
Published as a workshop paper at SCOPE - ICLR 2025

OPPA: OPTIMIZING PARALLELISM FOR LANGUAGE
MODEL TRAINING

Apivich Hemachandra, Yizhan Han, See-Kiong Ng, Bryan Kian Hsiang Low
Department of Computer Science, National University of Singapore, Singapore 117417

ABSTRACT

Training of modern large neural networks (NNs) is often done in parallel across
multiple GPUs. While there are existing parallel training frameworks which easily
allow NN training using multi-dimensional parallelism, the challenge remains in
optimizing the balance between size of the parallelism dimensions, and in tuning
the hyperparameters within each parallelism dimension. Due to a large number of
possible parallelism configurations (PCs) for a given training process, it is infeasible
to perform exhaustive search over all candidates. Even though there exists PC
optimization methods, they either rely on an approximate cost model which may
be inaccurate and hardware-specific, or on a large number of NN training trials on
different PCs each which are expensive to evaluate. To overcome these issues, we
present OPPA, which combines Bayesian optimization with prior knowledge in the
form of a parallelism-informed prior belief, to obtain an optimal PC using minimal
number of NN training trials. We demonstrate that OPPA is able to more efficiently
find an optimal PC for training transformers when compared to methods used in
existing parallel training frameworks.

1 INTRODUCTION

Modern advances in deep learning have arisen from the ability to scale neural networks (NNs) to
larger sizes. In natural language processing, for example, transformer-based models (Vaswani et al.,
2017; Devlin et al., 2019), large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2024)
and multimodal models (Radford et al., 2021; Liu et al., 2023), composed of millions or even billions
of parameters, have shown tremendous success in tasks such as text classification, text generation,
and language understanding. Due to their sizes, these large NNs cannot be trained on a single GPU.
To scale up the training process, it is necessary to distribute the NN training workload across many
machines and parallelize the training process. Different parallelism dimensions for NN training have
been proposed, including data parallelism (Rajbhandari et al., 2020; Zhao et al., 2023), pipeline
parallelism (Huang et al., 2019; Narayanan et al., 2019), and tensor parallelism (Shoeybi et al., 2020).
Frameworks for multi-dimensional parallelism have also been proposed (Shoeybi et al., 2020; Rasley
et al., 2020; Li et al., 2023), to combine different dimensions of parallelism together.

In NN training, to fully utilize the given hardware and reduce the computation time, we typically
would like to maximize the throughput of training, or the number of training steps processed in a
given time. The throughput will depend on the selected parallelism configurations (PCs), which in
large-scale parallel training frameworks (Kuchaiev et al., 2019; Rasley et al., 2020; Shoeybi et al.,
2020; Li et al., 2023), typically consist of discrete or continuous parameters which control the size
of each parallelism dimension, and specifics on how each parallelism dimension is executed. In
practice, it is difficult to exactly quantify how the choice of PC affects the training throughput, as
it would depend on the model architecture, the training data, the compute hardware, or the exact
implementations of the parallel training framework. In this sense, the throughput could be treated as
a black-box function whose exact form cannot be recovered.

In an ideal scenario, to consider all possible training factors, the best PC would be chosen by conduct
training trials using real hardware on all possible PCs. Unfortunately, due to the large number of
possible PCs, performing an exhaustive search would be extremely inefficient. To circumvent this,

1

Published as a workshop paper at SCOPE - ICLR 2025

throughput

para.
config.

H

throughput

para.
config.

max
H

cEI(H)

Surrogate
for expected
training
throughput

Select a
paralellization
configuration to trial

Trialing a
parallelization
configuration
to get training
throughput

Knowledge about
costs of parallel
model training

Methods that rely on
training throughput

approximations Methods that choose
a configuration

based on real trials

OPPA (our proposed optimization method)

②
③①

Figure 1: Main idea of OPPA algorithm. OPPA combines adaptive selection techniques with domain
knowledge on parallel model training in order to find the parallelism configuration which achieves
the highest training throughput.

existing parallel training frameworks such as DEEPSPEED1 (Rasley et al., 2020) and NEMO2 use
methods to select a subset of candidate PCs to trial. However, this is still inefficient due to simplistic
optimization algorithms which are unable to adapt to known training throughputs, therefore still
need many trials to find a good candidate. While it may be possible approximate for the training
throughput via an analytical expression (Zheng et al., 2022; Li et al., 2022; Zhang et al., 2024), these
approximations require strong assumptions on the compute hardware and the specific parallelized NN
training implementation, and as a result may not capture all nuances of a parallel training instance.
Despite this, they may still provide useful information, even if not fully accurate, which may allow us
to filter out some suboptimal PCs which should not be trialed. In order to efficiently select the PC that
achieves the best throughput, we therefore need the ability to adaptively select potentially good PCs
to trial, while also filtering out poor candidates based on the trialed PCs and on any existing domain
knowledge. Due to the black-box nature of the throughput, it may be possible to use black-box
optimization methods such as Bayesian optimization (Gelbart et al., 2014; Frazier, 2018), which
would allow incorporation of information from training trials ran with existing domain knowledge,
into performing adaptive search of good PCs.

In this paper, we introduce OPTIMIZER FOR PARALLELISM CONFIGURATIONS, abbreviated as
OPPA, which optimizes the PC for training a NN through trials selected via Bayesian optimization
and informed by prior knowledge on parallelized NN training. The main idea of OPPA is presented
in Figure 1. In Section 2, we first formulate the problem of finding the optimal PC as a black-
box function optimization with black-box constraints. In Section 3, we introduce a framework
based on constrained Bayesian optimization, which performs minimal NN training trials in order
to determine the most efficient PC for distributed NN training, and briefly discuss how we encode
domain knowledge into OPPA via a parallelism-informed prior belief, to better model the effects of
the PCs on the training speed and memory usage. We finally empirically demonstrate the effectiveness
of OPPA in Section 4, showing that OPPA with a parallelism-informed prior belief can more quickly
find a good PC for training transformers compared to existing methods, and compared to when no
prior belief is used. Related works can be found in Appendix A.

2 PROBLEM SETUP

In this section, we describe the problem setup we wish to consider. For our problem setting, we
consider a parallelism configuration (PC), visualized in Figure 2, which contains a list of tunable
hyperparameters found in typical parallel training frameworks, and controls various aspects of
parallelized NN training. A subset of hyperparameters in a PC determine the size of each parallelism
dimension. In our paper, we consider 3D parallelism where we use dp, tp, and pp, to indicate

1https://www.deepspeed.ai/tutorials/autotuning/
2https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html

2

Published as a workshop paper at SCOPE - ICLR 2025

Pipeline
Stage 0

Data
Parallel
Rank 0 ZeRO

hyperparams

Bucket sizes

PP also affected by: Number of
microbatches

Number of
model chunks

DP also
affected by:

Intra-GPU comm.
DP All-Reduce comm.
TP All-Reduce comm.
PP Point-to-Point comm.

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

Data
Parallel
Rank 1

Data parallel (DP)
dimension

Pipeline parallel (PP) dimension

Tensor parallel
(TP) dimension

GPU 8 GPU 10 GPU 12 GPU 14

GPU 9 GPU 11 GPU 13 GPU 15

GPU 0 GPU 2 GPU 4 GPU 6

GPU 1 GPU 3 GPU 5 GPU 7

Figure 2: Left: Visualization of the parallelization configuration, including the parallelism dimensions
and the hyperparameters affecting their specific implementations. Right: Visualization of GPU
allocation for 3D parallelism according to the dimension sizes.

the size of the data, tensor, and pipeline parallelism dimensions respectively. We assume that their
product dp · tp · pp is equal to the number of GPUs. The remaining hyperparameters determine the
specific implementations of each parallelism dimensions. These may include hyperparameters of the
ZERO optimizer which controls the DP execution, or the number of microbatches and model chunks
which control the PP execution. These may also extend to other hyperparameters which are specific
to different parallel training frameworks. We discuss these hyperparameters further in Appendix C.

We consider a space of feasible PCs denoted by H, and would like to find the optimal PC H ∈ H
which results in the highest training throughput (i.e., most training steps per time), while still not
exceeding the available GPU memory M0. Mathematically, we aim to solve the optimization problem

maximize
H∈H

R(H) s.t. M(H) ≤M0 (1)

whereR(H) is the training throughput when using PC H andM(H) is the maximum memory usage
on a GPU. In optimizing the PC, we also consider several design factors.

A Since R andM are dependent on many factors which may be difficult to model or even
known exactly, they are assumed to be black-box functions. Despite this, the valuesR(H)
andM(H) for a PC H can be queried by trialing the PC on real training hardware. This
motivates us to use a surrogate that is flexible enough to model black-box functions given
the trials, and able to quantify the uncertainty in its prediction.

B Even though a PC can be trialed on real hardware, running a single trial incurs a high cost.
This is especially true with suboptimal PCs since the same number of training steps on a
suboptimal PC would require more time to execute3. We therefore should ensure that the
trials ran are carefully selected in order to avoid trialing suboptimal PCs.

C Despite the black-box nature ofR andM, we assume that they can be approximated based
on some domain knowledge which should not be treated as accurate and blindly trusted.
This motivates us to construct a surrogate which incorporates some prior knowledge that
can guide the optimization process and reduce the number of training trials required.

3 METHOD

In this section, we describe how we can apply BO to the optimization problem as described in the
previous section. As shown in Figure 1, in the optimization process, we alternate between three
steps; 1⃝ performing real NN training trials to obtain the training throughput and maximum memory
usage for a selected PC, 2⃝ modeling the training throughput and maximum memory usage using the
observed data via a GP, and 3⃝ finding the best PC to query in the proceeding round using BO.

Step 1⃝: Trialing a PC. We first perform actual model training on a PC for m training steps,
and collect the time required to perform a training step given by tH,1, . . . , tH,m. The measured
throughput is given by rH =

∑m
i=1(tH,i)

−1. To measure the maximum allocated GPU memory

3An exception to this observation is when a PC results in an out-of-memory error where the time to obtain
this result is short since no training needs to (or even can) be ran.

3

Published as a workshop paper at SCOPE - ICLR 2025

throughout the training steps, using CUDA-based PYTORCH, this can be easily done using the
torch.cuda.max memory allocated() function, which records the maximum allocated
GPU memory achieved mH at any point during training.

Step 2⃝: Construct a GP surrogate based on observed data. Next, we use a GP to model the
training throughput data YR = {rH}H∈X and maximum memory YM = {mH}H∈X collected
in 1⃝. Since GPs require weaker assumptions of the true function, and can capture uncertainty
of its predictions, they are a good choice as a surrogate for black-box functions such as R and
M as required in A . We consider a GP family with a constant mean prior, i.e., µprior(H; c) = c.
For the kernel function, we first embed the PC H via an embedding e : H → Rp which first
applies the logarithm operation only on continuous hyperparameters, then concatenates the values
in H into a p-dimensional vector. For our GP, we use the Matern kernel with ν = 5/2. Given
the observed throughput (X ,YR) and maximum memory (X ,YM) values, we can separately find
the corresponding optimal prior mean constants and lengthscales by maximizing the marginal log-
likelihood of the observation as usually done in GP modeling (Rasmussen & Williams, 2006). The
predicted throughput r̂H and maximum memory m̂H is then obtained by performing GP regression.

Step 3⃝: Selecting the next PC to run. Finally, the next PC to trial is chosen based on the
GPs modeled in 2⃝ using BO. The next PC Hnext ∈ H \ X to trial is chosen to be the PC which
maximizes the constrained expected improvement (cEI) (Gelbart et al., 2014), which we describe in
Appendix D.2. The cEI considers a balance between exploration of PCs which have not been trialed,
and exploitation of PCs which are similar to those with already high throughputs. With this balance,
the BO iteration is able to try enough PCs to construct a reasonable surrogate for the functions, while
utilizing the remaining computational resources to trial good PC candidates for to achieve optimal
training throughput. This allows the optimization to be more guided and more efficient, satisfying B .

Parallelism-Informed Prior Belief. While we can use a normal GP to directly model the throughput
and maximum GPU memory in 2⃝, it is inefficient since the surrogate has to be constructed solely
using the observed data, meaning more trials are needed to be ran for a good surrogate. Meanwhile, if
domain knowledge can be added into the modeling, it could allow for additional inductive bias which
would filter out suboptimal PCs more easily, reducing the number of trials that would be needed.
Instead of using a simple GP prior proposed in 2⃝, we introduce a parallelism-informed prior belief,
consisting of a new prior mean and kernel, which embeds domain knowledge on the approximate
throughput and maximum memory usage, which we discuss in detail in Appendix D.3. We only
require the prior mean to be reasonable estimates of the throughput and maximum memory, such that
their values can eventually be more easily modeled by the GP. This design choice is in accordance
with C where the incorporated domain knowledge is only used as an inductive bias for the surrogate
model, and is still accurate enough for 3⃝. We present the pseudocode for OPPA in Appendix D.6.

4 EXPERIMENTS

In this section, we present the results for OPPA when used to find the optimal PC for training
transformer models on multi-GPU systems. The full experimental setup is detailed in Appendix E. In
our results, we present the best obtained throughput (in training steps per second) that is obtained
versus the time the optimization has been ran for, rather than versus the number of PC that has been
trialed, to also account for time required to conduct the training trials.

Ablation on smaller models. We first consider training smaller transformer models on a single
machine with 8 GPUs. We consider the BERT model (Devlin et al., 2019) for a classification task.
In Figure 3a, we present the results for the ran methods. We see that the methods which use BO
outperforms both non-adaptive random sampling, and also adaptive method which uses XGBOOST
as its surrogate. Furthermore, OPPA, which uses both BO with a parallelism-informed prior, is able
to achieve better performances than using standard BO, suggesting that the incorporation of domain
knowledge can aid in finding the optimal PC. We also consider the scenario of training a GPT-2
model (Radford et al., 2019) on the same hardware configuration. In this scenario, we use a larger
training batch size, which will result in out-of-memory errors in many poorly-selected PCs. Despite
this, we again see that OPPA is able to outperform all other benchmarks, and is able to more quickly
arrive at an optimal PC compared to using standard BO.

4

Published as a workshop paper at SCOPE - ICLR 2025

(a) BERT, 8 GPUs

0 10 20 30
Time elapsed (mins)

1.8

2.0

2.2

2.4

2.6

Be
st

 th
ro

ug
hp

ut
 (s

1)

(b) GPT-2, 8 GPUs

0 20 40
Time elapsed (mins)

0.020

0.025

0.030

0.035

0.040

Be
st

 th
ro

ug
hp

ut
 (s

1)

(c) LLaMa-7b, 16 GPUs

0 20 40 60
Time elapsed (mins)

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Be
st

 th
ro

ug
hp

ut
 (s

1)

Random
XGBoost
BO
O P

Figure 3: Results of the best obtained throughput (higher is better) plotted against the amount of time
each algorithm has been run for. The lines represent the median value of the best obtained throughput
across five trials, while the error bar represent the quantile values.

(a) Parallelism-Informed Prior Belief

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 5 trials

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 20 trials

(b) Surrogate Model Only

PC that the
surrogate predicts
has the best
throughput

PC with the actual
best throughput

Figure 4: Predicted throughputs versus
the measured throughputs for the BERT
example. In Figure 4a, the red points are
the trialed PCs.

Accuracy of surrogate model. In Figure 4a we compare
the throughput predicted by the GP with the actual values.
We see that even after a few trials, the predictions made
by our GP already correlate well with the actual values.
As we progress, the prediction also becomes more accu-
rate, especially among PCs with high throughput. This is
because the BO process would prioritize selecting those
PCs with higher throughput anyway. We demonstrate
this further in Appendix F.2, showing that incorporating
a parallelism-informed prior belief allows better modeling
of the throughput compared to a standard prior.

We note that the accuracy of the surrogate is not the only
reason OPPA performs well. In Figure 4b, we plot the
results obtained when BO is not used, but rather only the
surrogate function fitted on trials from randomly selected
PCs. We see that even though the general throughput
values are better modeled, the optimal PC is not reflected
by the prediction, which would have led in selecting a
suboptimal PC. This is likely because the surrogate focuses
on a good general model rather than one which predicts the
optimum well. This shows a necessity of BO in focusing
trials and prioritize modeling the good PCs.

LLaMa model on larger hardware. We also optimized the PC for training LLaMa-7b model
(Touvron et al., 2023) on 16 GPUs distributed across 4 machines. Note that in the prior belief, we do
not explicitly assume that the GPUs are on multiple hosts, therefore not accounting for communication
speeds across hosts. From the results in Figure 3c, we see that OPPA still consistently outperform
other benchmarks. This demonstrates that despite using an imperfect model to approximate the
training throughput, it is still sufficient information that can be corrected for by the uncertainty as
captured by the GP and result in a model good enough to learn an optimal PC. This also demonstrates
that especially in the larger search space with more possible parallelism dimension size combinations,
OPPA still shows impressive scalability not present in the other algorithms.

5 CONCLUSION

We have presented OPPA, which uses constrained Bayesian optimization techniques with a parallelism-
informed prior distribution to efficiently optimize the parallelization strategy which can achieve
the best training throughput. While OPPA is currently implemented specifically for one parallel
training framework, OPPA can easily be adapted to other frameworks as well due to the minimal
assumptions on the implementations of the training parallelism and the simplicity to extend to other
hyperparameters. We also believe that the parallelism-informed prior belief could be embedded with
more prior knowledge on specific implementation or training of specific NN architectures, which
should boost OPPA even further.

5

Published as a workshop paper at SCOPE - ICLR 2025

REFERENCES

Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. Maximizing Parallelism in Distributed
Training for Huge Neural Networks, May 2021. URL http://arxiv.org/abs/2105.
14450. arXiv:2105.14450.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. InstructZero: Efficient
Instruction Optimization for Black-Box Large Language Models, August 2023. URL http:
//arxiv.org/abs/2306.03082. arXiv:2306.03082 [cs].

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 785–794, August 2016. doi: 10.1145/2939672.2939785. URL http://arxiv.org/abs/
1603.02754. arXiv:1603.02754 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, May 2019. URL http://arxiv.
org/abs/1810.04805. arXiv:1810.04805 [cs].

David Duvenaud, Hannes Nickisch, and Carl Edward Rasmussen. Additive Gaussian Processes,
December 2011. URL http://arxiv.org/abs/1112.4394. arXiv:1112.4394 [stat].

Peter I. Frazier. A Tutorial on Bayesian Optimization, July 2018. URL http://arxiv.org/
abs/1807.02811. arXiv:1807.02811.

Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian Optimization with Unknown
Constraints, March 2014. URL http://arxiv.org/abs/1403.5607. arXiv:1403.5607
[stat].

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: efficient training of giant
neural networks using pipeline parallelism. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, number 10, pp. 103–112. Curran Associates Inc., Red
Hook, NY, USA, December 2019.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Optimization of Ex-
pensive Black-Box Functions. Journal of Global Optimization, 13(4):455–492, 1998. ISSN
09255001. doi: 10.1023/A:1008306431147. URL http://link.springer.com/10.
1023/A:1008306431147.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel
Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, Patrice Castonguay, Mariya Popova, Joce-
lyn Huang, and Jonathan M. Cohen. NeMo: a toolkit for building AI applications using Neural Mod-
ules, September 2019. URL http://arxiv.org/abs/1909.09577. arXiv:1909.09577
[cs].

Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo Ar-
royave, and Bani K. Mallick. Bayesian optimization with adaptive surrogate models for automated
experimental design. npj Computational Materials, 7(1):1–12, December 2021. ISSN 2057-
3960. doi: 10.1038/s41524-021-00662-x. URL https://www.nature.com/articles/
s41524-021-00662-x. Publisher: Nature Publishing Group.

Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. AMP: Automatically Finding Model Parallel
Strategies with Heterogeneity Awareness, October 2022. URL http://arxiv.org/abs/
2210.07297. arXiv:2210.07297 [cs].

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. PyTorch distributed: experiences
on accelerating data parallel training. Proceedings of the VLDB Endowment, 13(12):3005–3018,
August 2020. ISSN 2150-8097. doi: 10.14778/3415478.3415530. URL https://dl.acm.
org/doi/10.14778/3415478.3415530.

6

http://arxiv.org/abs/2105.14450
http://arxiv.org/abs/2105.14450
http://arxiv.org/abs/2306.03082
http://arxiv.org/abs/2306.03082
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1112.4394
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1403.5607
http://link.springer.com/10.1023/A:1008306431147
http://link.springer.com/10.1023/A:1008306431147
http://arxiv.org/abs/1909.09577
https://www.nature.com/articles/s41524-021-00662-x
https://www.nature.com/articles/s41524-021-00662-x
http://arxiv.org/abs/2210.07297
http://arxiv.org/abs/2210.07297
https://dl.acm.org/doi/10.14778/3415478.3415530
https://dl.acm.org/doi/10.14778/3415478.3415530

Published as a workshop paper at SCOPE - ICLR 2025

Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang,
and Yang You. Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training,
October 2023. URL http://arxiv.org/abs/2110.14883. arXiv:2110.14883.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use Your INSTINCT: INSTruction optimization for LLMs
usIng Neural bandits Coupled with Transformers, June 2024a. URL http://arxiv.org/
abs/2310.02905. arXiv:2310.02905 [cs].

Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li, Saeed Maleki, Xu Cao, Ning
Shang, Yilei Yang, Weijiang Xu, Mao Yang, Lintao Zhang, and Lidong Zhou. {nnScaler}:
{Constraint-Guided} Parallelization Plan Generation for Deep Learning Training. pp. 347–
363, 2024b. ISBN 978-1-939133-40-3. URL https://www.usenix.org/conference/
osdi24/presentation/lin-zhiqi.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning, December
2023. URL http://arxiv.org/abs/2304.08485. arXiv:2304.08485 [cs].

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: generalized pipeline parallelism for
DNN training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pp. 1–15, New York, NY, USA, October 2019. Association for Computing Machinery.
ISBN 978-1-4503-6873-5. doi: 10.1145/3341301.3359646. URL https://doi.org/10.
1145/3341301.3359646.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira
Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris
Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond,
Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario
Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John

7

http://arxiv.org/abs/2110.14883
http://arxiv.org/abs/2310.02905
http://arxiv.org/abs/2310.02905
https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi
https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi
http://arxiv.org/abs/2304.08485
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646

Published as a workshop paper at SCOPE - ICLR 2025

Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers,
Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea
Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng,
Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao,
Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, March
2024. URL http://arxiv.org/abs/2303.08774. arXiv:2303.08774 [cs].

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision, February 2021. URL
http://arxiv.org/abs/2103.00020. arXiv:2103.00020 [cs].

Tom Rainforth, Adam Foster, Desi R. Ivanova, and Freddie Bickford Smith. Modern Bayesian
Experimental Design, February 2023. URL http://arxiv.org/abs/2302.14545.
arXiv:2302.14545 [cs, stat].

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Optimizations
Toward Training Trillion Parameter Models, May 2020. URL http://arxiv.org/abs/
1910.02054. arXiv:1910.02054.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System Optimiza-
tions Enable Training Deep Learning Models with Over 100 Billion Parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, Virtual Event CA USA, August 2020. ACM. ISBN 978-1-4503-7998-4. doi: 10.1145/
3394486.3406703. URL https://dl.acm.org/doi/10.1145/3394486.3406703.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-
262-18253-9. OCLC: ocm61285753.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism, March 2020. URL http://arxiv.org/abs/1909.08053. arXiv:1909.08053.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimization of Ma-
chine Learning Algorithms, August 2012. URL http://arxiv.org/abs/1206.2944.
arXiv:1206.2944 [stat].

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design. IEEE Transactions on
Information Theory, 58(5):3250–3265, May 2012. ISSN 0018-9448, 1557-9654. doi: 10.1109/
TIT.2011.2182033. URL http://arxiv.org/abs/0912.3995. arXiv:0912.3995 [cs].

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of Collective Communication
Operations in MPICH. The International Journal of High Performance Computing Applications,
19(1):49–66, February 2005. ISSN 1094-3420, 1741-2846. doi: 10.1177/1094342005051521.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,

8

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2302.14545
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
https://dl.acm.org/doi/10.1145/3394486.3406703
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1206.2944
http://arxiv.org/abs/0912.3995

Published as a workshop paper at SCOPE - ICLR 2025

Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023. URL http://arxiv.org/abs/2307.09288. arXiv:2307.09288 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and Peter Pietzuch. Tenplex: Dynamic Parallelism
for Deep Learning using Parallelizable Tensor Collections, September 2024. URL http://
arxiv.org/abs/2312.05181. arXiv:2312.05181.

Shiwei Zhang, Lansong Diao, Chuan Wu, Zongyan Cao, Siyu Wang, and Wei Lin. HAP: SPMD
DNN Training on Heterogeneous GPU Clusters with Automated Program Synthesis, January 2024.
URL http://arxiv.org/abs/2401.05965. arXiv:2401.05965.

Yichi Zhang, Daniel W. Apley, and Wei Chen. Bayesian Optimization for Materials Design with
Mixed Quantitative and Qualitative Variables. Scientific Reports, 10(1):4924, March 2020.
ISSN 2045-2322. doi: 10.1038/s41598-020-60652-9. URL https://www.nature.com/
articles/s41598-020-60652-9. Publisher: Nature Publishing Group.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. PyTorch FSDP: Experiences
on Scaling Fully Sharded Data Parallel, September 2023. URL http://arxiv.org/abs/
2304.11277. arXiv:2304.11277.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa:
Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning, June 2022. URL
http://arxiv.org/abs/2201.12023. arXiv:2201.12023.

9

http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2312.05181
http://arxiv.org/abs/2312.05181
http://arxiv.org/abs/2401.05965
https://www.nature.com/articles/s41598-020-60652-9
https://www.nature.com/articles/s41598-020-60652-9
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2201.12023

Published as a workshop paper at SCOPE - ICLR 2025

A BACKGROUND AND RELATED WORKS

In this section, we provide an overview of current techniques of parallelized model training on
multiple GPUs, and how optimal parallelism configurations are currently found. We also provide a
brief overview of Bayesian optimization, which is a technique we will use in our proposed method.

A.1 DISTRIBUTED DEEP LEARNING

In order to effectively train large neural networks (NNs), practitioners resort to different techniques to
parallelize the training workload across multiple GPUs. Different parallelism dimensions divide the
computation workload in different ways, which affect the amount of computation per GPU, amount
of communication between each GPU, and the amount of memory required in each GPU. Here, we
discuss the existing parallelism dimensions, the hyperparameters involved, and how they differ from
each other.

Data parallelism. The most basic type of training parallelism is data parallelism (DP) (Li et al., 2020)
where a batch of training data is split into shards and distributed among each devices. These shards
are then fed into the local replicas of the models, before the parameter updates from each devices are
synchronized. While simple and often the fastest, the naive DP approach requires replication of the
model on each devices, which takes up additional storage on each machines. Several methods have
since been proposed to perform DP with sharded models, including the Zero Redundancy Optimizer
(ZERO) introduced by Rajbhandari et al. (2020) in the DEEPSPEED package, and Fully-Sharded Data
Parallel (FSDP) introduced by Zhao et al. (2023). While these frameworks allow for efficient DP
implementations, their effectiveness can still heavily depend on the choice of hyperparameters. For
example, ZERO involves three different stages of optimization which chooses whether the optimizer
states, the model gradients or the model parameters are sharded between each GPUs. The choice of
sharded items affect the amount of data that has to be stored in each GPUs and communicated across
GPUs, which in turn affects the throughput of the training and the memory usage in each GPUs.

Tensor parallelism. Another method for scaling operation is tensor parallelism (TP) where individual
tensors are sharded across multiple devices, so that the matrix multiplication operations are instead
done in a distributed manner, allowing these operations to scale to larger sizes than otherwise that
would fit on a single GPU. TP initially involved splitting a tensor along a single dimension (Shoeybi
et al., 2020), however has since also incorporated sharding tensors across multiple dimensions as
well (Bian et al., 2021).

Pipeline parallelism. In pipeline parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019)
we instead partition the model along its execution pipeline, with each model partitions running
synchronously with microbatches of data. The gradients are accumulated for each microbatches and
updated at the end of each training step. By sharding the model and training data into smaller chunks,
the GPU memory required at any one time becomes lower, allowing for the training of larger models
at the cost of more sequential operation rounds and higher cost of communication between each
GPUs. The tradeoff between training speed and maximum memory usage can be further controlled
based on the size of microbatches and the number of model chunks.

Multi-dimensional parallelism. Many frameworks (Shoeybi et al., 2020; Rasley et al., 2020; Li
et al., 2023) have also since been developed to allow DP, TP, and PP to be used togethter in the same
training process. These frameworks provide simple interfaces for the users to specify the desired
parallelism configuration (PC), which include the size of each parallelism dimension along with other
hyperparameters specific to each parallelism dimension. These frameworks would then automatically
handle model and data sharding and execute the parallelized training pipeline as per the specifications.
These frameworks may also manage training on multi-node setting, heterogeneous setting, and even
varying resources during runtime.

While these frameworks allow practitioners to easily specify a PC for training, selecting the best
PC to achieve the most efficient training is often difficult, since the optimal PC will often depend on
factors such as the GPU specifications, communication bandwidth of the GPU devices, the specific
architecture of the NN or the training data (Li et al., 2023; Wagenländer et al., 2024; Lin et al.,
2024b). For example DP alone is ineffective for large models or when using large batch sizes, since
the replicated model parameters may likely cause an out-of-memory error on the GPUs. Meanwhile,

10

Published as a workshop paper at SCOPE - ICLR 2025

PP is less effective on smaller models, as communication costs between each pipeline stages may
dominate the actual computation of the fragmented pipeline.

A.2 PARALLELISM CONFIGURATION OPTIMIZATION

To find the optimal PC which achieves the highest efficiency, we can attempt to trial all possible
PCs on the actual training hardware in order to determine which one results in the highest training
throughput. However, this is prohibitively expensive since there can be a large number of possible
PCs, and each trial would itself require computational resource and time which may be limited on
real clusters.

To circumvent this, frameworks such as DEEPSPEED4 (Rasley et al., 2020) and NEMO5 (Kuchaiev
et al., 2019) have implemented methods for automatic PC tuning based on running NN training trials
for a few training steps on a number of PCs. The PCs trialed are often either selected non-adaptively
(e.g., based on random selection), or adaptively based on a simple surrogate function. However,
these methods are unable to efficiently use the measured throughput of trialed PCs to model the true
throughput scores and perform informed optimization, meaning they still require a large number of
training trials to obtain a good PC.

Since running training trials may be expensive, we may consider constructing a surrogate model to
approximate the computation and communication costs for different parallelism strategies (Zheng
et al., 2022; Li et al., 2022; Zhang et al., 2024), which would allow us to use domain knowledge
to filter out suboptimal PCs while performing fewer trials, or even by not trialing any PCs at all.
This methods, however, would require an implicit assumption that the surrogate of the true training
throughput is correct, which may not always be possible because surrogates may be unable to fully
capture the nuances of practical parallel training implementations. Furthermore, a fixed surrogate
model would not be easily extendable to new hyperparameters or parallelism nuances which may
arise in a PC, which is important especially with the ever-growing parallelism training literature.

A.3 BAYESIAN OPTIMIZATION

In order to more efficiently select a PC to trial and to optimize for, we will utilize Bayesian optimiza-
tion (BO) (Frazier, 2018). BO aims to maximize some black-box function f : X → R which is often
expensive to query and whose derivative is unknown. The black-box function is modeled a Gaussian
process (GP) (Rasmussen & Williams, 2006), which is characterized by a prior mean µprior(·) and
a kernel function k(·, ·). Given a set of observations, we can perform Bayesian inference in order
to obtain a posterior GP, which is made up of a posterior mean and posterior covariance, encoding
the expected value and the uncertainty of the function respectively. With the posterior GP, the BO
procedure selects an input that maximizes some acquisition function, such as the expected improve-
ment (Jones et al., 1998) and the upper confidence bound (Srinivas et al., 2012). These acquisition
functions balance between exploring unique inputs that have not been queried, and exploiting inputs
likely to have high function values. We provide a more technical overview of GP modeling and BO
in Appendix B.

BO is a widely used to optimize black-box functions which have no closed form and are expensive
to evaluate. This include a wide range of problems in, e.g., experimental design (Lei et al., 2021;
Rainforth et al., 2023), material design (Zhang et al., 2020), and prompt optimization (Chen et al.,
2023; Lin et al., 2024a). More relevant to our work, BO is also commonly used for NN hyperparameter
optimization to select the NN architecture that performs best in a given task (Snoek et al., 2012).
Unlike in traditional NN hyperparameter optimization, however, the effects of the hyperparameters
in a PC on the training throughput have better-defined mechanics (even if not completely known),
which can at least be partially described based on domain knowledge. Modeling via a GP allows
incorporation of such knowledge through a good choice of prior belief, which can reduce the number
of trials required.

4https://www.deepspeed.ai/tutorials/autotuning/
5https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html

11

Published as a workshop paper at SCOPE - ICLR 2025

B TECHNICAL PRIMER ON GAUSSIAN PROCESSES AND BAYESIAN
OPTIMIZATION

In this section, we provide a technical overview of Gaussian process (GP) regression and on Bayesian
optimization (BO). The contents are adapted from Rasmussen & Williams (2006); Frazier (2018).

A Gaussian process (GP) GP(µprior, k) with prior mean µprior and kernel k is a random process
where for any subset of input X, its corresponding output is given by a normal distribution f(X) ∼
N
(
µprior(X), k(X,X)

)
. The prior mean µprior(x) describes the expected value of the random function

f(x) at a certain input, while the kernel function k(x, x′) roughly captures the covariance between
f(x) and f(x′).

Assume we have an unknown function f drawn from the GP. Given a set of observations D =
(X, y) = {(x1, y1), . . . , (xn, yn)} where yi = f(xi) + ϵi are noisy observations of the true function
with Gaussian noise ϵi ∼ N (0, s2). Then, when performing Bayesian inference, we can express the
posterior mean and covariance of the GP as

µ(x) = k(x,X)
(
k(X) + s2I

)−1
(y− µprior(x)) , (2)

σ2(x) = k(x, x)− k(x,X)
(
k(X) + s2I

)−1
k(X, x) . (3)

In practice, the prior mean and kernel may have hyperparameters θ which specify what functions
it is able to model. For example, many kernel functions include lengthscale values which govern
how correlated the function output is when a certain input dimension changes. One method to find
the optimal hyperparameters for the kernel is by finding the hyperparameter which maximizes the
marginal log-likelihood, i.e.,

θ∗ = argmax
θ

log p
(
y|0 , k(X,X; θ) + s2I

)
. (4)

In Bayesian optimization (BO), the goal is to find the maxima of the unknown function f . This
function is black-box, and assumed to have no analytical form. To do so, we can learn more about
f by querying it at different inputs, and perform Bayesian inference to update our belief on the
unknown function.

Given the current observations Dt = (Xt, yt) = {(x1, y1), . . . , (xt, yt)} in round t of data selection,
GP regression can be performed to obtain a posterior mean µt and posterior variance σ2

t . The next
input to query xt+1 can be chosen as the input which maximizes some acquisition function. Examples
of such acquisition function include the expected improvement

EI(x;Dt) = Ey′∼N (µt(x),σ2
t (x))

[
max(0, y′ −max

y∈yt
y)
]

(5)

or the upper confidence bound

UCB(x;Dt) = µt(x) + βtσt(x) (6)

where βt > 0 is a constant that may vary with t. In all of these acquisition functions, a tradeoff is
performed between selecting inputs that the GP is uncertain about (i.e., with high σ2

t (x)) to learn
more about those unknown region, and selecting inputs in regions where the function value is known
to be higher (i.e., with high µt(x)).

C HYPERPARAMETERS CONSIDERED

Below, we list several hyperparameters which we include in our parallelism configuration.

• Parallelism dimension sizes. These include the degrees of DP, TP and PP, which are
denoted as dp, tp, pp respectively.

• Hyperparameters for DP. These are hyperparameters which control the ZeRO optimizer
and the bucket sizes for the amount of parameters to be synchronized in one round. The
specific hyperparameters considered are ZeRO optimizer stage, the bucket size of the ZeRO
optimizer and the bucket size for the DP process, which are denoted by zs, zb, and dpb
respectively. Note that out of all the variables listed, zs is the only one which is a categorical
variable.

12

Published as a workshop paper at SCOPE - ICLR 2025

• Sharding degrees for PP. These include the number of model chunks and the number
of data microbatches, which are denoted by mc and mb respectively, and they control the
amount of pipeline bubble which occurs, at the cost of more communication and sequential
computation rounds.

D DETAILED DISCUSSION OF OPPA

D.1 TRAINING TIME RESULTS COLLECTION

In practice, since we collect multiple time measurements for each step, we can also provide the
variance of the throughput as well. Since we are mostly concerned with the mean throughput over all
training steps, we therefore would be interested in the mean throughput fraom each training step, and
the variance of the mean throughput. These two quantities are given by

rH =
1

m

m∑
i=1

1

tS,i
, σ2

rH =
1

n

n∑
i=1

(
1

tS,i
− rH

)2

. (7)

D.2 CRITERION FOR BAYESIAN OPTIMIZATION

In our work, we choose the next PC to query according to the constrained expected improvement
(cEI) criterion (Gelbart et al., 2014), which extends the expected improvement (EI) criterion to the
constrained setting and is given by

cEI(H;X) = Er̂H ,m̂H

[
max(r̂H − r∗X , 0) 1[m̂H ≤M0]

]
(8)

where distributions for r̂H and m̂H are from the GPs in 2⃝, and r∗X = maxH∈X rH is the best
throughput observed so far. Intuitively, cEI(H) is higher if H is likely to be feasible and its
throughput likely to improve upon r∗.

D.3 PARALLELISM-INFORMED PRIOR BELIEF

As suggested in C , instead of using a simple GP prior proposed in 2⃝, we introduce a parallelism-
informed prior belief, which embeds domain knowledge on the approximate throughput and maximum
memory usage. To do so, we assume the true throughputR and maximum memory usageM to be
decomposed to a known part that can be modeled, and an unknown part which cannot be modeled,
i.e.,

R(H) = R̂(H; r) + fR(H) , (9)

M(H) = M̂(H;m) + fM(H) (10)

where R̂ and M̂ are based on (potentially imperfect) domain knowledge and (potentially unknown)
hyperparameters r and m, while fR(H) and fM(H) incorporate factors not captured by our surrogate.
With this, we can modelR andM with GPs whose prior means are R̂ and M̂ respectively, and some
choice of kernel function which can model fR(H) and fM(H).

To justify this, consider Equation (9). We assume R̂(H; r) is deterministic and can be constructed by
our prior knowledge. Since fR(H) is unknown, we can assume a prior belief on it given by the GP
GP(0, k) with zero mean and some kernel function. This means that for any H , we are assuming
fR(H) ∼ N (0, k(H,H)). Based on the properties of Gaussian random variables, this also means
R(H) ∼ N (R̂(H), k(H,H)). The argument can be extended to the multivariate setting (to consider
the multivariate normal distribution) to show that assuming fR ∼ GP(0, k) implies we are assuming
R(H) ∼ GP(R̂, k). This justifies the use of a GP to model the throughput, and why the domain
knowledge should be incorporated into the prior mean function. The same argument can be used to
justify the choice to modelM as well.

As we introduce the prior mean functions used, we will see that we do not require R̂ and M̂ to be
completely accurate. Instead, we only require them to be reasonable estimates, such that the unknown
parts fR(H) and fM(H) can be more easily modeled by the GP covariance. This design choice is
in accordance with C where the incorporated domain knowledge is only used as an inductive bias

13

Published as a workshop paper at SCOPE - ICLR 2025

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

tf ⋅ (pp − 1)
n_gpus ⋅ mc

tb ⋅ (pp − 1)
n_gpus ⋅ mc

(tf + tb) ⋅ mb

n_gpus

tf
n_gpus ⋅ mc

tb
n_gpus ⋅ mc

Total time

Figure 5: Estimate for computation time for PP where tf and tb are the time required for the forward
and backward stages respectively, for when pp = n gpus = 4, mb = 4, and mc = 2

for the surrogate model whose uncertainty can be quantified, and is still accurate enough to be used
in 3⃝. Furthermore, since OPPA only requires the prior mean to perform forward evaluations, it
can be replaced by a better surrogate function to fit under the same optimization framework, which
could enhance the performance of OPPA. They can be made as complex as wanted, without needing
additional intermediate functions beyond performing forward evaluations.

New prior mean for training throughput. We first introduce construct a prior mean which roughly
captures the training throughput for a given PC. To do so, we provide an approximation for the
time per training step, and find its reciprocal to get the throughput. For a training step, we can
separately consider the time from some computation and time from communication across GPUs. To
estimate the computation time, we assume an idealized machine that allows infinite parallelization,
such that DP and TP are perfectly parallelized. Meanwhile, PP using an interleaved schedule incurs
additional computation time from the microbatches being ran sequentially, and from pipeline bubble
when the first microbatch is being fed through the pipeline (Narayanan et al., 2019). This additional
computation time from PP, visualized in Figure 5, is roughly equal to

T̂c(H; tc) =
tc

n gpus
·
(
mb+

pp− 1

mc

)
(11)

where mb is the number of microbatches used in PP (set to 1 when PP is not used), mc is the number
of model chunks for PP (also set to 1 when PP is not used), and tc = tf + tb is the total time to
perform the forward and backward passes.

To estimate the communication costs, we consider the cost model from Thakur et al. (2005), which
approximates the cost to perform a Point-to-point (P2P) communication for message of size n
between two processes to be

Tp2p(n;α, β) = α+ βn , (12)
and an All-Reduce operation on a message of size n along p parallel processes to be

Ta-r(n, p;α, β) = α log p+
p− 1

p
· βn (13)

where α is the communication initialization costs, and β captures costs that scale with message size
such as the transmission and local reduction costs. As visualized in Figure 2, we assume that DP and
TP involve All-Reduce communications, and PP P2P communications.

For DP, the only communication involved will be to synchronize the parameter updates after a training
step pass. This cost can be written as

T̂comm,dp(H; a, bdp, cdp) = Ta-r(cdp,dp; a, bdp) (14)

14

Published as a workshop paper at SCOPE - ICLR 2025

where a, bdp and cdp are unknown variables. For TP, we assume that in a single pass of the NN there
are Dtp rounds of synchronization which would need to occur. When the training batch is divided
into mb microbatches, there would be mb times more rounds of communication on message which
are approximately mb times smaller. In total, this would contribute to a total communication cost of

T̂comm,tp(H; a, btp, ctp, Dtp) = Dtp · mb · Ta-r

(
ctp
mb

,tp; a, btp

)
(15)

where we treat a, btp, ctp and Dtp as unknown parameters. Finally, for PP, there would be mc · mb
rounds of point-to-point communications each whose size would be inversely proportional to the
number of microbatches, resulting in the overall PP communication cost of

T̂comm,pp(H; a, bpp, cpp) = mc · mb · Tp2p

(
cpp
mb

; a, bpp

)
(16)

where a, bpp and cpp are unknown. When combining the communication costs for all three types of
parallelism, we obtain an overall cost of

T̂comm(H;C) = T̂comm,dp(H; a, bdp, cdp)+ T̂comm,tp(H; a, btp, ctp, Dtp)+ T̂comm,pp(H; a, bpp, cpp)
(17)

where C = {a, bdp, btp, bpp, cdp, ctp, cpp, Dtp} are constants which are to be inferred.

The estimate of the overall throughput is then written as

R̂(H; r) =
[
T̂comp(H; tc) + T̂comm(H;C)

]−1
(18)

where r = {tcomp,C} are learned hyperparameters.

New prior mean for maximum memory usage. In addition to modeling the throughput of training,
we also require a prior mean for the maximum memory usage when each PCs are used. In the
simplest model, we only consider the memory required to store the NN parameters and those for
backpropagation computation.

For NN parameters, its sharding can be done on the pipeline or on the layers, allowing us to
approximate the GPU memory required for storing the NN parameters to be inversely proportional to
pp · tp. Note that assuming the simplest DP implementation, the NN parameters are duplicated and
stored on each DP dimensions, and so the maximum memory usage is not affected by the DP.

Meanwhile, in the case of backpropagation computation, the maximum memory used will roughly be
proportional to how many model parameters a certain GPU has to perform the forward and backward
passes for, times how many training samples the GPU has to process at any one time. We expect this
quantity to be inversely proportional to the number of total GPUs times the latter to depend on the
number of microbatches used. We can therefore assume a prior mean for the maximum GPU memory
usage to be in the form of

M̂(H;m1,m2,m3) =
m1

pp · tp
+

m2

n gpus · mb
+m3 (19)

where m1 captures the memory used for storing model parameters, and m2 captures the memory
used during backpropagation computations, and m3 are any other additional memory overheads
unaccounted for by our simple model.

In practice, we are unable to obtain an accurate measurement for the maximum memory usage when
the actual allocated memory is above the threshold M0. Therefore, we clip the prior mean such that
they are bounded by the maximum memory possible, i.e., set the prior to be

M̂(H;m) = min
{
M̂(H;m1,m2,m3), M0

}
(20)

where m = {m1,m2,m3} are learned hyperparameters.

D.4 KERNEL

For our GP, we use the Matern kernel, which is given by (Rasmussen & Williams, 2006)

k(H,H ′;σk, λ) = kMatern,ν
(
e(H), e(H ′);σk, λ

)
= σ2

k

21−ν

Γ(ν)

(√
2ν dλ(H,H ′)

)ν
Kν

(√
2ν dλ(H,H ′)

)
(21)

15

Published as a workshop paper at SCOPE - ICLR 2025

where Γ is the Gamma function, Kν is the modified Bessel function, σk is the kernel scaling constant,

dλ(H,H ′) =
(
e(H)− e(H ′)

)⊤
Λ−2

(
e(H)− e(H ′)

)
(22)

is the distance between two PCs embeddings, and Λ = diag(λ) = diag([λ1 · · ·λp]) is a diagonal
matrix of the lengthscales. In our method, we choose ν = 5/2.

For OPPA specifically, to better capture the effect of the hyperparameters within a PC, we use an
additive kernel (Duvenaud et al., 2011). Our motivation for this is the fact that different hyperparame-
ters affect the training throughput both in different scales, and the choice of hyperparameter value
correlates to the performance in different ways. In our case, for simplicity, we only consider the first
order interactions, which are given by

kadditive(x, x
′) =

n∑
i=1

σik(xi, x
′
i;λi) (23)

where σi and λi are the scaling factor and lengthscale for dimension i of the input respectively, allow-
ing the scaling and correlation effects from each hyperparameters to be learned more independently.
In practice, we find that the performances are no worse compared to using a standard kernel, however
results in interestingly interpretable results.

D.5 RANDOM SAMPLING FOR ADDITIONAL EXPLORATION

In OPPA, we sometimes select PCs at random for additional exploration. There are two scenarios
which triggers a random selection of PC in OPPA.

1. In the first few chosen PCs. This is because in the beginning there are no PCs which can be
used to infer the hyperparameters for the prior distribution of the GP, therefore a few PCs
are chosen at random to kick-off the modeling process and provide a reasonably diverse set
of samples to infer the hyperparameters well.

2. When too many out-of-memory errors have been encountered in a row. This is because any
out-of-memory trials will not result in a usable training data for the throughput modeling
and possibly minimal data for the maximum memory GP, which does not aid the GP model.
When too many such cases are encountered, we attempt to do random exploration so that
the model can receive some information that can be used to model better with and find new
feasible PCs.

For the random selection process, we select a PC using a weighted random strategy, such that the
probability of obtaining a PC with a certain parallelism dimension size configurations are equal.

D.6 PSEUDOCODE

We present the pseudocode for OPPA in Algorithm 1.

E DETAILED EXPERIMENTAL SETUP

E.1 BRIEF OVERVIEW OF EXPERIMENTAL SETUP

Our model training is implemented based on the COLOSSAL-AI framework (Li et al., 2023), which
allows execution of NN training with 3D parallelism. We note, however, that OPPA is also general
enough to be applied to any other training framework as well, whose implementation we leave to
future works. We consider optimizing PC on different transformer-based language model training
scenarios, and on different hardware configurations with varying number of GPUs – both details are
as listed in Tables 1 and 2 respectively in Appendix E.

We perform PC optimization using standard BO which uses a constant prior mean and standard
Matern-5/2 kernel, and using OPPA which uses parallelism-informed prior belief. We compare our
proposed methods with RANDOM selection and XGBOOST (Chen & Guestrin, 2016), which are two
methods that are used to optimize PCs in existing frameworks (Kuchaiev et al., 2019; Rasley et al.,
2020). Note that in our experiments, the size of the search space |H| is in the order of 104, which
renders exhaustive search infeasible.

16

Published as a workshop paper at SCOPE - ICLR 2025

Algorithm 1 OPTIMIZER FOR PARALLELISM CONFIGURATIONS (OPPA)

1: X ← ∅, YR ← ∅, YM ← ∅
2: Generate all valid PCsH
3: Select an initial PC H1 at random
4: for i = 1, 2, . . . do
5: // Step 1⃝ – Querying some PC
6: Run training with PC Hi to obtain time per step tHi,1, . . . , tHi,n and maximum memory usage

mHi

7: Obtain rHi
and σ2

rHi
based on Equation (7)

8: X ← X ∪ {Hi}
9: YR ← YR ∪ {(rHi

, σ2
rHi

)}
10: YM ← YM ∪ {mHi

}
11: // Step 2⃝ – Modeling throughput and memory usage
12: Model GP with data (X ,YR), with prior mean from Equation (18) and covariance from

Equation (21)
13: Model GP with data (X ,YM), with prior mean from Equation (20) and covariance from

Equation (21)
14: // Step 3⃝ – Selecting the next PC to query
15: if i < Nrandom then
16: Select Hi+1 randomly
17: else
18: Hi+1 ← argmax

H∈H\X
cEI(H;X)

19: end if
20: if time exceeded then
21: terminate
22: end if
23: end for
24: return argmax

H∈X : mH<M0

rH

E.2 ALGORITHMS RAN

We list the algorithms we have ran along with their implementation details here.

• RANDOM. We perform random selection where the probability of selecting any valid PC
H ∈ H is equally likely.

• XGBOOST. We use a gradient-boosted tree (Chen & Guestrin, 2016) to construct a
surrogate with the observed throughput values, and then find the next PC to try based
on the maximum value predicted by the surrogate. Note that this is implemented
as done in NEMO framework (Kuchaiev et al., 2019), as discussed in the AutoCon-
figurator from https://docs.nvidia.com/nemo-framework/user-guide/
latest/usingautoconfigurator.html.

• STANDARD-BO. We perform BO with a GP with constant mean and Matern-5/2 kernel, as
described in Section 3.

• OPPA. We perform BO with a GP with parallelism-informed prior belief which is described
in Appendix D.3.

E.3 MODELS TRAINED

We list the models used in our experiments in Table 1. All models used are based on the transformer
architecture, and were retrieved from Huggingface.

17

https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html

Published as a workshop paper at SCOPE - ICLR 2025

Table 1: Details of models used in our experiments

Setup name Model Param. count Batch size Max. seq. length PC Search Time (mins)
BERT BERT Base, Uncased 110M 256 256 30
GPT-2 GPT-2 124M 4096 1024 45

LLaMa-7b LLaMa 2 7B 256 1024 60

Table 2: Configurations of tested hardwares.

Config. Name GPU Model (Memory) GPUs per host # Host
8 GPUs NVIDIA RTX A5000 (24GB) 8 1
16 GPUs NVIDIA A100 (40GB) 4 4

E.4 ADDITIONAL DETAILS ON HARDWARE CONFIGURATIONS

In Table 2, we list out the hardware configuration used in our experiments. For the configurations with
16 and 32 GPUs, the training process involves multiple host machines, and therefore an assumption
that all communication occurs at the same speed is no longer true. We demonstrate that OPPA does
not require this to be modeled explicitly, however can still be efficiently learned by the surrogate
model.

F ADDITIONAL RESULTS

F.1 PLOTS OF TRIALS RAN VERSUS BEST THROUGHPUT

In Figure 6, we plot the best achieved throughput versus the number of training trials that have been
ran. We see that in this view, OPPA still outperforms other benchmarks, however at a seemingly
smaller margin than when plotted in Figure 3. This is due to the fact that when plotted against the
number of trials, bad PCs are not penalized as heavily as in practice where the trials actually take a
longer time to be ran. Despite this, we see that OPPA is both more time efficient and query efficient,
which can be useful when the overhead to perform one trial may become higher, for example when
the framework is adapted to run on a cluster with a job scheduler.

F.2 PREDICTED THROUGHPUT AND MEMORY USE BY PARALLELISM-INFORMED PRIOR
BELIEF

In Figure 7, we compare the modeled throughput with the true throughput value, for when a
parallelism-informed prior belief is used and when it is not used. We see that in both cases, the
predicted throughput correlates well with the true throughput, even when the prior belief is not used.
This suggests that GPs themselves are already good surrogate models to model the throughput.

In Figures 8 to 10, we compare the modeled throughput and memory usage with the true values,
however for a training scenario where there are more possible PCs. We see that in this case, using the
prior belief allows for the values to be modeled adequately well, but more importantly, allow for the
PC which achieves the best throughput to also have the highest values, and therefore be identified
correctly. We find that for the BO process, a surrogate only needs to model the good PCs well in
order to select a good PC in the end. Meanwhile, the GP without prior belief learns the patterns much
less efficiently or do not learn them at all. This correlates well with the results in Figures 3b and 3c
where standard BO selects a worse PC compared to OPPA which uses a better prior belief.

F.3 KERNEL INTERPRETABILITY

In this section, we attempt to interpret some hyperparameters that result from our surrogate modeled
in OPPA. In Table 3, we show the additive kernel hyperparameters. We notice that out of all of the
parameters, tpand ZERO stage hyperparameters seem to have the shortest lengthscale and largest
output scales. This may mean these hyperparameters are influential in determining whether the PC is
optimal or not, but may not be properly captured by the prior belief.

18

Published as a workshop paper at SCOPE - ICLR 2025

(a) BERT on 8 GPUs

10 20 30
Query rounds

1.8

2.0

2.2

2.4

2.6

Be
st

 th
ro

ug
hp

ut
 (s

1)

(b) GPT-2 on 8 GPUs

5 10 15 20
Query rounds

0.020

0.025

0.030

0.035

0.040

Be
st

 th
ro

ug
hp

ut
 (s

1)

(c) LLaMa-7b on 16
GPUs

5 10 15 20
Query rounds

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Be
st

 th
ro

ug
hp

ut
 (s

1)

Random XGBoost BO O P

Figure 6: Results of the best obtained throughput (higher is better) plotted against the amount of
training trials ran. The lines represent the median value of the best obtained throughput across five
trials, while the error bar represent the quantile values.

(a) Parallelism-Informed Prior Belief

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 5 trials

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 20 trials

(b) No Prior Belief

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 5 trials

0 1 2
Actual throughput (s 1)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 20 trials

Figure 7: Comparison of modeled throughput values versus the true throughput for training of BERT
model.

This matches our intuition, where since the optimal PCs for the BERT training typically rely heavily
on DP, whose hyperparameters have not been considered in the approximate throughput. This may be
an indication that a more sophisticated surrogate may be possible that more explicitly considers the
effects of these hyperparameters.

19

Published as a workshop paper at SCOPE - ICLR 2025

(a) Parallelism-Informed Prior Belief

0.01 0.02 0.03 0.04
Actual throughput (s 1)

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Pr

ed
ict

ed
 th

ro
ug

hp
ut

 (s
1)

After 10 trials

0.01 0.02 0.03 0.04
Actual throughput (s 1)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 40 trials

(b) No Prior Belief

0.01 0.02 0.03 0.04
Actual throughput (s 1)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 10 trials

0.01 0.02 0.03 0.04
Actual throughput (s 1)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 40 trials

Figure 8: Comparison of modeled throughput values versus the true throughput for training of GPT-2
model.

(a) Parallelism-Informed Prior Belief

0.00 0.05 0.10
Actual throughput (s 1)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 10 trials

0.00 0.05 0.10
Actual throughput (s 1)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 20 trials

(b) No Prior Belief

0.00 0.05 0.10
Actual throughput (s 1)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 10 trials

0.00 0.05 0.10
Actual throughput (s 1)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ed

ict
ed

 th
ro

ug
hp

ut
 (s

1)

After 20 trials

Figure 9: Comparison of modeled throughput values versus the true throughput for training of
LLaMa-7b model.

(a) Parallelism-Informed Prior Belief

0.0 0.5 1.0 1.5
Fraction memory used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ed

ict
ed

 fr
ac

tio
n

m
em

or
y

us
ed

After 10 trials

0.0 0.5 1.0 1.5
Fraction memory used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ed

ict
ed

 fr
ac

tio
n

m
em

or
y

us
ed

After 20 trials

(b) No Prior Belief

0.0 0.5 1.0 1.5
Fraction memory used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ed

ict
ed

 fr
ac

tio
n

m
em

or
y

us
ed

After 10 trials

0.0 0.5 1.0 1.5
Fraction memory used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ed

ict
ed

 fr
ac

tio
n

m
em

or
y

us
ed

After 20 trials

Figure 10: Comparison of modeled maximum memory use versus the true memory use for training
of LLaMa-7b model.

Table 3: Kernel hyperparameters from GP fitted in OPPA on BERT training

Quantity log σi log λi

dp -9.815 5.490
tp -1.334 -1.047
pp -9.764 5.731

DP bucket size -9.896 5.543
ZERO stage -3.231 -1.021

ZERO bucket size -8.892 5.142
Number of microbatches -8.569 6.272
Number of model chunks -7.668 5.233

20

	Introduction
	Problem Setup
	Method
	Experiments
	Conclusion
	Background and Related Works
	Distributed Deep Learning
	Parallelism Configuration Optimization
	Bayesian Optimization

	Technical Primer on Gaussian Processes and Bayesian Optimization
	Hyperparameters Considered
	Detailed Discussion of OpPa
	Training Time Results Collection
	Criterion for Bayesian Optimization
	Parallelism-Informed Prior Belief
	Kernel
	Random Sampling For Additional Exploration
	Pseudocode

	Detailed Experimental Setup
	Brief Overview of Experimental Setup
	Algorithms Ran
	Models Trained
	Additional Details on Hardware Configurations

	Additional Results
	Plots of Trials Ran versus Best Throughput
	Predicted Throughput and Memory Use by Parallelism-Informed Prior Belief
	Kernel Interpretability

