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ABSTRACT

Multimidal Large Language Models (MLLMs) have demonstrated impressive ca-
pabilities in textual and 2D visual reasoning, yet their ability to understand and
reason over 3D data remains limited. The issues become more challenging for
understanding standalone 3D point cloud due to the high interclass confusion. In
this work, we propose Point-Graph LLM (PGLLM), a framework that enables
more effective 3D point cloud understanding by integrating in-context prompt-
ing and score refinement at test-time, respecting supporting data manifold. Our
method first employs a pre-trained point cloud encoder which are used to construct
a graph where edges encode visual similarity. Each support point cloud sample
is converted to a textual caption via pre-trained PointLLM. For a test query, the
graph is used to retrieve relevant neighbors whose captions serve as contextual
demonstrations for a second stage LLM for final reasoning, a process we term in-
context guidance. Furthermore, we introduce a confidence score refinement mech-
anism based on label propagation to enhance the reliability of LLM predictions for
classification and out-of-distribution (OOD) detection tasks. All above optimiza-
tions are carried out fully at test-time. Extensive experiments across diverse 3D
datasets and tasks demonstrate that PGLLM consistently improves accuracy and
robustness over prior baselines with very almost no additional computation cost,
showcasing a promising direction toward native 3D reasoning with MLLMs.

1 INTRODUCTION

While multimodal large language models (MLLMs) have revolutionized textual and 2D visual rea-
soning, their ability to interpret and reason about 3D environments remains fundamentally limited.
Recent efforts Tang et al. (2024); Qi et al. (2024a) have explored 3D understanding with MLLMs
by equipping them with mechanisms to perceive 3D information, often through auxiliary modal-
ities or intermediate representations. Typically, these approaches operate by either projecting 3D
point clouds into 2D images Zhu et al. (2023) or by piping pre-extracted features into the language
model Xu et al. (2024); Guo et al. (2023). While these pipelines demonstrate promising results,
they fall short in granting MLLMs direct access to the underlying geometric structure of 3D data.
Consequently, enabling MLLMs to natively process and reason over rich 3D point cloud information
remains an open and challenging research question.

A notable step in this direction is PointLLM (Xu et al., 2024), which introduces a framework capable
of understanding colored 3D object point clouds in response to human instructions. PointLLM
fuses geometric, appearance, and linguistic information by coupling a point cloud encoder with
a pre-trained LLM such as LLaMA (Touvron et al., 2023). To handle downstream tasks such
as classification or captioning, PointLLM adopts a two-stage pipeline, where the PointLLM first
generates a textual description, and a second stage LLM interprets this output for final task-specific
predictions. While this method demonstrates competitive performance, it faces a key limitation,
high inter-class visual similarity in 3D point clouds often leads to confusion, particularly when each
point cloud is interpreted in isolation. As a result, models may struggle to distinguish fine-grained
differences between closely related categories, leading to reduced reliability.
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Features 
Graph

A three-dimensional object model featuring an animated, stylish black boat. This 
boat is designed with a sharply pointed prow, ideal for cutting through water at 
high speeds. The boat…

Caption1:

This is a 3D object model of a cartoon-style black bathtub. The model exhibits a 
smooth, black ceramic surface with a sleek design typically found in modern 
bathrooms…

Caption2:

Caption3:
The 3D model is of an animated bathtub, colored black. This model is not realistic, instead it is 
designed in a stylized, cartoon-like format that is usually found in animated films or video games…

(GT: bathtub)

(GT: bathtub)

(GT: bathtub)

Approach of PointLLM

<think> Based on the description 
of a 3D object featuring a 
stylish black boat, the most 
similar category from the 
provided list is car. <\think> 
Output: < car >

Assign the caption to the most
likely category.

Categories:<…>

Caption1:< A three-dimensional
object model featuring an
animated, stylish black boat …>

Approach of Point-Graph LLM

<think> While the caption describes this 3D object as
“a stylish black boat,” similar captions call it a
“rectangular bathtub.” Since “boat” is not among the
given categories, thus it‘s classified as bathtub.
<\think>
Output: < bathtub >

Assign the caption to the most likely category. Also need
to consider the captions with the similar features of the
3D point cloud.

Categories:<…>

Caption1:< A three-dimensional object model featuring an
animated, stylish black boat …>

Captions with similar features:<Caption2, Caption3>

query sample in-context samples other samples

Figure 1: Manifold-aware in-context guidance leverages the 3D captions of adjacency nodes as
demonstration for downstream understanding tasks.

To overcome this limitation, we draw inspiration from the recent success of In-Context Learning
(ICL) (Agarwal et al., 2024; Li et al., 2023a; Brown et al., 2020), which enables LLMs to general-
ize to novel tasks by conditioning on a small set of demonstrations provided in the prompt. ICL has
shown strong performance across various domains, including multi-modal settings (Tsimpoukelli
et al., 2021; Jiang et al., 2024b; Huang et al., 2024), where LLMs are guided by examples combining
visual example and text descriptions. The effectiveness of ICL crucially depends on the availabil-
ity of informative and task-relevant demonstrations, e.g. image-text pairs. Selecting relevant and
conducive demonstrations thus remain a open challenge.

To address this challenge, we propose an in-context learning strategy that leverages the manifold
structure of unlabeled supporting data, which may be maintained independently or drawn from the
test set. We represent this manifold as a graph, where each node corresponds to a 3D point cloud
sample. To enrich each node, we employ PointLLM to generate a caption using the standard prompt
”What is this?”. The affinity between nodes is computed based on feature similarity in the embed-
ding space of a pre-trained 3D encoder (Yu et al., 2021a). At inference time, for a given query point
cloud, we identify its neighboring nodes in the graph and append their corresponding 3D captions
to the query prompt. This augmented prompt is then passed to the second-stage LLM (e.g., Chat-
GPT), enabling it to perform context-aware reasoning. We refer to this mechanism as in-context
guidance, which injects semantically relevant knowledge into the LLM’s reasoning process at test
time, without requiring model retraining.

Moreover, for classification-related downstream tasks such as recognition and out-of-distribution
(OOD) detection, the confidence calibration of LLM outputs is critical for robust decision-
making (Xiao et al., 2022). Relying solely on raw predictions from LLMs may be risky, especially
when predictions are overconfident or miscalibrated. To address this, we further tap on the mani-
fold build upon the supporting data and employ a refinement step, where predicted confidences are
used to smooth and correct noisy labels on the graph. This is implemented via a lightweight label
propagation algorithm (Zhu & Ghahramani, 2002), allowing the model to refine its predictions by
considering the consistency and confidence of nearby nodes. In this way, even anecdotal or ambigu-
ous predictions on individual samples can be improved by leveraging the collective structure of the
data.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In summary, we propose a novel 3D point cloud understanding framework Point-Graph LLM that
integrates in-context learning, graph-based reasoning, and confidence-aware label propagation. By
bridging the gap between geometric perception and LLM reasoning, our approach enables more
accurate, interpretable, and robust 3D understanding. The main contributions are summarized as
follows.

• We propose an in-context guidance mechanism to optimize the effectiveness of 3D point
cloud LLM for downstream tasks. This approach leverages the test-time data manifold to
construct helpful demonstrations to enrich the prompt.

• We introduce a score-based inference mechanism that further improves the performance
of LLMs on classification related downstream tasks by refining the initial predictions on
individual samples.

• We conduct extensive experiments on multiple downstream tasks and diverse 3D point
cloud datasets, demonstrating consistent performance gains over existing baselines across
all settings.

2 RELATED WORK

Large Language Models for 3D Understanding. Large Language Models (LLMs) have demon-
strated remarkable performance across a wide range of natural language and 2D vision tasks (Brown
et al., 2020; Achiam et al., 2023; Touvron et al., 2023). Recently, there has been growing interest
in extending LLMs to 3D understanding (Hong et al., 2023; Qi et al., 2024a;b; Yang et al., 2025;
Xu et al., 2024; Guo et al., 2023; Yuan et al., 2025). 3D-LLM (Hong et al., 2023) introduces a
family of LLMs grounded in physical 3D reasoning, laying the foundation for language-guided 3D
perception. Subsequent approaches such as PointLLM (Xu et al., 2024) and Point-Bind (Guo et al.,
2023) directly process colored object point clouds by combining point cloud encoders with pre-
trained LLMs, enabling open-vocabulary 3D understanding. ShapeLLM (Qi et al., 2024a) pioneers
the use of multi-view distillation and introduces the ReCon++ encoder, establishing a 3D multi-
modal evaluation benchmark (3D MM-Vet) to unify embodied 3D interaction tasks. GPT4Point (Qi
et al., 2024b) extends the capabilities of LLMs to handle point cloud captioning and visual question
answering. Similarly, LiDAR-LLM (Yang et al., 2025) focuses on outdoor scene understanding by
integrating LiDAR data with LLMs for large-scale 3D reasoning. While these methods demonstrate
the potential of LLMs for 3D tasks, they typically treat each point cloud in isolation and do not fully
exploit the structure of the data manifold.

In-Context Learning. In-context learning (ICL)(Brown et al., 2020) enables large language mod-
els to perform downstream tasks by conditioning on a set of demonstrations, without any parameter
updates. Initially developed for natural language tasks(Zhang et al., 2022; Li et al., 2023b), ICL has
since been extended to multi-modal domains. For instance, Flamingo (Alayrac et al., 2022) adapts
ICL to vision-language tasks by incorporating cross-modal attention, while many-shot prompting
strategies (Jiang et al., 2024b; Huang et al., 2024) have been shown to significantly enhance the
effectiveness of ICL in image classification and question answering. These works demonstrate that
with appropriate context, LLMs can generalize across diverse tasks in a flexible and label-efficient
manner. However, applying ICL to 3D understanding remains underexplored, particularly in scenar-
ios where constructing relevant demonstrations is non-trivial due to limited supervision.

Manifold Learning for Visual Tasks. Manifold learning has been widely adopted to enhance visual
recognition tasks by modeling the intrinsic geometry of data distributions. Graph-based methods (Li
et al., 2025; Stojnić et al., 2024; Chen et al., 2025) leverage similarities in feature space to propagate
high-confidence labels or scores, improving performance in zero-shot and few-shot settings. For
instance, label propagation techniques have been combined with graph neural networks (Bao et al.,
2024; Stadler et al., 2021; Wu et al., 2023) to improve the separation between in-distribution (ID)
and out-of-distribution (OOD) samples. Beyond classification, graph-based selection has also been
applied in 3D domains, as demonstrated in GraphI2Ps (Bie et al., 2025), which filters false matches
during point cloud registration via neighborhood pruning. While these methods focus on traditional
backbones or vision-language models, our work is the first to integrate manifold learning into the
in-context learning process of LLMs, enabling context-aware reasoning over 3D point clouds by
structurally selecting and organizing prompts from the data manifold.
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3D Point Clouds

3D 
Encoder

3D Embeddings Build Graph

What is this ?

The 3D object model represents an eccentrically designed 
airplane, predominantly colored grey with an engaging 
contrast of black and white propellers at the front. The 
airplane's nose wings, retracted towards the fuselage when 
at rest, contribute to its unique aerodynamic setup.

PointLLM Model

3D 
Encoder

Construct Prompt

Prompt

Answers

Get Initial Answers

3D Object
Captioning

3D OOD
Detection

3D 
Recognition

This is a 3D model 
of an architectural 
hood …

What is this?
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Figure 2: Overview of the proposed framework for PGLLM. After encoding the 3D test samples,
the framework feeds them into PointLLM for caption generation and uses them to construct a KNN
graph. Initial answers are then synthesized via LLM inference. Subsequently, leveraging relational
structures within the KNN graph, we introduce an answer iteration mechanism to optimize perfor-
mance on downstream tasks.

3 METHODOLOGY

3.1 PRELIMINARIES: POINTLLM AND 3D CAPTIONING

We begin by formalizing the setup. Let Du = {xi}Nu
i=1 denote an unlabeled 3D point cloud support

dataset with l categories, Du may be the testing dataset or any unlabeled reference dataset. Let fp
be a pre-trained point cloud encoder and we apply fp to the dataset yields a sequence of point cloud
features:

P = {p1, p2, . . . , pNu
}, pi = fp(xi).

For each sample xi, we use the default prompt “What is this?” with PointLLM (Xu et al., 2024)
to generate a textual caption ci, resulting in a caption set, C = {c1, c2, . . . , cNu

}. These captions
serve as high-level semantic descriptions of the point clouds and form the basis for further in-context
learning and downstream tasks.

3.2 IN-CONTEXT GUIDANCE VIA GRAPH NEIGHBOR RETRIEVAL

In-context learning (ICL) allows LLMs to perform downstream tasks by conditioning on a set of
relevant demonstrations embedded within the input prompt. To construct effective in-context guid-
ance for each test sample, we build a graph G = (V,E), where each node vi ∈ V represents a point
cloud xi, and edges eij ∈ E encode pairwise similarity between samples. Specifically, we compute
the cosine similarity between point cloud features pi and pj , and define symmetric the edge weight
matrix W ∈ RNu×Nu following a K-Nearest Neighbors (KNN) criterion,

Wij =

{
eij if eij ∈ TopK({eij}Nu

j=1)

0 otherwise
, s.t. eij =

< pi, pj >

||pi|| · ||pj ||
(1)

For each query sample xi, we retrieve its K nearest neighbors on the graph, yielding a neighbor
set Xi = {xi1 , . . . , xiK} and the corresponding caption set Ci = {ci1 , . . . , ciK}. These captions
serve as in-context demonstrations appended to the prompt, illustrated in Fig. 1 as “Caption2”,
“Caption3”, etc. This enables the LLM to reason about the query with reference to structurally
similar samples. New query samples not attached to the supporting graph can be integrated into the
graph without much computing overhead following the dynamic graph expansion scheme (Li et al.,
2025).

4
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3.3 SCORE REFINEMENT VIA LABEL PROPAGATION

Unlike conventional classification methods that directly predict class labels, we guide the LLM to
output class confidence scores for each 3D caption. This score-based formulation enhances robust-
ness and enables downstream tasks such as OOD detection.

3D Recognition: Given a 3D caption ci, we prompt the LLM to output a per-category score, S(i)
l ∈

Rl, where each element reflects the confidence of respective class label. Aggregating across the
dataset yields the initial score matrix, S0 ∈ Rl×Nu . To refine predictions by leveraging geometric
similarity among point clouds, we apply label propagation (Zhu & Ghahramani, 2002) over the
graph W . Let St denote the refined score matrix at iteration t. The update rule is:

St = αSt−1W̃ + (1− α)S0, W̃ = D− 1
2WD− 1

2 , D = diag(
∑
j

Wij),

ŷ = argmax
i

St,
(2)

where ŷ gives the final predicted class for each sample, and α controls the balance between the
initial LLM output and propagated scores.

3D OOD Detection: For OOD detection, we prompt the LLM to produce a single confidence score
S(xi) ∈ R for each caption, indicating its similarity to the known in-distribution classes. A threshold
δ is used to determine OOD status:

ŷ =

{
OOD if S(xi) ≤ δ,

ID otherwise.
(3)

This scalar score can be smoothed through the same graph-based propagation mechanism as in Eq. 2
with l = 2.

3D Caption Refinement with In-Context Learning: For the 3D object captioning task, we enhance
the semantic quality of the initial PointLLM-generated captions using in-context refinement. We
reuse the same graph-based strategy to select neighboring samples with semantically and structurally
relevant captions. These are appended as demonstrations to the input prompt for each query caption.
Unlike recognition tasks, the goal here is caption correction rather than classification. We guide
the LLM to preserve the original semantics but improve fluency and fix any factual errors. This
leverages the LLM’s generative ability to produce more accurate and natural descriptions.

3.4 FRAMEWORK OVERVIEW

An overview of PGLLM is presented in Fig. 2. First, we extract 3D features from the test set using
a frozen point cloud encoder. These features are passed to PointLLM to generate initial captions.
A KNN graph is then constructed over the feature space to capture local geometric relationships.
Based on this graph, we identify structurally similar neighbors for each sample, whose captions are
used as in-context demonstrations. Depending on the downstream task we summarize the test-time
optimization practices as follows. An illustration is deferred to the Appendix.

• For 3D recognition, the LLM outputs class-wise scores, which are further refined via graph-
based label propagation.

• For OOD detection, scalar similarity scores are computed, refined via graph-based label
propagation and eventually thresholded to determine OOD status.

• For captioning, in-context refinement is applied to enhance the quality of generated text
while maintaining semantic fidelity.

This unified framework leverages LLMs not only as language generators but also as structured rea-
soning engines capable of adapting to multiple 3D tasks with minimal supervision.

5
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: We evaluate our method on four well-established 3D point cloud benchmarks. Model-
Net40 (Wu et al., 2015) contains 2,468 test 3D objects across 40 categories. ShapeNetCore (Chang
et al., 2015) s a canonical subset of the full ShapeNet repository with 5,158 unique test models
from 55 object categories. Following PointLLM (Xu et al., 2024), we sample 200 objects from
Objaverse (Deitke et al., 2023) for testing. S3DIS (Armeni et al., 2016) provides semantically seg-
mented 3D point clouds from indoor environments and we follow Chen et al. (2025) to select 8,931
point clouds with rich semantic annotations for evaluation. For OOD dataset partitioning, we follow
the 3DOS protocol Alliegro et al. (2022) to divide ShapeNetCore into SN1, SN2, and SN3 subsets.
Similarly, we partition ModelNet40 into MN1, MN2, and MN3 subsets. Further dataset details are
provided in the supplementary material.

Implementation Details: We use Point-BERT (Yu et al., 2021b) as the 3D encoder and a pre-trained
PointLLM-7B (Xu et al., 2024) to generate initial captions. We evaluate DeepSeek-V3 (Liu et al.,
2024), Qwen-Plus (Yang et al., 2024) and GPT-4 Achiam et al. (2023) as the second stage LLMs.
As for KNN Graph construction, we set the K-value of 3. For score propagation, we set the α to 0.5,
and the number of iterations T to 5 in Eq. 2.

Competing Methods: We compare against existing LLM-based 3D understanding methods: In-
structBLIP (Dai et al., 2023), LLaVA (Liu et al., 2023), 3D-LLM (Hong et al., 2023), Point-Bind
LLM (Guo et al., 2023), ShapeLLM (Qi et al., 2024a), PointLLM (Xu et al., 2024), and MiniGPT-
3D (Tang et al., 2024). Both PointLLM and MiniGPT-3D employs ChatGPT 4 as second stage LLM
for classification, thus facilitating fair comparison. To the best of our knowledge, this is the first work
to explore 3D OOD detection within an LLM framework. Therefore, we compare against several
VLM-based zero-shot OOD baselines: MCM (Ming et al., 2022), NegLabel (Jiang et al., 2024a),
ZLap (Kalantidis et al., 2024), and GSP (Chen et al., 2025). Finally, we evaluate two variants of
PGLLM with different support set Du. When testing data distribution is available, i.e. transduc-
tive inference, we use all testing data as the support dataset and refer to the method as PGLLMT.
Alternative, we leverage an external dataset, Objaverse, to build the support dataset and refer to
the method as PGLLMO. Specifically, we randomly selected 100K samples and their correspond-
ing captions from the 660K training data of Objaverse to build the graph. For both PGLLMO and
PGLLMT, PointLLM-7B is used to generate initial captions. All competing methods use the same
3D encoder as PointLLM (Xue et al., 2024).

Evaluation Metrics We use classification accuracy (ACC) for 3D recognition, and AUROC and
FPR95 for 3D OOD detection, which are standard metrics in OOD evaluation. For 3D object cap-
tioning, we assess semantic alignment using Sentence-BERT (Reimers & Gurevych, 2019), Sim-
CSE (Gao et al., 2021), and GPT-4 as evaluators.

Method 2nd Stage
LLM

ModelNet40 ShapeNetCore
MN1 MN2 MN3 Average SN1 SN2 SN3 Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MCM(Ming et al., 2022) – 85.3 53.6 80.2 74.2 77.5 72.6 81.0 66.8 85.1 51.6 83.2 46.1 66.4 75.8 78.2 57.8
NegLabel(Jiang et al., 2024a) – 74.3 77.4 65.8 86.6 61.5 81.9 67.2 82.0 60.6 87.8 80.6 78.6 88.0 48.3 76.4 71.6
ZLaP(Kalantidis et al., 2024) – 72.8 99.8 86.1 61.1 70.8 76.0 76.6 79.0 88.2 52.8 72.3 66.4 77.4 90.0 79.3 69.7
GSP(Chen et al., 2025) – 82.4 77.0 77.9 65.4 76.1 76.5 78.8 73.0 90.6 38.9 70.7 64.0 79.7 93.7 80.4 65.5

PointLLM-7B(Xu et al., 2024) GPT-4 84.0 100.0 82.1 100.0 74.0 100.0 80.0 100.0 80.1 100.0 88.8 100.0 94.1 92.2 87.7 97.4
PGLLMO (Ours) GPT-4 87.3 56.6 86.2 44.3 79.2 60.8 84.3 53.9 79.7 55.8 90.9 41.3 96.0 26.5 88.9 41.2
PGLLMT (Ours) GPT-4 89.6 53.1 87.2 43.0 80.8 60.2 85.9 52.1 81.8 52.4 93.9 26.7 97.6 9.7 91.1 29.6
PGLLMT (Ours) DeepSeek-V3 86.4 70.0 83.6 59.1 76.2 68.2 82.1 65.8 83.8 62.3 91.7 36.4 97.1 18.6 90.9 39.1
PGLLMT (Ours) Qwen-Plus 86.5 68.4 84.2 47.3 77.9 71.7 82.9 62.5 81.4 61.8 92.8 33.0 97.9 11.1 90.7 35.3
PGLLMT (Ours) Qwen3-VL-8B 85.8 67.4 84.4 47.5 74.2 71.3 81.5 62.0 81.2 48.0 91.9 30.3 94.4 29.7 89.2 36.0
PGLLMT (Ours) Llama3.1-8B 57.1 86.3 54.9 87.2 50.4 97.9 54.1 90.4 56.3 89.7 81.9 68.3 92.7 44.6 80.0 67.5
PGLLMT (Ours) GPT-oss-20B 83.0 80.4 74.5 76.8 72.6 94.0 76.7 83.7 81.9 57.1 92.4 30.3 96.7 21.2 90.3 36.2

Table 1: Evaluation of 3D OOD detection on ModelNet40 and ShapeNetCore. Bold and underlined numbers
denote the best and second-best results, respectively. Each ”MNx” or ”SNx” denotes the known class split and
the rest are unknown.

4.2 EXPERIMENTAL RESULTS

3D OOD Detection: Tab. 1 summarizes the results of our comprehensive experiments, highlighting
the following key observations. (i) Our PGLLMT framework, when integrated with GPT-4, estab-
lishes new state-of-the-art results on the ModelNet40 benchmark. It achieves an outstanding 85.9%
AUROC on average, outperforming the previous best method (MCM) by 4.9%, while also reduc-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method 2nd Stage 3D Recognition 3D Captioning
LLM (I) ACC (C) ACC Average GPT-4 S-BERT SimCSE

3D-LLM(Hong et al., 2023) - - - - 33.4 44.5 43.7
Point-Blind(Guo et al., 2023) - 51.9 39.7 45.8 - - -
ShapeLLM-7B(Qi et al., 2024a) - - - - 46.9 48.2 49.2
ShapeLLM-13B(Qi et al., 2024a) - - - - 49.0 48.5 50.0

InstructBLIP-7B(Dai et al., 2023) GPT-4 19.5 31.5 25.5 45.3 47.4 48.5
InstructBLIP-13B(Dai et al., 2023) GPT-4 26.0 31.4 28.7 45.0 45.9 48.9
LLaVA-7B(Liu et al., 2023) GPT-4 39.7 39.7 39.7 46.7 45.6 47.1
LLaVA-13B(Liu et al., 2023) GPT-4 37.1 36.1 36.6 38.3 46.4 45.9
MiniGPT-3D(Tang et al., 2024) GPT-4 61.8 60.0 60.9 57.1 49.5 51.4
PointLLM-7B(Xu et al., 2024) GPT-4 53.4 51.8 52.6 44.9 47.5 48.6
PointLLM-13B(Xu et al., 2024) GPT-4 53.0 52.6 52.8 48.2 47.9 49.1
PGLLMO (Ours) GPT-4 53.1 53.0 53.1 49.1 48.4 48.9
PGLLMT (Ours) GPT-4 63.1 61.8 62.5 50.5 48.9 49.4
PGLLMT (Ours) DeepSeek-V3 62.6 62.0 62.3 - - -
PGLLMT (Ours) Qwen-Plus 43.1 41.7 42.4 - - -

Table 2: Comparison of results on 3D recognition (ModelNet40) and 3D captioning (Objaverse). Recogni-
tion performance is evaluated using two prompt types: an Instruction-type (I) prompt (“What is this?”) and a
Completion-type (C) prompt (“This is an object of ”).

ing the critical FPR95 metric to 52.1%. We notice that both PointLLM-7B and ours methods use
ChatGPT 4 as the second stage LLM. (ii) On ShapeNetCore, PGLLMT with GPT-4 demonstrates
breakthrough performance, attaining 97.6% AUROC on SN3 and a remarkably low FPR95 of 9.7%.
This reflects an 7.1% AUROC improvement over feature-based methods such as GSP. Overall, our
framework achieves an average AUROC of 91.1% and an average FPR95 of 29.6%, setting new
benchmarks across key metrics. These consistent gains across two datasets affirm the effectiveness
of our graph-based mechanism. (iii) Because GPT-4 tends to assign either 0 or 100 when scoring
test samples, the baseline performs very poorly on the FPR95 metric, with values almost always
equal to 100.0. By introducing score propagation, our method effectively alleviates this issue and
yields much smoother, more evenly distributed scores across all samples. (iv) Using GPT-4 as the
second stage LLM yields notable improvements in AUROC with +3.8% on ModelNet40 and +0.2%
on ShapeNetCore compared to DeepSeek-V3. The performance gap between GPT-4, Qwen-Plus
and DeepSeek-V3 variants highlights the ability of our framework to harness stronger LLMs for
enhanced 3D understanding. (v) With both testing data (transductive setting) and external dataset as
supporting dataset, PGLLMT/O outperforms the baseline (PointLLM-7B). This suggest the robust-
ness of the graph-based method.

AUROC FPR95 ACC

3D OOD Detection 3D Recognition
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Figure 3: Results on real-world benchmark S3DIS. We re-
port 3D OOD detection and 3D recognition tasks.

3D Recognition: The results in Tab. 2
reveal several key insights. i) Our
PGLLMT framework achieves an average
accuracy of 62.3% with DeepSeek-V3 and
62.5% with GPT-4, outperforming all ex-
isting state-of-the-art methods. In partic-
ular, it surpasses the strongest baseline,
MiniGPT-3D, by +1.6% for average. ii)
The framework shows strong robustness
across different prompt types. Specif-
ically, it outperforms MiniGPT-3D by
1.3% with the instruction prompt “What
is this?” and by 1.8% with the completion
prompt “This is an object of”. This dual-
prompt advantage highlights the adapt-
ability of our architecture to diverse query
formats. iii) Although all competing meth-
ods rely on GPT-4 for evaluation, our framework achieves 62.3% average accuracy even with
DeepSeek-V3 (much lower per token cost than GPT-4) as second stage LLM, surpassing all GPT-4-
based baselines. This suggests lower cost LLMs may achieve comparable performance. However,
Qwen-Plus demonstrates notably lower performance on the 3D Recognition task, primarily due to
its limited ability to generate long numerical sequences, which adversely affects its overall results.
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Given a free-form LLM-generated description of a 3D object (which may 
be inaccurate), calculate the probability (0-100) that it belongs to any 
specified category. Consider similar descriptions of other objects in that 
category. 

Categories：< desk, guitar, door,  … >

The description requiring probability calculation:  < The 3D object model 
is a toy designed to replicate a space ship. It has a pointed front, likely 
designed to …>

Descriptions of 3D objects with similar features: <
1. This is a model of a classic acoustic guitar with a traditionally curved 
body, a long…
2. A 3D model of a traditional, non-electric guitar featuring a deep, jet-
black body…
3. This is a 3D model of an electric guitar, predominantly in a dark black 
shade… >

Given a free-form LLM-generated description of a 3D object, calculate the 
probability (0-100) that it belongs to any specified category. 

Categories：< desk, guitar, door,  … >

The description requiring probability calculation:  < The 3D object model is a 
toy designed to replicate a space ship. It has a pointed front, likely 
designed to ….>

20

80

What is this?

The 3D object model is a toy designed to replicate a space ship. It has
a pointed front, likely designed to represent the streamlined,
aerodynamic designs of actual spacecraft. This toy, which might be
constructed of plastic or another lightweight material, could serve as
an educational tool for children to learn about space exploration or
simply as a playful item to spark imaginative flights of fancy.

Ground Truth: guitar

What is this?
Ground Truth: 
A blue cartoon

This is a 3D model of a magical cartoon pony, which is entirely
painted in a vibrant shade of blue. The pony's body, tail, and mane
hair exhibit a uniform blue color. The design and appearance
suggest it might be associated with a fantasy or magical theme.
This model could be utilized in various animation projects, video
games, or even as a digital toy for interactive applications,
enhancing the user's experience with its charming and friendly
appearance.

Given a free-form description of a 3D object, please according to 
additional descriptions of other 3D objects that share similar 
features with this object which has the same category to optimize 
the given description. The description of this 3D object and 
additional descriptions are generated by an LLM and may be 
inaccurate. If all descriptions are similar, please do not make any 
changes. If the description content is different, please make slight 
adjustments to this 3D description and do not adjust too much.

The description requiring optimize: This is a 3D model of a magical 
cartoon pony, which is entirely painted in a vibrant shade of blue. The 
pony's body, tail, and mane hair exhibit a uniform blue color…..

The description requiring probability calculation: 
< This 3D model depicts a charming cartoon pony with a solid body 
that is entirely white except for its tail, which boasts a vivid purple 
color. ….
The 3D model is of a full-sculpt, vivid yellow horse standing freely. 
The horse boasts a prominent mane around its neck and a tail, adding 
to its realistic ….
This 3D model depicts a charming cartoon pony with a solid body that 
is entirely white except for its tail, which boasts a vivid purple 
color…..>

This is a 3D model of a cartoon pony with a solid, vibrant blue 
body, mane, and tail. The pony features a rounded, friendly design, 
emphasizing a cheerful and approachable character. Its simple yet 
charming appearance makes it suitable for animation, games, or 
interactive applications, especially in fantasy or magical settings.

Approach of PointLLM

Approach of Point-Graph LLM

3D OOD detection 3D Object Captioning

Figure 5: Qualitative examples of prompt questions and PGLLM’s predictions.

3D Object Captioning: The results in Tab. 2 show that our method performs competitively on the
3D object captioning task, consistently outperforming the PointLLM-7B baseline across all three
evaluation metrics. Since the evaluation relies on subjective judgments from an LLM, PGLLM uses
GPT-4 exclusively for assessment to ensure a consistent evaluation standard. While our approach
does not yet reach state-of-the-art performance, this gap is likely attributable to the limited size of the
test dataset. In low-data regimes, constructing optimal graph structures is more challenging, which
can constrain performance. Nevertheless, the observed improvements highlight the promise of our
graph-based in-context guidance strategy for 3D captioning tasks. This suggests careful selection of
second stage LLM is still necessary.
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3 4 5 6 7 8 9

Average AUROC 

(a) 3D OOD detection on ModelNet40 (b) 3D OOD detection on ShapeNetCore

Average AUROC 

K K

Figure 4: Different number of K-values for 3D OOD detec-
tion on two datasets.

Experiments on Real-world Bench-
mark: Most existing 3D LLMs Xu
et al. (2024); Guo et al. (2023);
Tang et al. (2024) have been eval-
uated primarily on synthetic CAD
datasets, leaving a validation gap
in real-world scenarios. To ad-
dress this, we conduct experiments
on the real-world S3DIS dataset. As
shown in Fig. 3, we evaluate both
PointLLM and PGLLM on 3D out-
of-distribution (OOD) detection and
3D recognition tasks. The results
demonstrate that our method consistently outperforms baseline approaches, confirming the effec-
tiveness of our graph-based strategy in practical settings. Notably, PGLLM remains compatible
with lower-cost second-stage LLMs, achieving performance that is comparable, or even superior to
higher-cost alternatives.
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Ground Truth : bed (ID sample)
Caption: This is a 3D model of an object that resembles 
a rectangular black board, distinguished by a distinctive 
feature - two evenly spaced white dots. Its appearance 
suggests that it might be a part of some gaming 
equipment, a decorative item, or possibly a functional 
element in a board game, depending on the nature of the 
dots. Its simple design leaves room for interpretation 
and could invoke a sense of mystery or fun.
GPT-4 judgment : 20 (Tendency towards OOD)

Ground Truth : bed (ID sample)
Caption: The 3D object model depicts a large, bouncy bed 
commonly known as a trampoline. This trampoline features a 
rectangular shape and stands on four sturdy legs, each 
equipped with a handle for easy mobility. The design allows 
for a lot of fun and physical activity, making it suitable for 
both kids and adults. Its usage extends to recreational 
purposes, fitness routines, and competitive sports, offering a 
safe space to bounce, flip, and twist, thereby developing 
agility, hand-eye coordination, and balance.
GPT-4 judgment : 85 (Tendency towards ID)

Ground Truth : bed (ID sample)
Caption: This 3D object model represents a 
cartoonish bed styled in a solid black color. 
Despite its whimsical design indicating that it's 
not a realistic representation, it still possesses 
key elements that define a bed, such as a 
mattress and a headboard. This simplified, 
stylized design could be an element in an 
animation or a game. Its uniform black color 
implies a basic, minimalist aesthetic.
GPT-4 judgment : 100 (Tendency towards ID)

Ground Truth : bed (ID sample)
Caption: The 3D object model is a bed structure 
consisting of a rectangular base with slightly sloping 
sides, painted in a smooth grey color. Positioned on 
top of the base are two thin mattresses, one on 
each side, both covered with white bed sheets. The 
simplicity and functionality of the structure 
suggest it could be used in dorm rooms or simple 
home setups for sleeping or resting purposes.
GPT-4 judgment : 100 (Tendency towards ID)

KNN Graph

Score Propagation

20

100

100

85 20

100

100

85
67

85

87

79

query sample in-context samples

Initial scores Final scores

Figure 6: Qualitative example demonstrating the effectiveness of score propagation.

In-context Score ModelNet40 ShapeNetCore
Guidance Propagation ACC↑ AUROC↑ FPR95↓ ACC↑ AUROC↑ FPR95↓

- - 52.5 80.4 100.0 55.5 88.2 54.9
• - 59.7 83.3 100.0 60.7 89.2 47.2
✓ - 60.2 83.1 100.0 61.0 89.5 46.0
- ✓ 56.7 83.5 62.0 59.3 89.8 44.7
✓ ✓ 63.1 85.9 52.1 62.4 91.1 29.6

Table 3: Ablation study on two datasets. ACC refers to the results of 3D recognition experiments, while AU-
ROC and FPR95 correspond to the OOD detection experiments. Both AUROC and FPR95 represent averages
across all subsets of the ModelNet40 and ShapeNetCore datasets. The • denotes in-context guidance derived
through direct nearest-sample retrieval without graph.

4.3 ABLATION STUDY

We conduct an ablation study with results summarized in Tab. 3. All experiments use ChatGPT4 as
the second-stage LLM and are conducted on the ModelNet40 and ShapeNetCore datasets for both
3D recognition and 3D OOD detection. We begin with a baseline that feeds the generated 3D caption
of each query directly into the LLM without additional context. We also evaluate a variant where
the query retrieves its nearest neighbors via KNN (K = 3) to form the in-context prompt, bypassing
graph construction. This variant yields results comparable to the graph-based method, likely because
both retrieve highly similar neighbors due to the small K. However, omitting the graph structure
prevents the use of score propagation for further refinement. Introducing in-context guidance alone
yields significant performance gains over the baseline, demonstrating its effectiveness in injecting
relevant contextual cues into the LLM. In contrast, score propagation alone provides only modest
improvements. Notably, combining in-context guidance with score propagation leads to substantial
performance boosts across both tasks, underscoring their complementary and synergistic effects.

4.4 FURTHER ANALYSIS

Qualitative Analysis: Fig. 5 showcases qualitative examples of PGLLM on 3D OOD detection
and 3D object captioning tasks. For 3D OOD detection, we observe that PointLLM’s reliance on
single-caption inputs leads to fragile predictions when faced with ambiguous or hard-to-interpret

9
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Dataset Caption Graph GPT (OOD) GPT(Recog) GPT(Caption) Score(OOD) Score(Recog)
Generation Construction Inference Inference Inference Propagation Propagation

ModeNet40 2630ms 51µs 1951ms 2409ms - 41µs 43µs
ShapeNetCore 2750ms 65µs 2007ms 2688ms - 28µs 29µs

S3DIS 2510ms 81µs 1763ms 1980ms - 31µs 34µs
Objaverse 2690ms 30µs - - 3016ms - -

Table 4: Time consumption of each step for a per-sample, where ms denotes millisecond and µs denotes
microsecond

point clouds. Our in-context guidance mitigates this by providing captions from structurally similar
samples, allowing the LLM to leverage contextual cues for more robust classification. For 3D object
captioning, PointLLM generates captions exhibiting inaccuracies or redundancies. By incorporating
in-context guidance, our method enables the LLM to refine these outputs based on contextual sim-
ilarity, resulting in more accurate and semantically rich descriptions. Fig. 6 qualitatively illustrates
the process of score propagation. It can be observed that when the 3D LLM generates a low-quality
caption for a given sample, it directly leads to a poor score in the second-stage evaluation. How-
ever, by employing the score propagation method, this can be effectively corrected by leveraging the
accurate scores from neighboring samples of the query sample.

Impact of In-Context Example Quantity: To examine the effect of in-context guidance, we vary
K, the number of retrieved captions provided to the LLM, and evaluate 3D OOD detection on
ModelNet40 and ShapeNetCore (Fig. 4). Performance improves as K increases, reaching a dataset-
specific peak at K = 7 for ModelNet40 and K = 4 for ShapeNetCore. Beyond these values,
accuracy declines, likely due to the inclusion of irrelevant or misleading examples that confuse the
LLM. These results underscore the importance of selecting an appropriate number of in-context
examples for optimal performance.

Inference Time: Tab. 4 presents the time consumption of each step in PGLLM across different
datasets. Overall, our method introduces minimal overhead. Processing each sampe requires only
30-90µs for a per-sample during graph construction and 30-50µs for score propagation, while caption
generation and GPT inference cost about several seconds the per-sample time. Notably, even with
graph-based processing, the total additional time per sample remains negligible, demonstrating that
PGLLM maintains high computational efficiency and is practical for real-world deployment.

5 CONCLUSION

In this work, we introduce PGLLM, a novel framework for 3D point cloud understanding. Our
approach constructs a graph to retrieve structurally similar 3D captions for each point cloud, us-
ing them as in-context examples to guide the LLM toward more informed reasoning. In parallel, a
score-based refinement mechanism leverages the intrinsic structure of the test data manifold to en-
hance prediction accuracy. PGLLM achieves competitive results across a range of downstream tasks
and sets new state-of-the-art performance in both 3D out-of-distribution (OOD) detection and 3D
recognition. Extensive experiments on diverse 3D point cloud datasets demonstrate the robustness
and generalizability of our method. We believe this work offers a promising direction for advancing
3D point cloud understanding and integrating LLMs into spatial perception tasks.

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The full implementation code,
along with scripts to reproduce all experimental results, will be released upon acceptance. All
model architectures, hyperparameters, and inference details are explicitly stated in Experiments.
We believe these resources are sufficient to replicate our findings.
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A APPENDIX

A.1 OVERVIEW OF THE TASKS

We illustrate the three tasks addressed in this work in Fig. 7. Our framework integrates 3D point
clouds with large language models by first constructing prompts using PointLLM and a point cloud
feature graph (Step 1), then leveraging LLMs to perform downstream tasks (Step 2). PointLLM
generates free-form descriptions of 3D objects (yellow boxes), which are refined and utilized by the
LLM for tasks including 3D out-of-distribution (OOD) detection, 3D recognition, and 3D object
captioning.

A.2 DATASET PARTITION FOR 3D OOD DETECTION

We follow the benchmark 3DOS, GSP to construct ShapeNetCore and S3DIS datasets for OOD
detection. For the ModelNet40 dataset, we follow the partitioning practice established in the 3DOS
work, dividing it into three subsets based on ascending index order. The specific category parti-
tioning details are presented in Tab 7 5 6. Qualitative visualizations of some dataset samples are
presented in Fig. 8 10.

What is this?

The 3D object model represents an
eccentrically designed airplane,
predominantly colored grey with an
engaging contrast of black…

Given a free-form LLM-generated 
description of a 3D object (which may be 
inaccurate), calculate the probability (0-
100) that it belongs to any specified 
category. Consider similar descriptions of 
other objects in that category. 

Categories：< A, B, C,  … >

The description requiring probability 
calculation:  < The 3D object model 
represents an eccentrically … >

Descriptions of 3D objects with similar 
features: < Description1, Description2,… >

< Score > < Score1, Score2, Score3, … > < The 3D object model has an … >

Step 2:  Utilize LLM to perform various downstream tasks 

3D OOD detection 3D Recognition 3D Object Captioning

3D Embeddings

3D Point Clouds

Encoder Build 

graph

Get captions for all point clouds

Construct a 
corresponding

prompt for 
each point cloud

Step 1: Prompt construction with PointLLM and point cloud feature Graph

PointLLM

Given a free-form LLM-generated 
description of a 3D object (which may be 
inaccurate), compute the similarity 
score(0-100)for each of the following 
categories with this description. 
Consider similar descriptions of other 
objects in that category. 

Categories：< A, B ,C … >

The description requiring probability 
calculation:  < The 3D object model 
represents an eccentrically … >

Descriptions of 3D objects with similar 
features: < Description1, Description2,… >

Optimize the given free-form LLM-
generated description (which may be 
inaccurate) of a 3D object using 
descriptions of similar objects in the same 
category. Make minimal adjustments only 
if differences exist; leave it unchanged if 
all descriptions are similar.

Categories：< A, B ,C … >

The description requiring optimize:       
< The 3D object model represents an 
eccentrically … >

Descriptions of 3D objects with similar 
features: < Description1, Description2,… >

Figure 7: Demonstrations of PGLLM. We propose PGLLM, an efficient and potent framework
that integrates 3D-LLMs with Large Language Models, where the text on a light yellow background
indicates content generated by PointLLM. Furthermore, we demonstrate its operational mechanisms
across 3D recognition, 3D OOD detection and 3D object captioning tasks.

SN1 mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, bird-
house, jar, bowl, bookshelf, stove, bench, display, keyboard, clock, piano

SN2 earphone, knife, chair, pillow, table, laptop, mailbox, basket, file cabinet, cabi-
net, sofa, printer, flowerpot, microphone, tower, bathtub, bag, trash bin

SN3 can, microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, air-
plane, bottle, cap, rocket, rifle, remote, car, bus, motorbike

Table 5: For each distinct out-of-distribution (OOD) subset partition on the ShapeNetCore, the
categories residing within a given subset are designated as in-distribution (ID), whereas categories
from all other subsets are considered entirely OOD.
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Out-of-distribution samplesin-distribution samples

Figure 8: Visualization of the real-world benchmark S3DIS and the categories partition for OOD
detection.

ID window, door, table, chair, sofa, bookcase, clutter

OOD beam, board, ceiling, column, floor, wall

Table 6: S3DIS dataset partitioning for OOD detection: foreground objects as ID and background
objects as OOD.

A.3 PROMPTS AND QUALITATIVE ANALYSIS

We provide the prompts for 3D recognition, 3D OOD detection: and 3D object captioning tasks in
Tab 8. Furthermore, we provide supplementary visual analyses for 3D recognition and 3D OOD
detection tasks in Fig. 11, 12, 13and 14, provided with comprehensive prompts to the LLM. As
evidenced in Fig. 11, the query sample contains an erroneous caption, yet the collective accuracy
of ”vase” annotations within the in-context guidance enables the LLM to yield the correct predic-
tion.Fig. 13 illustrates a scenario where both the query sample and several in-context guidance cap-
tions contain misleading annotations. This induces the LLM to output a neutral score. Nevertheless,
this outcome represents a some improvement over the erroneous predictions generated without in-
context guidance. Despite the fact that the query sample’s caption lacks direct information about the
categories, as illustrated in Fig. 14, the captions of the in-context samples prove crucial for enabling
the LLM to achieve a more accurate classification. However, as shown in Fig. 12, the LLM’s output
is inclined to classify the object as a ”lamp,” which contradicts the ground-truth label of ”faucet.”
This discrepancy is likely attributable to the presence of the word ”lights” in the query sample’s
caption. Despite the in-context samples providing captions containing ”faucet,” the LLM ultimately
assigned a full score of 100 to the ”lamp” category, compared to only 60 for ”faucet.” In Fig. 15, we
present examples where in-context guidance exerts a negative impact. It can be observed that when
the caption generated for the query sample is relatively accurate, but the captions of the in-context
samples contain certain inaccuracies, the second-stage scoring becomes biased.

MN1 airplane, bathtub, bed, bench, bookshelf, bottle, bowl, car, chair, cone, cup,
curtain, desk

MN2 door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, mon-
itor, night stand, person, piano

MN3 plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase,
wardrobe, xbox

Table 7: For each distinct out-of-distribution (OOD) subset partition on the ModelNet40, the cate-
gories residing within a given subset are designated as in-distribution (ID), whereas categories from
all other subsets are considered entirely OOD.
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A.4 IMPACT OF K-VALUES

To further explore the influence of K-values, we test different number of K on 3D recognition task.
The results are shown in Fig. 9, it can be observed that the optimal performance is achieved at K=5
for ModelNet40 and K=6 for ShapeNet, respectively. Furthermore, performance exhibits a declining
trend with increasing K-values, a finding empirically consistent with the conclusions presented in
our prior submission.

(a) 3D recognition on ModelNet40 (b) 3D recognition on ShapeNetCore

Accuracy Accuracy 

58

60

62

64

66

3 4 5 6 7 8 9

60

62

64

66

68

3 4 5 6 7 8 9

K K

Figure 9: Different number of K-values for 3D recognition on two datasets.

Objaverse

ShapeNetCore

ModelNet40

Figure 10: Visualization of the ModelNet40, Objaverse, and ShapeNetCore.
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Tasks Prompts

3D Recognition

Given a free-form description of a 3D object, the content described here belongs to one of the
following 54 categories. Use this description to compute a similarity score (0-100) for each of the
following 54 categories. The description of this 3D object is generated by an LLM and may be
inaccurate. In addition, I will provide you with descriptions of other 3D objects that share similar
features with this object of this category. 0=no relation, 100=perfect match.

categories: mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, birdhouse, jar,
bowl, bookshelf, stove, bench, display, keyboard, clock, piano, earphone, knife, chair, pillow, table,
laptop, mailbox, basket, file cabinet, cabinet, sofa, printer, flowerpot, microphone, tower, bathtub,
bag, trash bin, can, microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, airplane,
bottle, cap, rocket, rifle, remote, car, bus, motorbike.

3D object description: ... (# generated by PointLLM)

Descriptions of 3D objects with similar features: (# generated by PointLLM and seleted by mainfold
learning)
1. ...
2. ...
3. ...

Please output the 54 corresponding similarity scores in the order of the above-mentioned categories,
without any additional explanation.

3D OOD detection

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content
described in the following text pertains to any of the following categories. The description of this
3D object is generated by an LLM and may be inaccurate. In addition, I will provide you with
descriptions of other 3D objects that share similar features with this object of this category. You
need to take these similar 3D model descriptions into account as well. 0=no relation, 100=perfect
match.

categories: plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase,
wardrobe, xbox.

3D object description: ... (# generated by PointLLM)

Descriptions of 3D objects with similar features: (# generated by PointLLM and seleted by mainfold
learning)
1. ...
2. ...
3. ...

Output only a numerical score. Do not provide additional explanations.

3D Object Captioning

Given a free-form description of a 3D object, please according to additional descriptions of other
3D objects that share similar features with this object which has the same category to optimize the
given description. The description of this 3D object and additional descriptions are generated by
an LLM and may be inaccurate. If all descriptions are similar, please do not make any changes. If
the description content is different, please make slight adjustments to this 3D description and do not
adjust too much.

The description requiring optimize: ... (# generated by PointLLM)

Descriptions of 3D objects with similar features: (# generated by PointLLM and seleted by mainfold
learning)
1. ...
2. ...
3. ...

Output only a 3D description. And don’t describe too much.

Table 8: A list of prompts for 3D Recognition, 3D OOD Detection, and 3D Object Captioning tasks
to LLM.
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What is this?

A 3D model of a cartoon-style ornament rendered in black, which is characterized by its shiny, smooth
surface and reflective properties, emphasizing its three-dimensional form. The ornament, with its
simplistic and charming design, could be used for decorative purposes like on a Christmas tree or in a
children's play area, adding a thematic element to the scene.

Ground Truth: vase

Given a free-form description of a 3D object, the content described here belongs to one of the 
following 40 categories. Use this description to compute a similarity score (0-100) for each of the 
following 40 categories. The description of this 3D object is generated by an LLM and may be 
inaccurate. In addition, I will provide you with descriptions of other 3D objects that share similar 
features with this object of this category. 0=no relation, 100=perfect match.

categories： airplane, bathtub, bed, bench, bookshelf, bottle, bowl, car, chair, cone, cup, curtain, desk, 
door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, monitor, night stand, 
person, piano, plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase, 
wardrobe, xbox.

3D object description: A 3D model of a cartoon-style ornament rendered in black, which is
characterized by its shiny, smooth surface and reflective properties, emphasizing its three-
dimensional form. The ornament, with its simplistic and charming design, could be used for decorative
purposes like on a Christmas tree or in a children's play area, adding a thematic element to the scene.

Descriptions of 3D objects with similar features: The 3D model object is a high-shine, jet-black vase
that's perfectly cylindrical in shape. Its sleek design and polished surface give it an air of
sophistication and elegance. As a central element in interior decor, it's used to hold flowers or
decorative objects, enhancing the aesthetic appeal of a room. With its streamlined shape, it would fit
well into a variety of interior styles, from modern to traditional.
The 3D object model depicts an elegant, tall, cylindrical vase, of black color, with a small, preferably 
hidden, round lid on top. It carries the characteristics of a funerary offering vessel, traditionally 
used in ancient Egypt for holding offerings to the gods. Its black hue suggests it could be used to 
store dark colored liquids or flowers. Despite its antique look, it maintains a simple yet sophisticated 
design.
The 3D object in question is a cartoon-inspired, black ornament that resembles a vase. It is dark in 
color and features a simplistic, minimalist design, which is characteristic of the cartoon aesthetic. The 
object appears to be an empty vessel, implying that its primary function is to hold flowers or 
decorative objects. Its cartoonish design suggests that it may be used in animation, video games, or 
other digital media that require 3D objects with a playful or whimsical style.

Please output the 40 corresponding similarity scores in the order of the above-mentioned categories, 
without any additional explanation.

<think> The ornament's use in Christmas decoration might hint at "plant" (via Christmas trees) but the 
examples don't support this. Most categories like "car" or "guitar" have no relevance. "Sofa" or 
"table" are furniture, not decorative ornaments. Notably, the examples provided are all vases, 
reinforcing that category. The scores should reflect this: high for "vase" (95), low for "flower pot" 
(40) due to functional overlap, minimal scores for unrelated categories, and slightly higher for "bottle" 
(30) and "bowl" (25) due to shape similarities. </think>
Output: 0, 0, 0, 0, 0, 30, 25, 0, 0, 0, 15, 0, 0, 0, 0, 40, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 95, 0, 0

In-context 
sample 1

KNN Graph

Figure 11: Qualitative example for 3D recognition task on ModelNet40.
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What is this?

The object is a sturdy, metallic arm supporting two strong, circular lights. The lights are likely used for
illumination and provide a brilliant spread of light in all directions. Its robust construction implies durability
and longevity, making it suitable for both indoor and outdoor uses. The two lights could suggest that the
object is designed to provide comprehensive illumination in darkness or low-light conditions.

Ground Truth: faucet

Given a free-form description of a 3D object, the content described here belongs to one of the following 54 
categories. Use this description to compute a similarity score (0-100) for each of the following 54 categories. 
The description of this 3D object is generated by an LLM and may be inaccurate. In addition, I will provide you 
with descriptions of other 3D objects that share similar features with this object of this category. 0=no 
relation, 100=perfect match.

categories： mug, lamp, bed, washer, loudspeaker, telephone, dishwasher, camera, birdhouse, jar, bowl, 
bookshelf, stove, bench, display, keyboard, clock, piano, earphone, knife, chair, pillow, table, laptop, mailbox, 
basket, file cabinet, cabinet, sofa, printer, flowerpot, microphone, tower, bathtub, bag, trash bin, can, 
microwave, skateboard, faucet, train, guitar, pistol, helmet, watercraft, airplane, bottle, cap, rocket, rifle, 
remote, car, bus, motorbike.

3D object description: The object is a sturdy, metallic arm supporting two strong, circular lights. The lights
are likely used for illumination and provide a brilliant spread of light in all directions. Its robust construction
implies durability and longevity, making it suitable for both indoor and outdoor uses. The two lights could
suggest that the object is designed to provide comprehensive illumination in darkness or low-light conditions.

Descriptions of 3D objects with similar features: This 3D model depicts a sturdy, well-made faucet with a 
distinctive cartoon-like design. It features an attractive polished black finish, complete with a handle for easy 
use. The model clearly reflects a bathroom or kitchen sink, indicating its function as a water fixture 
controlling water flow and used for household cleaning. Despite the cartoon style, the design still conveys an 
overall practical and utilitarian aspect, demonstrating the blend of aesthetics and functionality in everyday 
objects.
The 3D model is a black, cartoon-style faucet handle. This design typically appears in bathrooms or kitchens. 
It is a handle, not a knob, indicating that it is used for controlling the water flow rather than the temperature. 
It has a simple, streamlined shape and is painted in a uniform black color, adding to its cartoonish charm.
The 3D model object is a black, cartoon-style faucet. The model is rendered in a dark color, showcasing an 
appealing and simplistic design that could be typically seen in children's animated bathrooms or kitchens. The 
cartoonish appearance does not neglect the important functional aspects like the handle and spout, indicating 
it is designed for usable purposes in a virtual setting.

Please output the 54 corresponding similarity scores in the order of the above-mentioned categories, without 
any additional explanation.

<think> The object is clearly some kind of light source, with two circular lights on a metallic arm. It sounds 
like a lamp or possibly a streetlight or something similar. Now, I have descriptions of other 3D objects that 
share similar features, but these descriptions are about a faucet. The similar objects are all variations of a 
faucet: one is a faucet with a handle, another is a faucet handle, and the third is a cartoon-style faucet. I 
think I need to focus on the main object description and compare it to each category based on common 
sense. The similar objects are given, but they are about faucets, which might not be relevant if the main 
object is a lamp. Perhaps for faucet category, I should consider the similar objects, but the similar objects 
are examples of faucets, so for the main object, when scoring against faucet, the similar objects show what 
a faucet is, but the main object doesn't match, so low score.</think>
Output: 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

In-context 
sample 1

KNN Graph

Figure 12: Qualitative example for 3D recognition task on ShapeNetCore.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

What is this?

The 3D object model appears to be a practical household item, possibly a woven basket or a tray with an open
bottom. This item, typically constructed from organic materials like wood or fibers, is handy for storing and
carrying items. Its open bottom allows for easy loading and unloading, making it user-friendly. The woven
texture suggests a traditional craftsmanship and aesthetic appeal. This versatile object can be utilized for
various purposes, including as a kitchen basket for fruits, vegetables, and other products or as a decorative
tray for tiles, t-shirts, trivets, and other items, reflecting its utility in everyday home environments

Ground Truth: dresser

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content 
described in the following text pertains to any of the following categories. The description of this 3D object 
is generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D 
objects that share similar features with this object of this category. You need to take these similar 3D model 
descriptions into account as well. 0=no relation, 100=perfect match.

Categories: door, dresser, flower pot, glass box, guitar, keyboard, lamp, laptop, mantel, monitor, night stand, 
person, piano.

3D object description: The 3D object model appears to be a practical household item, possibly a woven basket
or a tray with an open bottom. This item, typically constructed from organic materials like wood or fibers, is
handy for storing and carrying items. Its open bottom allows for easy loading and unloading, making it user-
friendly. The woven texture suggests a traditional craftsmanship and aesthetic appeal. This versatile object
can be utilized for various purposes, including as a kitchen basket for fruits, vegetables, and other products or
as a decorative tray for tiles, t-shirts, trivets, and other items, reflecting its utility in everyday home
environments.

Descriptions of 3D objects with similar features: This is a 3D model of a functional and versatile 5-drawer 
single dresser, ideal for small bedrooms or guest rooms. The dresser showcases a chic, modern design with a 
bold black finish that would blend effortlessly into any style interior color. It features five evenly lined up 
drawers, each with a pull-out handle for easy access, thus enhancing space efficiency. It is minimalist in style, 
yet functional, offering an elegant and convenient solution for storing personal items, clothes and accessories.
A 3D model of a rectangular box in a solid black color. The box appears to be closed, with no visible openings 
or vents. Its simplicity and uniformity suggest it could be a storage box, a decorative piece, or even a piece of 
furniture, depending on its size and the user's needs. However, without further information, its exact purpose 
and functionalities remain unspecified.
This is a 3D object model of a compact, cubed drawer with a smooth, glossy black finish. The drawer is open, 
revealing its single, well-organized compartment. It is supported by small, sleek, black legs that elevate it 
slightly off the ground, contributing to its modern, minimalist aesthetic. This piece of furniture is elegant in 
its simplicity and would function well as a stylish storage solution for small items in various settings, including 
bedrooms, living rooms, and offices.

Output only a numerical score. Do not provide additional explanations.

<think> Starting with 'dresser' since there are similar object descriptions provided, The key function here is 
storage. The main object is a basket/tray which also serves storage purposes. However, a dresser typically has 
drawers or compartments, while the basket has an open bottom. Next, 'glass box' might be a contender 
because of the storage aspect, but the described object is organic and woven, not glass. 'Night stand' usually 
has drawers or shelves, which isn't mentioned. 'Mantel' is a shelf over a fireplace, which doesn't fit. The 
closest category is 'dresser' due to the storage function, but the physical structure is different. The 
basket's open bottom and woven texture are more akin to a container like a basket, which isn't listed. Among 
the options, 'dresser' is the best fit functionally, but the form differs. The probability would be moderate, 
say 50, considering functional similarity but structural differences. </think>
Output: 50

In-context 
sample 1

KNN Graph

Figure 13: Qualitative example for 3D OOD detection task on ModelNet40.
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What is this?

This 3D object model depicts a human head designed in a cartoonish style. It sports a uniform grey color,
suggesting it might be a basic, untextured model. Further customization can be done on this basis, either for
artistic purposes, animation, video game design, or other visual graphics applications. The cartoon aesthetic
typically lends itself well to more abstract and simplistic designs, and this model, while not realistic, is a prime
example of that.

Ground Truth: helmet

Given a free-form description of a 3D object, please calculate the probability（0-100） that the content 
described in the following text pertains to any of the following categories. The description of this 3D object is 
generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D 
objects that share similar features with this object of this category. You need to take these similar 3D model 
descriptions into account as well. 0=no relation, 100=perfect match.

categories: earphone, knife, chair, pillow, table, laptop, mailbox, basket, file cabinet, cabinet, sofa, printer, 
flowerpot, microphone, tower, bathtub, bag, trash bin

3D object description: This 3D object model depicts a human head designed in a cartoonish style. It sports a
uniform grey color, suggesting it might be a basic, untextured model. Further customization can be done on
this basis, either for artistic purposes, animation, video game design, or other visual graphics applications. The
cartoon aesthetic typically lends itself well to more abstract and simplistic designs, and this model, while not
realistic, is a prime example of that.

Descriptions of 3D objects with similar features: This is a 3D model of a human face that is metallic in 
appearance, reminiscent of a gold or bronze statue. The facial features are well-defined, and the model holds 
an artistic value in addition to any functional use. It might serve as a decorative object for an interior design, 
or as a representation for artistic or sculptural purposes.
This is a 3D model of a cartoon character's head that is entirely shaded in a solid, pure white color. The model, 
though minimalistic due to the lack of facial details, maintains the essential structural aspect of a head. With 
no texture, shape, or distinguishing features, its simplistic design provides an open-ended creative opportunity 
for further customization or adaptation in various media or graphic design projects.
The model represents a metallic biker's helmet, notable for its grey colour and sleek design. It features a 
dark screen, presumably to shield the wearer's eyes from wind, dust, or sun, and a pair of round, dark-rimmed 
glasses to protect the eyes from wind, sun, or injury. This type of helmet is typically used by bikers to 
safeguard their heads during rides and can also be used in certain work environments that require eye 
protection.

Output only a numerical score. Do not provide additional explanations.

<think> I need to compare this description to each category and see if it matches. The description is about a 
human head, which is not directly listed in the categories. The categories are everyday objects like furniture, 
electronics, etc. A human head doesn't fit into any of these categories directly. These similar objects are all 
related to heads or headgear. But the categories I'm comparing to don't include heads or helmets directly. 
The categories are things like earphone, knife, chair, etc. None of these are head-related except possibly 
"bag" or "trash bin," but that seems unlikely. I recall that in some 3D model databases, heads might be 
classified under "characters" or "people", but here the categories are all objects, not people. So, I think score 
is 0</think>
Output: 0

In-context 
sample 1

KNN Graph

Figure 14: Qualitative example for 3D OOD detection task on ShapeNetCore.
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What is this?

The 3D object model in question appears to be a sleek black rectangular body, distinguishing itself with a
distinct curved U-shaped top. The smooth and streamlined design lends itself a contemporary and minimalist
aesthetic. Although no explicit functionality is apparent from the object itself, it could be a part of various
electronic or mechanical devices or could even be used as a stylish housing for certain types of decorative
items.

Ground Truth: xbox

Given a free-form description of a 3D object, please calculate the probability (0-100) that the content 
described in the following text pertains to any of the following categories. The description of this 3D object is 
generated by an LLM and may be inaccurate. In addition, I will provide you with descriptions of other 3D 
objects that share similar features with this object of this category. You need to take these similar 3D model 
descriptions into account as well. 0=no relation, 100=perfect match.

Categories: plant, radio, range hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand, vase, wardrobe, xbox.

3D object description: The 3D object model in question appears to be a sleek black rectangular body,
distinguishing itself with a distinct curved U-shaped top. The smooth and streamlined design lends itself a
contemporary and minimalist aesthetic. Although no explicit functionality is apparent from the object itself, it
could be a part of various electronic or mechanical devices or could even be used as a stylish housing for
certain types of decorative items.

Descriptions of 3D objects with similar features: This is a black rectangular object with a unique design 
feature of vertically oriented, triangular holes on its front surface. The object is primarily dark in color, 
adding a sense of mystery or intrigue. It seems simple yet striking due to the arrangement of the holes. The 
object's functionality isn't explicitly stated, but one can infer that it might be used for aesthetic purposes, 
possibly as a modern decorative piece or a unique component of an artwork.
A rectangular, 3D box model presented in solid black color. The model appears minimalistic in design, with 
sharp and defined edges and flat surfaces. It's essentially a simple geometric shape, with no additional 
features or details. In terms of usage, such a 3D model can be used in numerous ways including digital 
animations, 3D modeling, virtual reality, and games. Given the lack of color or texture, the box could symbolize 
an empty container or a basic structure in design and programming tasks.
The 3D model depicts a cartoon-themed rectangular black object which strongly resembles a bag. This item, 
painted in a simple and bold black color, exhibits an overall rectangular shape. It bears a stylized, non-realistic 
design, akin to those often seen in cartoons or animations, enhancing its visual appeal and playfulness. Although 
its functionality is not distinctly clear from the image, its appearance suggests that it could be used in various 
contexts, such as a prop in a cartoon animation or a playful themed design in 3D printing.

Output only a numerical score. Do not provide additional explanations.

<think> Given the main object’s description— a sleek black rectangular body with a curved U-shaped top, 
minimalistic design, and possible use as part of an electronic or mechanical device— and considering that the 
similar objects are also black, rectangular, and minimalistic, the only category from the list that meaningfully 
fits is a range hood, which often features a rectangular base with a curved canopy. Other categories (radio, 
table, vase, tv stand, etc.) do not match the described shape or function. However, in the description of other 
object descriptions, there are additional phrases such as triangular holes and strongly resembles a bag, which 
do not align well with the characteristic features of any of the existing categories. Therefore, the probability 
that the object belongs to one of the listed categories—most plausibly a range hood—can be estimated at 
about 75. </think>
Output: 75

In-context 
sample 1

KNN Graph

Figure 15: Bad example for 3D OOD detection task on ModelNet40.
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