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Abstract
Retrosynthesis, which aims to find a route to syn-
thesize a target molecule from commercially avail-
able starting materials, is a critical task in drug dis-
covery and materials design. Recently, the com-
bination of ML-based single-step reaction predic-
tors with multi-step planners has led to promising
results. However, the single-step predictors are
mostly trained offline to optimize the single-step
accuracy, without considering complete routes.
Here, we leverage reinforcement learning (RL) to
improve the single-step predictor, by using a tree-
shaped MDP to optimize complete routes. Specif-
ically, we propose a novel online training algo-
rithm, called Planning with Dual Value Networks
(PDVN), which alternates between the planning
phase and updating phase. In PDVN, we construct
two separate value networks to predict the syn-
thesizability and cost of molecules, respectively.
To maintain the single-step accuracy, we design a
two-branch network structure for the single-step
predictor. On the widely-used USPTO dataset,
our PDVN algorithm improves the search success
rate of existing multi-step planners (e.g., increas-
ing the success rate from 85.79% to 98.95% for
Retro*, and reducing the number of model calls
by half while solving 99.47% molecules for Ret-
roGraph). Additionally, PDVN helps find shorter
synthesis routes (e.g., reducing the average route
length from 5.76 to 4.83 for Retro*, and from
5.63 to 4.78 for RetroGraph).

1. Introduction
Retrosynthesis is one of the fundamental problems in or-
ganic chemistry, widely used in important applications such
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Figure 1. a) The single-step reaction predictor, which predicts
potential ways to break a molecule into reactants at each step. b)
The multi-step planner, which searches for a complete route by
iteratively calling the predictor. The goal of retrosynthesis is to
find a synthesis route ending up in the building block molecules
for a target molecule.

as drug discovery and materials design. Given a target
molecule, the goal of retrosynthesis is to identify a se-
ries of chemically valid reactions starting from the target
molecule until reaching commercially available building
block molecules in a backward and recursive manner. There
are many theoretically-possible transformations that can be
applied at each step. In addition, each intermediate molecule
could be broken into several reactants in one reaction. As
a result, the search space of retrosynthesis is enormous
and makes the problem challenging even for experienced
chemists.

Retrosynthesis has drawn much attention in the machine
learning (ML) community in recent years (Segler et al.,
2018; Dong et al., 2021). As shown in Fig. 1, current
ML-based retrosynthesis consists of 1) a single-step reac-
tion predictor to predict a set of potential reactions given a
molecule; 2) a multi-step planner to search for a complete
synthesis route by iteratively calling the predictor. Many
algorithms have been proposed for the single-step predictor
through supervised learning (SL) based on existing real-
world reaction datasets (Lowe, 2012), such as template-
based methods (Segler & Waller, 2017; Coley et al., 2017;
Dai et al., 2019) and template-free methods (Liu et al., 2017;
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Figure 2. An illustration of our PDVN algorithm. The PDVN algorithm has three modules: 1) a two-branch policy network; 2) a
synthesizability value network that predicts if a molecule can be synthesized; 3) a cost value network that predicts the required synthesis
cost if synthesizable. PDVN is initialized with an offline SL model and alternates between two phases: 1) Planning phase: simulate
synthesis experiences on the tree-shaped MDP under the guidance of the policy network and dual value networks. 2) Updating phase:
extract useful training targets from the generated experiences and update all three networks. Finally, the single-step model trained by
PDVN is plugged into popular multi-step planners to enhance their performance.

Tetko et al., 2020). Researchers have also developed sev-
eral search algorithms for multi-step planning, such as 3N-
MCTS (Segler et al., 2018), Retro* (Chen et al., 2020), and
RetroGraph (Xie et al., 2022).

However, in most ML-based methods today, the single-step
predictor is usually trained offline to optimize the single-step
accuracy, without considering complete synthesis routes. In
this work, we leverage reinforcement learning (RL) to im-
prove the single-step predictor, or the policy network in
the terminology of RL (Sutton & Barto, 2018; Liu et al.,
2021), to optimize complete routes. To do this, we use a
tree-shaped Markov Decision Process (MDP) to formulate
the retrosynthesis problem. Then, we propose a novel on-
line training algorithm, called Planning with Dual Value
Networks (PDVN), which alternates between two phases:

1. Planning phase: Given a batch of training target
molecules, we generate the simulated experiences by
planning with the dual value networks.

2. Updating phase: We carefully extract useful training
targets from the generated experiences, and update the
policy network and dual value networks.

Since desirable routes in retrosynthesis should be both syn-

thesizable and low-cost, we construct two separate net-
works to predict the synthesizability and synthesis cost of
molecules. To retain the single-step accuracy, we design
a two-branch policy network structure. The first branch is
a fixed, pre-trained single-step model that provides a set
of valid reactions (e.g., the top 50 candidates). The sec-
ond branch is a learnable single-step model that optimizes
the probability distribution over valid reactions to optimize
complete routes.

To demonstrate the effectiveness of our PDVN algorithm,
we conduct extensive experiments on the widely used
USPTO dataset (Lowe, 2012; Chen et al., 2020). The results
show that using the single-step model trained by PDVN
largely improves the success rate and route quality of exist-
ing multi-step planners. For the Retro* planner (Chen et al.,
2020), PDVN increases the search success rate from 85.79%
to 98.95%. For the RetroGraph planner (Xie et al., 2022),
PDVN reduces the number of model calls by half when
solving 99.47% molecules, and achieves the state-of-the-art
on the USPTO dataset. Additionally, PDVN effectively re-
duces the length of found synthesis routes. We also find that
PDVN can bring performance gains when addressing hard
target molecules from ChEMBL and GDB17 datasets. For
the ChEMBL-1000 dataset, the number of molecules solved
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increased from 762 to 835. For the GDB17-1000 dataset,
the number of molecules solved increased from 95 to 269.
Case studies show that PDVN can reliably find chemically
valid synthesis routes.

2. Related Work
Single-Step Retrosynthesis. Denote the space of all
molecules as S. The single-step predictor takes a product
molecule s ∈ S as input and predicts a set of possible reac-
tants that can be used to synthesize s. A single-step model
can be learned from existing real-world datasets of chemical
reactions. Current single-step models roughly fall into two
categories, i.e., template-based and template-free. Template-
based methods predict reactants with reaction templates that
encode chemical reaction cores. The key is to rank template
candidates and select an appropriate one to apply. Recent
works (Segler & Waller, 2017; Coley et al., 2017; Dai et al.,
2019; Chen & Jung, 2021) address the problem of template
selection by using a classification neural network. On the
other hand, inspired by the recent progress of seq2seq mod-
els (Sutskever et al., 2014) and Transformers (Vaswani et al.,
2017), template-free methods (Liu et al., 2017; Tetko et al.,
2020) cast single-step retrosynthesis as a translation task,
where SMILES string1 of a product molecule is translated
to these of the reactants. As more single-step models are
developed, the single-step accuracy continues to increase.
Some recent benchmark papers (Hassen et al., 2022; Tu
et al., 2022) show that the single-step models need to be
developed and tested for the multi-step domain.

Multi-Step Retrosynthesis. Multi-step retrosynthetic
planning aims to search for the whole synthesis route, by
iteratively calling the single-step model. (Segler et al., 2017;
2018) used a Monte Carlo Tree Search (MCTS) algorithm
to plan the synthesis routes of small organic molecules.
(Kishimoto et al., 2019) propose a DFPN-E method that
combines Depth-First Proof-Number Search (DFPN) with
heuristic edge initialization. Recently, (Chen et al., 2020)
propose Retro*, a neural-based A*-like algorithm, which
employs AND-OR search trees and adopts the best-first
search strategy on the AND-OR tree. To reduce the dupli-
cation of molecules in the tree-based search method, (Xie
et al., 2022) propose a graph-based search algorithm named
RetroGraph, to further improve the performance of A*-like
search algorithms.

(Kim et al., 2021) propose a self-improving procedure,
called Retro*+, which trains a single-step model to imitate
successful trajectories found by itself. Despite its achieve-
ments, Retro*+ only maximizes the success rate and lever-
ages successful simulated experiences to improve the single-

1Symbolic representation for describing the structures of
molecules using ASCII strings.
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Figure 3. An illustrative example of the tree-shaped MDP. Start-
ing from the target molecule, chemists recursively choose reac-
tions (denoted by orange rectangles) to break down the product
molecules (denoted by blue circles) into reactants, until reaching
building block molecules (denoted by green circles) or dead-end
molecules (denoted by red circles). In this example, the route is
not synthesizable, as there is a red dead-end leaf node S(1,2).

step model. Additionally, the A*-like search algorithm used
in Retro*+ is based on the best-first search and may fail
to effectively balance exploration and exploitation when
generating experiences. (Yu et al., 2022) propose GRASP,
a goal-driven actor-critic method for finding routes with a
specific prescribed goal such as building block materials.
Unlike GRASP, which focuses on goal-driven retrosynthesis,
our work focuses more on general retrosynthetic planning.

3. Method
In this section, we first formulate the retrosynthesis prob-
lem using a tree-shaped MDP (Section 3.1). Then, we
introduce the Planning with Dual Value Networks (PDVN)
algorithm, which alternately performs the planning phase
(Section 3.2) and the updating phase (Section 3.3). Finally,
to retain single-step retrosynthesis accuracy, we introduce a
two-branch policy network structure (Section 3.4). For an
overview of our PDVN algorithm, refer to Fig. 2.

3.1. Retrosynthesis MDP

The task of retrosynthesis can be modeled as a tree-shaped
MDP M = (S,A, 2S ,P, c). S denotes the state space
whose element s ∈ S represents a molecule. Terminal
states in S can be classified into (1) building blocks Sbb

which are commercially available molecules, and (2) dead-
end molecules Sdead to which no reactions are available.
The element of the action space a ∈ A represents the
chemical reaction that transforms a product molecule into
reactant molecules. The deterministic transition function
P : S ×A → 2S represents the single-step chemical reac-
tion, whose inputs are the product molecule and the reaction
to take, and the output is the set of reactants. Unlike a
traditional MDP where the trajectory of each episode is
a single path, a trajectory of such an MDP forms a tree,
since reactions usually have multiple reactants and thus
cause branches (as illustrated in Fig. 3). The cost function
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c : S × A → R consists of the cost of performing a cer-
tain reaction crxn(s, a) and the cost of reaching dead-end
molecules cdead(s, a) as follows:

c(s, a) = crxn(s, a)+cdead ·
∑

s′∈P(s,a)

1(s′ ∈ Sdead)︸ ︷︷ ︸
cdead(s,a)

. (1)

For example, (Schreck et al., 2019) set crxn(s, a) = 1 for
all the reactions, cdead = 100 for all dead-end molecules.
Minimizing such cost function aims to generate routes that
are synthesizable (i.e., no dead-end molecules in the route)
and as short as possible. We note that our cost function
is completely general, and can be trivially extended to for
example account for building block or reagent prizes, or
other route criteria such as convergence.

Given a policy function π : S × A → [0, 1], the value
function represents the expected total cost of the generated
routes for molecule s:

Vπ(s) = Eτ∼π

 ∑
(s′,a′)∈τ

c(s′, a′)

 , (2)

where τ is a tree-structured trajectory starting from state s.

Dual Value Networks. As we can see, the desirable routes
in retrosynthesis should be 1) synthesizable and 2) as low-
cost as possible. Instead of using one value network to
capture both desiderata, we use the law of total expectation2

to decompose the function in Eqn. 2 into two value functions
of different kinds. Specifically, let one random variable X
represent the total cost of the route:

∑
(s′,a′)∈τ c(s

′, a′)3,
the other random variable Y represent whether the route
has no dead ends: 1(

∑
(s′,a′)∈τ cdead(s

′, a′) = 0), then the
value function in Eqn. 2 can be rewritten as follows:

E[X] = E[E[X|Y ]]

= Pπ(Y = 1) · E[X|Y = 1] + Pπ(Y = 0) · E[X|Y = 0]

≈ Pπ(Y = 1) · E

 ∑
(s′,a′)∈τ

crxn(s
′, a′)|Y = 1

+

Pπ(Y = 0) · cdead (omit the coefficient of cdead here,
since cdead is a relatively large penalty constant).

(3)

One value network V syn(s), called synthesizability value
network, aims to approximate the probability term Pπ(Y =
1). V syn(s) represents the probability of generating a syn-
thesizable route for molecule s following policy π. The
other value network V cost(s), called cost value network,

2E[X] = E[E[X|Y ]].
3Cost function c(s, a) is defined in Eqn. 1.

aims to approximate the term E[
∑

(s′,a′)∈τ crxn(s
′, a′)|Y =

1]. V cost(s) represents the expected total reaction costs
given the synthesizable route. Note that both value func-
tions also satisfy the Bellman equation according to their
mathematical definitions:

V syn
π (s) = Ea∼π

 ∏
s′∈P(s,a)

V syn
π (s′)

 ,

V cost
π (s) = Ea∼π

crxn(s, a) + ∑
s′∈P(s,a)

V cost
π (s′)|Y = 1

 .

(4)
In a tree-shaped MDP, the Bellman equation is based on the
product/sum over all children reactant nodes.

3.2. Planning with Dual Value Networks

To learn optimal policies that lead to desirable routes on the
retrosynthesis MDP, we propose an algorithm named Plan-
ning with Dual Value Networks (PDVN), which alternates
between the planning phase and the updating phase.

The planning phase aims to generate valuable simulated ex-
periences on tree-shaped MDP with MCTS-based planning
utilizing dual value networks. First, we initialize an empty
search tree with a target molecule as the root node. In each
iteration, a tree search process is executed from the cur-
rent root node, utilizing the dual value networks and policy
network. After the process completes, search probabilities
based on the visit count of each reaction from the current
root node are returned. One reaction is chosen according
to this search probabilities, and the reactant nodes associ-
ated with the chosen reaction are pushed into a stack. In
the next iteration, a molecule is popped from the top of the
stack and serves as a new root node. The planning phase
will conclude when either all the leaf nodes have been con-
verted to building block molecules, or a dead-end leaf node
is encountered.

In particular, each tree search process runs a predetermined
number of simulations (e.g., 500 steps), and each simulation
comprises three sequential steps: 1) Selection, 2) Expansion,
and 3) Backup. We omit the step of rollout evaluation, and
instead use networks to initialize the value of the newly
expanded nodes, as this practice can effectively reduce the
variance and computation efforts.

Selection. Starting from the current root node, we alter-
nate between selecting a reaction node and a child molecule
node, until we encounter a leaf molecule node. To select
reaction nodes, we propose a modified version of the PUCT
rule (Rosin, 2011) that considers dual value networks. The
new rule includes an estimate of synthesizability R(s, a),
an estimate of cost Q(s, a), the policy π(a|s), and the visit
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count N(s, a); its detailed equation is derived from Eqn. 3:

a = argmax
a′

−U(s, a′) + C π(a′|s)
√∑

b N(s, b)

1 +N(s, a′)
,

U(s, a′) = R(s, a′) ·Q(s, a′) + (1−R(s, a′)) · cdead,
(5)

where C is the exploration coefficient. To select a child
molecule node4, we prioritize molecules that have not been
expanded; if none are available, we choose ones that have
not been solved. If molecule nodes are either all expanded
or all solved, we randomly select one of them.

Expansion. When a leaf molecule node is encountered,
we expand the search tree by adding reaction nodes and their
corresponding reactant nodes. Specifically, we select the
top 50 predictions of the policy network to append reaction
nodes5, and then use RDKit6 to obtain the corresponding
reactant nodes. For new molecule nodes, the visit count is
initially set to zero; the dual value networks assign values
for the initial V syn and V cost.

Backup. At the end of each simulation, the nodes vis-
ited, both the reaction and molecule nodes, form a path
T = (s0, a0, . . . , sl, al, . . . , sL), where s0 is the root of the
current simulation and sL is the leaf node before expansion.
During the backup step, we first calculate the current values
of each molecule node sl (0 ≤ l ≤ L− 1 ) on path T by:

V syn
T (sl) = V syn

T (sl+1) ·
∏

s′∈P(sl,al)\{sl+1}

V syn(s′),

V cost
T (sl) = crxn(sl, al) + V cost

T (sl+1)+∑
s′∈P(sl,al)\{sl+1}

V cost(s′).
(6)

The above update rule is derived from the Bellman equa-
tion for a tree-shaped MDP (i.e., Eqn. 4). Then, we up-
date the average value V syn(sl), V cost(sl) by V syn(sl) =
(V syn(sl) · N(sl) + V syn

T (sl))/(N(sl) + 1), V cost(sl) =
(V cost(sl) ·N(sl) + V cost

T (sl))/(N(sl) + 1), and the visit
count by N(sl) = N(sl) + 1. Finally, we update the values
of reaction nodes as follows:

R(sl, al) =
∏

s′∈P(sl,al)

V syn(s′),

Q(sl, al) = crxn(sl, al) +
∑

s′∈P(sl,al)

V cost(s′).
(7)

4Since each reaction node may have multiple child molecule
nodes in a tree-shaped MDP

5Since 50 is widely used in previous work (e.g., 3N-MCTS,
Retro*, RetroGraph, Retro*+).

6https://www.rdkit.org/, open-source cheminformatics soft-
ware.

Note that V syn
T (sl) and V cost

T (sl) denote the values calcu-
lated from current path T , while V syn(sl) and V cost(sl)
denote the average values over all visited paths.

3.3. Training on Generated Experiences

After completing the Planning phase, we have a search tree
along with the statistics gathered during planning. This tree
contains valuable information for updating the networks,
regardless of whether it solves the target molecule, helping
to benefit future planning. During PDVN training, three
neural networks (i.e., policy network, synthesizability value
network, and cost value network) play different roles. In this
subsection, we carefully design the process of extracting
data and the objective function for training each network.

Policy Network. The policy network π(a|s) aims at pre-
dicting the reactions that lead to desirable routes. Instead
of imitating the visitation frequency N(s, a)/

∑
b N(s, b)

from MCTS simulations as in AlphaZero (Silver et al., 2017;
2018), we extract pairs of (molecule, reaction) from success-
ful routes with minimal cost in the search tree. Specifically,
for each molecule node in the search tree, we first determine
if there are any reactions leading to a successful route. If
more than one reaction meet the required condition, we will
select the one with the lowest cost. We use cross-entropy
(CE) loss to update the policy network.

Synthesizability Value Network. The synthesizability
value network V syn(s) aims to predict the probability of
solving molecule s. We train V syn(s) by using all the
molecules in the search tree. First, we run a recursive al-
gorithm to check if each molecule node in the search tree
is solved or not. For solved molecule nodes, we set the
training target as 1. For unsolved molecules s, we use
0.8 × V syn(s) as the training target, where 0.8 is a slight
penalty since the molecule is not solved in the search tree.
For dead-end molecules, we set the training target as 0. We
use binary cross-entropy (BCE) loss to update the synthe-
sizability value network.

Cost Value Network. The cost value function V cost(s)
aims to estimate the minimal cost or length of synthesizing
the molecule. V cost(s) is trained only on solved molecules
in the search tree. Specifically, we first use a recursive algo-
rithm to obtain the lengths of the shortest successful routes
on those solved molecules, which we use as the training
target for V cost(s). We minimize the mean squared error
(MSE) loss to update the cost value network.

3.4. Two-Branch Policy Network Structure

The above subsections focus on optimizing policies to gen-
erate desirable routes. In this subsection, we focus more on
how to retain single-step accuracy.
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Figure 4. An illustration of the two-branch policy network. The
reference single-step model provides a realistic subset of reactions
for the input molecule, denoted by Reaction 1 . . . , Reaction k . The
learnable single-step network optimizes a probability distribution
over the selected reactions, i.e., Pi is the probability of Reaction i.

A natural way to design a policy network is to directly use
a single-step model. However, as the training proceeds,
such policy may choose unrealistic reactions that are not
likely to happen in practice. Chemists often question the
feasibility of the routes generated by AI-based retrosynthesis
software (Genheden & Bjerrum, 2022). To this end, we
design a two-branch policy network structure, as illustrated
in Fig. 4.

Specifically, the proposed policy network consists of two
separate branches. The first branch, called the reference
single-step model, is inherited from a single-step model
trained by offline SL, and frozen during RL training. Fol-
lowing (Segler et al., 2018; Chen et al., 2020), we use a
template-based MLP model as the single-step model, which
is a multi-class classification network7. Since the model is
pre-trained using the real-world reaction dataset, this branch
provides a realistic subset of reactions (e.g., the top-50 can-
didates from a total of ∼ 380K classes). The second branch
is initialized by the SL model, but has learnable parame-
ters that can be optimized to generate synthesizable and
cost-effective routes from the realistic subset of reactions.
The training objective refers to the Policy Network part in
section 3.3. These two branches work together to generate
both realistic and desirable synthesis routes.

4. Experiments
In this section, we aim to answer the following questions:
Q1: On the widely-used USPTO dataset, can our PDVN
algorithm significantly improve the performance of existing
multi-step planners? Q2: On more test target molecules
from ChEMBL and GDB-17, can PDVN algorithm still
bring performance gains? Q3: Are the proposed dual value

7Template-based approaches use reaction templates to predict
reactants from a product. First, the template-based model predicts
the reaction templates, and then the template is applied to a product
to find a match via subgraph isomorphism. If a proper isomorphism
is found, the product is transformed according to the template.

networks necessary in our algorithm? Q4: Does PDVN
algorithm helps find chemically sound routes?

4.1. Experimental Setup

Our algorithm requires specifying (1) a set of building block
molecules Sbb, (2) a training target molecule dataset Dtrain,
(3) a test target molecule dataset Dtest, (4) a retrosynthetic
planning algorithm, (5) a single-step model.

Dataset. (1) For the building block molecules Sbb, we
follow common practice (Chen et al., 2020), and use the
commercially available molecules (about 23.1M ) from
eMolecules8. (2) For the training target molecule dataset
Dtrain, we follow the procedure from (Chen et al., 2020;
Kim et al., 2021) and construct synthesis routes based on
the publicly available reaction dataset extracted from the
United States Patent Office (USPTO) (Lowe, 2012). Specif-
ically, they take each molecule that has appeared in USPTO
reaction data and analyze if it can be synthesized by existing
reactions within USPTO training data. After processing,
299202 training routes are obtained. Following (Kim et al.,
2021), we use the root molecules of these training routes as
training target molecules to generate simulated experiences
in the Planning phase. (3) For the test target molecules
Dtest, we use the 190 challenging target molecules that
were widely used in previous work (Chen et al., 2020; Kim
et al., 2021; Han et al., 2022; Xie et al., 2022; Tripp et al.,
2022). Besides, we introduce two novel test datasets, i.e.,
ChEMBL-1000 and GDB17-1000, to assess the generaliz-
ability of the trained model.

Multi-Step Planner. We use two popular multi-step plan-
ners: 1) Retro* (Chen et al., 2020), an efficient retrosyn-
thetic planning algorithm built upon the AND-OR search
tree and best-first search; RetroGraph (Xie et al., 2022),
which proposes to use AND-OR graph to handle the dupli-
cated nodes and searches within the retrosynthetic paths.
Note that Retro*-0 denotes a variant of Retro* not relying
on the pretrained value function as the heuristic (Chen et al.,
2020). These two planners are based on the A* algorithm
and can be combined with any single-step model. We plug
the single-step model trained by PDVN into these two plan-
ners to see if there are any improvements on the test target
molecule dataset.

Single-Step Model. Following (Segler et al., 2018; Chen
et al., 2020; Kim et al., 2021), we use a template-based
single-step model, which is a 2-layer MLP with ELU ac-
tivation. The output layer has ∼ 380K units and each
corresponds to a distinct template. Although simple, this
model is adopted in the most widely used retrosynthesis im-
plementations (e.g., Retro*, ASKCOS, and AIZynthfinder).

8https://downloads.emolecules.com/free/2022-11-01/
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Table 1. Performance summary on the USPTO 190 test dataset. The evaluation metrics include the success rates under different numbers
of model calls (N ), the average number of model calls used, the average number of reaction nodes (T) and molecule nodes (M) visited,
under the computation budget of 500 model calls.

Success rate [%] ↑
Algorithm 50 100 200 300 400 500 # model calls ↓ # T nodes ↓ # M nodes ↓
Greedy DFS - 38.42 40.53 44.21 45.26 46.84 300.56 - -
DFPN-E - 50.53 58.42 64.21 68.42 75.26 208.12 3123.33 4635.08
MCTS-rollout - 43.68 47.37 54.74 58.95 62.63 254.32 - -

Retro*-0 27.37 38.42 58.42 67.37 75.26 79.47 209.86 3905.62 5565.37
Retro* 40.00 55.79 70.53 76.84 82.11 85.79 158.81 2632.84 3685.31
Retro*+-0 56.84 67.37 83.16 92.11 94.74 96.32 97.95 1444.52 2139.3
Retro*+ 63.16 74.21 83.16 86.84 90.00 90.53 98.91 1157.74 1708.17
PDVN+Retro*-0 86.32 93.68 97.37 97.89 98.95 98.95 30.94 773.56 995.22

RetroGraph 69.47 88.42 97.89 98.95 99.47 99.47 45.13 674.23 500.44
PDVN+RetroGraph 93.16 96.84 97.89 99.47 99.47 99.47 20.24 486.87 417.54

To train this model, we follow (Chen et al., 2020) and use
the offline training dataset comprising ∼ 1.3M reactions
extracted from USPTO published up to September 2016.

Dual value networks. For the synthesizability value net-
work, we use a 2-layer MLP where the output layer is a
sigmoid layer. The cost value network uses the same net-
work architecture but the output layer is a softplus layer as
the cost of non-building blocks is positive. The input to both
networks is the molecular Morgan fingerprint of radius 2,
which is a 2048-bit vector.

Training. For the two-branch policy network, the refer-
ence model is pre-trained offline by SL and then frozen
during PDVN training. The learnable branch has the same
network architecture as the reference model and is initialized
by the reference model. Instead of training the reference
model from scratch, we load the model checkpoint provided
by (Chen et al., 2020). The parameters of the dual value
networks are randomly initialized. During the Planning
phase, the batch size of sampled target molecules is 1024.
We set crxn(s, a) = 0.1 and cdead = 5. During the Up-
dating phase, the Adam optimizer (Kingma & Ba, 2014)
with a mini-batch of size 128 and a learning rate of 0.001 is
used for all models. We iterate the training target molecule
dataset Dtrain three times.

4.2. USPTO Results

To answer Q1, we investigate the effectiveness of PDVN
in terms of planning efficiency and route quality. We train
the single-step model by PDVN and load the trained model
to two state-of-the-art retrosynthesis planners, i.e., Retro*
and RetroGraph. The results against other baselines are
summarized in Table 1 and Table 2.

Table 2. The average length of the routes on the USPTO 190 test
dataset. The results are averaged over the 138 molecules that can
be solved by all methods.

Algorithm Avg length ↓
Retro*-0 5.83
Retro* 5.76
Retro*+-0 6.16
Retro*+ 5.77
PDVN+Retro* 4.83

RetroGraph 5.63
PDVN+RetroGraph 4.78

We can observe that the success rates of both Retro* and
RetroGraph increase significantly when combined with the
PDVN trained model, and the average number of model
calls is reduced by more than half. With the model calls
limit N = 500, the success rate of Retro* is improved to
98.95% while Retro*+, which imitates the successful routes
given by Retro*, achieves a success rate of 96.32%. Notably,
PDVN improves the success rate for fewer model calls limit,
especially N = 50. Previous best result with N = 50 is
69.47% by RetroGraph, PDVN significantly improves it to
93.16%.

On the other hand, we use the average route length to rep-
resent route quality. To make a fair comparison, we only
consider the molecules that can be solved by all the planners.
As shown in Table 2, PDVN outperforms the baselines by a
large margin: the trained model reduces the average route
length on the 138 selected molecules from 5.83 to 4.83 for
Retro*-0 and from 5.63 to 4.78 for RetroGraph.
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Table 3. Number of solved target molecules on ChEMBL-100
dataset and GDB17-1000 datasets.

Algorithm ChEMBL-1000 GDB17-1000

Retro*-0 751 75
Retro* 762 95
Retro*+-0 811 150
Retro*+ 818 154
PDVN+Retro*-0 835 269

RetroGraph 852 215
PDVN+RetroGraph 860 371

Table 4. Ablation study on dual value networks.

Algorithm Success rate Avg length

PDVN+Retro*-0 98.95 4.83
SingleValue+Retro*-0 95.26 5.05
PDVN w/o Cost+Retro*-0 95.79 5.16

PDVN+RetroGraph 99.47 4.78
SingleValue+RetroGraph 96.32 4.93
PDVN w/o Cost+RetroGraph 96.32 5.00

4.3. Results on ChEMBL and GDB-17 Datasets

To answer Q2, we follow (Tripp et al., 2022) and con-
struct two more test datasets from the ChEMBL dataset
and GDB17 dataset, i.e., ChEMBL-1000 and GDB17-1000.
They are 1000 molecules randomly chosen from a subset of
the ChEMBL dataset and GDB17 dataset. To create a subset
of molecules equally or more challenging than the USPTO
190 test dataset, we preprocess the CHEMBL dataset and
GDB17 dataset by using the script from (Brown et al., 2019),
keeping only molecules whose molecular weight, Bertz co-
efficient, logP, and TPSA were larger than the mean of the
respective values in the USPTO 190 test dataset, and remov-
ing all known building block molecules.

The results are reported in Table 3, and we can see that
PDVN still brings performance gains to the baselines. For
ChEMBL-1000, PDVN+Retro*-0 and PDVN+RetroGraph
can solve 24 and 8 more molecules than Retro*+-0 and
RetroGraph, respectively. The GDB17-1000 dataset is much
harder but the improvement is more obvious. Retro*+-0
and RetroGraph can solve 154 and 215 molecules, and our
method enables both planners to additionally solve more
than half of what they can originally do, solving as many as
269 and 371 molecules, respectively.

4.4. Ablation Study on Dual Value Networks

In order to verify the necessity of the proposed dual value
networks, we design two variants of PDVN using only
one value network for comparison. For the first variant,
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Figure 5. Case study of an exemplary route predicted with PDVN.
The arrow represents the single-step chemical reaction, and the
molecules at the end of the synthesis route are building block
molecules.

which we call SingleValue, we use a single value network
V single(s) to estimate the overall objective of retrosynthesis
in Eqn. 2. The backup step of V single(s) is similar to that
of the cost value V cost(s) described in Eqn. 6. The PUCT
rule is also modified to use the single value V single(s). For
the second variant, which is called PDVN w/o Cost, we
remove the cost value network in PDVN, and use only the
synthesizability value network during PDVN training.

As shown in Table 4, both variants have lower success rates
than PDVN, which implies that 1) it is beneficial to decom-
pose the total cost into dual value networks; 2) cost value
network benefits the training, along with synthesizability
value network. Besides, we observe that PDVN w/o Cost
can achieve a slightly higher success rate than SingleValue
for the Retro*-0 planner, but the average length of found
routes is longer. That may suggest that it is important to
take the cost term into consideration.

4.5. Qualitative Case study

A potential risk of reinforcement learning is exploitation
of the environment, i.e. the single step SL model with its
known imperfections. We performed a qualitative analysis
of the routes given by Retro* using different models. The
analysis indicated that PVDN leads to routes of similar
chemical plausibility as the SL model, with usually fewer
steps. As an example, we choose molecule 25 from the
USPTO 190 test dataset. With the computation budget of
500 model calls, Retro* cannot solve it using the SL model,
however, with PDVN it is able to provide a route. As shown
in Fig. 5, our method identifies a route closely related to the
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hold-out original route, albeit with one synthesis step less.

5. Conclusion
In this work, we introduce PDVN, a novel policy learning
framework for retrosynthesis. PDVN improves the single-
step predictor to not only predict valid reactions, but also
predict reactions that lead to synthesizable and low-cost
synthesis routes. Experiments on the widely-used USPTO
dataset demonstrate that PDVN significantly enhances both
the search success rate and route quality of existing multi-
step planners (e.g., Retro*, RetroGraph), achieving state-of-
the-art performance on the USPTO dataset. For future work,
one potential direction is to extend our PDVN algorithm to
other single-step models, such as template-free ones, which
have shown great single-step accuracy and generalizability.
We anticipate that our algorithm will help to further acceler-
ate the discovery of molecules and materials for health care,
agriculture, and energy storage.
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A. Implementation Details
A.1. Network architecture

The goal of the PDVN training is to optimize the parameters of the policy network and dual value networks. The inputs of
these networks are binary strings of length 2048, which are the Morgan fingerprints of molecules of radius 2. The policy
network has two sub-networks inside it, i.e., the reference single-step model and the learnable single-step model. The two
sub-networks share the same MLP structure, and they are both initialized with the parameters from the SL trained model
by (Chen et al., 2020). The dual value networks also share the same MLP structure but the output activation functions are
different. The hyper-parameters of these neural networks are listed below.

Table 5. Hyper-parameters of neural networks.

Single-step model input units 2048
Dual value networks input units 2048
Single-step model hidden units 512

Dual value networks hidden units 512
Cost value network output activation softplus

Synthesizability value network output activation sigmoid

A.2. PDVN planning phase

To generate experiences for training, we design an MCTS-based planner based on dual value networks. Our planner
resembles the online MCTS planner that conducts a fixed number of simulations at the root node in each iteration. We use a
queue to store the simulation roots. Within each simulation, we alternately select reaction and molecule nodes until a leaf
molecule node is encountered. We use the PUCT rule to select a reaction (in Eqn. 5), where a parameter C balances the
trade-off between exploitation and exploration. Besides, we set a maximum route depth to avoid too-long synthesis routes.
To avoid circular routes, we further eliminate those reactions that appeared in their ancestors.

Table 6. Hyper-parameters for PDVN planning.

C (PUCT) 1.0
α (Synthesizability penalty) 0.8

MCTS depth 15
Number of simulations 100

cdead 5.0
crxn(s, a) 0.1

A.3. PDVN training

The training of the PDVN algorithm iterates over the whole training target molecule dataset Dtrain for three epochs. For
each update, we uniformly sample a batch of training target molecules from Dtrain to generate the training data, and update
the networks. To speed up the data generation process, we implement a parallel version of MCTS planners to run MCTS
planning for multiple training target molecules simultaneously. The whole training process takes about 18 hours on a server
with four NVIDIA TITAN Xp and 48 CPU cores (using 15 parallel workers).

Table 7. Hyper-parameters for PDVN training.

Training dataset size 299202
Batch size 1024
Optimizer Adam

Learning rate 1e-3
Dropout rate 0.1

Mini-batch size 128
SL epochs 8
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