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ABSTRACT

Articulated objects, such as laptops and drawers, exhibit significant challenges
for 3D reconstruction and pose estimation due to their multi-part geometries and
variable joint configurations, which introduce structural diversity across different
states. To address these challenges, we propose KineDiff3D: Kinematic-Aware
Diffusion for Category-Level Articulated Object Shape Reconstruction and Gen-
eration, a unified framework for reconstructing diverse articulated instances and
pose estimation from single view input. Specifically, we first encode complete ge-
ometry (SDFs), joint angles, and part segmentation into a structured latent space
via a novel Kinematic-Aware VAE (KA-VAE). In addition, we employ two con-
ditional diffusion models: one for regressing global pose (SE(3)) and joint pa-
rameters, and another for generating the kinematic-aware latent code from partial
observations. Finally, we produce an iterative optimization module that bidirec-
tionally refines reconstruction accuracy and kinematic parameters via Chamfer-
distance minimization while preserving articulation constraints. Experimental
results on synthetic, semi-synthetic, and real-world datasets demonstrate the ef-
fectiveness of our approach in accurately reconstructing articulated objects and
estimating their kinematic properties.

1 INTRODUCTION

Figure 1: KineDiff3D demonstrates strong generaliza-
tion across datasets (synthetic, semi-synthetic, real-world),
achieving robust reconstruction and novel articulated
shape generation from single-view depth inputs.

Articulated objects, like laptops,
drawers, and robotic arms, are com-
mon in everyday and industrial set-
tings, featuring multi-part geometries
linked by joints that enable diverse
motions. Reconstructing their 3D ge-
ometry and kinematic structure from
a single view input is essential for
robotics Eisner et al. (2022), aug-
mented reality Jiang et al. (2022a),
and computer vision Song et al.
(2024). However, this task is chal-
lenging due to the complex structures
and joint-induced degrees of free-
dom, which create numerous possible
configurations. This complexity makes it difficult to infer complete 3D structures and kinematic pa-
rameters from partial or occluded views. Moreover, accurately estimating the pose of the object
and the states of its joints is crucial for understanding its functionality and interaction capabilities,
adding further complexity to the task.

Existing methods Mandi et al. (2024); Liu et al. (2023); Jiang et al. (2022b) struggle to balance
efficiency and generalization when addressing these issues. Instance-specific approaches based on
multi-view observations can reconstruct detailed object models but typically require complete multi-
view coverage or known articulation priors to achieve good results. These methods exhibit poor
generalization to unseen instances within the same category (e.g., eyeglasses of different models)
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and are highly sensitive to occlusion; even minor occlusion or missing viewpoints often prevents the
recovery of complete geometry. Category-level methods, which learn shape priors for object cate-
gories (e.g., A-SDF’s Mu et al. (2021) encoder for single-view inference), face critical challenges:
directly regressing the signed distance fields (SDFs) results in overly smooth reconstructions lacking
fine details; their insufficient modeling of articulation fails to ensure part coherence under complex
joint interactions; and they heavily depend on precise canonical pose alignment before reconstruc-
tion. More critically, these methods typically treat shape reconstruction and pose estimation as two
independent stages, neglecting the tight coupling between them, which can consequently lead to sub-
optimal final results. In real-world scenarios, an object’s geometry and its pose are complementary;
considering them simultaneously is essential to achieve more accurate reconstruction outcomes.

To address the aforementioned challenges, we propose KineDiff3D: Kinematic-Aware Diffusion for
Category-Level Articulated Object Shape Reconstruction and Generation. KineDiff3D provides a
unified framework capable of simultaneously recovering an object’s complete geometry, kinematic
configuration, and generating novel articulated states (i.e., new joint configurations for the same ob-
ject instance) from a single-view input (see Figure 1). Our approach comprises the following three
core, synergistic modules: 1)Kinematic-Aware Shape Prior Learning: We train a Kinematic-Aware
Variational Autoencoder (KA-VAE) to encode the complete object’s SDF values, joint angles, and
part segmentation masks into a compact latent code Z. This integrated representation captures es-
sential geometric and kinematic properties, establishing a prior where latent interpolations yield
smooth transitions in both geometry and joint states. Crucially, this prior enables the generation of
diverse, kinematically valid configurations by manipulating the joint angles within the latent space.
2) Diffusion-Based Pose Estimation and Shape Reconstruction Modules: To tackle the challenges of
pose ambiguity and partial observation, we design two synergistic conditional diffusion models op-
erating within a joint-centric framework during both training and inference. The first diffusion model
conditions on the input partial point cloud and is dedicated to robustly estimating the object’s global
pose and joint parameters. The second diffusion model leverages the estimated pose to transform
the partial observation into a canonical space and conditions on this normalized input. It then pro-
gressively generates the kinematic-aware latent code Z from noise. This collaborative mechanism
bridges partial observations to a complete model representation, enabling full structural recovery.
3) Iterative Joint Centric Optimization: During inference, we incorporate an iterative optimization
module based on Chamfer distance to jointly refine the estimated global pose, joint parameters and
reconstructed geometric shape. This joint-centric process bidirectionally minimizes the distance be-
tween the transformed reconstructed mesh and the input partial point cloud while strictly preserving
the articulation constraints and part connectivity defined by the kinematic structure. This iterative
loop significantly enhances both reconstruction accuracy and detail recovery.

Our main contributions can be summarized as follows: (1) a novel unified framework based on diffu-
sion models that jointly addresses category-level reconstruction, pose estimation, and generation of
articulated objects from single-view inputs; (2) a Kinematic-Aware Shape Prior (KA-VAE) that co-
encodes geometry (SDFs), joint angles, and part segmentation into a structured latent space, enabling
continuous interpolation of shape and articulation and serving as the foundation for novel shape gen-
eration; (3) a Joint-Centric Iterative Optimization strategy that bidirectionally refines global pose,
joint parameters, and geometry via Chamfer distance minimization, strictly preserving articulation
constraints to boost accuracy and physical plausibility; (4) extensive experiments show that our
method achieves favorable performance in category-level reconstruction and pose estimation of ar-
ticulated objects compared to existing methods.

2 RELATED WORK

2.1 3D RECONSTRUCTION OF ARTICULATED OBJECTS

Recent approaches like Paris Liu et al. (2023), Real2Code Mandi et al. (2024), Ditto Jiang et al.
(2022b) have demonstrated significant advancements in reconstructing articulated objects, they of-
ten depend on dense supervision or multiple views, which may not be available in real-world sce-
narios. Similarly, emerging techniques such as DigitalTwinArt Weng et al. (2024), ArtGS Liu et al.
(2025), and ArticulatedGS Guo et al. (2025), all rely on multi-view inputs and advanced rendering
techniques. While these methods achieve high-fidelity reconstructions, their practicality is limited in
scenarios where only a single view is available. Methods like A-SDF Mu et al. (2021) and CARTO
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Heppert et al. (2023) have proven the feasibility of learning from single-view input by training an
encoder to extract shape and articulation features into a latent space, which is then decoded to pre-
dict SDF values at query points. However, a critical limitation of these approaches lies in their direct
regression of SDF values, this strategy often struggles to recover high-fidelity geometric details and
sharp features, resulting in overly smoothed reconstructions with reduced precision, particularly
near articulation joints and part boundaries.

In contrast, KineDiff3D operates directly on partial point clouds derived from single-view inputs.
It employs a KA-VAE to jointly encode complete object SDFs, joint angles, and part segmenta-
tion into a unified latent space. This integrated representation enables category-level generalization
without requiring dense supervision, while significantly enhancing both the modeling efficiency and
reconstruction quality for articulated objects.

2.2 DIFFUSION MODELS FOR 3D RECONSTRUCTION

Diffusion models have emerged as powerful tools for generative tasks in 3D computer vision, espe-
cially for reconstructing objects from partial or noisy inputs. Zhou & Tulsiani (2023); Wang et al.
(2025); Chen et al. (2024) uses a diffusion process to generate 3D point clouds from partial obser-
vations, achieving high-quality reconstructions for rigid objects. Similarly, Chou et al. (2023); Shim
et al. (2023) applies diffusion models to generate SDFs for static objects, conditioned on partial
point clouds or images. These approaches demonstrate the ability of diffusion models to capture
complex distributions of 3D shapes, but they are primarily designed for rigid objects and do not
account for articulated objects.

For articulated objects, diffusion models are less explored. Recent work by Cheng et al. (2024)
adapts diffusion models to generate articulated hand poses, conditioned on partial 2D observations.
However, this approach focuses on human hands and does not generalize to articulated objects with
diverse kinematic structures. KineDiff3D extends the application of diffusion models to articulated
objects by conditioning the model on partial 3D observations. Our framework generates a latent code
that encapsulates the object’s SDFs, joint angles, and part segmentation while estimating global pose
and joint parameters, addressing the unique challenges of articulated object reconstruction.

3 METHODOLOGY

3.1 KINEMATIC-AWARE SHAPE PRIOR LEARNING

In the field of 3D reconstruction, articulated objects present unique challenges due to complex multi-
part geometries and variable joint configurations, traditional methods Park et al. (2019); Wang et al.
(2021); Melas-Kyriazi et al. (2023) struggle to handle the significant geometric variations exhib-
ited by the same instance under different joint states (e.g., open/closed laptops). To address this,
we propose a Kinematic-Aware Variational Autoencoder (KA-VAE) that jointly encodes geometric
representations (SDFs), joint angles A ∈ RK−1 (where K is the number of rigid parts), and part
segmentation labels S ∈ {0, 1, . . . ,K − 1}N into a unified latent space, simultaneously modeling
surface geometry and dynamic joint angles. This design achieves two core objectives: (1) estab-
lishing a continuous latent space where latent vector interpolations correspond to smooth geometric
transitions and continuous joint angle variations; (2) ensuring diversity to capture geometric features
of various instances within the same category, ultimately constructing a robust representation that
enables diffusion models to efficiently learn and bidirectionally map geometric-motion properties.

To this end, our architecture consists of a PointNet encoder Φ, a Kinematic-Aware Variational Au-
toencoder (KA-VAE) Θ, a multilayer perceptron (MLP) Ψ, and an Articulation decoder Ω (see
Figure 2). The KA-VAE encodes geometric information into a unified latent vector Z, while the
Articulation decoder Ω conditions on Z and joint angles A to produce flexible generations. Specif-
ically, the input point cloud P ∈ RN×3 is processed by the PointNet encoder Φ to extract high-
dimensional geometric features Fg ∈ Rd. These features are fed into the KA-VAE encoder Θenc,
which generates the mean µ ∈ RDz and variance σ2 ∈ RDz of a latent distribution, from which
the latent vector Z ∼ N (µ, σ2) is sampled using the reparameterization trick Doersch (2021). To
enable kinematic-geometric fusion, joint angles A ∈ RK−1 are encoded by the MLP Ψ into a kine-
matic feature vector α ∈ RDz . The vector α is then concatenated with Z, and the combined input
concat(Z,α) is passed to the KA-VAE decoder Θdec to reconstruct a kinematic-aware geometric
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Figure 2: Pipeline of the KineDiff3D Framework. This framework integrates three synergistic
modules: (a) Shape Prior Learning Module (top): Given a full object point cloud and its joint
angles, a PointNet-based KA-VAE learns a shape prior embedding. (b) Pose and Joint Estimation
Module (center): Employs a conditional diffusion model to jointly optimize base pose (X) and
joint parameters (Y) during the denoising process. (c) Reconstruction Module (bottom): Learns
the KA-VAE encoded shape prior embedding through diffusion modeling, then combines angle
encoding with KA-VAE decoding via a kinematics-constrained articulation decoder to generate re-
constructed articulated meshes.

feature Fkg = Θdec(concat(Z,α)). The Articulation Decoder Ω, comprising an SDF network and
task-specific heads, takes Fkg as input and predicts SDF values ˆSDFQ ∈ RL, part segmentation
labels Ŝ ∈ {0, 1, . . . ,K − 1}N , and joint angles Â ∈ RK−1. This enables the model to reconstruct
the object’s geometry and kinematic state for any specified joint configuration. The encoding and
decoding process is mathematically described as:

Fg = Φ(P ),
[
µ, σ2

]
= Θenc (Fg) ,

Z ∼ N
(
µ, σ2

)
, α = Ψ(A),

Fkg = Θdec (concat(Z,α)) ,[
ˆSDFQ, Ŝ, Â

]
= Ω(Q|Fkg)

(1)

where Q ∈ RL×3 is the concatenation of query points.

To ensure the latent vector Z satisfies the requirements of diffusion models, we regularize the latent
space using KL divergence and employ multi-task learning to predict SDF values, segmentation
labels, and joint angles. The training objective is defined as:

LKA = λ1∥SDFQ− ˆSDFQ∥1+λ2LCE(S, Ŝ)+λ3∥A− Â∥1+βDKL
(
N (µ, σ2)∥N (0, 0.252)

)
(2)

The fourth term in Equation 2 imposes KL divergence regularization, constraining the latent distribu-
tion N (µ, σ2) to approximate a Gaussian prior N (0, 0.252). This regularization serves two critical
purposes: 1) enforcing a structured latent space where proximity implies similarity in geometric and
kinematic configurations, ensuring smooth interpolations; and 2) aligning the latent distribution with
the Gaussian noise injection in diffusion model training. The prior’s standard deviation of 0.25 bal-
ances diversity capture (across object instances) and compatibility with the diffusion noise schedule.
The hyperparameter β = 10−3 controls regularization strength, while λ1 = 1, λ2 = 0.1, λ3 = 0.1
balance loss components. Collectively, these terms enable the KA-VAE to learn robust, expressive
latent representations suitable for downstream diffusion-based reconstruction.
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3.2 POSE AND JOINT ESTIMATION MODULE

Estimating the pose of articulated objects from a single view is challenging due to complex struc-
tures and joint-induced degrees of freedom. Traditional pose estimation methods Li et al. (2020);
Liu et al. (2022b) for articulated objects often adopt a part-centric approach, independently estimat-
ing the pose of each part. Such methods overlook inherent kinematic constraints and struggle with
severe self-occlusions. To address these limitations, we adopt a joint-centric strategy. We consider
an articulated object with K rigid parts, this approach leverages the kinematic tree structure: we esti-
mate the global SE(3) pose {Rbase, tbase} of the base part (which moves freely) and the parameters
defining the joints connecting parent and child parts. Specifically, joints are modeled as either: (1)
Revolute Joints, parameterized by a joint state θr ∈ R, joint location lr ∈ R3, and joint direction
dr ∈ R3; or (2) Prismatic Joints, parameterized by a displacement θp ∈ R and direction dp ∈ R3.
The poses {{R(k)

child}Kk=2, {t
(k)
child}Kk=2} for K-1 child parts are then deterministically derived using

kinematic chaining. Crucially, to capture the multi-modal nature of possible configurations consis-
tent with the partial observation O, we formulate pose estimation as sampling from the conditional
data distribution pdata(x|O), where x represents the state parameters. We use a conditional diffu-
sion model for this task, as it excels in modeling complex, multi-modal distributions and generating
diverse, plausible hypotheses from observations.

We represent the state x to be estimated as a vector encompassing the base part’s pose. We represent
rotation Rbase as a continuous 6D vector r6D = [a⊤1 ,a

⊤
2 ]

⊤ ∈ R6 (the first two columns of Rbase)
avoiding SO(3) discontinuities. This is concatenated with translation tbase ∈ R3 to form the state
parameters x = [r⊤6D, t⊤base]

⊤ ∈ R9.

Specifically, we first adopt the Variance-Exploding (VE) Stochastic Differential Equation (SDE)
Song et al. (2021) to construct a continuous diffusion process {x(t)}1t=0, indexed by the time vari-
able t ∈ [0, 1]. As t increases from 0 to 1, the time-indexed pose variable x(t) is perturbed by the
following SDE function:

dx = g(t)dw, where g(t) =

√
d[σ2(t)]

dt
(3)

where σ(t) a time-varying hyper-parameter, g(t) is the diffusion coefficient, and w is a standard
Wiener process.

During training, a score model sΘ(x(t), t|O) Song & Ermon (2019) is trained to approxi-
mate the score function ∇x log pt(x|O). The score model is optimized using Denoising Score
Matching (DSM). Given samples x(0) ∼ pdata(x(0)|O), corresponding noisy samples x(t) ∼
N

(
x(t);x(0), σ2(t)I

)
are generated by solving the forward SDE. The training objective minimizes:

L(Θ) = Et∼U(δ,1)

{
λ(t)E

[∥∥∥∥sΘ(x(t), t|O)− x(0)− x(t)

σ(t)2

∥∥∥∥2
2

]}
(4)

where δ is a hyper-parameter representing the minimum noise level. At inference, we can ap-
proximately sample pose x̂ from pdata(x|O) by sampling from pδ(x|O), as limδ→0 pδ(x|O) =
pdata(x|O). To sample from pδ(x|O), we can solve the following Probability Flow (PF) ODE Song
et al. (2020) where x(1) ∼ N (0, σ2I), from t = 1 to t = δ: dx = −σ(t)σ̇(t)∇x log pt(x|O)dt. The
score function logpt(x|O) is empirically approximated by the estimated score network sΘ(x(t), t|O)
and the ODE trajectory is solved by RK45 ODE solver Dormand & Prince (1980).

Note that the joint parameters are predicted using the same way as the base part pose. Child-part
poses are then computed from the estimated base-part pose and joint parameters using kinematic
chaining and the Rodrigues formula: Rchild = Rbase(I · cos θ+ (1− cos θ) · (d · dT ) +W · sin θ),
Where I is the identity matrix, θ is the joint state. The matrix W is the skew-symmetric matrix of
d. The translation vector tchild is computed as the distance between the center coordinate of point
cloud c and the rotated coordinates Rhild · c, formulated as tchild = c−Rchild · c.

3.3 SHAPE RECONSTRUCTION AND GENERATION MODULE

Building upon the KA-VAE’s structured latent space, we now address the core reconstruction chal-
lenge: predicting the kinematic-aware latent vector Z from incomplete single-view observations.
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For articulated objects like laptops or drawers, we typically only observe partial point clouds in ar-
bitrary configurations. To tackle this, we design a conditional diffusion model that progressively re-
fines noise into meaningful latent representations, directly guided by the partial observation through-
out the denosing trajectory. This diffusion process acts as a probabilistic ”inverse solver” that maps
sparse inputs to the complete geometric-joint encoding captured by Z. During training, we trans-
form the observed partial point cloud from camera space to canonical space using ground-truth (GT)
poses, resulting in normalized inputs C ∈ RN×3 that serve as the conditioning signal.

The diffusion framwork operates through two interwined phases: a forward noising process that
systematically corrupts clean latent vectors, and a conditional reverse process that reconstructs them
using partial observations as guiding signals. Instead of predicting the added noise ξ as in the original
DDPM Ho et al. (2020), we follow Ramesh et al. (2022) and predict Z0, the original, denoised
vector. Through T iterative steps, we gradually add Gaussian noise according to predefined variance
schedule {βt}Tt=1, transforming Z0 into increasingly noisy versions Z1, Z2, . . . , ZT until it becomes
pure noise. Mathematically, this forward diffusion follows:

q(Zt|Zt−1) = N
(
Zt;

√
1− βtZt−1, βtI

)
(5)

This process can be expressed in closed form as:

Zt =
√
ᾱtZ0 +

√
1− ᾱtξ, ξ ∼ N (0, I) (6)

with ᾱt =
∏t

s=1(1− βs). By step T , ZT is approximately pure noise, ZT ∼ N (0, I).

The reverse diffusion process learns to denoise Zt back to Z0, conditioned on the partial point cloud
C ∈ RN×3. At each timestep t, a denosing network ϵθ directly predicts the denoised latent code Z0,
while cross-referencing geometric features extracted from C. Specifically, a lightweight PointNet++
Qi et al. (2017) enoder Γ processes C into a condition feature vector Fcond = Γ(C). This vector
guides ϵθ through cross-attention layers Vaswani et al. (2017), where the noisy latent Zt serves
as the query, and Fcond provides the keys and values. The cross-attention mechanism computes
attention weights to align Zt with the geometric information in Fcond, ensuring that each denoising
step refines Zt in a manner consistent with the observed partial point cloud. This dynamic alignment
enables the model to generate structurally coherent completions. The network is trained to minimize
the Z0 reconstruction error:

Ldiff = ∥ϵθ (Zt, t,Γ(C))− Z0∥2 (7)

During test time, reconstruction begins by sampling pure noise ZT ∼ N (0, I). We then iteratively
denoise it over T steps, with each step t refining Zt into Zt−1 using the denosing network ϵθ:

Zt−1 = ϵθ (Zt, t,Γ(C)) + σtξ, t = T, T − 1, . . . , 1 (8)

where , ξ ∼ N (0, I) and σt is the fixed standard deviation at the given timestep. We iteratively
denoise ZT until we obtain the final output Z ′. Then, we pass the generated latent vectors Z ′ back
into the Articulation-VAE model to reconstruct a complete, articulation-aware 3D model.

Crucially, this latent representation enables dynamic shape generation: by retaining Z ′ while mod-
ifying joint angles A through the kinematic feature vector a = Ψ(A), we synthesize novel config-
urations via [ ˆSDFQ, Ŝ, Â] = Ω(Q|(concat(Z ′, a)). This joint-aware generation allows real-time
articulation manipulation Yu et al. (2024), like rotating laptop screens or translating drawers without
geometry recomputation. The reconstruction-to-synthesis workflow executes in one pass through
the disentangled latent space.

3.4 INFERENCE AND ITERATIVE OPTIMIZATION

The KineDiff3D framework processes single-view partial point clouds in camera space to jointly es-
timate pose, joint parameters, and reconstruct complete articulated geometry. The inference pipeline
operates as follows:

Initial Pose and Joint Estimation. Given an input partial point cloud O ∈ RN×3 in camera space,
the trained score model predicts the base part pose and joint parameters. Child part poses are derived
via kinematic chaining using the Rodrigues formula, ensuring adherence to articulated constraints.

6
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Figure 3: Kinematic Iterative Optimization
Pipeline. Joint-Centric Chamfer Alignment itera-
tively refines SE(3) part poses, joint parameters and
reconstruction precision.

Canonical Transformation and Latent
Diffusion. The input O is transformed into
canonical space using the estimated poses,
yielding a normalized partial point cloud C.
This canonicalized observation conditions
the Latent diffusion model, which generates
the kinematic-aware latent vector Z. The Ar-
ticulation decoder Ω then reconstructs the
complete SDF values, segmentation masks,
and joint angles from Z, enabling extraction
of a watertight mesh M.

Iterative Optimization via Joint Centric
Chamfer Alignment. Initial estimates of
pose and geometry may be suboptimal due to occlusion or ambiguity. To refine results, we introduce
a joint-centric optimization loop minimizing the bidirectional Chamfer distance LCD between the
transformed reconstructed mesh M and input O (see Figure 3):

LCD =
K∑

k=1

Chamfer
(
M(k) · T (k), O(k)

)
(9)

where T (k) = {R(k), t(k)} denotes the pose of the k-th part, and O(k) is the corresponding partial
point cloud. Crucially, child poses T

(k)
child remain functionally dependent on base pose Tbase and

joint parameters through kinematic constraints (e.g., Tchild = f(Tbase, lr, dr, θr)). This dependency
ensures part connectivity is preserved during gradient-based updates.

The optimization alternates between: 1.Pose Refinement: Adjusting Tbase and joint parameters
to minimize LCD via gradient descent. 2.Geometry Reconstruction: Updating the mesh M by
regenerating Z conditioned on the latest canonicalized point cloud C ′.

4 EXPERIMENTS

4.1 DATASETS

We conducted our experiments using two datasets: the synthetic dataset ArtImage Xue et al. (2021)
and the semi-synthetic dataset ReArtMix Liu et al. (2022a). Following the Mu et al. (2021), we gen-
erated SDF samples for each articulated shape across both datasets. Simultaneously, we annotated
part segmentation masks, 6D poses, and joint parameters to provide comprehensive ground truth for
reconstruction and pose estimation tasks. See supplementary material for detailed statistics.

4.2 BASELINES AND METRICS

Reconstruction and Generation Task. We benchmark our approach against state-of-the-art
category-level reconstruction methods most relevant to our work: A-SDF Mu et al. (2021) and
CARTO Heppert et al. (2023). Additionally, to further evaluate against methods requiring multi-
view inputs, we include Paris Liu et al. (2023) and Ditto Jiang et al. (2022b) with 16 views for
articulated object reconstruction. Since the original implementations of A-SDF, Paris, and Ditto
lack pose estimation capabilities, we augment all three with full ground-truth pose data. For eval-
uation metrics, we employ the Chamfer-L1 distance (CD) to measure reconstructed mesh quality:
CD-w quantifies overall surface reconstruction accuracy, while CD-s and CD-m separately measure
reconstruction errors for static and movable parts. The latter two metrics are only applicable to
methods with part segmentation capabilities, whereas A-SDF and CARTO are excluded due to their
lack of part-aware modeling. Following Mu et al. (2021), for each surface, we sample 30,000 points
and compute the bidirectional CD by averaging the distances from the prediction to the ground truth
and from the ground truth to the prediction. The reported CD values are multiplied by 1,000.

Pose and Joint Estimation Task. We evaluate our framework against state-of-the-art pose estima-
tors A-NCSH Li et al. (2020), GenPose Zhang et al. (2023), and ShapePose Zhou et al. (2025). We
evaluate kinematic properties using four complementary metrics averaged over all parts: rotation er-
ror (Rot Err (◦)), translation error (Trans Err (m)), joint state error (Err), and joint parameter errors
(Ang Err (◦), Pos Err (m)).

7
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Metrics Methods Reconstruction Generation

Laptop Eyeglasses Dishwasher Scissors Drawer Laptop Eyeglasses Dishwasher Scissors Drawer

CD-w↓

A-SDF 4.28 13.17 9.61 11.71 16.85 6.17 16.24 10.31 18.46 18.52
CARTO 4.11 11.87 8.52 12.14 15.39 5.94 14.20 10.34 17.76 17.10

Paris 2.53 7.84 13.42 5.83 14.93 3.76 9.33 15.51 7.45 18.15
Ditto 2.81 9.36 12.50 10.69 17.12 3.33 11.14 13.22 12.14 19.73

KineDiff3D 1.81 6.90 6.31 8.68 5.42 2.36 8.71 6.72 10.61 6.77

CD-s↓
Paris 2.41 8.33 14.10 7.66 18.89 3.14 9.25 15.68 8.24 20.01
Ditto 2.99 10.04 11.43 13.58 17.25 3.25 12.18 15.09 14.76 19.54

KineDiff3D 2.21 7.82 7.41 10.21 6.13 2.13 8.63 8.24 12.13 8.41

CD-m↓
Paris 3.32 8.27 15.22 8.05 21.44 4.86 12.32 16.17 9.20 26.14
Ditto 3.66 13.40 14.75 12.07 19.36 4.25 16.19 17.22 12.68 32.15

KineDiff3D 1.34 8.14 5.70 11.37 8.04 2.58 10.38 7.41 13.87 10.35

Table 1: Comparison on the ArtImage Dataset. Chamfer Distance (CD) results show KineD-
iff3D’s superiority in both reconstruction and generation tasks. CD-w measures whole-object accu-
racy, CD-s static components, and CD-m movable parts. Note: A-SDF and CARTO lack segmenta-
tion capabilities - hence no CD-s/CD-m reported.

Figure 4: Qualitative Results on the Dataset ArtImage. Visual results demonstrate KineDiff3D’s
exceptional geometric fidelity in articulated object reconstruction and plausible generation, while
baselines A-SDF and CARTO exhibit characteristic failures and lack segmentation capabilities.

4.3 COMPARISON WITH THE SOTA METHODS

Mesh Reconstruction and Generation Performance. The quantitative results, as presented in
Table 1, demonstrate that our method consistently outperforms existing category-level reconstruc-
tion methods across all evaluated categories. For example, achieving significantly lower Chamfer
Distance (CD-w=1.81 for laptop, -57% vs. A-SDF/CARTO). And our method enables precise part-
aware reconstruction via its kinematic latent space, the qualitative results in Figure 4, quantifying
separate static/movable part accuracy (CD-s=7.82, CD-m=8.14 for eyeglasses), outperforming Paris
(8.33, 8.27) and Ditto(10.04, 13.40). Critically, KineDiff3D uniquely supports joint-conditioned
generation of novel dynamic configurations. For Dishwasher, our generated configurations achieve
CD-w=6.72, surpassing A-SDF (10.31) and CARTO (10.34), (CD-s=8.24, CD-m=7.41) surpassing
Paris (15.68, 16.17) and Ditto(15.09, 17.22), while simultaneously preserving mechanical feasibility
through kinematic constraints.

Pose and Joint Estimation Performance. We present the pose and joint estimation results of
KineDiff3D on ArtImage in Table 2. Compared to classical methods, we achieve the best pose esti-
mation results for the laptop category, with rotation error of 3.9◦. In Dishwasher, the translation error
is only 0.052m. Concerning joint state error, we achieve a remarkable 4.9◦ for category eyeglasses.
This superiority directly validates our method’s effectiveness in integrating kinematic constraints
during differentiable optimization. Qualitative results is provided in supplementary material.

4.4 ABLATION STUDY

Self-occlusion Analysis. To further examine the robustness of KineDiff3D under self-occlusion
conditions, we categorized the test samples from the Dishwasher category into three subsets based
on occlusion levels.
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The occlusion level is quantified as the ratio of visible points to the total number of points, defining
subsets with low (0%–40%), medium (40%–80%), and high (80%–100%) occlusion. As shown in
Table 3 (I-III), the results show stable reconstruction and pose errors across increasing occlusion
levels, robustly validating the efficacy of our method.

Category Method 6D Pose Joint State Joint Parameter
Rot Err (◦) ↓ Trans Err m ↓ Err ↓ Ang Err (◦) ↓ Pos Err (m) ↓

Laptop

A-NCSH 5.4 0.049 3.5◦ 1.7 0.09
Genpose 4.7 0.064 3.4◦ 3.8 0.03

ShapePose 4.8 0.058 5.9◦ 3.3 0.06
KineDiff3D 3.9 0.042 3.2◦ 0.9 0.03

Eyeglasses

A-NCSH 16.4 0.229 13.5◦ 3.1 0.07
Genpose 6.7 0.159 5.1◦ 4.2 0.05

ShapePose 5.4 0.088 5.7◦ 3.9 0.07
KineDiff3D 4.6 0.077 4.9◦ 1.8 0.03

Dishwasher

A-NCSH 4.4 0.091 3.8◦ 6.1 0.11
Genpose 6.2 0.140 3.8◦ 4.8 0.09

ShapePose 4.1 0.067 6.0◦ 2.2 0.04
KineDiff3D 3.3 0.052 2.3◦ 1.7 0.03

Scissors

A-NCSH 2.3 0.028 4.4◦ 0.8 0.04
Genpose 3.8 0.046 3.3◦ 2.8 0.06

ShapePose 2.6 0.039 4.2◦ 1.9 0.08
KineDiff3D 3.8 0.022 2.5◦ 0.5 0.02

Drawer

A-NCSH 3.3 0.108 0.41m 3.5 -
Genpose 4.4 0.128 0.12m 3.3 -

ShapePose 3.5 0.150 0.69m 2.1 -
KineDiff3D 2.8 0.072 0.57m 1.7 -

Table 2: Comparison of pose and joint estima-
tion with State-of-the-arts on ArtImage Dataset.

Index Occlusion Level (Visibility) Reconstruction(CD-w) Rot Err (◦) Trans Err (m)
I 0%-40% 6.15 3.1 0.049
II 40%-80% 6.34 3.4 0.051
III 80%-100% 6.92 3.5 0.053

Index Iteration Round Reconstruction(CD-w) Rot Err (◦) Trans Err (m)
IV 1 7.82 5.6 0.108
V 2 7.25 4.3 0.071
VI 3 6.56 3.7 0.058
VII 4 6.34 3.4 0.052
VIII 5 6.33 3.3 0.052

Table 3: Ablation Study Results. Note that ex-
periments are on the category Dishwasher.

Iterative Optimization Analysis. We con-
ducted an ablation study to evaluate the im-
pact of our iterative optimization module. The
results (Table 3 IV-VIII) demonstrate a clear
monotonic improvement in both reconstruction
accuracy (CD-w) and pose estimation (Rot Err,
Trans Err) across optimization rounds.

The most significant gains occur within the
first few iterations. For instance, CD-w im-
proves from 7.82 (Round 1) to 6.56 (Round 3),
while the rotation error is nearly halved. The
optimization converges stably after 4 rounds,
with subsequent steps yielding only marginal
returns. This rapid convergence robustly val-
idates the efficacy and efficiency of our joint-
centric refinement strategy in bidirectionally
minimizing errors and achieving kinematically
consistent results. Please refer to supplemen-
tary materials for more ablation analysis.

4.5 GENERALIZATION CAPACITY

Experiments on Semi-Synthetic Scenarios.
Table 4 (top) presents quantitative results on the ReArtMix dataset, showcasing KineDiff3D’s robust
performance in semi-synthetic scenarios. Our method achieves a CD-w of 0.92 for reconstruction
tasks in Box. Furthermore, for generation tasks, KineDiff3D records a CD-s and CD-w of 3.01 and
2.72 in Scissors. Qualitative results can be seen in Figure 5 (top).

Test on Real-world Scenarios. We evaluate KineDiff3D’s generalization using real-world depth
images from the RBO dataset Martı́n-Martı́n et al. (2018), following A-SDF’s protocol Mu et al.
(2021). Table 4 (bottom) shows our synthesis-trained model achieves (CD-w: 2.56, CD-s: 2.74
and CD-m: 2.71 in laptop) for reconstruction, demonstrating robust cross-domain transfer without
real-world training. Using KA-VAE’s latent space, we generate dynamic shapes by adjusting joint
angles while preserving geometry codes, yielding plausible configurations for unseen articulation
states (CD-w: 3.46, CD-s: 3.85, CD-m: 3.72). Qualitative results can be seen in Figure 5 (bottom).

Category Reconstruction Generation 6D Pose

CD-w↓ CD-s↓ CD-m↓ CD-w↓ CD-s↓ CD-m↓ Rot Err (◦) ↓ Trans Err (m) ↓
ReArtMix (Semi-Synthetic Scenarios.)

Box 0.92 1.31 1.46 1.85 2.02 2.41 2.9 0.016
Stapler 2.00 2.54 2.31 2.71 3.42 3.67 2.9 0.029
Cutter 2.65 2.71 3.11 3.45 3.66 3.78 2.4 0.016

Scissors 1.81 2.53 2.45 2.37 3.01 2.72 3.9 0.018
Drawer 1.32 1.75 2.04 1.73 1.86 2.94 1.6 0.017

RBO (Real-world Scenarios.)

Laptop 2.56 2.74 2.71 3.46 3.85 3.72 4.6 0.062

Box 1.73 1.97 2.34 2.77 3.15 3.61 4.4 0.047

Table 4: Quantitative Results on the Semi-
Synthetic and Real-world Datasets.

Figure 5: Qualitative Results on the Semi-
Synthetic and Real-world Datasets.

5 CONCLUSION

In this paper, we propose KineDiff3D, a novel framework for category-level articulated object
shape reconstruction and generation. By integrating a Kinematic-Aware Variational Autoencoder
(KA-VAE), conditional diffusion modeling, and an iterative optimization strategy, our approach
achieves superior performance in both geometric fidelity and kinematic accuracy compared to exist-
ing methods. Extensive experiments on synthetic, semi-synthetic, and real-world datasets demon-
strate KineDiff3D’s ability to generalize across diverse object categories and handle severe occlu-
sions.
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