates competitive performance, it faces a key limitation,
high inter-class visual similarity in 3D point clouds often leads to confusion, particularly when each
point cloud is interpreted in isolation. As a result, models may struggle to distinguish fine-grained
differences between closely related categories, leading to reduced reliability.
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Figure 1: Manifold-aware in-context guidance leverages the 3D captions of adjacency nodes as
demonstration for downstream understanding tasks.

To overcome this limitation, we draw inspiration from the recent success of In-Context Learning
(ICL) (Agarwal et al.| 2024; [Li et al.| 2023a; Brown et al.l 2020), which enables LLMs to general-
ize to novel tasks by conditioning on a small set of demonstrations provided in the prompt. ICL has
shown strong performance across various domains, including multi-modal settings (Tsimpoukelli
et al.|[2021} Jiang et al.,[2024b}, [Huang et al.,2024), where LLLMs are guided by examples combining
visual example and text descriptions. The effectiveness of ICL crucially depends on the availabil-
ity of informative and task-relevant demonstrations, e.g. image-text pairs. Selecting relevant and
conducive demonstrations thus remain a open challenge.

To address this challenge, we propose an in-context learning strategy that leverages the manifold
structure of unlabeled supporting data, which may be maintained independently or drawn from the
test set. We represent this manifold as a graph, where each node corresponds to a 3D point cloud
sample. To enrich each node, we employ PointLLM to generate a caption using the standard prompt
“What is this?”. The affinity between nodes is computed based on feature similarity in the embed-
ding space of a pre-trained 3D encoder (Yu et al.,2021a). At inference time, for a given query point
cloud, we identify its neighboring nodes in the graph and append their corresponding 3D captions
to the query prompt. This augmented prompt is then passed to the second-stage LLM (e.g., Chat-
GPT), enabling it to perform context-aware reasoning. We refer to this mechanism as in-context
guidance, which injects semantically relevant knowledge into the LLM’s reasoning process at test
time, without requiring model retraining.

Moreover, for classification-related downstream tasks such as recognition and out-of-distribution
(OOD) detection, the confidence calibration of LLM outputs is critical for robust decision-
making (Xiao et al.,[2022). Relying solely on raw predictions from LLMs may be risky, especially
when predictions are overconfident or miscalibrated. To address this, we further tap on the mani-
fold build upon the supporting data and employ a refinement step, where predicted confidences are
used to smooth and correct noisy labels on the graph. This is implemented via a lightweight label
propagation algorithm (Zhu & Ghahramani, [2002), allowing the model to refine its predictions by
considering the consistency and confidence of nearby nodes. In this way, even anecdotal or ambigu-
ous predictions on individual samples can be improved by leveraging the collective structure of the
data.
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In summary, we propose a novel 3D point cloud understanding framework Point-Graph LLM that
integrates in-context learning, graph-based reasoning, and confidence-aware label propagation. By
bridging the gap between geometric perception and LLM reasoning, our approach enables more
accurate, interpretable, and robust 3D understanding. The main contributions are summarized as
follows.

* We propose an in-context guidance mechanism to optimize the effectiveness of 3D point
cloud LLM for downstream tasks. This approach leverages the test-time data manifold to
construct helpful demonstrations to enrich the prompt.

* We introduce a score-based inference mechanism that further improves the performance
of LLMs on classification related downstream tasks by refining the initial predictions on
individual samples.

* We conduct extensive experiments on multiple downstream tasks and diverse 3D point
cloud datasets, demonstrating consistent performance gains over existing baselines across
all settings.

2 RELATED WORK

Large Language Models for 3D Understanding. Large Language Models (LLMs) have demon-
strated remarkable performance across a wide range of natural language and 2D vision tasks (Brown
et al., 2020; |Achiam et al.| 2023} [Touvron et al.| [2023). Recently, there has been growing interest
in extending LLMs to 3D understanding (Hong et al., 2023} |Q1 et al., 2024azb; |Yang et al., 2025;
Xu et al, 2024} |Guo et al., 2023; [Yuan et al.l 2025). 3D-LLM (Hong et al., 2023) introduces a
family of LLMs grounded in physical 3D reasoning, laying the foundation for language-guided 3D
perception. Subsequent approaches such as PointLLM (Xu et al.,[2024) and Point-Bind (Guo et al.,
2023) directly process colored object point clouds by combining point cloud encoders with pre-
trained LLMs, enabling open-vocabulary 3D understanding. ShapeLLM (Qi et al., 2024a)) pioneers
the use of multi-view distillation and introduces the ReCon++ encoder, establishing a 3D multi-
modal evaluation benchmark (3D MM-Vet) to unify embodied 3D interaction tasks. GPT4Point (Q1
et al.|[2024b)) extends the capabilities of LLMs to handle point cloud captioning and visual question
answering. Similarly, LIDAR-LLM (Yang et al., 2025) focuses on outdoor scene understanding by
integrating LiDAR data with LLMs for large-scale 3D reasoning. While these methods demonstrate
the potential of LLMs for 3D tasks, they typically treat each point cloud in isolation and do not fully
exploit the structure of the data manifold.

In-Context Learning. In-context learning (ICL)(Brown et al.| 2020) enables large language mod-
els to perform downstream tasks by conditioning on a set of demonstrations, without any parameter
updates. Initially developed for natural language tasks(Zhang et al.| [2022; [L1 et al.,2023b), ICL has
since been extended to multi-modal domains. For instance, Flamingo (Alayrac et al., [2022) adapts
ICL to vision-language tasks by incorporating cross-modal attention, while many-shot prompting
strategies (Jiang et al.| [2024b; [Huang et al. 2024) have been shown to significantly enhance the
effectiveness of ICL in image classification and question answering. These works demonstrate that
with appropriate context, LLMs can generalize across diverse tasks in a flexible and label-efficient
manner. However, applying ICL to 3D understanding remains underexplored, particularly in scenar-
ios where constructing relevant demonstrations is non-trivial due to limited supervision.

Manifold Learning for Visual Tasks. Manifold learning has been widely adopted to enhance visual
recognition tasks by modeling the intrinsic geometry of data distributions. Graph-based methods (Li
et al.} 2025} |Stojnic et al.} 2024;|Chen et al.} 2025) leverage similarities in feature space to propagate
high-confidence labels or scores, improving performance in zero-shot and few-shot settings. For
instance, label propagation techniques have been combined with graph neural networks (Bao et al.,
2024 Stadler et al., 2021; [Wu et al., |2023) to improve the separation between in-distribution (ID)
and out-of-distribution (OOD) samples. Beyond classification, graph-based selection has also been
applied in 3D domains, as demonstrated in GraphI2Ps (Bie et al.| |2025), which filters false matches
during point cloud registration via neighborhood pruning. While these methods focus on traditional
backbones or vision-language models, our work is the first to integrate manifold learning into the
in-context learning process of LLMs, enabling context-aware reasoning over 3D point clouds by
structurally selecting and organizing prompts from the data manifold.
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Figure 2: Overview of the proposed framework for PGLLM. After encoding the 3D test samples,
the framework feeds them into PointLLLM for caption generation and uses them to construct a KNN
graph. Initial answers are then synthesized via LLM inference. Subsequently, leveraging relational
structures within the KNN graph, we introduce an answer iteration mechanism to optimize perfor-
mance on downstream tasks.

3 METHODOLOGY

3.1 PRELIMINARIES: POINTLLM AND 3D CAPTIONING

We begin by formalizing the setup. Let D,, = {xz}fil denote an unlabeled 3D point cloud support
dataset with [ categories, D,, may be the testing dataset or any unlabeled reference dataset. Let f,
be a pre-trained point cloud encoder and we apply f, to the dataset yields a sequence of point cloud
features:

P:{plap2a"'7p]\/u}7 pzzfp(xz)

For each sample z;, we use the default prompt “What is this?” with PointLLM (Xu et al., 2024)
to generate a textual caption ¢;, resulting in a caption set, C = {c1,¢a,...,cn, . These captions
serve as high-level semantic descriptions of the point clouds and form the basis for further in-context
learning and downstream tasks.

3.2 IN-CONTEXT GUIDANCE VIA GRAPH NEIGHBOR RETRIEVAL

In-context learning (ICL) allows LLMs to perform downstream tasks by conditioning on a set of
relevant demonstrations embedded within the input prompt. To construct effective in-context guid-
ance for each test sample, we build a graph G = (V, E), where each node v; € V represents a point
cloud x;, and edges ¢;; € I encode pairwise similarity between samples. Specifically, we compute
the cosine similarity between point cloud features p; and p;, and define symmetric the edge weight
matrix W € RN«*Nu following a K-Nearest Neighbors (KNN) criterion,

< DPipj >
5 s.t. €ij = Pi, by

W — {ez‘j if ei; € Topyc ({ei; }j21) _ o
! [1pill - [lp; i

0 otherwise

For each query sample x;, we retrieve its K nearest neighbors on the graph, yielding a neighbor
set X; = {i,,..., %, } and the corresponding caption set C; = {c¢;,,...,¢;, }. These captions
serve as in-context demonstrations appended to the prompt, illustrated in Fig. [T] as “Caption2”,
“Caption3”, etc. This enables the LLM to reason about the query with reference to structurally
similar samples. New query samples not attached to the supporting graph can be integrated into the
graph without much computing overhead following the dynamic graph expansion scheme (Li et al.,
2025).
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3.3 SCORE REFINEMENT VIA LABEL PROPAGATION

Unlike conventional classification methods that directly predict class labels, we guide the LLM to
output class confidence scores for each 3D caption. This score-based formulation enhances robust-
ness and enables downstream tasks such as OOD detection.

3D Recognition: Given a 3D caption ¢;, we prompt the LLM to output a per-category score, S l(l) €
R!, where each element reflects the confidence of respective class label. Aggregating across the
dataset yields the initial score matrix, So € RN« | To refine predictions by leveraging geometric
similarity among point clouds, we apply label propagation (Zhu & Ghahramani, 2002)) over the
graph W. Let S; denote the refined score matrix at iteration ¢. The update rule is:

Sp=aS W+ (1-0a)Sy, W=D"2WD"%, D=dag(d W),
J (2)
y = argmax S,

where y gives the final predicted class for each sample, and « controls the balance between the
initial LLM output and propagated scores.

3D OOD Detection: For OOD detection, we prompt the LLM to produce a single confidence score
S(z;) € R for each caption, indicating its similarity to the known in-distribution classes. A threshold
0 is used to determine OOD status:

= 3)

. [OO0OD if S(x;) <4,
ID otherwise.

This scalar score can be smoothed through the same graph-based propagation mechanism as in Eq.
with [ = 2.

3D Caption Refinement with In-Context Learning: For the 3D object captioning task, we enhance
the semantic quality of the initial PointLLM-generated captions using in-context refinement. We
reuse the same graph-based strategy to select neighboring samples with semantically and structurally
relevant captions. These are appended as demonstrations to the input prompt for each query caption.
Unlike recognition tasks, the goal here is caption correction rather than classification. We guide
the LLM to preserve the original semantics but improve fluency and fix any factual errors. This
leverages the LLM’s generative ability to produce more accurate and natural descriptions.

3.4 FRAMEWORK OVERVIEW

An overview of PGLLM is presented in Fig.[2] First, we extract 3D features from the test set using
a frozen point cloud encoder. These features are passed to PointLLM to generate initial captions.
A KNN graph is then constructed over the feature space to capture local geometric relationships.
Based on this graph, we identify structurally similar neighbors for each sample, whose captions are
used as in-context demonstrations. Depending on the downstream task we summarize the test-time
optimization practices as follows. An illustration is deferred to the Appendix.

* For 3D recognition, the LLM outputs class-wise scores, which are further refined via graph-
based label propagation.

* For OOD detection, scalar similarity scores are computed, refined via graph-based label
propagation and eventually thresholded to determine OOD status.

* For captioning, in-context refinement is applied to enhance the quality of generated text
while maintaining semantic fidelity.

This unified framework leverages LLMs not only as language generators but also as structured rea-
soning engines capable of adapting to multiple 3D tasks with minimal supervision.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: We evaluate our method on four well-established 3D point cloud benchmarks. Model-
Net40 (Wu et al., 2015) contains 2,468 test 3D objects across 40 categories. ShapeNetCore (Chang
et al., 2015) s a canonical subset of the full ShapeNet repository with 5,158 unique test models
from 55 object categories. Following PointLLM (Xu et al., [2024), we sample 200 objects from
Objaverse (Deitke et al., [2023) for testing. S3DIS (Armeni et al.,|2016) provides semantically seg-
mented 3D point clouds from indoor environments and we follow |Chen et al.| (2025) to select 8,931
point clouds with rich semantic annotations for evaluation. For OOD dataset partitioning, we follow
the 3DOS protocol |Alliegro et al.[ (2022) to divide ShapeNetCore into SN1, SN2, and SN3 subsets.
Similarly, we partition ModelNet40 into MN1, MN2, and MN3 subsets. Further dataset details are
provided in the supplementary material.

Implementation Details: We use Point-BERT (Yu et al., [ 2021b) as the 3D encoder and a pre-trained
PointLLM-7B (Xu et al.| [2024)) to generate initial captions. We evaluate DeepSeek-V3 (Liu et al.,
2024), Qwen-Plus (Yang et al.,|2024) and GPT-4 |Achiam et al.| (2023) as the second stage LLMs.
As for KNN Graph construction, we set the K-value of 3. For score propagation, we set the o to 0.5,
and the number of iterations 7" to 5 in Eq. 2]

Competing Methods: We compare against existing LLM-based 3D understanding methods: In-
structBLIP (Dai et al., [2023), LLaVA (Liu et al., 2023), 3D-LLM (Hong et al., |2023)), Point-Bind
LLM (Guo et al.,|2023)), ShapeLLM (Qi et al.| 2024a), PointLLM (Xu et al.| 2024)), and MiniGPT-
3D (Tang et al.;,2024)). Both PointLLM and MiniGPT-3D employs ChatGPT 4 as second stage LLM
for classification, thus facilitating fair comparison. To the best of our knowledge, this is the first work
to explore 3D OOD detection within an LLM framework. Therefore, we compare against several
VLM-based zero-shot OOD baselines: MCM (Ming et al.| [2022), NegLabel (Jiang et al., 2024a),
ZLap (Kalantidis et al.| [2024), and GSP (Chen et al., [2025). Finally, we evaluate two variants of
PGLLM with different support set D,,. When testing data distribution is available, i.e. transduc-
tive inference, we use all testing data as the support dataset and refer to the method as PGLLMT.
Alternative, we leverage an external dataset, Objaverse, to build the support dataset and refer to
the method as PGLLM®. Specifically, we randomly selected 100K samples and their correspond-
ing captions from the 660K training data of Objaverse to build the graph. For both PGLLM® and
PGLLMT, PointLLM-7B is used to generate initial captions. All competing methods use the same
3D encoder as PointLLM (Xue et al., [2024).

Evaluation Metrics We use classification accuracy (ACC) for 3D recognition, and AUROC and
FPROS5 for 3D OOD detection, which are standard metrics in OOD evaluation. For 3D object cap-
tioning, we assess semantic alignment using Sentence-BERT (Reimers & Gurevychl 2019), Sim-
CSE (Gao et al.,2021)), and GPT-4 as evaluators.

ModelNet40 | bhapeNel(ore

‘ 2nd Sta; ‘
ge
Method LLM Avera, Average
AUROCT FPRQSHAUROCT FPRQSL\AUROCT FPR95||AUROCT FPRQSL AUROCT FPROSHAUROCT FPRQSHAUROCT FPRO5||AUROCT FPROS,

MCM(Ming et al.12022] - 853 536 | 802 742 | 775 726 | 810 668 | 851 516 | 832 461 | 664 758 | 782 578
NegLabel{iang et al.)2024a] - 743 774 | 658 866 | 615 819 | 672 820 | 60.6 878 | 80.6 786 | 880 483 | 764 716
ZLaP{Kalantidis et al. | 2024] - 728 998 | 861  6L1 | 708 760 | 766 790 | 882 528 | 723 664 | 774 900 | 793  69.7
GSP{Chen et al. J2025 | 824 770 | 779 654 | 761 765 | 788 730 | 90.6 389 | 707 640 | 797 937 | 804 655
PointLLM-7B(Xu et al.}|[2024] ‘ GPT-4 ‘ 84.0 100.0 82.1 100.0 ‘ 74.0 100.0 80.0 100.0 80.1 100.0 88.8 100.0 94.1 922 87.7 97.4
PGLLM? (Ours) GPT-4 873 566 | 862 443 792 608 | 843 539 | 797 558 | 909 413 | 960 265 | 889 412
PGLLM (Ours) GPT-4 89.6 531 | 872 430 808 602 | 859 521 | 818 524 | 939 267 | 976 97 | 9L1 296
PGLLM" (Ours) DeepSeck-V3 864 700 | 836 590 762 682 | 821 658 | 838 623 | 917 364 | 971 186 | 909  39.1
PGLLM (Ours) Qwen-Plus 865 684 | 842 473 779 717 | 829 625 | 814 618 | 928 330 | 979 1Ll | 907 353
PGLLM" (Ours) Qwen3-VL-8B  85.8 674 84.4 475 742 71.3 81.5 62.0 81.2 48.0 91.9 30.3 944 29.7 89.2 36.0
PGLLMT (Ours) Llama3.1-8B 57.1 86.3 54.9 87.2 50.4 979 54.1 90.4 56.3 89.7 81.9 68.3 92.7 44.6 80.0 67.5
PGLLM" (Ours) GPT0ss-20B 830 804 | 745 768 726 940 | 767 837 | 819 571 | 924 303 | 967 212 | 903 362

Table 1: Evaluation of 3D OOD detection on ModelNet40 and ShapeNetCore. Bold and underlined numbers
denote the best and second-best results, respectively. Each "MNXx” or ”SNx”* denotes the known class split and
the rest are unknown.

4.2 EXPERIMENTAL RESULTS

3D OOD Detection: Tab.[I|summarizes the results of our comprehensive experiments, highlighting
the following key observations. (i) Our PGLLM" framework, when integrated with GPT-4, estab-
lishes new state-of-the-art results on the ModelNet40 benchmark. It achieves an outstanding 85.9%
AUROC on average, outperforming the previous best method (MCM) by 4.9%, while also reduc-
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Method 2nd Stage 3D Recognition 3D Captioning
ctho LLM (I) ACC (C) ACC Average | GPT-4 S-BERT SimCSE

3D-LLM(Hong et al.}2023) - - - - 334 44.5 43.7
Point-Blind(Guo et al.[2023) - 51.9 39.7 458 - - -
ShapeL.LM-7B(Q1 et al.][2024a) - - - - 46.9 48.2 49.2
ShapeLLM-13B{Q1 et al.|[2024a) - - - - 49.0 48.5 50.0
InstructBLIP-7B(Dai et al.}[2023) GPT-4 19.5 31.5 25.5 453 47.4 48.5
InstructBLIP-13B(Dar et al.][2023) GPT-4 26.0 314 28.7 45.0 459 48.9
LLaVA-7B(Liu et al.[[2023] GPT-4 39.7 39.7 39.7 46.7 45.6 47.1
LLaVA-13B{(Liu et al.][2023}) GPT-4 37.1 36.1 36.6 383 46.4 459
MiniGPT-3D(lang et al.][2024) GPT-4 61.8 60.0 60.9 57.1 49.5 51.4
PointLLM-7B(Xu et al.]|2024] GPT-4 534 51.8 52.6 44.9 47.5 48.6
PointLLM-13B(Xu et al.][2024) GPT-4 53.0 52.6 52.8 48.2 479 49.1
PGLLM® (Ours) GPT-4 53.1 53.0 53.1 49.1 48.4 48.9
PGLLM” (Ours) GPT-4 63.1 61.8 62.5 50.5 48.9 494
PGLLM" (Ours) DeepSeek-V3 62.6 62.0 62.3 - - -
PGLLM" (Ours) Qwen-Plus 43.1 41.7 42.4 - - -

Table 2: Comparison of results on 3D recognition (ModelNet40) and 3D captioning (Objaverse). Recogni-
tion performance is evaluated using two prompt types: an Instruction-type (I) prompt (“What is this?”’) and a
Completion-type (C) prompt (“This is an object of ).

ing the critical FPR95 metric to 52.1%. We notice that both PointLLM-7B and ours methods use
ChatGPT 4 as the second stage LLM. (ii) On ShapeNetCore, PGLLM! with GPT-4 demonstrates
breakthrough performance, attaining 97.6% AUROC on SN3 and a remarkably low FPR95 of 9.7%.
This reflects an 7.1% AUROC improvement over feature-based methods such as GSP. Overall, our
framework achieves an average AUROC of 91.1% and an average FPROS5 of 29.6%, setting new
benchmarks across key metrics. These consistent gains across two datasets affirm the effectiveness
of our graph-based mechanism. (iii) Because GPT-4 tends to assign either 0 or 100 when scoring
test samples, the baseline performs very poorly on the FPR95 metric, with values almost always
equal to 100.0. By introducing score propagation, our method effectively alleviates this issue and
yields much smoother, more evenly distributed scores across all samples. (iv) Using GPT-4 as the
second stage LLM yields notable improvements in AUROC with +3.8% on ModelNet40 and +0.2%
on ShapeNetCore compared to DeepSeek-V3. The performance gap between GPT-4, Qwen-Plus
and DeepSeek-V3 variants highlights the ability of our framework to harness stronger LLMs for
enhanced 3D understanding. (v) With both testing data (transductive setting) and external dataset as
supporting dataset, PGLLM'/© outperforms the baseline (PointLLM-7B). This suggest the robust-
ness of the graph-based method.

3D Recognition: The results in Tab.
reveal several key insights. i) Our
PGLLMT framework achieves an average AUROC FPRS AZCBC
accuracy of 62.3% with DeepSeek-V3 and

62.5% with GPT-4, outperforming all ex-

isting state-of-the-art methods. In partic-  *° o7 2
ular, it surpasses the strongest baseline,
MiniGPT-3D, by +1.6% for average. ii) >
The framework shows strong robustness 3

3D OOD Detection 3D Recognition

57 98 27

96 25

95 24

across different prompt types. Specif- = & 2
ically, it outperforms MiniGPT-3D by = 9 22
1.3% with the instruction prompt “What PointLLM - 7B(GPT-4) PGLLM(DeepSeek-V3)

is this?” and by 1.8% with the completion
prompt “This is an object of”. This dual-
prompt advantage highlights the adapt-
ability of our architecture to diverse query
formats. iii) Although all competing meth-
ods rely on GPT-4 for evaluation, our framework achieves 62.3% average accuracy even with
DeepSeek-V3 (much lower per token cost than GPT-4) as second stage LLM, surpassing all GPT-4-
based baselines. This suggests lower cost LLMs may achieve comparable performance. However,
Qwen-Plus demonstrates notably lower performance on the 3D Recognition task, primarily due to
its limited ability to generate long numerical sequences, which adversely affects its overall results.

PGLLM(GPT-4) PGLLM(Qwen-Plus)

Figure 3: Results on real-world benchmark S3DIS. We re-
port 3D OOD detection and 3D recognition tasks.



Under review as a conference paper at ICLR 2026

3D OOD detection

P "R 6round Truth: guitar

|G| The 3D object model is a toy designed to replicate a space ship. It has
a pointed front, likely designed to represent the streamlined,
aerodynamic designs of actual spacecraft. This toy, which might be
constructed of plastic or another lightweight material, could serve as

an educational tool for children to learn about space exploration or

What is this?

simply as a playful item to spark imaginative flights of fancy.

Given a free-form LLM-generated description of a 3D object, calculate the

probability (0-100) that it belongs to any specified category.

Categories: < desk, guitar, door, ...>

The description requiring probability calculation: < The 3D object model is a
toy designed to replicate a space ship. It has a pointed front, likely

designed to ...>

@ 20 Approach of PointLLM

Given a free-form LLM-generated description of a 3D object (which may
be inaccurate), calculate the probability (0-100) that it belongs to any

specified category. Consider similar descriptions of other objects in that

category.

Categories: < desk, guitar, door, ...>

The description requiring probability calculation: < The 3D object model
is a toy designed to replicate a space ship. It has a pointed front, likely

designed to ..>

Descriptions of 3D objects with similar features: <

1. This is a model of a classic acoustic guitar with a traditionally curved

body, a long...
2. A 3D model of a traditional, non-electric guitar featuring a deep, jet-
black body...
3. This is a 3D model of an electric guitar, predominantly in a dark black
shade... >

@ 80 Approach of Point-Graph LLM

3D Object Captioning

)

e
o b

Ground Truth Y
A blue cartoon What is this?

painted in a vibrant shade of blue. The pony's body, tail, and mane

G This is a 3D model of a magical cartoon pony, which is entirely
1 1

hair exhibit a uniform blue color. The design and appearance
suggest it might be associated with a fantasy or magical theme.
This model could be utilized in various animation projects, video
games, or even as a digital toy for interactive applications,

” appearance.

enhancing the user's experience with its charming and friendly

Given a free-form description of a 3D object, please according to

additional descriptions of other 3D objects that share similar

features with this object which has the same category to optimize
the given description. The description of this 3D object and
additional descriptions are generated by an LLM and may be
inaccurate. If all descriptions are similar, please do not make any
changes. If the description content is different, please make slight

adjustments to this 3D description and do not adjust too much.

The description requiring optimize: This is a 3D model of a magical

1 cartoon pony, which is entirely painted in a vibrant shade of blue. The
pony's body, tail, and mane hair exhibit a uniform blue color...

The description requiring probability calculation:
< This 3D model depicts a charming cartoon pony with a solid body
that is entirely white except for its tail, which boasts a vivid purple

color. ...

The 3D model is of a full-sculpt, vivid yellow horse standing freely.
The horse boasts a prominent mane around its neck and a tail, adding

to its realistic ...

This 3D model depicts a charming cartoon pony with a solid body that
is entirely white except for its tail, which boasts a vivid purple

color....>

@ This is a 3D model of a cartoon pony with a solid, vibrant blue
body, mane, and tail. The pony features a rounded, friendly design,
emphasizing a cheerful and approachable character. Its simple yet
charming appearance makes it suitable for animation, games, or
interactive applications, especially in fantasy or magical settings.

Figure 5: Qualitative examples of prompt questions and PGLLM’s predictions.

3D Object Captioning: The results in Tab. 2] show that our method performs competitively on the
3D object captioning task, consistently outperforming the PointLLM-7B baseline across all three
evaluation metrics. Since the evaluation relies on subjective judgments from an LLM, PGLLM uses
GPT-4 exclusively for assessment to ensure a consistent evaluation standard. While our approach
does not yet reach state-of-the-art performance, this gap is likely attributable to the limited size of the
test dataset. In low-data regimes, constructing optimal graph structures is more challenging, which
can constrain performance. Nevertheless, the observed improvements highlight the promise of our
graph-based in-context guidance strategy for 3D captioning tasks. This suggests careful selection of

second stage LLM is still necessary.

Experiments on Real-world Bench-
mark: Most existing 3D LLMs Xu
et al.| (2024); |Guo et al.| (2023);
Tang et al.| (2024) have been eval-
vated primarily on synthetic CAD
datasets, leaving a validation gap
in real-world scenarios. To ad-
dress this, we conduct experiments
on the real-world S3DIS dataset. As
shown in Fig. 3] we evaluate both
PointLLM and PGLLM on 3D out-
of-distribution (OOD) detection and
3D recognition tasks. The results

Average AUROC Average AUROC
87 92
86 m 91 M
85 90
84 89
83 KI K

(a) 3D OOD detection on ModelNet40

3 4 5 6 7 8 9

3 4 5 6 7 8 9

(b) 3D OOD detection on ShapeNetCore

Figure 4: Different number of K-values for 3D OOD detec-
tion on two datasets.

demonstrate that our method consistently outperforms baseline approaches, confirming the effec-
tiveness of our graph-based strategy in practical settings. Notably, PGLLM remains compatible
with lower-cost second-stage LLMs, achieving performance that is comparable, or even superior to

higher-cost alternatives.
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KNN 6Graph

/7 Ground Truth : bed (ID sample) S - 4,7 Ground Truth : bed (ID sample) \
[ Caption: This 3D object model represents a 1 B R | | Caption: The 3D object model depicts a large, bouncy bed \
I cartoonish bed styled in a solid black color. [ 5 ! 1 commonly known as a trampoline. This trampoline features a !
! Despite its whimsical design indicating that it's ¢ i ! rectangular shape and stands on four sturdy legs, each :
! not a realistic representation, it still possesses : { : equipped with a handle for easy mobility. The design allows 1
: key elements that define a bed, such as a e | foralot of fun and physical activity, making it suitable for ]
| mattress and a headboard. This simplified, 1 . 1 both kids and adults. Its usage extends to recreational 1
I stylized design could be an element in an 1 11 purposes, fithess routines, and competitive sports, offeringa !
! animation or a game. Its uniform black color ! : safe space to bounce, flip, and twist, thereby developing :
'\ implies a basic, minimalist aesthetic. ,' agility, hand-eye coordination, and balance. ’

\ _6PT-4 judgment : 100 (Tendency fowards ID) _~ _6PT-4 judgment : 85 (Tendency fowardsID) ’

Ll . e el
l’ Ground Truth : bed (ID sample) \ 7 Ground Truth : bed (ID sample) N\
| Caption: The 3D object model is a bed structure ! : Caption: This is a 3D model of an object that resembles !
| consisting of a rectangular base with slightly sloping : | arectangular black board, distinguished by a distinctive :
1 iidas;c ;;t;‘intd ina STOO*:\thEY :?lor‘. Positionedon | 1| feature - two evenly spaced white dots. Its appearance |
! op of the base are two thin mattresses, one on 1§ I suggests that it might be a part of some gamin 1
! each side, both covered with white bed sheets. The 1 | ! eq%?pmenf, a decorgﬁve ifamp, or possibly% funcgfional 1
: simplicity and functionality of the structure L : element in a board game, depending on the nature of the !
| suggest it could be used in dorm rooms or simple : | dots. Its simple design leaves room for interpretation :
| home setups for sleeping or resting purposes. f 1 and could invoke a sense of mystery or fun. )
AN GPT-4 judgment : 100 (Tendency towards ID) U . 6PT-4 judgment : 20 (Tendency towards OOD) IR

Final scores

85
= 8
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@ in-context samples

Score Propagation
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Initial scores

100
0 o m)
100

@ query sample
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Figure 6: Qualitative example demonstrating the effectiveness of score propagation.

In-context Score ModelNet40 ShapeNetCore
Guidance Propagation | ACCT AUROCT FPR95] | ACCT AUROCT FPR9S|)
- - 525 80.4 100.0 | 555 88.2 54.9
. - 59.7 833 100.0 | 60.7 89.2 472
v - 60.2 83.1 100.0 | 61.0 89.5 46.0
- v 56.7 83.5 62.0 59.3 89.8 44.7
v v 63.1 85.9 52.1 62.4 91.1 29.6

Table 3: Ablation study on two datasets. ACC refers to the results of 3D recognition experiments, while AU-
ROC and FPR9S5 correspond to the OOD detection experiments. Both AUROC and FPR9S represent averages
across all subsets of the ModelNet40 and ShapeNetCore datasets. The e denotes in-context guidance derived
through direct nearest-sample retrieval without graph.

4.3 ABLATION STUDY

We conduct an ablation study with results summarized in Tab.[3] All experiments use ChatGPT4 as
the second-stage LLM and are conducted on the ModelNet40 and ShapeNetCore datasets for both
3D recognition and 3D OOD detection. We begin with a baseline that feeds the generated 3D caption
of each query directly into the LLM without additional context. We also evaluate a variant where
the query retrieves its nearest neighbors via KNN (K = 3) to form the in-context prompt, bypassing
graph construction. This variant yields results comparable to the graph-based method, likely because
both retrieve highly similar neighbors due to the small . However, omitting the graph structure
prevents the use of score propagation for further refinement. Introducing in-context guidance alone
yields significant performance gains over the baseline, demonstrating its effectiveness in injecting
relevant contextual cues into the LLM. In contrast, score propagation alone provides only modest
improvements. Notably, combining in-context guidance with score propagation leads to substantial
performance boosts across both tasks, underscoring their complementary and synergistic effects.

4.4 FURTHER ANALYSIS

Qualitative Analysis: Fig. [5] showcases qualitative examples of PGLLM on 3D OOD detection
and 3D object captioning tasks. For 3D OOD detection, we observe that PointLLM’s reliance on
single-caption inputs leads to fragile predictions when faced with ambiguous or hard-to-interpret
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D Caption Graph GPT (OOD) GPT(Recog) GPT(Caption) Score(OOD) Score(Recog)
ataset . . - :
Generation Construction  Inference Inference Inference Propagation  Propagation
ModeNet40 2630ms 51ps 1951ms 2409ms - 41ps 43us
ShapeNetCore | 2750ms 65us 2007ms 2688ms - 28us 29us
S3DIS 2510ms 81us 1763ms 1980ms - 31us 34us
Objaverse 2690ms 30us - - 3016ms - -

Table 4: Time consumption of each step for a per-sample, where ms denotes millisecond and ps denotes
microsecond

point clouds. Our in-context guidance mitigates this by providing captions from structurally similar
samples, allowing the LLM to leverage contextual cues for more robust classification. For 3D object
captioning, PointLLM generates captions exhibiting inaccuracies or redundancies. By incorporating
in-context guidance, our method enables the LLM to refine these outputs based on contextual sim-
ilarity, resulting in more accurate and semantically rich descriptions. Fig. [f] qualitatively illustrates
the process of score propagation. It can be observed that when the 3D LLM generates a low-quality
caption for a given sample, it directly leads to a poor score in the second-stage evaluation. How-
ever, by employing the score propagation method, this can be effectively corrected by leveraging the
accurate scores from neighboring samples of the query sample.

Impact of In-Context Example Quantity: To examine the effect of in-context guidance, we vary
K, the number of retrieved captions provided to the LLM, and evaluate 3D OOD detection on
ModelNet40 and ShapeNetCore (Fig. ). Performance improves as K increases, reaching a dataset-
specific peak at K = 7 for ModelNet40 and K = 4 for ShapeNetCore. Beyond these values,
accuracy declines, likely due to the inclusion of irrelevant or misleading examples that confuse the
LLM. These results underscore the importance of selecting an appropriate number of in-context
examples for optimal performance.

Inference Time: Tab. [ presents the time consumption of each step in PGLLM across different
datasets. Overall, our method introduces minimal overhead. Processing each sampe requires only
30-90us for a per-sample during graph construction and 30-50us for score propagation, while caption
generation and GPT inference cost about several seconds the per-sample time. Notably, even with
graph-based processing, the total additional time per sample remains negligible, demonstrating that
PGLLM maintains high computational efficiency and is practical for real-world deployment.

5 CONCLUSION

In this work, we introduce PGLLM, a novel framework for 3D point cloud understanding. Our
approach constructs a graph to retrieve structurally similar 3D captions for each point cloud, us-
ing them as in-context examples to guide the LLM toward more informed reasoning. In parallel, a
score-based refinement mechanism leverages the intrinsic structure of the test data manifold to en-
hance prediction accuracy. PGLLM achieves competitive results across a range of downstream tasks
and sets new state-of-the-art performance in both 3D out-of-distribution (OOD) detection and 3D
recognition. Extensive experiments on diverse 3D point cloud datasets demonstrate the robustness
and generalizability of our method. We believe this work offers a promising direction for advancing
3D point cloud understanding and integrating LLMs into spatial perception tasks.

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The full implementation code,
along with scripts to reproduce all experimental results, will be released upon acceptance. All
model architectures, hyperparameters, and inference details are explicitly stated in Experiments.
We believe these resources are sufficient to replicate our findings.
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A APPENDIX

A.1 OVERVIEW OF THE TASKS

We illustrate the three tasks addressed in this work in Fig.[/] Our framework integrates 3D point
clouds with large language models by first constructing prompts using PointLLM and a point cloud
feature graph (Step 1), then leveraging LLMs to perform downstream tasks (Step 2). PointLLM
generates free-form descriptions of 3D objects (yellow boxes), which are refined and utilized by the
LLM for tasks including 3D out-of-distribution (OOD) detection, 3D recognition, and 3D object
captioning.

A.2 DATASET PARTITION FOR 3D OOD DETECTION

We follow the benchmark 3DOS, GSP to construct ShapeNetCore and S3DIS datasets for OOD
detection. For the ModelNet40 dataset, we follow the partitioning practice established in the 3DOS
work, dividing it into three subsets based on ascending index order. The specific category parti-
tioning details are presented in Tab [7]B][] Qualitative visualizations of some dataset samples are

presented in Fig.

Step 1: Prompt construction with PointLLM and poinf cloud feature Graph

3D Point Clouds | I yFil-
Get captions for all point clouds > R e s WeE- M
oint| at is this?
3D Embeddings

Encoder Build Construct a B The 3D object model represents an
—_— —_ cor‘r‘espondmg eccentrically designed airplane,

prompt fo,« predominantly colored grey with an

graph each point cloud engaging contrast of black...

Step 2: Utilize LLM to perform various downstream tasks

Optimize the given free-form LLM-

generated description (which may be ]
inaccurate) of a 3D object using -
descriptions of similar objects in the same
category. Make minimal adjustments only

if differences exist; leave it unchanged if

all descriptions are similar.

Given a free-form LLM-generated
description of a 3D object (which may be
inaccurate), compute the similarity
score(0-100)for each of the following
categories with this description.
Consider similar descriptions of other
objects in that category.

Given a free-form LLM-generated ”~
description of a 3D object (which may be
inaccurate), calculate the probability (O-
100) that it belongs to any specified
category. Consider similar descriptions of
other objects in that category.

(]

Categories: <A,B,C, ..> Categories: <A,B C..>

Categories: <A,B C..>
The description requiring optimize:

< The 3D object model represents an
eccentrically ... >

The description requiring probability
calculation: < The 3D object model
represents an eccentrically ... >

calculation: < The 3D object model
represents an eccentrically ... >

Descriptions of 3D objects with similar

features: < Descriptionl, Description2,.. > Descriptions of 3D objects with similar

features: < Descriptionl, Description2,... >

@ < The 3D object model has an ... >

3D Object Captioning

Descriptions of 3D objects with similar
features: < Descriptionl, Description2,... >

@ < Scorel, Score2, Score3, ... >

3D Recognition

@ < Score >

I
1
1
I
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1
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The description requiring probability :
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Figure 7: Demonstrations of PGLLM. We propose PGLLM, an efficient and potent framework
that integrates 3D-LLMs with Large Language Models, where the text on a light yellow background
indicates content generated by PointLLM. Furthermore, we demonstrate its operational mechanisms
across 3D recognition, 3D OOD detection and 3D object captioning tasks.

SN1 mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, bird-
house, jar, bowl, bookshelf, stove, bench, display, keyboard, clock, piano

SN2 earphone, knife, chair, pillow, table, laptop, mailbox, basket, file cabinet, cabi-
net, sofa, printer, flowerpot, microphone, tower, bathtub, bag, trash bin

SN3 can, microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, air-
plane, bottle, cap, rocket, rifle, remote, car, bus, motorbike

Table 5: For each distinct out-of-distribution (OOD) subset partition on the ShapeNetCore, the
categories residing within a given subset are designated as in-distribution (ID), whereas categories
from all other subsets are considered entirely OOD.
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Figure 8: Visualization of the real-world benchmark S3DIS and the categories partition for OOD
detection.

ID ‘ window, door, table, chair, sofa, bookcase, clutter

OOD | beam, board, ceiling, column, floor, wall

Table 6: S3DIS dataset partitioning for OOD detection: foreground objects as ID and background
objects as OOD.

A.3 PROMPTS AND QUALITATIVE ANALYSIS

We provide the prompts for 3D recognition, 3D OOD detection: and 3D object captioning tasks in
Tab [8] Furthermore, we provide supplementary visual analyses for 3D recognition and 3D OOD
detection tasks in Fig. [TT} [[3hnd [T4] provided with comprehensive prompts to the LLM. As
evidenced in Fig. [TT] the query sample contains an erroneous caption, yet the collective accuracy
of ”vase” annotations within the in-context guidance enables the LLM to yield the correct predic-
tion.Fig. [T3]illustrates a scenario where both the query sample and several in-context guidance cap-
tions contain misleading annotations. This induces the LLM to output a neutral score. Nevertheless,
this outcome represents a some improvement over the erroneous predictions generated without in-
context guidance. Despite the fact that the query sample’s caption lacks direct information about the
categories, as illustrated in Fig.[T4] the captions of the in-context samples prove crucial for enabling
the LLM to achieve a more accurate classification. However, as shown in Fig.[12] the LLM’s output
is inclined to classify the object as a ”lamp,” which contradicts the ground-truth label of “faucet.”
This discrepancy is likely attributable to the presence of the word “lights” in the query sample’s
caption. Despite the in-context samples providing captions containing “faucet,” the LLM ultimately
assigned a full score of 100 to the "lamp” category, compared to only 60 for faucet.” In Fig.[I3] we
present examples where in-context guidance exerts a negative impact. It can be observed that when
the caption generated for the query sample is relatively accurate, but the captions of the in-context
samples contain certain inaccuracies, the second-stage scoring becomes biased.

MN1 airplane, bathtub, bed, bench, bookshelf, bottle, bowl, car, chair, cone, cup,
curtain, desk

MN2 door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, mon-
itor, night stand, person, piano

MN3 plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase,
wardrobe, xbox

Table 7: For each distinct out-of-distribution (OOD) subset partition on the ModelNet40, the cate-
gories residing within a given subset are designated as in-distribution (ID), whereas categories from
all other subsets are considered entirely OOD.
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A.4 IMPACT OF K-VALUES

To further explore the influence of K-values, we test different number of K on 3D recognition task.

The results are shown in Fig.[9] it can be observed that the optimal performance is achieved at K=5

for ModelNet40 and K=6 for ShapeNet, respectively. Furthermore, performance exhibits a declining
trend with increasing K-values, a finding empirically consistent with the conclusions presented in

our prior submission.

Accuracy Accuracy
66
64 66
62 \/\\/—. 64
60 62
58 K 60

3 4 5 6 7 8 9
(a) 3D recognition on ModelNet40

Figure 9: Different number of K-values for 3D recognition on two datasets.

ModelNet40

ShapeNetCore

Figure 10: Visualization of the ModelNet40, Objaverse, and ShapeNetCore.

16

3

4

5

6

7

8

(b) 3D recognition on ShapeNetCore




Under review as a conference paper at ICLR 2026

Tasks

Prompts

3D Recognition

Given a free-form description of a 3D object, the content described here belongs to one of the
following 54 categories. Use this description to compute a similarity score (0-100) for each of the
following 54 categories. The description of this 3D object is generated by an LLM and may be
inaccurate. In addition, I will provide you with descriptions of other 3D objects that share similar
features with this object of this category. O=no relation, 100=perfect match.

categories: mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, birdhouse, jar,
bowl, bookshelf, stove, bench, display, keyboard, clock, piano, earphone, knife, chair, pillow, table,
laptop, mailbox, basket, file cabinet, cabinet, sofa, printer, flowerpot, microphone, tower, bathtub,
bag, trash bin, can, microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, airplane,
bottle, cap, rocket, rifle, remote, car, bus, motorbike.

3D object description: ...

Descriptions of 3D objects with similar features:

I. ..

Please output the 54 corresponding similarity scores in the order of the above-mentioned categories,
without any additional explanation.

3D OOD detection

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content
described in the following text pertains to any of the following categories. The description of this
3D object is generated by an LLM and may be inaccurate. In addition, I will provide you with
descriptions of other 3D objects that share similar features with this object of this category. You
need to take these similar 3D model descriptions into account as well. O=no relation, 100=perfect
match.

categories: plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase,
wardrobe, xbox.

3D object description: ...

Descriptions of 3D objects with similar features:

1. ..

Output only a numerical score. Do not provide additional explanations.

3D Object Captioning

Given a free-form description of a 3D object, please according to additional descriptions of other
3D objects that share similar features with this object which has the same category to optimize the
given description. The description of this 3D object and additional descriptions are generated by
an LLM and may be inaccurate. If all descriptions are similar, please do not make any changes. If
the description content is different, please make slight adjustments to this 3D description and do not
adjust too much.

The description requiring optimize: ...
Descriptions of 3D objects with similar features:

1. ..

Output only a 3D description. And don’t describe too much.

Table 8: A list of prompts for 3D Recognition, 3D OOD Detection, and 3D Object Captioning tasks

to LLM.
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KNN Graph

-—
—
_

In-context sample 2
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Ground Truth: vase

In-context

sample 1 What is this?

A 3D model of a cartoon-style ornament rendered in black, which is characterized by its shiny, smooth
surface and reflective properties, emphasizing its three-dimensional form. The ornament, with its
simplistic and charming design, could be used for decorative purposes like on a Christmas tree or in a
children's play area, adding a thematic element to the scene.

Given a free-form description of a 3D object, the content described here belongs to one of the
following 40 categories. Use this description to compute a similarity score (0-100) for each of the
following 40 categories. The description of this 3D object is generated by an LLM and may be
inaccurate. In addition, I will provide you with descriptions of other 3D objects that share similar
features with this object of this category. O=no relation, 100=perfect match.

categories: airplane, bathtub, bed, bench, bookshelf, bottle, bowl, car, chair, cone, cup, curtain, desk,
door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, monitor, night stand,
person, piano, plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase,
wardrobe, xbox.

3D object description: A 3D model of a cartoon-style ornament rendered in black, which is
characterized by its shiny, smooth surface and reflective properties, emphasizing its three-
dimensional form. The ornament, with its simplistic and charming design, could be used for decorative
purposes like on a Christmas tree or in a children's play area, adding a thematic element to the scene.

Descriptions of 3D objects with similar features: The 3D model object is a high-shine, jet-black vase
that's perfectly cylindrical in shape. Its sleek design and polished surface give it an air of
sophistication and elegance. As a central element in interior decor, it's used to hold flowers or
decorative objects, enhancing the aesthetic appeal of a room. With its streamlined shape, it would fit
well into a variety of interior styles, from modern to traditional.

The 3D object model depicts an elegant, tall, cylindrical vase, of black color, with a small, preferably
hidden, round lid on top. It carries the characteristics of a funerary offering vessel, traditionally
used in ancient Egypt for holding offerings to the gods. Its black hue suggests it could be used to
store dark colored liquids or flowers. Despite its antique look, it maintains a simple yet sophisticated
design.

The 3D object in question is a cartoon-inspired, black ornament that resembles a vase. It is dark in
color and features a simplistic, minimalist design, which is characteristic of the cartoon aesthetic. The
object appears to be an empty vessel, implying that its primary function is to hold flowers or
decorative objects. Its cartoonish desigh suggests that it may be used in animation, video games, or
other digital media that require 3D objects with a playful or whimsical style.

Please output the 40 corresponding similarity scores in the order of the above-mentioned categories,
without any additional explanation.

<think> The ornament's use in Christmas decoration might hint at "plant" (via Christmas trees) but the
examples don't support this. Most categories like "car" or "guitar" have no relevance. "Sofa" or
"table" are furniture, not decorative ornaments. Notably, the examples provided are all vases,
reinforcing that category. The scores should reflect this: high for "vase" (95), low for "flower pot"
(40) due to functional overlap, minimal scores for unrelated categories, and slightly higher for "bottle"
(30) and "bowl" (25) due to shape similarities. </think>

Output: 0,0, 0,0, 0, 30, 25,0,0,0,15,0,0,0,0, 40, 20,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0, 0,
0,0,95,0,0

o]
1

Figure 11: Qualitative example for 3D recognition task on ModelNet40.
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- -Coifef' Sample 3 KNN 6Graph
Ground Truth: faucet

In-context

sample 1
SlplE What is this? ~

The object is a sturdy, metallic arm supporting two strong, circular lights. The lights are likely used for
I ¥ illumination and provide a brilliant spread of light in all directions. Its robust construction implies durability
and longevity, making it suitable for both indoor and outdoor uses. The two lights could suggest that the

object is designed to provide comprehensive illumination in darkness or low-light conditions.

Given a free-form description of a 3D object, the content described here belongs to one of the following 54

categories. Use this description to compute a similarity score (0-100) for each of the following 54 categories. )
The description of this 3D object is generated by an LLM and may be inaccurate. In addition, I will provide you
with descriptions of other 3D objects that share similar features with this object of this category. O=no
relation, 100=perfect match.

categories: mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, birdhouse, jar, bowl,
bookshelf, stove, bench, display, keyboard, clock, piano, earphone, knife, chair, pillow, table, laptop, mailbox,
basket, file cabinet, cabinet, sofa, printer, flowerpot, microphone, tower, bathtub, bag, trash bin, can,
microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, airplane, bottle, cap, rocket, rifle,
remote, car, bus, motorbike.

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3D object description: The object is a sturdy, metallic arm supporting two strong, circular lights. The lights 1
are likely used for illumination and provide a brilliant spread of light in all directions. Its robust construction 1
implies durability and longevity, making it suitable for both indoor and outdoor uses. The two lights could 1
suggest that the object is designed to provide comprehensive illumination in darkness or low-light conditions. 1
|
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! Descriptions of 3D objects with similar features: This 3D model depicts a sturdy, well-made faucet with a

1 distinctive cartoon-like design. It features an attractive polished black finish, complete with a handle for easy

| use. The model clearly reflects a bathroom or kitchen sink, indicating its function as a water fixture

1 controlling water flow and used for household cleaning. Despite the cartoon style, the design still conveys an

1 overall practical and utilitarian aspect, demonstrating the blend of aesthetics and functionality in everyday
objects.

: ThJe 3D model is a black, cartoon-style faucet handle. This design typically appears in bathrooms or kitchens.
It is a handle, not a knob, indicating that it is used for controlling the water flow rather than the temperature.

! It has a simple, streamlined shape and is painted in a uniform black color, adding to its cartoonish charm.

1 The 3D model object is a black, cartoon-style faucet. The model is rendered in a dark color, showcasing an

1 appealing and simplistic design that could be typically seen in children's animated bathrooms or kitchens. The

1 cartoonish appearance does not neglect the important functional aspects like the handle and spout, indicating

1 it is designed for usable purposes in a virtual setting.

|

1

|

|

|

|

|

|

|

|

|

|

|

|

|

Please output the 54 corresponding similarity scores in the order of the above-mentioned categories, without
any additional explanation.

like a lamp or possibly a streetlight or something similar. Now, I have descriptions of other 3D objects that
share similar features, but these descriptions are about a faucet. The similar objects are all variations of a
faucet: one is a faucet with a handle, another is a faucet handle, and the third is a cartoon-style faucet. I
think I need to focus on the main object description and compare it to each category based on common
sense. The similar objects are given, but they are about faucets, which might not be relevant if the main
object is a lamp. Perhaps for faucet category, I should consider the similar objects, but the similar objects
are examples of faucets, so for the main object, when scoring against faucet, the similar objects show what
a faucet is, but the main object doesn't match, so low score.</think>

Output: 0, 100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0

@ <think> The object is clearly some kind of light source, with two circular lights on a metallic arm. It sounds

Figure 12: Qualitative example for 3D recognition task on ShapeNetCore.
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In-context sample 2
<

In-context
. sample 1
| D

What is this?
The 3D object model appears to be a practical household item, possibly a woven basket or a tray with an open

I b bottom. This item, typically constructed from organic materials like wood or fibers, is handy for storing and
carrying items. Its open bottom allows for easy loading and unloading, making it user-friendly. The woven
texture suggests a traditional craftsmanship and aesthetic appeal. This versatile object can be utilized for
various purposes, including as a kitchen basket for fruits, vegetables, and other products or as a decorative
tray for tiles, t-shirts, trivets, and other items, reflecting its utility in everyday home environments

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content
described in the following text pertains to any of the following categories. The description of this 3D object
is generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D
objects that share similar features with this object of this category. You need to take these similar 3D model
descriptions into account as well. O=no relation, 100=perfect match.

Categories: door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, monitor, night stand,
person, piano.

3D object description: The 3D object model appears to be a practical household item, possibly a woven basket
or a tray with an open bottom. This item, typically constructed from organic materials like wood or fibers, is
handy for storing and carrying items. Its open bottom allows for easy loading and unloading, making it user-
friendly. The woven fexture suggests a traditional craftsmanship and aesthetic appeal. This versatile object
can be utilized for various purposes, including as a kitchen basket for fruits, vegetables, and other products or
as a decorative tray for tiles, t-shirts, trivets, and other items, reflecting its utility in everyday home
environments.

|
|
|
|
|
|
I
|
I
|
I
|
|
|
|
|
! Descriptions of 3D objects with similar features: This is a 3D model of a functional and versatile 5-drawer
! single dresser, ideal for small bedrooms or guest rooms. The dresser showcases a chic, modern design with a
1 bold black finish that would blend effortlessly into any style interior color. It features five evenly lined up
1 drawers, each with a pull-out handle for easy access, thus enhancing space efficiency. It is minimalist in style,
1 yet functional, offering an elegant and convenient solution for storing personal items, clothes and accessories.
1 A 3D model of a rectangular box in a solid black color. The box appears to be closed, with no visible openings
1 or vents. Its simplicity and uniformity suggest it could be a storage box, a decorative piece, or even a piece of
| furniture, depending on its size and the user's needs. However, without further information, its exact purpose
| and functionalities remain unspecified.
This is a 3D object model of a compact, cubed drawer with a smooth, glossy black finish. The drawer is open,
| revealing its single, well-organized compartment. It is supported by small, sleek, black legs that elevate it
1 slightly off the ground, contributing to its modern, minimalist aesthetic. This piece of furniture is elegant in
1 its simplicity and would function well as a stylish storage solution for small items in various settings, including
1 bedrooms, living rooms, and offices.
|
|
|
|
|
|
|
I
|
I
|
I
|

Output only a numerical score. Do not provide additional explanations.

<think> Starting with 'dresser' since there are similar object descriptions provided, The key function here is
storage. The main object is a basket/tray which also serves storage purposes. However, a dresser typically has
drawers or compartments, while the basket has an open bottom. Next, 'glass box' might be a contender
because of the storage aspect, but the described object is organic and woven, not glass. ‘Night stand' usually
has drawers or shelves, which isn't mentioned. ‘Mantel' is a shelf over a fireplace, which doesn't fit. The
closest category is 'dresser' due fo the storage function, but the physical structure is different. The
basket's open bottom and woven texture are more akin to a container like a basket, which isn't listed. Among
the options, 'dresser’ is the best fit functionally, but the form differs. The probability would be moderate,
say 50, considering functional similarity but structural differences. </think>

Output: 50

Figure 13: Qualitative example for 3D OOD detection task on ModelNet40.
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==~ Ground Truth: helmet

In-context
sample 1

- - - What is this?

This 3D object model depicts a human head designed in a cartoonish style. It sports a uniform grey color,

1 U suggesting it might be a basic, untextured model. Further customization can be done on this basis, either for
artistic purposes, animation, video game design, or other visual graphics applications. The cartoon aesthetic
typically lends itself well to more abstract and simplistic designs, and this model, while not realistic, is a prime
example of that.

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content

described in the following text pertains to any of the following categories. The description of this 3D object is o
generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D 1
objects that share similar features with this object of this category. You need to take these similar 3D model
descriptions into account as well. 0=no relation, 100=perfect match.

categories: earphone, knife, chair, pillow, table, laptop, mailbox, basket, file cabinet, cabinet, sofa, printer,
flowerpot, microphone, tower, bathtub, bag, trash bin

1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
|
1
1
3D object description: This 3D object model depicts a human head designed in a cartoonish style. It sports a !
uniform grey color, suggesting it might be a basic, untextured model. Further customization can be done on |
this basis, either for artistic purposes, animation, video game design, or other visual graphics applications. The 1
cartoon aesthetic typically lends itself well to more abstract and simplistic designs, and this model, while not 1
realistic, is a prime example of that. 1
1

1

1
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|

1

1

1

1

|
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1

1

1

1
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1
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Descriptions of 3D objects with similar features: This is a 3D model of a human face that is metallic in
appearance, reminiscent of a gold or bronze statue. The facial features are well-defined, and the model holds
an artistic value in addition to any functional use. It might serve as a decorative object for an interior design,
or as a representation for artistic or sculptural purposes.

This is a 3D model of a cartoon character's head that is entirely shaded in a solid, pure white color. The model,
though minimalistic due to the lack of facial details, maintains the essential structural aspect of a head. With
no texture, shape, or distinguishing features, its simplistic design provides an open-ended creative opportunity
for further customization or adaptation in various media or graphic design projects.

The model represents a metallic biker's helmet, notable for its grey colour and sleek design. It features a
dark screen, presumably to shield the wearer's eyes from wind, dust, or sun, and a pair of round, dark-rimmed
glasses to protect the eyes from wind, sun, or injury. This type of helmet is typically used by bikers to
safeguard their heads during rides and can also be used in certain work environments that require eye
protection.

Output only a humerical score. Do not provide additional explanations.

human head, which is not directly listed in the categories. The categories are everyday objects like furniture,
electronics, etc. A human head doesn't fit into any of these categories directly. These similar objects are all
related to heads or headgear. But the categories I'm comparing to don't include heads or helmets directly.
The categories are things like earphone, knife, chair, etc. None of these are head-related except possibly
"bag" or "trash bin," but that seems unlikely. I recall that in some 3D model databases, heads might be
classified under "characters" or "people”, but here the categories are all objects, not people. So, I think score
is O</think>

Output: O

@ <think> I need o compare this description to each category and see if it matches. The description is about a

Figure 14: Qualitative example for 3D OOD detection task on ShapeNetCore.
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KNN Graph

Ground Truth: xbox

ahelh i In-context
& sample 1
— - —

The 3D object model in question appears to be a sleek black rectangular body, distinguishing itself with a

1 [ distinct curved U-shaped top. The smooth and streamlined design lends itself a contemporary and minimalist

What is this?

aesthetic. Although no explicit functionality is apparent from the object itself, it could be a part of various
electronic or mechanical devices or could even be used as a stylish housing for certain types of decorative
items.

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content

described in the following text pertains to any of the following categories. The description of this 3D object is ”
generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D
objects that share similar features with this object of this category. You need to take these similar 3D model
descriptions into account as well. O=no relation, 100=perfect match.

Categories: plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase, wardrobe, xbox.

distinguishing itself with a distinct curved U-shaped top. The smooth and streamlined design lends itself a
contemporary and minimalist aesthetic. Although no explicit functionality is apparent from the object itself, it
could be a part of various electronic or mechanical devices or could even be used as a stylish housing for
certain types of decorative items.
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1

|

I
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|

I

|

|

|

Descriptions of 3D objects with similar features: This is a black rectangular object with a unique design !

feature of vertically oriented, triangular holes on its front surface. The object is primarily dark in color, 1

adding a sense of mystery or intrigue. It seems simple yet striking due to the arrangement of the holes. The 1

object's functionality isn't explicitly stated, but one can infer that it might be used for aesthetic purposes, 1

possibly as a modern decorative piece or a unique component of an artwork. 1

A rectangular, 3D box model presented in solid black color. The model appears minimalistic in design, with |

sharp and defined edges and flat surfaces. It's essentially a simple geometric shape, with no additional |
features or details. In terms of usage, such a 3D model can be used in numerous ways including digital

animations, 3D modeling, virtual reality, and games. Given the lack of color or texture, the box could symbolize |

an empty container or a basic structure in design and programming tasks. |

The 3D model depicts a cartoon-themed rectangular black object which strongly resembles a bag. This item, 1

painted in a simple and bold black color, exhibits an overall rectangular shape. It bears a stylized, non-realistic 1

design, akin to those often seen in cartoons or animations, enhancing its visual appeal and playfulness. Although 1

its functionality is not distinctly clear from the image, its appearance suggests that it could be used in various 1

contexts, such as a prop in a cartoon animation or a playful themed design in 3D printing. |
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|
: 3D object description: The 3D object model in question appears fo be a sleek black rectangular body,
|
|
|
|
1
|
1
|
I
|
|
|
|
|
|
|
|
: Output only a numerical score. Do not provide additional explanations.
1
|

<think> Given the main object's description— a sleek black rectangular body with a curved U-shaped top,
minimalistic design, and possible use as part of an electronic or mechanical device— and considering that the
similar objects are also black, rectangular, and minimalistic, the only category from the list that meaningfully
1 fits is a range hood, which often features a rectangular base with a curved canopy. Other categories (radio,
1 table, vase, tv stand, etc.) do not match the described shape or function. However, in the description of other
1 object descriptions, there are additional phrases such as triangular holes and strongly resembles a bag, which
1 do not align well with the characteristic features of any of the existing categories. Therefore, the probability
1 that the object belongs to one of the listed categories—most plausibly a range hood—can be estimated at
" about 75. </think>
| Output: 75

Figure 15: Bad example for 3D OOD detection task on ModelNet40.
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