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Abstract

In this paper we explore evaluation of LLM capabilities. We present measurements of GPT-4
performance on several deterministic tasks; each task involves a basic calculation and takes
as input parameter some element drawn from a large well-defined population (e.g., count
elements in a list, multiply two k-digit numbers, etc). We examine several conditions per-task
and perform enough trials so that statistically significant differences can be detected. This
allows us to investigate the sensitivity of task-accuracy both to query phrasing and input
parameter population. We find that seemingly trivial modifications in the task-prompt or
input population can yield differences far larger than can be explained by sampling effects.
For example, performance on a simple list-counting task varies with query-phrasing and
list-length, but also with list composition (i.e., the thing-to-be-counted) and object frequency
(e.g., success when an element accounts for ≈ 50% of a list is different from when it accounts
for ≈ 70% etc).
We conclude that efforts to quantify LLM capabilities easily succumb to the language-as-
fixed-effect fallacy, where experimental observations are improperly generalized beyond what
the data supports. A consequence appears to be that intuitions that have been formed based
on interactions with humans form a very unreliable guide as to which input modifications
should “make no difference” to LLM performance.

1 Introduction

Rapid improvements in the performance of large language models (LLMs) have spurred great interest in
evaluating their capabilities. In addition to answering general knowledge questions and summarizing text,
GPT-4 has demonstrated the capability to compose poetry, solve chess puzzles and Geometry problems,
and perform basic coding tasks. Capabilities that seem beyond the simple next-token-prediction they were
trained on, causes some to suggest this as evidence of emergent behaviors from LLMs, or even that we may
be witnessing the early signs of Artificial General Intelligence (AGI) (Bubeck et al., 2023). Others are not
convinced, and suggest that LLMs simply parrot pastiches of text snippets from their training sets (Bender
et al., 2021).

The documentation of surprising capabilities has been accompanied by many accounts of failures. Halluci-
nations (where LLMs offer plausible but entirely invented detail) have proved hard to eliminate. Arkoudas
points out that GPT-4 struggles with some basic tasks that humans find easy or trivial; e.g., they aren’t
reliable even on tasks such as counting, multiplication, etc (Arkoudas, 2023). McCoy et al suggest that many
of the remarkable capabilities are simply artifacts of the training set and autoregressive task that GPT-4 was
trained to solve (McCoy et al., 2023).

An accumulation of observed successes and failures at particular tasks unfortunately does little to settle
questions about LLM reliability or capabilities. In this paper we present results on a series of deterministic
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tasks; each of the tasks involves a basic calculation and takes as input parameter some element drawn from
a large well-defined population (e.g., count elements in a list, multiply two k-digit numbers, etc). Since,
by construction, the correct answer is easy to determine, we can measure performance without costly and
subjective hand-labelling or assessments. By randomly sampling the input parameter populations we can
measure performance on large numbers of that are semantically and logically equivalent. Since the parameter
spaces can be arbitrarily large the concern about verbatim contamination of training data is greatly reduced.
This allows us to investigate the sensitivity of task-accuracy both to query phrasing and input parameter
population; we do this at sufficient scale to detect statistically significant differences. We investigate both
re-wordings of the prompt and changes to the input population. For example, our population might be
length-21 lists of floating point numbers, and the task might be to find the median, but modifications might
be to try reworded versions of the prompt, or try lists with a different number of significant decimal places
given.

Our contributions are as follows. We present measurements of GPT-4 performance on several deterministic
tasks. We examine several conditions per-task and perform enough trials (500 per condition unless otherwise
stated) so that statistically significant differences can be detected. For all tasks and all conditions this entails
about 37k responses from GPT-4; all prompts, responses and associated metadata are openly available to
those who wish to check or build upon our findings. We measure performance on tasks such as counting,
sorting, multiplication, etc, and find that accuracy, while better-than-random, is often very poor. We find that
seemingly trivial modifications both in the prompt-phrasing and parameter population can yield differences
far larger than can be explained by sampling effects. For example, performance on a simple list-counting
task varies with query-phrasing and list-length, but also with list composition (i.e., the thing-to-be-counted)
and object frequency (e.g., success when an element accounts for ≈ 50% of a list is different from when it
accounts for ≈ 70% etc).

We conclude that efforts to quantify LLM capabilities easily succumb to the language-as-fixed-effect fallacy
(Clark, 1973; Coleman, 1964; Yarkoni, 2022), where experimental observations on language-tasks are improperly
generalized beyond what the data supports. A consequence appears to be that intuitions that have been
formed based on interactions with humans form a very unreliable guide as to which modifications should
“make no difference” to LLM performance. For example, the abstractions that we take for granted for humans
(e.g., of separating the task of counting from the thing-to-be-counted) do not appear to be replicated by
LLMs.

Sensitivity of LLM performance to query phrasing has spawned efforts to improve accuracy by using few-shot,
Chain-of-Thought and scratchpad techniques. However, efforts to quantify this sensitivity are nascent. Sclar
et al examine the effect of phrasing on accuracy for multiple choice tasks using the LLaMA-2-13B model
(Sclar et al., 2023). Sun et al examine zero-shot robustness for the MMLU (Hendrycks et al., 2020) and
BIG-bench (Ghazal et al., 2013) datasets using several models having between 3B and 13B parameters. There
are important points of difference between ours and previous work. First, we explore accuracy on atomic
tasks such as counting and multiplication rather than on datasets of multiple-choice questions that may have
been seen in training (e.g., there is evidence that GPT4 has seen the BIG-bench canary GUID (Bubeck et al.,
2023)). Second, we use parameterized tasks and explore sensitivity to input parameters as well as prompt
phrasing (e.g., showing that counting accuracy depends on the thing-to-be-counted). Finally, we evaluate
using GPT-4; this has between one and two orders of magnitude more parameters than those used in (Sclar
et al., 2023; Sun et al., 2023). This allows us to have confidence that the problems do not seem significantly
alleviated by model scale.

We wish to be clear that our goal is not to determine whether LLMs can or cannot count, sort, or multiply, etc.
First, we have other ways of performing these tasks. Second, it is possible that prompt engineering, providing
few-shot examples, the use of Chain-of-Thought reasoning, or the invocation of plug-ins might sometimes
improve performance. However, our goal is not to improve the accuracy in particular settings. Rather, it is
to draw attention to an unaddressed difficulty in establishing accuracy: evaluation of LLM capabilities seems
particularly susceptible to a major pitfall that exists when we go from particular experimental observations to
general claims. That is, sensitivity to seemingly trivial modifications means that observed accuracy numbers
cannot be assumed to generalize (even to entirely equivalent versions of a task). So, for example, while
prompt engineering might yield accuracy improvement on a particular version of a task, we can’t assume that
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that improvement will be observed in rephrased versions. While we’ve demonstrated the problem on basic
arithmetic tasks it seems unlikely to be confined to that domain. For example, LLM performance at certain
tasks might be improved by invoking a plug-in, writing code or using Chain-Of-Thought, but deciding when
and how to do so is itself a task with success rate subject to the sensitivities we highlight. That is, invoking
plugins doesn’t solve even the basic counting task if the decisions on when and which plugin to invoke is
itself brittle and sensitive to prompt phrasing. Finally, we acknowledge that GPT-4 is the largest and most
recent model we tested; an interesting direction for future work would be to determine whether the problem
is reduced in later models.

So, can LLMs count (or multiply, or sort etc)? Our evidence suggests that variation as we sample possible
phrasings is too high to allow a Yes-or-No answer, and that accuracy estimates must be regarded as particular
to the experimental setup used. This also means that reporting observed performance or accuracy numbers
on other deterministic tasks (such as standardized tests (Katz et al., 2023; Takagi et al., 2023; Nori et al.,
2023), textbook problems, etc) is not sufficient to establish general capabilities.

2 Background: The Language-as-Fixed-Effect Fallacy

The Language-as-Fixed-Effect Fallacy, as described by Clark (Clark, 1973), is the phenomenon where a claim
supported by statistical evidence does not generalize beyond the specifics of the experimental setup. He
illustrates with a language-task thought-experiment originally proposed by Coleman (Coleman, 1964). Let N
be the set of all English nouns, V the set of all verbs, and let T (.) be a test statistic representing how well
humans perform at some task involving words (e.g., how well they can spell them, how quickly they can type
them, etc). Suppose that experimenter A wishes to test the hypothesis that people perform the task better
on nouns than on verbs:

HA = T (N) > T (V ).

Suppose experimenter B wishes to test the opposite:

HB = T (N) < T (V ).

Let’s stipulate, by contrast, that they are both wrong, and that T (N) = T (V ).

As a test of HA the first experimenter selects subsets NA ⊂ N and VA ⊂ V each with some fixed number
of randomly selected nouns and verbs. With this choice she recruits participants and on finding that
T (NA) > T (VA), by a statistically significant amount, she rejects the null hypothesis (that there’s no
difference) and concludes she has firm evidence in favor of HA. Similarly, the second experimenter selects at
random different subsets NB ⊂ N and VB ⊂ V with fixed numbers of nouns and verbs. With this fixed
choice he recruits participants and finds T (NB) < T (VB), by a statistically significant amount, and concludes
this is firm evidence for HB .

The problem is that while both A and B intend to generalize to the whole population N and V they have
tested only on particular subsets. There is good evidence to believe that, with any collection of participants,
we could verify both T (NA) > T (VA) and T (NB) < T (VB), but neither of these is enough to support either
HA or HB. In the language of statistical testing our experimenters have treated random effects as fixed
(Clark, 1973).

Fixed effects are those that are considered constant across the relevant population, while random effects are
those that vary (for an account of various other definitions see (Gelman, 2005)). In the experiments above
there are two populations involved: the populations of noun-verb collections, and the population of human
participants. When she generalized from NA, VA to N , V our first experimenter implicitly assumed that any
other subsets NC ⊂ N and VC ⊂ V would also give the result that she observed (i.e., T (NC) > T (VC)). If
this were true she’d be justified in thinking that her observed difference was powerful evidence for HA. If this
is not true then her experiment supports only the narrow uninteresting claim T (NA) > T (VA). Effectively,
she assumed that what she observed wasn’t particular to NA, VA but general to N , V .

In a colloquial sense fixed effects are ones where the particular choice doesn’t affect the generality we wish
to claim. We expect, for example, that what an experimenter had for breakfast or what color socks she

3



Published in Transactions on Machine Learning Research (10/2024)

was wearing has no effect on the outcome; these are not details that have to be faithfully reproduced to
ensure replication of the original experiment. In this telling the fixed-effect fallacy is simply assuming that
certain details don’t matter when in fact they do. Unfortunately, there’s no simple way to determine that a
certain variable has no influence on an experimental result; experiments necessarily involve many judgements
about which details matter and which do not, and many of those judgements are subjective. One of our
findings is that intuitions about which modifications might make a difference can be very flawed; that human
performance remains constant under a certain modification is no guarantee at all that LLM performance also
will.

3 The Fixed-Effect Fallacy and LLM Task Performance

We wish to evaluate whether, and how well, an LLM can perform a particular task that has a single
deterministic correct answer (e.g., counting, deciding to invoke a plug-in, or Retrieval-Augmented Generation
etc). For the counting task one approach might be to produce a list of objects and prompt the LLM to count
the occurrences of a particular item. To make the experimental setup concrete we might specify a list length
and dictionary of possible elements. For example:

rLen = 20
listOfItems = [‘mango’,‘peach’]
r = random.choices(listOfItems, k = rLen)

is a Python snippet that will return a length-20 list with the elements of listOfItems chosen at random
with replacement. When there are only two elements, as shown, there’s a population of 220 such lists; call
this population R. We might prompt the LLM with:

prompt = ‘‘How many times does ‘mango’ appear in this list: ’’ + str(r)

where r ∈ R. By repeating this query with many different elements of R we might try to build a picture of
the LLM’s performance at the task.

In this setup choice of list from R is being treated as the only random effect; i.e., the only source of variation
(Gelman & Hill, 2006). We are testing how well the LLM does over many different members of R but are
assuming that other factors we might vary make no difference. However, there are many other populations
of lists that we might try, and there are many other wordings of the prompt that could be used. If we use
observed success with the above prompt to conclude that our LLM can count elements of a length-20 list
with a particular success rate we are implicitly assuming that these other possible choices would make no
difference. For example, an alternative to the prompt above might be:

prompt = ‘‘Here is a list: ’’ + str(r) + ‘‘. How many times does ‘mango’ appear on it?’’

This would appear to be an equivalent evaluation of the task, or a modification that should make no difference.
Unfortunately, this is not the case.

As we show in Section 4.2 these assumptions most definitely do not hold. Wording of the prompt and choice of
the particular items to be counted can make a substantial difference to the answer (see Table 1). For example,
the hypothesis that tests using the two prompts given above (with everything else held constant) produce
results drawn from the same distribution, is robustly rejected by a χ2 test. Thus, if we report that our LLM
can count with a particular success rate we are committing the same fixed-effect error as experimenters A
and B above.

When we encounter a particular experimental result (e.g., q = 0.86 (86.0%) on the N = 10 counting task in
Table 1) we generally understand that this involves some margin of error. For example, rather than q, we
expect a repeat of the experiment to produce an estimate q ± δq. A very familiar case exploits the fact that
95% of the values of a normal distribution lie within 1.96 standard deviations of the mean, so we can write
δq = 1.96 ·

√
q · (1 − q)/N and be confident that 95% of trials will fall in this interval (Taylor & Thompson,

1982).
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However, it is important to keep track of the baked-in assumptions: this estimate assumes that variance
from sampling the list population (i.e., sampling R) is the only source of randomness. If significant other
sources of randomness exist, then we know only that δq is greater than (and possibly much greater than)
1.96 ·

√
q · (1 − q)/N. That is, we have only a lower bound on our margin-of-error. We can’t rule out, for

example, that the 95% confidence interval is ±30%. The results of Section 4 show that other sources of
randomness that are too large to ignore do exist for several of the tasks we consider (and in some cases appear
far greater than the variance due to sampling).

4 Tasks

4.1 Experimental setup

In order to test LLM performance we choose tasks that have deterministic answers, and where it is relatively
easy to decide if the LLM gives the correct answer. This obviates the need for subjective assessments,
heuristics, hand-labelling or error-prone parsing of the response, and allows us to scale-up testing. The tasks
we examine are: counting, finding the maximum, median and sorted version of a list of numbers, and long
multiplication. The difficulty with counting and long multiplication has been observed by others (Arkoudas,
2023).

Unless otherwise specified all of the conditions were evaluated on 500 independent runs. Thus, for example, if
a table entry reports a success rate of 89.0% on a task, and sampling were the only source of randomness, then
a reasonable estimate of the 95% confidence interval would be 1.96 ·

√
0.89 × 0.11/500 ≈ 2.74%. However,

an important finding, below, is that there are significant other sources of randomness, and the conventional
way of estimating margins-of-error cannot be applied. Lists were generated independently for each trial at
query-time; thus, we did not re-use lists across conditions. All of the trials are performed using the OpenAI
GPT-4 API with a temperature setting of 0.7. The results of all queries are available in the GitHub repository
https://github.com/demarinaGit/canWeCountOnLLMs. All trials were performed using a temperature
setting of 0.9.

For all of the tasks we give an example prompt together with the correct answer and GPT-4’s answer. Due
to space constraints we show only examples where the GPT-4 response is incorrect. This is not reflective
of its accuracy: in each case we give a table showing how accuracy evolves with problem size. However,
in giving examples where the answers are incorrect we illustrate that they are often very significantly
better-than-random.

4.2 Count

First we examine the capability of GPT-4 to perform basic counting tasks. We choose a length-rLen list with
two possible elements and ask GPT-4 to count the number of occurrences of the first element. An example
query is (let’s call this wording #1):

Prompt: How many times does ‘mango’ appear in this list: [mango, peach, peach, peach, mango,
mango, mango, peach, peach, peach, mango, mango, mango].
Correct Answer: 7
GPT-4 Answer: ‘Mango’ appears 6 times in this list.

We evaluate for five different target lengths; the results are shown in the first column of Table 1. In
choosing modifications of this task we choose a different variations of the input list by replacing the word-pair
‘mango/peach’ with ‘airedale/aspidistra’ (results in column 2). We alter the weights: i.e., have ‘mango’ and
‘peach’ appear with probabilities 70% and 30% instead of 50% and 50% (results in columns 3). We also
examine one simple rewording of the prompt (let’s call this wording #2):

Prompt: Here is a list: [mango, peach, peach, peach, mango, mango, mango, peach, peach, peach,
mango, mango, mango]. How many times does ‘mango’ appear on it?
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Correct Answer: 7
GPT-4 Answer: ‘Mango’ appears 6 times in this list.

This gives us a total of four conditions, all of which involve the same basic counting task. We evaluate each
condition with list lengths rLen= 10, 15, 20, 30 and 40, and we perform 500 trials per condition. The results
are shown in Table 1. Thus, the five rows and first four columns represent a total of 5 × 4 × 500 = 10, 000
queries to GPT-4.

rLen

Wording #1
Wts=[0.5,0.5]
mango/peach

Wording #1
Wts=[0.5,0.5]

airedale/
aspidistra

Wording #1
Wts=[0.7,0.3]
mango/peach

Wording #2
Wts=[0.5,0.5]
mango/peach

Comp. Cols(1,2)
(χ2, p)

Comp. Cols(1,3)
(χ2, p)

Comp. Cols(1,4)
(χ2, p)

10 89.0% 91.2% 70.2% 96.6% (1.12, 2.9e-01) (53.26, 2.92e-13) (20.49, 6.e-06)
15 61.2% 53.6% 31.8% 88.6% (5.6, 1.8e-02) (85.68, 2.11e-20) (98.38, 3.45e-23)
20 48.2% 29.6% 30.8% 76.2% (35.61, 2.41e-09) (30.95, 2.65e-08) (82.18, 1.24e-19)
30 12.4% 7.4% 19.0% 43.6% (6.46, 1.10e-02) (7.74, 5.41e-03) (119.17, 9.60e-28)
40 12.6% 7.6% 17.6% 21.0% (6.34, 1.18e-02) (4.49, 3.40e-02) (12.03, 5.25e-04)

Table 1: Percent correct for counting the occurrences of a length-rLen list with two items chosen uniformly-
at-random. Performance decays rapidly with list length. On the right-hand side of the table we present
χ2 tests comparing the results of the first condition with each of the others. This test evaluates the null
hypothesis that the answers in the various conditions are drawn from the same distribution. Boldface entries
are cases where p < 0.05 and we reject the null hypothesis. The null hypothesis is robustly rejected for almost
all lengths and conditions. E.g., when comparing columns 1 and 4 (i.e., simply switching between wording #1
and wording #2 with the ‘mango/peach’ word-pair). This demonstrates that simple modifications of the task
(that might easily be assumed to make no difference) in fact are sources of variance beyond what can be
explained by sampling effects.

We use a χ2 test to determine if the responses to different ways of phrasing the task are drawn from the
same distribution. For example, we can take the null hypothesis to be that some row of the first and fourth
columns of Table 1 represent answers drawn from the same distribution. E.g, for rLen= 10 there were
445/500 and 483/500 correct trials respectively. Using a standard χ2 test to compare these two distributions
of correct/incorrect answers yields (χ2 = 20.49, df = 1, p = 6.0e − 6). The p-value can be taken as an
estimate of the probability of these results being observed if columns 1 and 4 of row 1 were produced by the
same process; generally when p < 0.05 we say that the null hypothesis is rejected. Similarly for all the other
rows, the hypothesis (that results of the task with different wording are drawn from the same distribution) is
rejected. The degrees-of-freedom is df = 1 for all of our tests since we are always doing pairwise comparisons
on tasks on a binary outcome (Taylor & Thompson, 1982).

The results of our χ2 tests are given in the right-hand side of Table 1. The null hypothesis is robustly rejected
for all lengths when comparing columns 1 and 4 (i.e., simply switching between wording #1 and wording
#2 with the ‘mango/peach’ word-pair). The null hypothesis is rejected for several lengths when comparing
columns 1 and columns 2, 3 (i.e., simply switching the word-pair while using wording #1). This demonstrates
that simple modifications of the task (that might easily be assumed to make no difference) in fact are sources
of variance beyond what can be explained by sampling effects.

We note also that the GPT answers are biased toward under-counting. For example in the ‘mango/peach’
case the mean of the correct answers for the five lengths tested (i.e., rLen= 10, 15, 20, 30 and 40) were:
(5.57, 7.96, 10.57, 15.46, 20.6) and the GPT-4 answers were (5.45, 7.57, 10.04, 14.09, 18.5). Thus, across 500
trials, the mean GPT-4 answers were always lower. Among the 500 trials the ratio of over-counts:under-counts
was (55 : 0, 192 : 2, 248 : 11, 428 : 10, 451 : 11).

In the appendix we give results using GPT-3.5, Mistral7B, and Llama7B. Note that the same basic pattern
holds: i.e., the different conditions
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4.3 Maximum, Median and Sort

Here we ask GPT-4 to perform elementary tasks on lists of numbers: return the maximum, median and
sorted version of the list. We evaluate three different conditions. First we ask for the maximum (or median
or sorted version) of a list of rLen numbers drawn uniformly-at-random from the interval (100.0, 20000.00)
and rounded to two decimals places. An example of the prompt for the median-finding task is:

Prompt: What is the median value in this list: [7176.36, 5222.86, 1089.62, 19927.36, 5655.72, 18355.58,
18978.7, 7028.49, 14190.57, 14243.69, 11251.69]. Please write ’Answer=’
Correct Answer: 11251.69
GPT-4 Answer: 7176.36

Second, we repeat with integers drawn uniformly-at-random from (10, 99) (i.e., all list-members are 2-digit
numbers). Finally, we use a list of rLen name-value pairs, where a randomly-chosen name is associated with a
number drawn uniformly-at-random from the interval (100.0, 20, 000.00) and rounded to two decimals places.
An example of the latter query is:

Prompt: Please sort this list in ascending order: [John: $12158.21, Mary: $1416.51, Peter: $7507.58,
Vivek: $10941.54, Xian: $10530.84, Alex: $1641.14, Maria: $1025.49, Frank: $260.85, Luis: $7464.35,
Manuel: $1782.86, Kristen: $10085.24].
Correct Answer: [Frank: $260.85, Maria: $1025.49, Mary: $1416.51, Alex: $1641.14, Manuel:
$1782.86, Luis: $7464.35,Peter: $7507.58, Kristen: $10085.24, Xian: $10530.84, Vivek: $10941.54, John:
$12158.21]
GPT-4 Answer: [Frank: $260.85, Maria: $1025.49, Mary: $1416.51, Alex: $1641.14, Manuel:
$1782.86, Peter: $7507.58, Luis: $7464.35, Kristen: $10085.24, Xian: $10530.84, Vivek: $10941.54, John:
$12158.21]

The results of the maximum, median and sorting tasks are given in Tables 2, 3 and 4 respectively. The three
different list conditions are explored in columns 1-3 of these tables. As in Section 4.2, we use a χ2 test to
explore whether these different variations on the task produce answers that appear drawn from the same
distribution. The right-hand portion of Tables 2, 3 and 4 gives the results; we do χ2 tests to compare columns
2 and 3 with column 1.

Table 2 shows the results of the maximum-finding task. Performance in all conditions is good, though not
perfect (e.g, results are almost always > 90.0%). The χ2 tests show that the hypothesis that performance on
the name-value version of the list is consistent with performance on the value-only list is rejected for lengths
> 11. The hypothesis that performance on the integer version of the list is consistent with performance on
the 2-decimal floats list is rejected for all lengths.

Table 3 shows the results of the median-finding task. Performance in all conditions is poor (e.g, results
are < 90.0%). The χ2 tests show that the hypothesis that performance when the numbers are drawn from
(10.0, 20000.0) is consistent with performance when numbers are drawn as integers from (10, 99) is rejected
for all lengths. The hypothesis that that name-value version of the list is consistent with performance on
the value-only list is also rejected for all lengths. Note that the p-values in both cases are ≪ 0.05, so the
probability that the same process accounts for both conditions is very low.

Table 4 shows the results of the sorting task. Performance in condition 2 is good, but is very poor in condition
3 (e.g, results in column 3 are < 55.0%). The χ2 tests show that the hypothesis that performance when
the numbers are drawn from (10.0, 20000.0) is consistent with performance when numbers are drawn from
(10, 99) is rejected for all lengths. The hypothesis that that name-value version of the list is consistent with
performance on the value-only list is also rejected for all lengths. Again, the p-values indicate robust rejection
of these hypotheses.
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rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 97.79% 100.0% 97.2% (9.23, 2.38e-03) (0.16, 6.93e-01)
15 96.4% 100.0% 92.2% (16.35, 5.27e-05) (7.44, 6.37e-03)
21 94.4% 100.0% 86.6% (26.79, 2.27e-07) (16.8, 4.16e-05)

Table 2: Comparison of the find-maximum task. The prompt simply asks GPT-4 to find the maximum of a
list of numbers. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform
on (10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals.
The right-hand side of the table shows χ2 tests comparing Column 1 to each of the others. Boldface entries
are cases where p < 0.05 and we reject the null hypothesis (that results in the given columns are produced by
the same process). The null hypothesis is rejected except for length-11 when comparing columns #1 and #3:
thus simply switching the list from numbers to name-value pairs introduces variance beyond what can be
explained by sampling effects.

rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 68.4% 85.0% 89.6% (37.62, 8.57e-10) (66.46, 3.58e-16)
15 52.8% 74.0% 89.6% (47.51, 5.47e-12) (163.32, 2.13e-37)
21 35.87% 62.73% 65.6% (65.82, 4.94e-16) (87.12, 1.02e-20)

Table 3: Comparison of the find-median task. The prompt simply asks GPT-4 to find the median of a list of
numbers. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform on
(10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals. The
right-hand side of the table shows χ2 tests comparing Column 1 to each of the others. Boldface entries are
cases where p < 0.05 and we reject the null hypothesis (that results in the given columns are produced by the
same process). The null hypothesis for all lengths and conditions: thus simply changing the range on the
numbers, or switching to name-value pairs introduces variance beyond what can be explained by sampling
effects.
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rLen
float in

(100.0, 20000.0)
int in
(10, 99)

Name-value
float in

(100.0, 20000.0)
Compare Cols(1,2)

(χ2, p)
Compare Cols(1,3)

(χ2, p)
11 94.93% 99.77% 52.0% (18.39, 1.80e-05) (231.64, 2.62e-52)
15 94.75% 100.0% 36.0% (24.48, 7.50e-07) (375.91, 9.69e-84)
21 88.32% 99.8% 15.0% (56.26, 6.34e-14) (528.43, 6.2e-117)

Table 4: Comparison of the list-sorting task. The prompt simply asks GPT-4 to sort a list of numbers in
ascending order. Column 1: numbers uniform on (100.0, 20000.0) to 2 decimals, Column 2: numbers uniform
on (10, 99) as integers, Column 3: name-value pairs with values uniform on (100.0, 20000.0) to 2 decimals.
The right-hand side of the table shows goodness-of-fit χ2 tests comparing Column 1 to each of the others.
Boldface entries are cases where p < 0.05 and we reject the null hypothesis (that results in the given columns
are produced by the same process). The hypothesis that Column 2 or 3 is produced by the same process
as Column 1 is rejected for all lengths: thus simply changing the range on the numbers, or switching to
name-value pairs introduces variance beyond what can be explained by sampling effects.

4.4 Long Multiply

Here we evaluate performance at long multiplication, where we prompt the LLM to calculate the product of
a k1-digit by a k2-digit number. An example for 4 × 4 is:

Prompt: What is the product of 6438 and 9038? Please write ‘Answer =’
Correct Answer: 58186644
GPT-4 Answer: Answer = 58169844.

Table 5 shows the performance multiplying a k1-digit by a k2-digit number for k1, k2 ∈ {2, 3, 4, 5}. Apart
from the 2 × 2 case the results are largely poor. Observe that perfect performance on the 2 × 2 task drops to
negligibly correct answers for 4 × 4.

Since there is sometimes a significant difference between the k1 × k2 result with the k2 × k1 result we perform
a χ2 test on several of the off-diagonal elements. The results are shown in Table 6. Note that results for
the 4 × 2 and 2 × 4 are significantly different, as are those for 5 × 2 and 2 × 5. Thus, even the hypothesis
that performance on the k1 × k2 multiplication will be equivalent to the k2 × k1 is rejected for at least some
lengths.

Both Dziri et al (Dziri et al., 2023) and Arkoudas (Arkoudas, 2023) look at the example of long multiplication.
Dziri et al note that while the answers for 4 × 4 are almost always incorrect, the first and last two digits of
the GPT-4 answers are almost always correct. They describe this as a matching of “surface probabilities.”
That is, the first two digits of a product are determined by the leading digits of the multiplicands irrespective
of length. Thus, this portion of the answer can always be determined without paying attention to the rest.
Similarly for the last few digits.

Q
Q
QQ

k1
k2 2 3 4 5

2 100% 90.6% 69% 40.6%
3 91.6% 55.2% 15.0% 6.2%
4 80.0% 19.4% 3.2% 1.0%
5 48.4% 8.2% 2.0% 0.0%

Table 5: Percent correct for multiplying a k1-digit by k2-digit number.

5 Related Work

It is well understood that the form of a prompt can greatly affect the results from a LLM as a “few-shot
learner” (Brown et al., 2020), thus giving rise to the newly minted discipline of prompt engineering. For

9



Published in Transactions on Machine Learning Research (10/2024)

k1 × k2 k2 × k1 (χ2, p)
3 × 2 2 × 3 (0.308, 0.578)
4 × 2 2 × 4 (14.863, 1.15 e-4)
4 × 3 3 × 4 (3.398, 0.065)
5 × 2 2 × 5 (6.158 , 0.0130)
5 × 3 3 × 5 (1.496, 0.221)

Table 6: χ2 goodness-of-fit test comparing the results of a k1 × k2 with a k2 × k1 multiplication (i.e., the
off-diagonal elements of Table 5).

example, (Yu et al., 2023) show that small differences in prompting for legal reasoning tasks has a significant
impact on the accuracy of responses. Our results confirm these observations for a set of simple deterministic
tasks but with high statistical significance.

On the output side, Bender et al. (Bender et al., 2021) note the dangers inherent in ascribing intent and
meaning to utterances generated by LLMs. In particular, we (as humans) make many assumptions about
communications with other humans that can easily lead us to fall prey to the fixed-effect fallacy when working
with LLMs, potentially ascribing a more general capability to the LLM than actually exists. We show that
even for simple tasks there are major sources of variance that are not easy to account for when working with
LLMs.

Our experiments with deterministic algorithms are related to work that examines the capability of LLMs to
perform deductive reasoning (Arkoudas, 2023). In these problems, as with most of the problems we consider,
the LLM must attend to most every token in the input and not “hallucinate” new values that would lead
to short-cut solutions to related but different problems than the one given. In contrast to our experiments,
Arkoudas engages in a conversation with the LLM about each of the deductive problems he poses, where
the LLM often proceeds to contradict itself upon getting a wrong answer. Indeed, the ad-hoc reporting of
conversations with an LLM is fairly widespread (Bubeck et al., 2023) but does not rise to the level of a
controlled experiment where one can make statistically significant statements. Of course, for many complex
tasks it may be difficult to perform the deeper analysis we performed here for simpler tasks.

Others have observed that LLM performance degrades when the input to the LLM grows in size (within
the limits of the LLM’s context window), as we have shown here. Interestingly, Liu et al (Liu et al., 2023)
find that information that is at the beginning or end of the context window has more influence on LLM
performance, even for simple queries that ask the LLM a question whose answer is somewhere in the input.
That is, the position of information is another source of variance, as we saw in the simple prompt rewording of
Table 1, where the major change was to swap the position of the input list and query (wordings #1 and #2).

Wu et al demonstrate considerable performance sensitivity for a series of tasks (Wu et al., 2023). In exploring
counter-factual tasks they conclude that LLMs “rely on narrow, non-transferable procedures for task-solving.”
Dziri et al explore failures of LLMs on seemingly trivial tasks (Dziri et al., 2023). They are especially
interested in compositional tasks. They suggest that transformers often fail since they exploit linearized
patch matching rather than any multi-step reasoning, and that errors propagate in a fashion that compounds.
Schaeffer et al suggest that the often-discussed emergent properties of LLMs are an artifact of the metrics
chosen rather than any fundamental improvement (Schaeffer et al., 2023): “For a fixed task and a fixed
model family, the researcher can choose a metric to create an emergent ability or choose a metric to ablate
an emergent ability.”

Chain-of-Thought (CoT) is a prompting strategy that asks the LLM to output intermediate reasoning steps
before giving the final answer. Research has found that it often improves LLM performance on complex tasks
(Wei et al., 2022). It is worth further research to understand whether CoT-style prompts are more resilient to
the variations shown in our study.

While the sensitivity of performance to prompt-phrasing has spawned the field of ‘prompt engineering’ efforts
to quantify this sensitivity are nascent. Sclar et al examine the effect of phrasing on accuracy for multiple
choice tasks using the LLaMA-2-13B model (Sclar et al., 2023). Sun et al examine zero-shot robustness on
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two large standardized datasets (Sun et al., 2023). Our work extends that direction by showing sensitivity not
merely to phrasing, but also input parameter, and using GPT-4 (i.e., a far larger model than used in (Sclar
et al., 2023; Sun et al., 2023)). In focusing on tasks with arbitrarily large parameter spaces (e.g., counting
objects in lists) we avoid many of the concerns that some variant of a task has been seen in training.

Standardized exams are often used to demonstrate LLM’s capabilities. For example, studies has shown
GPT-4 achieving the passing criteria of the Japanese Medical Licensing Examination (JMLE) (Takagi et al.,
2023), the Uniform Bar Examination (UBE) (Katz et al., 2023), and the US Medical Licensing Examination
(USMLE) (Nori et al., 2023). Knowing that even basic tasks are sensitive to trivial variations, it is legitimate
to question whether the variations between a new version of an exam and its previous versions primarily
focus on factors sensitive for humans, but neglect others that can be sensitive only for LLMs.

Yarkoni (Yarkoni, 2022) argues that the problem of improper generalization goes far beyond the language
issue. He suggests that confusing fixed effects for random ones is the source of many of the replication failures
in the social sciences.

Elazar et al explore the consistency of responses under rephrasing of various LLMs (Elazar et al., 2021). They
explore general knowledge and factual questions rather than the arithmetic tasks we explore. Their findings,
that all of the LLMs studied have poor consistency, are largely corroborated by our work.

Lu et al study the effect of ordering on the performance of few-shot prompts (Lu et al., 2021). They find that
permuting the order in which examples in a few-shot prompt are presented can make the difference between
state-of-the-art and radnom performance.

6 Discussion

We’ve shown in Section 4, the risk that measured performance with a specific prompt fails to generalize
to equivalent versions of the task. This work complements others that have documented the brittleness of
GPT-4’s performance (see related work in Section 5). However, as far as we know, ours is the first to explore
tasks with several different conditions and sufficient statistical power to rule out sampling noise as the source
of observed variation. This allows us to state with some confidence that minor modifications have potentially
enormous effects on measured capabilities. This problem is entirely orthogonal to the frequently mentioned
difficulty with hallucinations.

Every measurement experiment comes with decisions about which factors might affect the output, and which
should make no difference. Many of these decisions are implicit, and informed by our intuition and experience
of the world. Since LLMs emulate many human capabilities it is tempting to use intuitions about humans to
guide decisions about which factors should make no difference to LLM measurements. A key finding of this
paper is that this assumption leads to errors that can be significant enough to invalidate claims. Bender
observes that we’ve made “machines that can mindlessly generate text, but we haven’t learned how to stop
imagining the mind behind it.” We suggest that the dangers of anthropomorphizing LLMs includes not just
over-interpreting their capabilities, but also imagining that their robustness to variation resembles that of
humans.

An interesting direction for future work is whether we can derive new margin-of-error bounds. Our problem is
that the presence of unexplained variance means that estimating δq = 1.96 ·

√
q · (1 − q)/N misses an additive

component of unknown magnitude. If rewordings of a particular task can be generated automatically then
estimating their variance would allow new (albeit higher) estimates of margin-of-error.

Since we warn of the risks of improper generalizations we should note the limitations of our findings. Obviously,
we’ve explored a limited set of tasks, and a limited set of modifications of those tasks. The tasks in this
paper are chosen deliberately with several criteria. First, they are deterministic tasks with easily-determined
answers; this is clearly a very restricted portion of the problems to which LLMs might be applied. Second,
the tasks we choose may be particularly difficult for transformer architectures. That is, the attention
mechanism (Vaswani et al., 2017) decides which portions of the context window are most important in
predicting the next token; however, for tasks like counting, sorting, etc., all words in the target list are
important. Third, our prompts ask the questions in a concise and direct manner, without an attempt to
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guide the LLM to give a Chain-of-Thought response. Finally, we emphasize that, while we have tested on
GPT-4 and several other models, the problems we observe might be reduced or eliminated in later models.

7 Conclusion

We have demonstrated that GPT-4 performance on simple tasks shows sensitivity to trivial modifications and
that this error can be enough to invalidate claims of capabilities. Despite the limited scope of our experiments,
we believe our findings point to a largely-ignored source of error that potentially affects evaluation of LLM
capabilities on all tasks. That is, on every task we’ve considered we’ve found that trivial modifications
introduce variance that invalidates the usual margin-of-error estimates. Our evidence doesn’t rule out the
possibility that the problem might be larger, or smaller, or negligible on some other tasks. However, deciding
that this source of error can be ignored for a given capability comes with a burden-of-proof, and is something
that should be demonstrated empirically, rather than just assumed.

We find that, even when modifications are trivial and make no difference to human performance on a task,
we cannot assume that the same is true of LLM performance. In the absence of evidence to the contrary,
measurements of LLM task-accuracy cannot be assumed to generalize beyond the precise conditions studied.

8 Broader impact statment

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none which we feel must be specifically highlighted here.

A Appendix

Here we revisit accuracy measurements for the counting task studied in Section 4.2 but using the GPT-3.5,
Mistral Instruct 7B Q4 and Llama 3 8B Q4 models. GPT-3.5 was accessed via the openai API. The Mistral
and Llama models were run locally using versions with quantized coefficients. Each cell in each table represents
500 trials.

The results for these models are show in Tables 7, 8 and 9. Each of these might be compared with Table 1.
As can be seen, the same pattern observed in Section 4.2 holds: the null hypothesis (that accuracy in the
various conditions do not differ significantly) is robustly rejected in a majority of cases.

rLen

Wording #1
Wts=[0.5,0.5]
mango/peach

Wording #1
Wts=[0.5,0.5]

airedale/
aspidistra

Wording #1
Wts=[0.7,0.3]
mango/peach

Wording #2
Wts=[0.5,0.5]
mango/peach

Comp. Cols(1,2)
(χ2, p)

Comp. Cols(1,3)
(χ2, p)

Comp. Cols(1,4)
(χ2, p)

10 78.2% 68.8% 51.6% 89.4% (10.86, 9.81e-04) (76.49, 2.22e-18) (22.28, 2.35e-06)
15 61.8% 35.4% 19.6% 55.6% (68.7, 1.15e-16) (182.72, 1.23e-41) (3.71, 5.40e-02)
20 17.8% 7.4% 6.8% 33.0% (23.62, 1.17e-06) (27.03, 2.00e-07) (29.69, 5.08e-08)
30 12.2% 5.0% 6.8% 13.8% (15.58, 7.89e-05) (7.86, 5.05e-03) (0.43, 5.10e-01)
40 7.8% 2.2% 2.4% 8.8% (15.35, 8.94e-05) (13.97, 1.86e-04) (0.21, 6.47e-01)

Table 7: GPT-3.5 Percent correct for counting the occurrences of a length-rLen list with two items chosen
uniformly-at-random. Performance decays rapidly with list length. On the right-hand side of the table we
present χ2 tests comparing the results of the first condition with each of the others. This test evaluates the
null hypothesis that the answers in the various conditions are drawn from the same distribution. Boldface
entries are cases where p < 0.05 and we reject the null hypothesis. The null hypothesis is robustly rejected
for almost all lengths and conditions.
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rLen

Wording #1
Wts=[0.5,0.5]
mango/peach
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Wts=[0.5,0.5]
mango/peach

Wording #1
Wts=[0.5,0.5]
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Wts=[0.7,0.3]
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for almost all lengths and conditions.
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