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ABSTRACT

Designing protein sequences that fold into a target 3-D structure, termed as the
inverse folding problem, is central to protein engineering. However, it remains
challenging due to the vast sequence space and the importance of local structural
constraints. Existing deep learning approaches achieve strong recovery rates, how-
ever, lack explicit mechanisms to reuse fine-grained structure-sequence patterns
conserved across natural proteins. To mitigate this, we present PRISM, a mul-
timodal retrieval-augmented generation framework for inverse folding. PRISM
retrieves fine-grained representations of potential motifs from known proteins and
integrates them with a hybrid self-cross attention decoder. PRISM is formulated as
a latent-variable probabilistic model and implemented with an efficient approxi-
mation, combining theoretical grounding with practical scalability. Experiments
across multiple benchmarks, including CATH-4.2, TS50, TS500, CAMEO 2022,
and the PDB date split, demonstrate the fine-grained multimodal retrieval effi-
cacy of PRISM in yielding SoTA perplexity and amino acid recovery, while also
improving the foldability metrics (RMSD, TM-score, pLDDT).

1 INTRODUCTION

Designing protein sequences that fold into a prescribed three-dimensional structure—the inverse fold-
ing problem—is a long-standing challenge in computational biology with far-reaching implications
in biophysics, enzyme engineering, and drug discovery. Unlike structure prediction, where methods
such as AlphaFold2 (John et al., 2021) have achieved transformative success, inverse folding must
contend with a vast combinatorial search space: many distinct amino acid sequences can realize
the same structural fold, and subtle local variations often determine stability and function. This
underdetermined nature has made inverse folding scientifically important and challenging.

Recent deep learning approaches have made significant progress (Tian et al., 2026). Autoregressive
sequence generators such as ProteinMPNN (Dauparas et al., 2022) demonstrated strong sequence
recovery and practical utility across monomers, oligomers, and designed nanoparticles. PiFold (Gao
et al., 2022) combined expressive encoders with efficient decoders, offering substantial speedups while
maintaining competitive accuracy. More recent works have exploited pretrained protein language
models. LM-Design, DPLM, and DPLM-2 (Zheng et al., 2023; Wang et al., 2024a;b) leverage
large-scale sequence modeling and diffusion-based generation, while AIDO.Protein (Sun et al., 2024)
scaled it to billions of parameters using mixture-of-experts training. Despite these advances, current
architectures remain limited: they lack explicit mechanisms to reuse fine-grained structure—sequence
patterns (e.g., recurring motifs) that are evolutionarily conserved and central to protein function.

Our key insight is that inverse folding can benefit from an explicit retrieval mechanism that grounds
predictions in the rich diversity of known proteins at a fine-grained level. By treating local structure—
sequence neighborhoods as reusable building blocks, one can supplement end-to-end generative
modeling with memory-based context. This motivates PRISM, a multimodal retrieval-augmented
generation (RAG) framework that reframes inverse folding through explicit representation, retrieval,
and attribution. Instead of relying solely on a monolithic encoder, PRISM retrieves embeddings of
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potential motifs from a vector database of proteins, and aggregates them with a hybrid transformer
decoder to refine sequence emission. This introduces an explicit inductive bias: each residue
prediction is guided by retrieved local fragments, while the hybrid decoder integrates these fragment-
level priors with global backbone context.

Our major contributions are:

* A retrieval-augmented framework. We propose PRISM, the first RAG framework for protein inverse
folding that operates at residue-level granularity, retrieving fine-grained multimodal representations
for potential motifs and reusing conserved local patterns during sequence design.

* A theoretically grounded formulation. We derive a latent-variable model that factorizes representa-
tion, retrieval, attribution, and emission, and provide an efficient approximation for implementation,
ensuring both theoretical soundness and computational efficiency.

* Extensive empirical validation. Through comprehensive experiments across five benchmarks
and multiple evaluation metrics, we establish new state of the art in both sequence recovery and
structural fidelity, while incurring only negligible runtime overhead. Detailed ablations validate the
role of each design choice in our framework.

2 PRELIMINARIES

The protein inverse folding problem aims to design an amino acid sequence that is compatible with
a given three-dimensional protein backbone. Formally, let a backbone structure be specified by
atomic coordinates B = (p1,...,p,), where each p; € R3 denotes the position of the i-th backbone
atom. The goal is to predict a sequence S = (51, ..., Sr), where each residue \S; is drawn from the
standard amino acid vocabulary V. A inverse foldiLng model thus learns the following distribution

P(s|B) =[] P(s; | B).

which assigns probabilities to candidate sequences consistent with the target backbone. To represent
protein structures, modern approaches often construct a residue-level graph G = (V, E), where
nodes v; € V correspond to residues and edges e;; € E capture spatial or physicochemical interac-
tions (Dauparas et al., 2022; Alam et al., 2024; Gao et al., 2022; Mahbub & Bayzid, 2022). A model
then encodes G and outputs a distribution over residues for each position, either autoregressively
(predicting residues sequentially) or non-autoregressively (predicting all positions in parallel). The
designed sequence is obtained by sampling or decoding from this distribution. Detailed discussion on
related work has been provided in Appendix A.

3 PRISM: A MULTIMODAL RAG FRAMEWORK FOR INVERSE FOLDING

We introduce PRISM, a multimodal retrieval-augmented generation (RAG) framework for protein
inverse folding that operates at residue-level granularity. We first formalize fine-grained structural—
sequential regularities via motifs and potential motifs, then derive a latent-variable model that factors
retrieval, attribution, and emission. We conclude with concrete instantiations of the representation,
vector database, retrieval kernel, and the training objective.

3.1 MOTIFS AND POTENTIAL MOTIFS
Definition 3.1 (Protein Motif). It is a recurring local structural-sequential pattern of residues
that is evolutionarily conserved and often functionally significant. Formally, it can be described

as a short stretch of amino acids together with its surrounding 3-D conformation, capturing
local folding rules and biochemical properties independent of the global protein context.

Definition 3.2 (Potential Motif). We generalize motifs by treating each residue together with its
local 3-D neighborhood as a potential motif. A potential motif may or may not align with a
canonical structural motif, but serves as a fine-grained motif-like unit that encodes transferable
structure—sequence information. These representations are the building blocks for retrieval and
sequence emission in our RAG framework.

3.2 LATENT-VARIABLE FORMULATION

Modeling Objective. Given a target backbone 3-D structure B and a fixed residue-level vector
database D (whose entries represent potential motifs in local neighborhoods), our goal is to model
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the conditional distribution over amino-acid sequences p(S | B, D). Di- R (’D“\
rectly parameterizing this conditional is challenging due to combinatorial / \ S
sequence space and long-range dependencies. We therefore introduce ‘ /R \\'
latent variables that capture retrieval of locally similar neighbors and their | ‘_5 s 7
attribution to each site before emitting the final sequence. \\\/ / —
\“{\ = /“
Latents for representation, retrieval, and attribution. Let £ = - I Probabilisti
{&}E_| denote latent variables for the potential-motif representation, and g;i;}rﬁcal o delr?) f?);rl;?()c_
R = {R;}L_| denote a latent retrieval hypothesis, where R; are neighbors posed approach.

retrieved from D for the (potential) motif in residue ¢’s locality (Fig. 2,

Point (D); Sec. 3.4). We define the retrieval kernel as p(R|E, B, D). Let Z

denote attribution variables with conditional p(Z | R, &, B, D) that specifies how retrieved neighbors
contribute to emissions S = {S;}~ ,, with S ~ p(S | Z, R, €, B, D).

Basic generative factorization. The joint distribution factorizes as

p(S,€,R,Z|B,D)= p(&|B,D) p(R|E B,D)p(Z|R,E,B,D)p(S|Z,R,E,B,D). (1)
representation retrieval kernel attribution sequence emission
Using the conditional independences ELLD | B, RAULB | &, and {Z,S} LD | R, we obtain
p(S,&,R,Z|B,D)= p(€[B) pRI|E D) p(Z|R.EB)p(S|Z,REB). (2)
——
representation retrieval kernel  attribution  sequence emission
Marginalizing over the latents yields
p(S | B,D) =E p¢B) p(ric,D) p(zIR..B)P(S | Z,R,E, B)]. 3)

The corresponding probabilistic graphical model is shown in Fig. 1. This formulation induces a
Sfamily of valid objectives arising under different approximations or parameterizations of the latents &,
R, and Z. We describe the model components and their efficient deterministic instantiations below.
Fig. 2 depicts the overall pipeline of our proposed framework.

3.3 STRUCTURE-SEQUENCE MULTIMODAL REPRESENTATION OF POTENTIAL MOTIFS

We represent residues in a way that captures both structural and sequential context of any poten-
tial motif around the residue, so that each residue embedding itself summarizes the local motif.

Inltlal

Joint encoder. Let G be a joint en- Vector-Database

coder of 3-D structure and 1D sequence
(Fig. 2, Point (D):

E%

L d ner: al
£=0(P)=G(B,S) e R", (4
where £ = (&1,...,&L) and d is the an’*g%’zgzg‘on@ =[sv.q]

embedding dimension. (with MHSCA)

’ J\} F joint

Potential-motif representat_lon. TIHS Sty
Each vector & € R? contextualizes Trainable
residue ¢ € [L] by its local 3-D B structure
embedding

neighborhood and its placement in the
global protein P, and is used for both
retrieval and emission.

Retrieval
direction

Retrieved
embeddings

Query
0 embeddings

Figure 2: The overall pipeline of PRISM. (D We start with a joint-

Query proteins with unknown se-
quence. At inference we observe
only a query backbone B?. We can
sample an initial sequence estimate Sa
from an off-the-shelf inverse folding
model (Sun et al., 2024; Dauparas et al.,
2022; Wang et al., 2024b), which we

refer to as the base estimator in this article.

embedding model and (@) prepare a vector-database by inferring
embeddings of known structure—sequence pairs. 3) Our retriever
operates on per-token (fine-grained) embeddings, representing the
surrounding potential motifs. The color coding shows the retrieved
vectors for each corresponding site. 3 A hybrid decoder aggre-
gates the retrieved entities and generates a refined protein sequence,
enriched with the 3-D structure encoding of the input protein.

With this, we can form a crude query embedding

£1 = G(B4, 59), which we treat as a sample from the marginal, i.e., £ ~ p(€ | B = B9).
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3.4 VECTOR DATABASE OF POTENTIAL MOTIFS

We treat the vector database D as a prior-knowledge memory of potential-motif representations over
which retrieval is performed. Given M proteins with structures and sequences P = {(B?,S?) : p €
[M]}, we encode each PP via Eq. 4 to obtain E = {£P})L . The database is

D={d= (&, rp) :pe[M], re[P]}

Each residue embedding £P summarizes the locality around residue r in protein p. Let ¢(-) map
a residue neighborhood to a motif representation in a metric space (M, d). Retrieval by similarity
of &; to £(d) effectively searches for nearby motifs in M. Implementation note: Our vector-DB is
created with the training split of the CATH-4.2 dataset (Orengo et al., 1997), and any search in it
runs entirely on GPU, substantially reducing search time (Sec. 4.2.3).

3.5 RETRIEVAL KERNEL

The retrieval kernel p(R | £, D) may be instantiated in multiple ways consistent with the latent-
variable formulation. In Appendices D and E.2 we outline representative, non-exhaustive choices for
stochastic and deterministic variants.

A trainable stochastic kernel constitutes the most faithful realization of the graphical model, defining

a proper distribution over residue-level neighbors and enabling learned retrieval priors (Appendix E.2).

A deterministic TopK operator offers an efficient approximation (Appendix D, Eq. 20). Formally,
L

p(R 1€ D) =]]pRi|&.D), p(R;|E, D)=&R;~ Topk(&; D)), 5)
i=1
with Dirac distribution §(-). Both variants arise from the same underlying model class, differing only
in how the latent retrieval variable R is instantiated.

While the trainable variant provides a direct path toward more expressive retrieval mechanism that can
potentially lead to improved performance at the expense of additional computing resource (Tab. 9),
the deterministic approximation yields an efficient yet powerful solution (Tab. 1-5 in Sec. 4.2).

3.6 ATTRIBUTION MARGINAL

Retrieval provides candidates but not how they are used. We realize attribution via attention weights

computed by 7" hybrid transformer blocks in our aggregation-and-generation module Fj, (Sec. F),
parameterized by 6z. Each head h € {1,...,H} in block t € {1,...,T} computes aEZ’h) =
softmaxk<<q(t’h) k(t’h’)>/\/dh), with query vector ql(t’h) for residue ¢ and key kg,t,’h) for neighbor

% ' Wik

R;j. Thus Z is a deterministic function A(R, &, B):

(@Y kin = AR,E,B),  p(Z|R,E B)=§Z— AR,E,B)). (6)
Fig. 7 details the hybrid self-/cross-attention design. In Sec. 4.3.5 we provide ablation to demonstrate
the effectiveness of this design.
3.7 SEQUENCE EMISSION

Given B and R, the module Fj,, forms retrieval-aware residue representations through Z and outputs
per-residue logits Y (£, B, R) = Fy,(Fy,(B), £, R) € RF*20 where Fy,, is a structure encoder
(Appendix. F). The emission distribution factorizes:

L
p(S | &, B,R,Z) = | [ Cat(S;; softmax(Y (£, B,R));). (7

i=1

Remark. Although we write p(S | &, B, R,Z), the logits Y (&, B, R) already incorporate the
deterministic attribution Z computed by Fp, .

3.8 TRAINING OBJECTIVE

Under our deterministic reduction (Appendix E.7), the objective collapses to maximizing the stan-
dard log-likelihood via per-residue cross-entropy, f§ = arg max ]Ep[ log ps (S | )], with learnable
0
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Table 1: Comparison of protein inverse folding methods on the CATH-4.2 test split (Short, Single-chain, and All).
Best and second-best scores are shown in bold and italic. Foldability metrics are computed using ESMFold (Lin
et al., 2023), and the subscript aido denotes AIDO.Protein-IF was used as the base estimator.

Uses  Uses Short Single All

Method

pLM RAG PPL| AAR%1T PPL| AAR%?T PPL|] AAR%1 RMSD| sc-TM1 pLDDT 1
StructTrans X X 8.39 28.14 8.83 28.46 6.63 35.82
GVP X X 7.23 30.60 7.84 28.95 5.36 39.47
ProteinMPNN X X 6.21 36.35 6.68 3443 4.61 45.96 - - -
ProtMPNN-CMLM X X 7.16 35.42 7.25 35.71 5.03 48.62 1.64 0.910 0.812
PRISM (str. enc.) X X 4.26 35.29 3.40 48.97 3.39 49.17 - - -
PiFold X X 6.04 39.84 6.31 38.53 4.55 51.66 1.64 0911 0.816
LM-Design v X 7.01 35.19 6.58 40.00 4.41 54.41 - - -
DPLM v X - - - - - 54.54 - - -
AIDO.Protein-IF v X 4.09 38.46 291 58.87 2.94 58.60 1.58 0.912 0.831
PRISM,ido v v 3.74 40.98 2.68 60.89 2.71 60.43 1.56 0.913 0.835

parameters § = {6z, 0p}. When the retrieval prior is trainable (Appendix E.2), the objective is
augmented with a KL-regularization term defined with respect to an amortized posterior ¢(R | -),

ie., 0= arg;nax Eq[logpa(S | )] — EKL(¢(R | ) [ pe(R | -))], with § = {6z, b5, Og}, where

Og representg the learnable parameters of the joint encoder G. We leave the exploration of jointly
learning amortized posteriors for £ and Z via their KL terms to future work.

Table 2: Comparison on TS50 and TS500.

4 EXPERIMENTS AND RESULTS

Models TS50 TS500

4.1 EXPERIMENTAL SETUP PPL AAR%T | PPL| AAR%?
] GVP 471 4414 | 420 49.14
Datasets. We evaluate PRISM on several widely  ProteinMPNN 3.93 5443 | 353 58.08
i ProtMPNN-CMLM | 346 5368 | 335 5645
used benchmarks: CATH-4.2, TS50, TSSOQ, CAMEO  :ism (6tr onc) 310 saar Ses 316t
2022, PDB date split, and orphan proteins dataset. PpiFold 386 5872 | 344 6042
We use the CATH-4.2 training split both for train- LMDesien 382 5692 213 6450

AIDO Protein-IF 268 6619 | 242 69.66
PRISM,id0 | 243 6792 | 227 7053

ing and to create the vector database, preventing any
form of data leakage by construction (Orengo et al.,
1997). TS50 and TS500 are used only for evaluation to test cross-dataset generalization (Li et al.,
2014), while CAMEO 2022 and the PDB date split assess robustness on proteins outside the
CATH classification and under temporally disjoint conditions (Campbell et al., 2024). To fur-
ther test PRISM’s generalizability to entirely novel backbones, we evaluate it on the orphan proteins
dataset by Jing et al. (2024). Full dataset descriptions and statistics are provided in Appendix B.

Evaluation Metrics. We report two sequence-level Taple 3: Comparison on CAMEO 2022 and PDB
metrics and three structure-level metrics. Sequence date split. Multiflow, ESM3, and DPLM-2 results
accuracy is assessed by amino acid recovery (AAR) and are taken from (Wang et al., 2024a).

perplexity (PPL), while foldability is assessed with _
RMSD, sc-TM, and pLDDT. Together these capture = Models pPCLiMEg:%;T pPPLDf di;ifl%
both sequence correctness and structural realizability. povpNN-OMIM | 362 5004 | 342 5298
Detailed formulations of all metrics are provided in ~ PRISM (st enc) | 320 5120 | 304 5385

. MultiFlow - 33.58 - 37.59
Appendix B. ESM3 - 46.24 - 49.42
. . DPLM2-3B - 53.73 - 57.91
Baselines. We compare against a comprehen- AIDOProwin-IF | 268 6352 | 249 6627
sive suite of state-of-the-art inverse folding meth- PRISMuis, | 253 6463 | 235 6747

ods, including StructTrans, GVP, ProteinMPNN,

ProteinMPNN-CMLM, PiFold, LM-Design, DPLM, MultiFlow, ESM-3, DPLM-2, and the large-
scale AIDO.Protein, which we also adopt as our joint encoder. Appendix C provides details of these
baselines.

4.2 RESULTS AND DISCUSSION

4.2.1 RESULTS ON CATH 4.2, TS50, TS500, CAMEO 2022, AND PDB DATE SPLIT

CATH-4.2 (Tab. 1): shows that PRISM consistently improves over strong baselines across all three
CATH-4.2 settings. Compared to AIDO.Protein-IF, PRISM reduces perplexity from 4.09 to 3.74 on
short-chains, from 2.91 to 2.68 on single-chains, and from 2.94 to 2.71 on the full test set. These
PPL gains also translate to higher recovery. Specifically, AAR increases by 2.52 (40.98 vs. 38.46) on
short, 2.02 (60.89 vs. 58.87) on single-chain, and 1.83 (60.43 vs. 58.60) on all. Notably, even PRISM
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Table 4: Foldability comparison using AF2 protein folding model. The median and the mean are provided
outside and inside the parenthesis, respectively.

Models CAMEO 2022 PDB date split

RMSD | sc-TM 1 pLDDT 1 RMSD | sc-TM 1 pLDDT 1
DPLM2-3B 1.67 (1.833)  0.926 (0.846) 0.923 (0.898) 1.21 (1.399) 0.954 (0.918) 0.944 (0.919)
AIDO.Protein-IF  1.54 (1.665) 0.942 (0.862) 0.932 (0.916) 1.1 (1.231)  0.963 (0.936) 0.953 (0.937)
PRISM ;40 149 (1.621) 0.948 (0.867) 0.934 (0.916)  1.04(1.2)  0.964 (0.938) 0.953 (0.938)

Table 5: Runtime analysis (in seconds per protein) across different benchmarks. We decompose runtime into the
base estimator (AIDO.Protein-IF), retrieval, and decoding. The total time is the sum of all components.

Model TS50 TS500 CAMEO2022 PDB date split CATH4.2test CATH 4.2 val ‘ Average
Base estimator (AIDO.Protein-IF) 0.83 1.03 0.99 0.91 0.87 0.89 0.92
+Retrieval 31e™® 1.1e73 1.3e7% 6.0e4 5.0e% 6.0e™* 1.2¢73
+Decoding 0.08 0.17 0.17 0.12 0.10 0.11 0.13
Total 0.91 1.20 1.17 1.03 0.97 1.00 ‘ 1.05

(str. enc.), the structure-only variant, already outperforms its corresponding baseline, ProteinMPNN-
CMLM. while our full framework, with AIDO.Protein-IF as the base estimator and joint encoder,
yields the best overall trade-off in sequence-level and structure-level metrics. All scores are obtained
with deterministic decoding, where we use the deterministic approximation of our retriever and chose
argmax sampling with the final logits. Additional results on this dataset, including threshold-based
designability analysis, are provided in Appendix L and Tab. 17.

TS50 and TS500 (Tab. 2): On TS50, PRISM sets new SoTA on both metrics, with PPL 2.43 vs. 2.68,
and AAR of 67.92 vs. 66.19 consistently improving over its base estimator AIDO.Protein-IF. On
TS500, PRISM achieves the best AAR (70.53) and a strong PPL of 2.27, while LM-Design reports a
lower PPL on TS500, its AAR is substantially lower (64.50), indicating that PRISM’s conditioning
yields sequences that align better with native residues.

CAMEO 2022 and PDB date split (Tab. 3): PRISM improves both confidence and recovery on
distribution shifts. On CAMEO 2022, PPL decreases from 2.68 (AIDO.Protein-IF) to 2.53, while
AAR rises improves by 1.11. On the PDB date split, PPL drops from 2.49 to 2.35 and AAR improves
from 66.27 to 67.47. These trends on these four stand-alone test sets underscore that our proposed
approach contributes stable gains even when test distributions diverge from CATH-4.2.

4.2.2 FOLDABILITY ANALYSIS

Tab. 4 and Appendix Tab. 14 show end-to-end foldability of designed sequences via AlphaFold2 (John
et al., 2021). PRISM consistently improves structural fidelity over AIDO.Protein-IF across datasets:
on TS50, RMSD drops from 1.075 to 0.985, sc-TM rises from 0.956 to 0.964, and pLDDT slightly
improves (0.949—0.950); on TS500, RMSD improves (1.18—1.125) with sc-TM also higher (0.964).
On CAMEO 2022 and the PDB date split, PRISM attains the best RMSD and sc-TM alongside
competitive or best pPLDDT. These consistent gains indicate that PRISM’s higher AAR is not merely
superficial residue matching, rather it translates to sequences that fold closer to the target backbones
with stronger global topology (sc-TM) and comparable or better local accuracy (pLDDT).

4.2.3 RUNTIME ANALYSIS

A key advantage of PRISM Table 6: Inverse folding performance on the orphan proteins dataset (Jing et al.,

is that its substantial accu- 2024 Here ESMFold (Lin et al., 2023) was used as the protein folding model.
racy gains come at negligi-

X Model AAR (%) so-TM RMSD LDDT
ble runtime cost. As shown Native S 100(0; ! 0.360 (0 419) 3613 65i4) 0557 © 53T5)
in Tab. 5, the base estimator alz)e e 28.05 50 2 0-369 01420 3. 8 3.61 0-538 0. 35)

. . AIDO.Protein-IF 05(3022) 0369 (0.420) 3.78 3.615) 0538 (0.5
(AIDO'PrOtglg;F) re?julres PRISM;a0 2833 (30.85) 0.391 (0.437) 3.92(3.846) 0.556 (0.531)
On average U.J= SECONAS per =, © & MPNN-CMLM 2927 (31.24) 0359 (0.428) 3.60 (3.712) 0.569 (0.525)
protein, while our full frame-  prisM, , .., 27.12(30.76) 0.404 (0.437) 3.60 (3.587) 0.533 (0.538)

work adds only lightweight
retrieval (~ 1.2 x 1073s) and decoding (0.13s), resulting in a total runtime of 1.05s. This corre-
sponds to a relative overhead of merely 14.3% compared to the base estimator.

In contrast, the improvements in accuracy are much larger. Averaged across benchmarks (Appendix
Tab. 18), PRISM reduces perplexity from 2.68 to 2.43 (9.3% improvement) and boosts AAR from
63.0% to 66.9% (+3.9 absolute points). In other words, PRISM delivers significant and consistent
accuracy gains across all test sets while incurring only a negligible runtime overhead. This balance
demonstrates the efficiency of memory-based retrieval: it enriches the model’s representations without
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sacrificing throughput, making PRISM a practically viable and scientifically impactful extension over
the base estimator.

4.2.4 ORPHAN PROTEIN DESIGN

Because natural-sequence recovery does not fully capture generalization to novel backbones, we
additionally evaluate PRISM on the orphan proteins dataset Jing et al. (2024), a set of eleven proteins
with no detectable sequence homologs in major databases. As shown in Tab. 6, PRISM consistently
improves over its respective base estimators and achieves foldability scores close to the native
sequences, despite the lack of homologous entries in its retrieval database. This indicates that PRISM
is not merely memorizing natural sequences, but can leverage retrieved structural context to enhance
design even for highly novel backbones.

4.3 ABLATION STUDIES AND ADDITIONAL ANALYSES

To better understand the contributions of individual components and design choices in PRISM, we
conduct a series of ablation studies and supplementary analyses. These highlight the effectiveness,
efficiency, and robustness of our framework.

4.3.1 ABLATION THE NUMBER OF RETRIEVED ENTRIES

N
N
co

We conducted an ablation study to analyze the effect of the
number of retrieved vectors K on model performance. As shown
in Fig. 3, increasing K consistently reduces perplexity (PPL) on
the CATH-4.2 validation split. The improvement is sharp for
small K (e.g., from 2.788 at K = 1to 2.709 at K = 5), but
gradually saturates as K increases further. Beyond K > 35, PPL
stabilizes around 2.681, showing no further significant gains. 1 5 10 15 20 25 30 35 40 45
Therefore, we choose K = 35 as the optimal setting, striking a K (number of retrieved vectors)

balance between efficiency and accuracy. Figure 3: Ablation on K (CATH-4.2
validation split).
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4.3.2 EFFECT OF PROTEIN SIZE ON RECOVERY

Fig. 4 shows the distribution of amino-acid recovery rates (AAR) 10 o e

across protein length bins on the CATH-4.2 test set. PRISM con-  os

sistently outperforms AIDO.Protein-IF across all lengths, with g, ﬁ ﬁ
particularly notable gains for shorter proteins (< 200 residues) %

where inverse folding is more challenging. These results confirm ~ o | g-WX}Do
that PRISM’s improvements are robust across varying sequence  °? 0" pRisM
lengths, rather than confined to a narrow subset of proteins. 0390 0 00 300400 500

Protein Length Bins

4.3.3 CONTRIBUTION OF RETRIEVAL Figure 4: AAR distribution across

A central question in our study is whether retrieval itself con- protein length bins on CATH-4.2.
tributes meaningfully to inverse folding, beyond what large pre- PRISM  consistently  outperforms
trained models or structural encoders already achieve. Across 1P O'll?mteiln’ with especially la2rge
all benchmarks, PRISM with retrieval consistently outper- rg:slircljsues(;r shorter proteins (<200
forms AIDO.Protein-IF in both perplexity and recovery metrics '

(Tab. 1, 2, 3, 4). For instance, on CATH-4.2 PRISM improves

AAR by nearly two percentage points over AIDO.Protein-IF, while on TS50 and TS500 it reduces
perplexity and boosts recovery simultaneously—demonstrating that retrieval provides tangible benefits
across datasets of varying scale and diversity.

To isolate the effect of retrieval from that of multimodal representation, we introduce a controlled
unimodal ablation variant, PRISM (str. enc.), which replaces the AIDO.Protein-IF joint encoder
with a purely structure-based encoder (ProteinMPNN-CMLM) and performs retrieval solely over
structural embeddings. Remarkably, even in this restricted setting, our retrieval mechanism delivers
consistent gains over the baseline ProteinMPNN-CMLM across all datasets (Tab. 1, 2, 3). This
result isolates retrieval as an independent driver of performance — even without sequence-level priors,
fine-grained retrieval improves recovery by supplying complementary local context that a single
encoder cannot capture. Together, these findings establish retrieval to not be an auxiliary feature, but
as a core contributor in PRISM.
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Table 7: Ablation on hybrid-attention vs cross-attention-only.

Models TS50 TS500 CATH-4.2 test split CATH-4.2 val split
PPL | AAR % 1 PPL | AAR % 1 PPL | AAR % 1 PPL | AAR % 1
PRISM (w/o MHSA) 256  64.23(65.12/64.98) 236  69.94 (68.43/70.04) 2.82  59.26 (57.44/60.41) 279  59.51 (58.42/61.11)
PRISM (full) 243 67.92(66.98/66.70) 227  70.53(69.57/70.97) 271 6043 (58.55/61.41)  2.68  60.26 (59.28/61.89)
Table 8: Ablation on the number of MHSCA blocks.
# of blocks TS50 TS500 CATH-4.2 test split CATH-4.2 val split
PPL | AAR % 1 PPL | AAR % 1 PPL | AAR % 1 PPL | AAR % 1

N/A (base est.)  2.68  66.19 (64.69/64.66) 242  69.66 (68.04/69.60) 2.94  58.60(57.27/60.13) 290  58.73 (58.00/60.62)
1 244 66.90 (66.84/66.58)  2.26  70.93 (69.58/70.97) 2.72  60.23 (58.53/61.39)  2.69  60.17 (59.20/61.86)
2 243 67.92(66.98/66.70) 227  70.53(69.57/70.97) 2,71  60.43 (58.55/61.41)  2.68  60.26 (59.28/61.89)
3 244 67.71 (66.75/66.48)  2.26  70.59 (69.58/70.99)  2.71  60.35(58.59/61.42)  2.68  60.24 (59.30/61.91)

4.3.4 EFFECT OF EXTENDING RETRIEVAL DATABASE

A natural question is whether enlarging the retrieval memory at inference time further improves
performance. Our theoretical analysis (Appendix G) establishes that once the vector database
achieves near-complete e-coverage of the motif space, additional entries predominantly duplicate
existing motifs and thus provide diminishing returns. Empirically, we confirm this saturation effect:
augmenting the database with new PDB entries yields almost identical results across all benchmarks
(Appendix G, Tab. 13), with differences well within retrieval noise. For instance, for CAMEO 2022
the AAR remains ~64.6% whether using only the CATH-4.2 memory, the PDB extension, or their
combination. This finding highlights that PRISM’s fixed vector database already captures the relevant
structural landscape, making post-hoc memory growth unnecessary. Crucially, it validates our design
choice of treating the vector database as a prior knowledge store rather than an ever-expanding index,
achieving state-of-the-art recovery while avoiding uncontrolled growth in memory size.

4.3.5 CONTRIBUTION OF HYBRID DECODER WITH MHSCA

We next ablate the design of the aggregation module by comparing our hybrid multihead self—cross
attention (MHSCA) decoder with a simplified variant that relies only on multihead cross-attention
(MHCA). As shown in Tab. 7 and Appendix Tab. 15, removing the self-attention component degrades
performance across all benchmarks. While the cross-attention—only variant already improves over
the base estimator by attending to retrieved vectors, it lacks the ability to contextualize and refine
these fragments jointly. Incorporating MHSA within the block allows the model to propagate
@nformation'among retrieve(.l ne.ighbors before align- Table 9: Effect of finetuning the joint encoder G
ing them with the query, yielding consistent gains. (e, oted “ft. G*) and a simple inference-time iter-
For example, on TS50, the AAR increases from ;e refinement approach (denoted “iter.”). Here
64.2% to 67.9%, and perplexity drops from 2.56 to “orig. G” denotes the original joint encoder without
2.43; on the CATH-4.2 test split, AAR rises from finetuning.

59.3% to 60.4% with a corresponding reduction in

.. . Model PPL] AAR (%) 1
PPL (2.82 — 2.71). Similar improvements are ob- PiFold 15 T
served on TS500 and the PDB date split, with relative PiQIOSMMM (orig. §) 272 60.09

gains of +0.8%-1.2% AAR. Importantly, these gains  PRISM, ; ;4 (orig. G. iter)  2.73 61.51

are consistent across both in-distribution (CATH-4.2) ~ PRISM,,;44i4 (ft. G) 2.63 62.01
and out-of-distribution (CAMEO 2022, PDB date _PRISMyisaua (ft. G, iter) 2.67 63.09
split) settings, highlighting that the hybrid MHSCA  AIDO.Protein-IF 2.94 58.60
architecture provides more expressive aggregation by ~ PRISMaiq, (orig. G) 2.71 60.43
.. . h . T PRISM,;q, (orig. G, iter.) 2.73 61.87
jointly leveraging self- and cross-attention. This vali- PRISM. 1., (ft. O) 559 62.07
dates the adoption of MHSCA as the default decoding  pRISM,;,, (ft. G, iter.) 2.65 63.33
module in PRISM.

4.3.6 EFFECT OF AGGREGATION DEPTH (MHSCA LAYERS)
We next study how the number of multihead self—cross attention (MHSCA) blocks in the aggregation
module affects performance (Tab. 8 and Appendix Tab. 16). Adding even a single block over the base

Table 10: Ablation on the base estimator. Here the subscripts pmpnn, pifold, and aido respectively denote
whether ProteinMPNN-CMLM, PiFold, or AIDO.Protein-IF were used as the base estimator for PRISM. All
results of PRISM here use the original (non-finetuned) joint encoder G.

Model CATH42PPL| CATH42AAR (%)1 TSS0PPL| TS50 AAR (%)1 TS500PPL | TS500 AAR (%) 1
ProteinMPNN-CMLM (base est.) 5.03 48.62 3.46 53.68 335 56.45
PRISM 1 pnr, 2.82 58.02 2.52 65.03 2.35 69.0
PiFold (base est.) 455 51.66 3.86 58.72 3.44 60.42
PRISM,; ol 272 60.09 2.44 66.56 2.26 71.16
AIDO Protein-IF (base est.) 2,94 58.60 2.68 66.19 242 69.66
PRISM,;4, 271 60.43 243 67.92 227 70.53
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Table 11: PRISM’s AAR improvements across proteins grouped by PiFold initial prediction quality. Here lower
bins correspond to lower-quality initial sequences.

PRISMm‘fold PRISMpifold

PiFold # PiFold (original G) (ft. G, iter) A
AAR Bin (%) Proteins Mean AAR (%) Mean AAR (%) (original G) Mean AAR (%) (ft. G, iter.)

0-20 12 15.89 18.48 2.59 25.93 10.03
20-30 74 25.97 29.52 3.55 33.79 7.82
30-40 131 35.51 42.63 7.12 48.44 12.94
40-50 272 45.95 55.22 9.27 59.21 13.26
50-60 464 54.88 64.60 9.72 67.53 12.66
60-70 157 62.79 71.47 8.68 73.42 10.63
70-80 10 73.57 80.03 6.46 78.76 5.18

estimator (AIDO.Protein-IF) yields a large gain: on the CATH-4.2 test split, AAR improves from
58.6% to over 60.2%, and perplexity drops from 2.94 to 2.72. Increasing to two blocks provides
the best overall trade-off, achieving the strongest or tied-best results across nearly all benchmarks
(e.g., CAMEO 2022 with PPL 2.53 and AAR 64.6%, CATH-4.2 validation with PPL 2.68 and
AAR 60.3%). Using three blocks maintains similar accuracy but shows no consistent benefit, with
small oscillations likely due to noise. These results indicate that the aggregation mechanism quickly
saturates, and two MHSCA layers suffice to capture the additional context from retrieved fragments
while avoiding redundancy or overfitting.

4.3.7 EFFECT OF FINETUNING JOINT ENCODER AND ITERATIVE REFINEMENT

Our latent-variable formulation naturally allows finetuning the joint encoder G via a trainable retrieval
kernel (Appendix E.2). To assess its impact, we evaluate PRISM with and without finetuning G. As
shown in Table 9, finetuning G yields consistent improvements across two base estimators of different
strengths: PiFold and AIDO.Protein-IF, respectively denoted with subscripts pi fold and aido. This
result indicates that adapting the joint encoder further enhances the retrieval, and subsequently, the
generation quality.

We additionally ablate a simple inference-time refinement procedure, inspired by recent ap-
proaches (Zheng et al., 2023; Wang et al., 2024a). Here, the output sequence is iteratively fed
back into the PRISM framework to improve the generation. This refinement tends to further increase
AAR, with only a marginal change in PPL, suggesting that PRISM can effectively leverage its own
predictions to refine sequences without any extra training. A more systematic study of different
refinement paradigms is left to future work.

4.3.8 IMPACT OF INITIAL SEQUENCE QUALITY

To investigate the sensitivity of PRISM’s final performance to the quality of initial sequence estimate,
we first compare PRISM across three different base estimators of varying strengths: ProteinMPNN-
CMLM, PiFold, and AIDO.Protein-IF. The results, summarized in Tab. 10, show that PRISM
improves each of these estimators by a large margin. Remarkably, PRISM,; ro14 and PRISM,p,
(both using single-iteration refinement) already achieve performance comparable to the stronger
AIDO.Protein-IF baseline, which itself uses iterative refinement. These results clearly indicates
that PRISM effectiveness is not tied to AIDO.Protein-IF or any specific initializer. ~ Because
PRISM is base estimator agnostic, it can in principle be paired with surface-based generators such as
SurfPro (Song et al., 2024), SurfDesign (Wu et al., 2024), or biochemistry-aware generators such
as BC-Design (Tang et al., 2025). Such combinations would allow PRISM to retrieve surface- or
chemistry-aligned exemplars, extending its benefits beyond backbone-conditioned inverse folding.

To further assess PRISM’s robustness to, the quality of the initial sequence provided by the base
estimator, we stratify proteins by their PiFold AAR and evaluate PRISM’s performance within
each bin. This analysis reveals how much improvement PRISM achieves when starting from weak,
moderate, or strong initial estimates. As shown in Table 11, PRISM consistently boosts AAR across
all bins, with particularly large gains in the low-AAR regimes.

5 CONCLUSIONS

We present PRISM, a multimodal retrieval-augmented framework for protein inverse folding that
integrates fine-grained retrieval of potential motif embeddings with a hybrid self-cross attention
decoder. PRISM achieves new state of the art across multiple benchmarks in sequence recovery and
foldability, while adding only negligible runtime overhead. Our latent-variable formulation provides
theoretical grounding, and ablations confirm the central role of different design choices, including
retrieval, hybrid attention, and aggregation mechanism. These results establish fine-grained retrieval
as a principled and scalable approach for advancing protein sequence design.
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A RELATED WORKS

Protein inverse folding, the process of designing amino acid sequences that fold into specific three-
dimensional structures, has been a focal point of computational biology research (Gao et al., 2022;
Mahbub et al., 2025; Sun et al., 2024; Hsu et al., 2022; Zheng et al., 2023). In 2022, Dauparas
et al. (2022) proposed ProteinMPNN, widely popular autoregressive method for designing protein
sequences that fold into desired structures. It achieved an impressive sequence recovery rate on
native backbones, outperforming traditional methods, showing versatility extending to designing
monomers, cyclic oligomers, nanoparticles, and target-binding proteins. Gao et al. (2022) introduced
PiFold, a method that effectively combines expressive features with an autoregressive sequence
decoder to enhance both the accuracy and efficiency of protein design. PiFold achieved a high
recovery rate on the benchmark dataset and demonstrated a speed advantage, being 70 times faster
than some autoregressive counterparts. That same year, Hsu et al. (2022) proposed a sequence-to-
sequence transformer model trained using predictions by AlphaFold2, a state-of-the-art structure
prediction method (John et al., 2021). By leveraging putative structures of millions of proteins,
their approach achieved a notable improvement in the field. Zheng et al. (2023) introduced the
usage of protein language models (Nadav et al., 2023; Meier et al., 2021) for structure-conditioned
protein sequence design, or in other words, inverse folding. Another work by Wang et al. (2024a)
extended this by incorporating diffusion language modeling for effective sequence generation. Sun
et al. (2024) pretrained a 16 billion parameter protein language model with a mixture-of-expert
architecture, which they further adapted for prediction and sequence generation tasks, and surpassing
the previous methods. To address the need for standardized evaluation, Gao et al. (2023) also proposed
ProteinlnvBench, a comprehensive benchmark for protein design. This framework includes extended
design tasks, integrated models, and diverse evaluation metrics, facilitating more rigorous comparisons
across different methods. Mao et al. (2023) proposed VEN-IF and and its ESM-equipped variant
VEN-IFE, advancing inverse folding by using Vector Field Networks to perform learnable coordinate-
based vector operations that jointly model residue frames and atomic geometry. Recent work has also
explored surface-based and biochemistry-aware protein design, such as SurfPro (Song et al., 2024)
and SurfDesign (Wu et al., 2024), which operate directly on molecular surfaces, and BC-Design (Tang
et al., 2025), which incorporates explicit biochemical constraints into the generation process. These
approaches differ from inverse folding models in their use of geometric or physicochemical signals
rather than backbone-sequence likelihood, and represent an orthogonal line of structure-conditioned
design.

B EXPERIMENTAL SETUP

B.1 DATASETS

We evaluate our framework on six widely used benchmarks: CATH-4.2 (Orengo et al., 1997),
TS50 (Li et al., 2014), TS500 (Li et al., 2014), CAMEO 2022 (Campbell et al., 2024), PDB date
split (Campbell et al., 2024), and orphan proteins dataset (Jing et al., 2024).

CATH-4.2 is a standard benchmark containing proteins with fewer than 500 residues, and is widely
adopted for training, validation, and testing of inverse folding models (Zheng et al., 2023; Wang et al.,
2024a). Following prior work, we further analyze three subsets of the CATH-4.2 test set: short chains
(Iength < 100, ~16.5%), single chains (~92.86%), and the full test split. Appendix Fig. 5 shows the
sequence length distribution.

TS50 is a compact benchmark of 50 proteins (maximum length 173), while TS500 provides greater
variability, ranging from very short chains (43 residues) to long proteins (>1600 residues). Following
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Table 12: Statistics of CATH-4.2, TS50, TS500, CAMEO 2022, PDB date split, and Orphan proteins benchmark
datasets. Here “seq.”, “res.”, “len.”, and “St. Dev.” represent “sequence”, “residue”, “length”, and “standard
deviation”, respectively.

Data split #ofseq. #ofres. MeanLen. MedianLen. St. Dev. Len.
CATH-4.2 Train 18,024 3,941,775 218.7 204.0 109.93
CATH-4.2 Validation 608 105,926 174.22 146.0 92.44
CATH-4.2 Test 1,120 181,693 162.23 138.0 82.22
CATH-4.2 Combined 19,752 4,229,394 214.12 196.0 109.06
TS50 50 6,861 137.22 145.0 25.96
TS500 500 130,960 261.92 225.0 167.30
CAMEO 2022 183 44,539 243.38 228.0 144.86
PDB date split 449 86,698 193.09 178.0 81.06
Orphan proteins 11 1,310 119.09 124.0 55.04

convention (Zheng et al., 2023; Gao et al., 2022), we use these only for evaluation after training on
the CATH-4.2 training split, thereby testing cross-dataset generalization.

CAMEDO 2022 comprises 183 recently released structures (average length 243 residues), providing
an evaluation on proteins outside the CATH classification and closer to real-world modeling tar-
gets (Campbell et al., 2024). The PDB date split (449 proteins; mean length 193) follows the protocol
of previous studies such as Campbell et al. (2024) and Wang et al. (2024b), where training and
evaluation proteins are separated strictly by deposition date in the Protein Data Bank. This ensures
robustness against temporal leakage and simulates forward-looking generalization.

The recovery rate of natural proteins does not fully assess the ability of inverse folding models to
generalize to novel or orphan backbones. We therefore evaluate PRISM on the orphan proteins
dataset prepared by Jing et al. (2024), which contains 11 challenging proteins with no detectable
sequence homologs in major databases. Since our retrieval index is built from the CATH-4.2 training
split (PDB-derived), these orphan proteins are guaranteed to be non-overlapping with both our
training set and retrieval index.

B.2 EVALUATION METRICS

We report two sequence-level metrics and three structure-level metrics.

Sequence-level metrics. Amino Acid Recovery (AAR): Median sequence recovery is the most widely
used metric for inverse folding (Zheng et al., 2023; Wang et al., 2024a; Sun et al., 2024). It measures
the percentage of positions where the predicted amino acid matches the native sequence:

L
. 1 4
AAR = median (L ‘_E 1 1(5; = 5;) x 100%) , (®)
where L is the protein length and 1 is the indicator function.

Perplexity (PPL): Perplexity evaluates how confidently a model predicts the native sequence (Wang
et al., 2024b; Tian et al., 2026; Zou et al., 2024). For autoregressive models:

M Lj
1
PPLap =exp | ———— > _ > log P(S; | S<i, B) | . )
Zj:l L; j=1i=1
For our non-autoregressive setting:
1 M L
PPLyap = exp | — =3z D> log P(Si[5.B) |, (10)
Zj:l Lj j=1i=1

where S is a noisy initialization of the native sequence.
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Structure-level metrics. To evaluate whether generated sequences are foldable into the target
backbone, we use three complementary metrics, following recent studies (Dauparas et al., 2022;
Zheng et al., 2023; Wang et al., 2024a;b):

Root-Mean-Square Deviation (RMSD): measures the average distance (in A) between backbone alpha
carbon atoms of the predicted and native structures after optimal alignment. Lower RMSD indicates
higher structural fidelity.

RMSD(X,Y) =

1 N
~ > (1)
N i=1

where d; is the distance between the alpha carbons of ¢-th pair of residues in two structures X and
Y.

TM-score (sc-TM): a length-normalized similarity metric that is robust to protein size and is widely
used to assess global fold correctness; values > 0.5 typically indicate correct fold topology.

Lajigned

1

sc-TM(X,Y) = max 3
; d;
=1 1+ (do(ngc,))

alignments Ltarget

(12)

where do(L) = 1.24(L — 15)"/3 — 1.8

Predicted Local Distance Difference Test (pLDDT): a per-residue confidence score from Al-
phaFold2 (John et al., 2021), used here to assess the stability and reliability of folded structures
generated from designed sequences.

L
1 .
pLDDT = 7 ;:1 conf(7) (13)

Together, these metrics evaluate both sequence accuracy and structural realizability, which is critical
in physical sciences applications of protein design.

B.3 HARDWARE SPECIFICATIONS

These experiments were conducted with single AMD Milan processor (64-core 2.55 GHz), 256 GB
of RAM, and four NVIDIA A100 GPUs (each with 40 GB VRAM). The vector-database takes about
15.1 GB of hard disk space.

B.4 IMPLEMENTATION DETAILS OF VECTOR DATABASE

Our vector database is created with the CATH-4.2 training split, where each residue corresponds to a
database entry as defined in Sect. 3.4 (a total of 3,941,775 residues). Since we leverage this dataset to
train our model as well, we additionally mask the query sequence itself to prevent trivial self-retrieval
during training.

C BASELINES

StructTrans (Ingraham et al., 2019) proposed a conditional generative model for protein sequences
given 3D structures based on graph representations. GVP (Jing et al., 2020) introduced geometric
vector perceptrons, which extend standard dense layers to operate on collections of Euclidean vectors.
ProteinMPNN (Dauparas et al., 2022) proposes an autoregressive protein sequence generation
approach conditioned on structure. ProteinMPNN-CMLM (Zheng et al., 2023), a non-autoregressive
variant of the original ProteinMPNN, has been trained with the conditional masked language modeling
(CMLM) objective (Ghazvininejad et al., 2019) and achieves higher score than the original version.
LM-Design (Zheng et al., 2023) is another non-autoregressive model trained with CMLM that
leverages pretrained protein language models for inverse folding. DPLM (Wang et al., 2024a) extends
this work by using discrete diffusion language modeling objective to enhance sequence generation
capabilities of languange models. Multiflow (Campbell et al., 2024), ESM3 (Hayes et al., 2025),
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Figure 5: Distribution of lengths of the protein sequences in the benchmark dataset CATH-4.2 (Orengo et al.,
1997).

and DPLM-2 Wang et al. (2024b) also take a generative approach, with flow-based and diffusion
language modeling. AIDO.Protein (Sun et al., 2024) is a 16 billion parameter pretrained protein
language model that has been further adapted for inverse folding with conditional discrete diffusion
language modeling objective. VEN-IF and VFN-IFE extend the Vector Field Network to inverse
folding by using learnable vector computations over virtual atom coordinates (Mao et al., 2023).

D RETRIEVAL KERNEL

We model R = {R;}L, as a latent retrieval hypothesis. The kernel p(R | £, D) admits both
stochastic definitions and deterministic approximations.

Stochastic retrieval. For residue 4, let the cosine similarity between query embedding &; and entity
d € D (with embedding £(d)) be

a;(d) = 70— (14)
& IE@)]
Convert to nonnegative weights using temperature 7 > 0 and normalize:
wi(d)
wi(d) =exp(ai(d)/7),  pild)==—""77+" (15)
( ) Swep wi(d)
Sample K distinct entities R; C D without replacement under a Plackett—Luce kernel. For an
ordered K-tuple m; = (d;1, ..., d;x ) with distinct elements,
K
i(d;
Pr(m; | &,D) =[] wildik) . (16)
k=1 Z w;(d)
deD\{di1,...,d;i k—1}
For the unordered set R;,
K
pRi1&ED) = Y ] (dit) . (17)

7;€Perm(R;) k=1 Z w;(d)
deD\{di1,...,di k—1}
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PDB ID: 4W66, Chain: A
(embeddings stored in Vector-DB)

‘MNEPIILRY..’

(true sequence)

PDB ID: 3ZlJ, Chain: A
(from CATH-4.2 test set)

‘MKRIEQYTQ..’

(initial estimation)

4 I
Joint embedding Joint embedding
of full protein of full protein

[E, &, .., Eig, .. E] [E9,, &Y, ..., E, ..., E9]

| _ Highcosine
Fine-grained similarity (0.98)

(per-residue) Q

Retrieve the Vector-DB entry

joint
embeddings,
representing
their localities

corresponding to ei58

Figure 6: An example of how our vector DB search works. Here we leverage embedding 5} (representing the
potential motif in residue j’s locality in protein 7) to search representations of similar 3D localities in other
proteins in the vector database to enrich context for later generation step.

The kernel factorizes across residues:

L
p(RIE D) =]]p(Ri|&,D), R={Ri},. (18)
i=1
We leverage this stochastic process (together with the full probabilistic model) when sampling diverse
sequences (Appendix M).

Deterministic approximation. As 7 — 0, Eq. 15 concentrates on maximizers of a;(d) and Eq.
16 sequentially selects the K largest scores (ties broken arbitrarily). Thus p(R; | £;, D) in Eq. 17
collapses to a point mass on the top-K set:

TopK (€;; D) = arg max Z a;(d). (19)
|T[=K 4T
Formally,
L
p(R| & D)=]]p(Ri|&, D), p(Ri|&,D)=§Ri—TopK(E; D)), (20)
i=1

with Dirac distribution 6(-); see Appendix D.1 for proof.
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D.1 CONVERGENCE OF STOCHASTIC RETRIEVAL TO DETERMINISTIC TOP-K

Proposition 1. Let a;(d) denote the cosine similarity score between query embedding E; and entity
d € D. Define weights and softmax probabilities

w;(d)
w;(d) = exp (aZ(d)/T)’ pi(d) Zd'eD w3 (d’)'

Consider the Plackett—Luce sampler that draws an ordered K-tuple 7; = (d;1, . .., d;x) without
replacement:

s wi(dix)

PI‘(ﬂ'i | (c,’i,D) = .

he1 ZdeD\{dﬂ,...,di,k,l} w;(d)

As T — 0, the distribution over unordered retrieval sets R; = {d;1, .. .,d;x } converges to a point

mass on the deterministic Top-K set of scores TopK(E;; D), up to uniform randomness among exact
ties.

Proof. Step 1: Single-choice limit. Fix ¢ and write a(d) := a,;(d). Let M = maxgy a(d’") and
T ={d: a(d) = M} be the argmax set. Then
ea(d)/T ela(d)=M)/~
pa(m) = S eald)r = S elal@) M)/
As 7 — 0, the numerator converges to 1 if d € T  and 0 otherwise. Hence
. 1/|T|, deT,

lim pa(r) = {o,/l | d¢T.

If |T'| = 1, the maximizer d* is selected with probability 1.

Step 2: Sequential without replacement. Plackett—Luce draws K items by repeating the softmax on
the remaining set. If | 7| = 1, then d;; = d* w.p. 1. Removing d*, the argument applies inductively
to the reduced set, so at each step the current maximum is selected. Thus the ordered tuple 7; is the
Top-K scores in descending order.

If there are ties, the probability mass is split uniformly among tied maxima; once one is chosen, the
argument recurses on the remaining set.

Conclusion. Therefore, for the unordered set R ;,
1 . D) = ) ) )
0P (Ri|&:, D) {O, otherwise,

up to uniform randomness under exact ties. This proves the claim. O

E FROM LATENT MODEL TO TRAINING OBJECTIVE: ELBO, PRIOR-JENSEN
BOUND, AND DETERMINISTIC REDUCTION

Model recap. Given backbone B and database D, the latent variables are the embedding &, the

retrieval R = {R;}X , and the attribution Z. The emission factorizes across residues with logits

Y(,B,R):

L
p(S|Z,R,E B) = HCat(Si;softmax (Y(S,Bj%)i)),

i=1
The joint and marginal are
p(S,Z,E,R|B,D)=p(€|B)p(R| & D)p(Z|R,E B)p(S|Z,R,E, B), 1)
p(S|B,D)= Y p(€|B)p(R|& D)p(Z|R,E B)p(S,2,E,R|B,D). (22)

Z,.ER
(23)

For notational simplicity, we use the summation symbol ) to denote marginalization over all latent
variables, encompassing both summation (for discrete variables) and integration (for continuous
embeddings).
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E.1 VARIATIONAL ELBO

Theorem E.1 (Variational ELBO). For any density (£, R,Z | S, B, D) with support contained in
that of p(€,R,Z | B, D),

logp(S | B,D) > Leiso(q), (24)
where the ELBO can be written in either of the equivalent forms

EELBO(q) = Eq[logp(s ‘ ZvRagaB)] 7KL(q(5aRaz | SvaD) HP(E,R,Z | B’D))a (25)

=E,[logp(S | Z,R, &, B)] + E,llogp(€ | B)] + Eqllogp(R | £, D)]
+ Eqllogp(Z | R, €, B)] — Eqllogg]. (26)

Moreover,

so that —log p(S | B, D) < —Lg1po(q) (the negative ELBO upper-bounds the true NLL).

Proof. Start from 23 and multiply and divide by ¢(£,R,Z | S, B, D):

p(S,E,R,Z| B,D) p(S,E,R,Z | B,D)
1 S|B,D)=1 . = logE .
oep(S|B.D) =g D a) e m 7 s By B ye R 218, B D)

By Jensen’s inequality (concavity of log):
(S,¢£,R,Z| B,D) p(8,¢,R,Z| B, D)
> [E4|log
(E,R,Z|S,B,D) q(&,R,Z|S,B,D)
= Eq[logp(sa 57 Rv Z ‘ B7 D)] - Eq [log q]
Expanding the joint via the model factorization gives 26, and grouping terms yields 25. For the
decomposition with the posterior, observe by Bayes:

p(S,€,R,Z| B, D)

logp(S | B, D) =1logE, [p
q

p(E,R,Z|8S,B,D) =

p(S|B,D)
Hence
q
KL(q|p(-|S,B,D)) =E,|log ————
(WllpC18.8.2) = Eal 08 78 5 )
=E,[log q] — E,[logp(S,E,R,Z | B,D)] +logp(S | B, D),
i.e.

logp(S | B, D) = Eyllogp(S,€,R, Z | B, D)] — Eqllog g +KL(q || p(- | S, B, D)).

Lrpo(q)
Since KL > 0, the inequality follows. O

E.2 TRAINABLE RETRIEVAL KERNEL

Under the factorizations of the amortized posterior
q&,R,Z|S,B,D)=¢q(E|S,B)q(R|S,E,D)q(Z|S,R,E,B),
and the prior
P(€,R,Z| B, D) =p(&|B)p(R|&,D)p(Z|R,E, B),
the exact ELBO from Eq. 25 becomes
Lrrpo(q) = Eqllogp(S | Z,R, €, B)]
—KL(¢(€|S,B) | p(€ | B))
—Ey[KL(¢(R[S,&,D)[[p(R| €, D))]
- EQ[KL(Q(Z ‘ SvRagaB) ||p(z | Rvng))] :

With (& | S, B) = p(€ | B) and q(Z| 8, R, €, B) = p(Z | R, £, B),

which enables training the retrieval prior p(R | £, D) through minimization of the KL-divergence.
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E.3 PRIOR-JENSEN LOWER BOUND

Corollary E.1.1 (Prior-Jensen bound). Let p(E,R,Z | B, D) be the latent prior induced by the
model. Then
1ng(s | B7 D) > IE117(5772,Z|B,D) [lng(S | Z7 Ra 57 B)] ) (28)

equivalently
—logp(S | B,D) < —E,[logp(S|Z,R,E,B)].

Proof. Take ¢(€,R,Z |S,B,D)=p(,,R,Z | B, D) in Theorem E.1. Then KL(g||p(- | B, D)) =
0 in 25, and the ELBO reduces to E,[log p(S | Z, R, &, B)], which is therefore a lower bound on
logp(S | B, D). Alternatively, apply Jensen directly to

logp(S | B, D) =1logEye,r,z18,0) [P(S | Z,R,E,B)] >E,[logp(S|-)].

E.4 DETERMINISTIC REDUCTION AND TIGHTNESS

Proposition 2 (Deterministic reduction and tightness). Assume
L

p(€|B)=48E—-£7), p(R|E D)=]]dR:- TopK(£S D)),
i=1
p(Z | R,E,B)=8Z— A(E, B!, R)).
Let R* = {TopK (£, D)}; and Z* = A(€9, B, R*). Then
logp(S | B, D) =logp(S | 2", R*, £, BY), (29)
and the right hand side equals the standard per-residue log-likelihood

L
logp(S | Z*,R*,£9,BY) = Zlogsoftmax(Y(ffq,BQ,R*)i)S_. (30)
i=1
Consequently,
L A
—logp(S|B,D)=— Zlog SoftmaX(Y(é'q, Bq,R*)i)

i=1

S;”

Proof. Under the stated Dirac measures, the summations in 23 collapse to the single configuration
(E1L,R*,Z*):

p(S|B,D)=p(S|2Z",R* £ B).
By the emission factorization, this conditional equals HiL:l Cat(S;; softmax(Y (£, B4, R*),)).
Taking logs yields the stated sum of per-residue log-softmax terms. O

E.5 CONSEQUENCES FOR THE TRAINING OBJECTIVE

Combining Corollary E.1.1 and Proposition 2:
logp(S | B,D) > E,[logp(S|Z,R,&,B)] and logp(S | B,D) =logp(S | Z*,R*,€, BY),
so the plug-in negative log-likelihood

L
LNLL = — Z log softmax(Y(é'q, B R*);)

i=1

S

is (i) exactly the NLL of the deterministic latent model, and (ii) an upper bound on the true NLL of
the stochastic latent model:

—logp(S | B,D) < LxrLL.
Equality holds when the stochastic latents degenerate to Dirac measures (our current design), or when
a variational posterior collapses to a point mass concentrated at (5’ 1 R*,Z¥).
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E.6 DERIVED PROBABILISTIC MODEL

Substituting the kernels into Eq. 3 gives

L

s wi(dix)
p(S|B,D) = p(&i | B)
S;Z [11:[1 mepgx;l(ni) 1};[1 Z wi(d)]
deD\{ds1,....,ds k—1}
L
p(Z | R.E,B) [ | Cat(Si: softmax(Y (£, B,R));). (31)

i=1

Under the deterministic approximations,

L
p(S|B,D)=3" [H 5(R; — TopK (£4; D))} 5§z — A7, B,R))
RZ i=1
L
H Cat(Si; softmax(Y(f:'q, B, R))Z) (32)

i=1

E.7 TRAINING OBJECTIVE UNDER DETERMINISTIC REDUCTION

We target the true marginal log p(S | B, D) and optimize its prior—Jensen lower bound (formal proof
in App. E):

L

logp(S | B,D) > E, [1ogp(S \ )} =E, [ Z log Cat(Si; softmax Y;(&, B, R; 9))} . (33)
i=1

Equivalently, we minimize corresponding Jensen negative ELBO (NELBO) to learn parameter set 6:

L
0 = arggmin E,e,»,21B,D) [Z log Cat(Si; softmax Y, (&, B, R; 9))], (34)
i=1

Under our deterministic reduction for any query protein B? (App. E, Prop. 2) with £ = 1, R* =
TopK (€9 D), Z* = A(€9, B, R*), the prior-Jensen lower bound in Eq. 28 is tight and the
objective collapses to standard per-residue cross-entropy:

L
0 = arg mein [ — z_; log softmax(Y(Eq, B R™; e)i)si] , (35)
with gradients flowing through the learnable parameters 6 = {0z, 6 }; the retrieval TopK is treated
as fixed and non-differentiable in this deterministic setting.

F AGGREGATION AND GENERATION WITH OUR DECODER

We aggregate the retrieved entities R* to generate a new sequence S?. We do this with a series of
T consecutive learnable blocks, each consisting of one multihead self-attention layer (MHSA), one
multihead cross-attention layer (MHCA), and two bottleneck multilayer perceptrons (Houlsby et al.,
2019) (T is a hyperparameter). In the rest of this article, we refer to this hybrid block as multihead
self-cross attention block (MHSCA).

As shown in Fig. 2 (Point (3) and Fig. 7, for VI € [1,]54|] we first extract the embedding vectors
{(& ;) k + k € [1, K]} from our retrieved entities. We then merge them with the query vector &' and

linearly project the output to create a matrix H{ € RE+D)xd" 4,
H{ = concat({(€))x : k € [1, K]} U{E}) Wi, (36)
where concat(.) performs a concatenation operation on the vectors in the union set, Wy, € Rdxd’

is a learnable parameter, and d’ is the output embedding dimension. Then for the whole query
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protein P? we get a tensor H? = [H{, Hi,... ,’Hfgq ] € RISYX(E+1)xd" which is used as query,
key, and value of MHSA (see Vaswani (2017) for definitions). To ensure that the generator can
effectively leverage any residual 3D structural information, we also encode the input structure B¢
separately using a structural encoder, where no sequence information is provided. Similar to Sun
et al. (2024), we leverage ProteinMPNN-CMLM (Zheng et al., 2023) for structure encoding, which
is a variant of the original ProteinMPNN method (Dauparas et al., 2022) trained with conditional
masked language modeling objective (Ghazvininejad et al., 2019). This generates structural encoding
p? € RI5*1%4" This encoding is then linearly transformed and merged with a linear projection of
query encoding £9, creating a new representation matrix #7 € R/’ xd’
concat({p/ W, EWe}) € R?, with two learnable parameters W, € RY*T and We € R
For our MHCA blocks, we use 04 as the guery, and H? as both the key and value. The motivation
behind such design of MHSCA is, while MHSA layers can help jointly attend to multiple parts of the
input protein as well as their corresponding retrieved embeddings, MHCA can help extract any kind
of residual structural information needed to better decode the sequence. Moreover, since the MHCA
here preserves the same dimension as 69, the output representation has |§ 4] vectors which we can

, where each element 0 =

directly pass through another linear layer to generate the output logits Y € RIS Ixd Sampling with
Y provides us with a newly generated sequence S9.

G PoOST-HOC MEMORY-GROWTH ANALYSIS

In our design, each residue embedding £? summarizes the local motif (or potential motif) around
residue r in protein p. Let ¢(-) map a residue neighborhood to a motif representation in a metric
space (M, d), and let the database (memory) be D = {d = (7,1, p)}. At inference, for each query
residue ¢ we retrieve neighbors in D by similarity of &; to £(d), which effectively searches for nearby
motifs in M.

Definition G.1 (Motif e-coverage). For tolerance € > 0 and query distribution Q over motifs,
the coverage of D is Cov.(D) = Pry, o[ mingep dim, ¢(d)) < e].

Proposition 3 (Coverage saturation). Assume i.i.d. sampling of database motifs from the same
distribution Q as test queries, and that the motif space admits a finite e-cover number N < oo. Then
Cov.(D,)—1as |D,| — oo, and the expected marginal coverage gain from adding a batch of k
new entries satisfies E[Cove(Dy1,) — Cove(Dy)] = O((1 — j\%&)”)

Intuition. Each database item covers an e-ball in M. Under i.i.d. sampling, uncovered mass shrinks
geometrically with n until most query motifs lie within ¢ of at least one memory item. Beyond
this point, additional samples mostly fall into already covered regions, yielding negligible retrieval
improvements and thus minimal downstream gains. O

Implication. Because each residue embedding encodes its local motif, a sufficiently large memory
D achieves high e-coverage of the motif space. Once coverage saturates, top-K neighbors (or their
stochastic variants) are already near-optimal, so post-hoc accretion of similar residues contributes
little to retrieval quality or sequence recovery, absent targeted diversification or retraining.

Bottleneck
MLP 1

Bottleneck
MLP,

Retrieved II |I
oo

Concatenate

Query
vectors

xT

Concatenate

MHSCA 1

1) ]

Structure
encoding

P  -etementwise addition
—»  =direction of data flow

Figure 7: Our aggregation and generation module. It uses 7' consecutive blocks of Multi-Head Self-Cross
Attention (MHSCA). Here the super-script “[¢]” corresponds to the index of the current MHSCA block (and also
its components and their inputs). See Sec. F for details.
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Post-hoc Memory Growth Diagnostics

Coverage proxy (before vs after) Redundancy of D+
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Figure 8: Post-hoc memory growth diagnostics. Left: coverage proxy before/after adding D —fraction of
queries with Top-1 cosine distance < € (¢ = 0.0476) and mean Top-35 distance. Coverage rises only slightly
(0.951 — 0.956) and mean Top-35 distance improves marginally (0.0355 — 0.0340), indicating near-saturation.
Right: redundancy of the added memory D™ measured by nearest-neighbor distance to the original memory D.
The vast majority (96.4%) of new entries already lie within € of an existing item (mean NN distance 0.0192),
explaining the negligible coverage gain.

G.1 DIAGNOSTICS

Does enlarging the memory post-hoc help? To test the hypothesis that our memory already
g-covers most query motifs, we augment the fixed memory D with a small disjoint batch D from
newer PDB entries ! (no parameter updates) and re-index. We report two diagnostics:

Coverage proxy. For each query residue embedding &£;, we compute the cosine distance of its nearest
neighbor in the memory, d((;(l,)s(z, D), and the mean of its top-K distances, JE{,? (i; D). We summarize
by the fraction of queries with dg(l))s(z, D) < cand by E; [&&é? (¢; D)], where ¢ is fixed to the g-th
percentile of d((;é)s(z, D) on the original memory (e.g., ¢=95).

Redundancy of D*. For each new memory item d € D™, we compute its nearest-neighbor cosine
distance to the original memory D, dXN (d; D). We report the proportion with dX(d; D) < ¢ and
the mean E ¢ p+[dhos (d; D)].

cos

Finding. We tested our hypothesis on the TS50 test set. The results are depicted in Fig. 8. The fraction
of queries with a nearest neighbor within € = 0.0476 cosine distance increased only marginally from
95.1% to 95.6%, indicating that coverage was already near saturation. Similarly, the mean Top-35
cosine distance improved slightly (0.0355 — 0.0340), a negligible gain given the scale of retrieval
noise. By contrast, the added entries themselves were highly redundant: 96.4% of D+ items had a
nearest neighbor within ¢ in the original memory, with a mean nearest-neighbor distance of 0.0192.
These results confirm that post-hoc memory growth mostly contributes redundant motifs and provides
no meaningful benefit for retrieval or sequence recovery. This supports our design choice to treat the
vector database as a fixed prior-knowledge memory.

Detailed ablation. For completeness, we ablate the impact of database size by comparing three
PRISM configurations: (i) D constructed from the CATH-4.2 training set, (ii) D™ built from new
PDB entries, and (iii) their union. The results in Tab. 13 show that all variants achieve virtually
indistinguishable perplexity and recovery scores, with differences well within statistical noise. For
example, on CAMEO 2022 the AAR stabilizes at ~64.6% across all database choices, and on the
CATH-4.2 test and validation splits the gap remains below 0.2%. These findings suggest that the
CATH-4.2-based database already provides near-complete motif coverage, and that additional PDB
entries primarily add redundant fragments rather than new information. This empirical evidence
supports our design decision to fix the database as a compact, prior-knowledge memory: it ensures
efficiency while preserving accuracy.

"all samples form the PBD split here: https://zenodo.org/records/15424801
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Table 13: Ablation on the size of database. Results are rounded to two decimal points, hence very small changes
are not reflected.

Models CAMEO 2022 ‘ CATH-4.2 test split ‘ CATH-4.2 val split

‘ PPL | AAR % 1 PPL | AAR % 1 PPL | AAR % T

268  63.52(60.56/64.17) | 2.94 58.60 (57.27/60.13) | 2.90  58.73 (58.00/60.62)
253 64.63 (61.30/64.81) | 271  60.43 (58.55/61.41) | 2.68  60.26 (59.28/61.89)
253 64.67(61.25/64.81) | 271  60.23 (58.56/61.41) | 2.68  60.26(59.29/61.91)
253 64.67 (61.27/64.82) | 271  60.43 (58.56/61.41) | 2.68  60.26 (59.29/61.90)

Base estimator (AIDO.Protein-IF)

PRISM (VDB: CATH 4.2 train)

PRISM (VDB: PDB new)

PRISM (VDB: CATH 4.2 train + PDB new)

H LENGTH VS. RECOVERY

To further examine how model performance scales with protein length, we stratified the CATH-4.2
test set into length bins and compared amino-acid recovery rates (AAR) between AIDO.Protein-IF
and PRISM. As shown in Fig. 4, both models exhibit the expected trend of improved recovery
with increasing sequence length, reflecting richer structural context in longer backbones. Crucially,
across all bins, the distribution of PRISM’s recovery rates consistently shifts upward relative to
AIDO.Protein-IF, indicating that the gains are not restricted to a narrow subset of proteins but hold
robustly across varying sequence lengths. Notably, in the shorter length regimes (< 200 residues),
where inverse folding is traditionally more challenging, PRISM delivers marked improvements
in both median and interquartile range, suggesting that fine-grained retrieval particularly benefits
proteins with limited contextual information. At larger lengths (> 300 residues), the advantage
remains evident, with PRISM maintaining higher medians and tighter variability, underscoring its
scalability. This distributional analysis complements the average recovery metrics and highlights that
PRISM achieves consistent, robust gains across protein lengths, reinforcing its generality beyond
aggregate statistics.

I FOLDABILITY ANALYSIS

In Appendix Tab. 14, we provide additional foldability analysis results on TS50 an TS500 datasets.

Table 14: Foldability comparison using AF2 protein folding model. The median and the mean are provided
outside and inside the parenthesis, respectively.

Models TS50 TS500
RMSD | sc-TM 1 pLDDT RMSD | sc-TM 1 pLDDT 1

AIDO.Protein-IF ~ 1.075(1.2)  0.956 (0.938) 0.949 (0.937)  1.18(1.372)  0.96 (0.904)  0.951 (0.931)

PRISM (ours) 0.985 (1.13)  0.964 (0.943)  0.95(0.939)  1.125 (1.351)  0.964 (0.905) 0.952 (0.929)

J CONTRIBUTION OF HYBRID DECODER WITH MHSCA

In Appendix Tab. 15 we provide further ablation on hybrid-attention vs cross-attn-only on test sets
CAMEO 2022 and PDB date split.

Table 15: Ablation on hybrid-attention vs cross-attn-only (CAMEO 2022 and PDB date split).

CAMEO 2022 PDB date split
Models
PPL | AAR % 71 PPL | AAR % 7
PRISM (w/o MHSA)  2.60  64.63 (60.39/64.07) 243  66.67 (66.56/67.77)
PRISM (full) 2.53  64.63(61.30/64.81) 235 67.47 (67.37/68.51)

K CONTRIBUTION OF AGGREGATION DEPTH

In Appendix Tab. 16 we provide additional ablation results on the contribution of aggregation depth,
i.e., the impact of the number of MHSCA blocks on the test sets CAMEO 2022 and PDB date split.
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Table 16: Ablation on the number of MHSCA blocks (CAMEO 2022 and PDB date split).

4 CAMEO 2022 PDB date split
of blocks

PPL | AAR % 1 PPL | AAR % 1
N/A (base est.) 2.68  63.52 (60.56/64.17) 249  66.27 (66.37/67.64)
1 2.54  64.67 (61.31/64.81) 2.36 67.20(67.33/68.49)
2 2.53 64.63(61.30/64.81) 235 67.47 (67.37/68.51)
3 2.54  64.61(61.27/64.80) 236 67.41(67.33/68.47)

L SEQUENCE RECOVERY AND DESIGNABILITY ANALYSIS

Appendix Tab. 17 reports additional results on sequence recovery and designability for the CATH-4.2
test split. We follow the standard evaluation protocol used in Mao et al. (2023) and Yim et al. (2023),
computing the proportions of generated sequences whose ESMFold (Lin et al., 2023) structures
satisfy the designability criteria: scTM > 0.5 (%) and scRMSD < 2 (%). Here we report scores
for two PRISM variants: (i) using the original frozen joint encoder G (denoted “orig. G”), and (ii)
using fine-tuned G and iterative refinement (denoted “ft. G, iter.”). The results show that PRISM
substantially improves both sequence recovery and structural designability, achieving state-of-the-art
performance across all metrics.

Table 17: Performance comparison on the CATH-4.2 test split for sequence recovery and designability. All
baseline scores are reported from Mao et al. (2023). Best and second-best scores are shown in bold and italic,
respectively. Here subscript aido denotes that AIDO.Protein-IF was used as the base estimator.

Model PPL| AAR(%)1 scTM > 0.5(%)1 scRMSD < 2 (%) 1
PiFold 4.55 51.66 90.98 60.35
LM-Design 4.41 54.41 89.42 58.41
VEN-IF 4.17 54.74 92.37 62.89
VEN-IFE 3.36 62.67 93.29 64.16
PRISM, ;4, (orig. G) 2.71 60.43 94.82 69.73
PRISM,;uo (ft. G, iter)  2.65 63.33 95.36 69.55

M RECOVERY-DIVERSITY TRADE-OFF VIA TEMPERATURE SAMPLING

An important question for inverse folding is whether improvements in recovery come at the cost of
reduced sequence diversity, since a practical design framework must balance both fidelity to the native
sequence and exploration of alternative solutions. To probe this trade-off, we performed controlled
sampling experiments with PRISM by varying the decoding temperature while holding all other
factors fixed. For each backbone, we generated 100 candidate sequences at temperatures ranging
from 0.1 to 1.3 and evaluated (i) Recovery Rate, measured as mean sequence identity to the native,
and (ii) Diversity, measured as 1— average pairwise identity (PID) among the sampled sequences.

Recovery-Diversity Frontier. Fig. 9 (left) illustrates the recovery—diversity frontier achieved by
PRISM. At very low temperatures (e.g., ' = 0.1), the model collapses to near-deterministic decoding,
yielding high recovery (~0.58) but very limited diversity (~0.06). As the temperature increases,
diversity rises monotonically, reaching 0.63 at 7' = 1.3. Importantly, this comes with only a gradual
reduction in recovery, which remains above 0.40 even at the highest temperatures. This smooth
frontier indicates that PRISM does not degenerate into trivial random sampling; instead, it maintains
a meaningful distributional match to the native even under exploratory sampling.

Recovery vs. Temperature. The middle panel confirms that recovery declines as temperature
increases, consistent with expectations that flatter distributions produce more varied but less native-
like sequences (Fig. 9 (middle)). However, the slope of this decline is shallow: from 7" = 0.1
to T' = 1.3, recovery drops by only ~0.16 absolute. This robustness suggests that the retrieval-
augmented architecture sharpens conditional probabilities enough to preserve signal even under
stochastic decoding.
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(a) Diversity-Recovery Frontier (b) Recovery vs Temperature (c) Diversity vs Temperature

07 T=1B 0.7 07
- 06 =71 - 06
g o g
T
= 05 Jo9 e o5
H 8 s
| 0.4 TEO.7 = | 0.4
o g 05 =]
203 T=0.5 S 203
@ g @
4 & 4
£ 02 T=0.3 04 802
a a

0.1 T=0.1 0.1

0.3
0.0 0.0
0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8 1.0 12 0.2 0.4 0.6 0.8 1.0 12

Recovery Rate 1 Temperature Temperature

Figure 9: Recovery—diversity trade-off via temperature sampling. (a) Diversity—Recovery frontier: PRISM main-
tains high recovery while offering controllable diversity as temperature increases. (b) Recovery vs. temperature:
recovery decreases gradually under stochastic sampling, demonstrating robustness. (c) Diversity vs. temperature:
diversity increases nearly linearly, enabling rich alternative designs. Together, these results highlight PRISM’s
ability to support a tunable accuracy—diversity trade-off without collapse.

Table 18: Comparison of Base Estimator (AIDO.Protein-IF) and PRISM across multiple benchmarks. We report
perplexity (PPL, lower is better) and amino acid recovery (AAR, higher is better), along with absolute and
percentage improvements of PRISM over the base model.

TS50 TS500 CAMEO 2022 PDB date split | CATH-4.2 test split | CATH-4.2 val split
PPL| AAR%?T |PPL| AAR%?1 |PPL| AAR%?T |PPL| AAR%1 |PPLL AAR%1T | PPLL AAR% 7T

Base estimator (AIDO.Protein-IF) | 2.68 66.19 ‘ 242 69.66 ‘ 2.68 63.52 ‘ 2.49 66.27 ‘ 2.94 58.60 ‘ 2.90 58.73 H 2.685 63.83

Models ‘ Average

PRISM (full) 243 67.92 2.27 70.53 2.53 64.63 2.35 67.47 2.71 60.43 2.68 60.26 2495  65.87
Absolute change A -0.25 +1.73 -0.15 +0.87 -0.15 +1.11 -0.14 +1.20 -0.23 +1.83 -0.22 +1.53 -0.19  +2.04
Relative change A% -9.3% +2.6% -6.2% +1.2% -5.6% +1.8% -5.6% +1.8% -7.8% +3.1% -7.6% +2.6% 11%  +32%

Diversity vs. Temperature. Conversely, Fig. 9 (right) shows that diversity scales nearly linearly
with temperature, highlighting PRISM’s ability to generate rich alternative sequences when encour-
aged to explore. Notably, diversity gains are not confined to “noise”: even at moderate temperatures
(e.g., T = 0.7), diversity is doubled relative to 7" = 0.1 while recovery remains > 0.50.

Takeaway. These results demonstrate that PRISM supports a controllable accuracy—diversity trade-
off without collapsing at either extreme. By adjusting a single temperature parameter, users can
shift seamlessly between high-fidelity recovery (for benchmarking) and diverse sequence generation
(for design). This flexibility is rarely observed in prior inverse folding systems, which often either
maximize recovery at the cost of trivial diversity or sacrifice fidelity under high-temperature sampling.
The ablation therefore underscores PRISM’s strength as not only an accurate but also a versatile
framework for conditional protein design.

N USAGE OF LARGE LANGUAGE MODELS (LLMS) IN PAPER WRITING

LLMs were used to polish the writing. It was not used for retrieval, discovery, or research ideation.
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