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Abstract

We present the problem of algorithmic recourse for the setting of binary allocation
problems. In this setting, the optimal allocation does not depend only on the
prediction model and the individual’s features, but also on the current available
resources, decision maker’s objective and other individuals currently applying for
the resource. Specifically, we focus on 0−1 knapsack problems and in particular
the use case of lending. We first provide a method for generating counterfactual
explanations and then address the problem of recourse invalidation due to
changes in allocation variables. Finally, we empirically compare our method
with perturbation-robust recourse and show that our method can provide higher
validity at a lower cost.

1 Introduction

Automated decision-making systems are currently employed in many high-risk applications (Xiang,
2020; Swist and Gulson, 2022). As these applications have a great impact on people’s lives
and future trajectories, it is gravely important to provide individuals with explanations regarding
such decisions and algorithmic recourse—actions that allow the individual to obtain the desired
outcome. A widely used approach is counterfactual explanations (CE), which provides to an
individual a feature vector close to their own that would have obtained the desired outcome.
As such, CE and recourse are of the same format: the description of individual’s features that
would yield the desired outcome. While CEs interpret this as an explanation of what the current
individual is lacking, for recourse the action recommendation is to obtain the described features.
The CE and recourse literature is mainly focused on binary classification settings. In contrast,
we explore the notions of CE and recourse for allocation problems. In allocation problems, a
decision maker (DM) is allocating limited resources among a population in order to maximise
some objective or utility. Applications such as college admissions and loan granting, which are
usually considered as classification problems (Lux et al., 2016; Goyal and Kaur, 2016), are in
fact dependant on resource constraints (and consequentially the whole population) and are thus
better phrased as allocation problems. As the decision is determined according to the available
resources, current population (or applicant pool) and the DM’s utility function, it is insufficient
to provide CEs with respect to a prediction model. Instead, we define CE with respect to the
entire decision-making process, i.e., the allocation problem and its variables (See Section 4).
A recent survey about algorithmic recourse (Karimi et al., 2021) mentions that recourse should
be extended to matching problems and allocation problems. Yet, to the best of our knowledge,
the problem of robust algorithmic recourse for allocation problems has not been addressed in
the literature so far. The literature closest to this problem is from the field of scheduling and
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routing problems, where several contributions deal with explainability by answering “why-not”
and “what-if” questions (Lerouge et al., 2023; Ludwig et al., 2018; Eifler et al., 2022; Čyras
et al., 2019). Yet, most works address the end-user of the explanation as the scheduler (or
employer), and do not consider the individual’s point of view (employee who was assigned to
tasks). One line of work considers the perspective of the individual and generates CE using
inverse optimization (Korikov and Beck, 2021). However, they do not address the problem of
algorithmic recourse and possible changes to the problem variables and constraints.
All three allocation problem variables – resources, population and utility – may change over time.
For the lending use case, we can consider a bank making a decision every time step based on a
batch of loan applications. In this case, possible changes of variables could include: 1) Resources:
The bank may have a different budget in the next time step, which would make it easier or harder
to be granted a loan. 2) Applicants: We do not expect to see the exact same population applying
again for a loan. 3) Utility: According to the current market, a bank may change their utility
function to be more or less risk averse. As the goal of acting upon a given recourse is to yield
the desired outcome in the future, it is crucial that the recourse remains valid over time. That is,
the individual receives the desired outcome at a later time step following the implementation
of the recommended recourse. Following the above lending example, a recourse that is based
on the current resources, applicants and utility may not be valid at the next time-step. To this
end, we model changes in allocation variables by sampling them from a known distribution and
propose a distribution-aware method for robust recourse (Section 5).
In this paper, we focus on binary allocation problems with monotonic separable utilities (Section 2).
For these problems, we provide a pipeline for generating CE under a black-box prediction model
and a 0− 1 optimal knapsack allocation policy. We assume to have a CE-generator for classifiers
and encapsulate this part in the pipeline. Our contributions: 1) We propose allocation problems
as a novel setting for considering CE and algorithmic recourse. 2) In this setting, we show
through an example that CEs for allocations can be more reliable for static allocations compared
to CEs for the associated classification task (Section 3). 3) For algorithmic recourse in repeated
allocations, we empirically show that a distribution-aware robust recourse could reduce the cost
in some cases while still provide high chances of achieving the desired outcome.

2 Binary Allocation Problems

A binary allocation problem is a triple ⟨r, X, U⟩ where r represents the available quantity of the
resource (such as budget), X is the given population of size n with xi ∈ Rl being the feature
vector of individual i which includes wi, the resource amount requested by applicant i, and
U is the utility function that the DM is trying to maximise. An allocation policy π outputs a
valid allocation or assignment, represented by a binary vector Y = {0, 1}n, where yi = 1 means
that individual i is assigned with wi of the resource, and yi = 0 means that they are assigned
with none of the resource. A valid allocation is an allocation that satisfies

∑
i yiwi ≤ r. In the

following sections, we consider the CE, valid recourse and robust recourse to be with respect to
the preferred assignment ŷi = 1.

Separable Utility and Prediction Model. In this paper, we focus on settings in which the
DM’s utility for allocation Y is separable over the population, meaning that it can be decomposed
into a sum of individual utilities vi for each person i to which a resource is allocated, i.e.,
U(Y ) =

∑
i:yi=1 vi. The individual utility v is the output of an individual utility function

u : Rl → R which takes the individual’s feature vector as input, i.e. u(xi) = vi. Moreover, we
restrict the function u to be of a specific form – a composition of two functions u = Sθ ◦M .
The function M : Rl → [0, 1] is a prediction model, which maps a feature vector to a single
value. This can for example, represent the success probability of repaying a loan. The function
Sθ : [0, 1]→ R is a monotonically increasing function parameterised by θ. The parameter θ could
for example represent the current interest rate. The individual utility can be interpreted as the
predicted gain if we allocate the requested resource to individual i.
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Table 1: Motivating example

Applicant M(xi) u(xi) Credit (wi)
1 0.8 0.8 4
2 0.7 0.625 3
3 0.6 0.5 2
4 0.5 0.425 1

3 Use Case: Lending

The use case of lending is often seen as an example of a high-risk application of automated decision
making systems (Kop, 2021). In this problem, individuals apply for a loan by providing information
such as requested credit, purpose of the loan, current salary and demographic information. Based
on these features, the prediction model employed by the DM (in this case, the bank or lending
institute) predicts the individual’s probability of repaying the loan. Previous papers consider this
as a classification problem, and the allocation policy to be simply setting a constant threshold
over these probabilities. We formulate this problem as an allocation problem and describe our
concrete modelling choices in the following. This formalism is particularly relevant for student
loans in the US, where the Federal Student Aid Programs operate under a limited budget and all
applications for the next academic year are submitted up to a set deadline (Web, [n.d.]).1

Utility Function. Following the student loan use-case, we assume that the DM’s gain from
each successful applicant is twofold: 1) the DM has a (monetary) profit — a constant fraction
G1 ∈ [0, 1] out of the requested credit,2 and 2) G2 ∈ R a value that represents the social value
of granting a loan, e.g., by enabling an educational opportunity to an individual who could not
have afforded this otherwise, and allowing them to increase future financial prospects. In case
the individual was not able to repay the loan, the DM loses a fraction C ∈ [0, 1] of the loan.
For simplicity, we assume that C is constant and has the same value for all applicants. Thus,
the expected utility when granting a loan to individual i is u(xi) = M(xi)(wiG1 + G2)− (1−
M(xi))Cwi.

Allocation Policy. As the DM is trying to maximise utility under budget constraints, where
each applicant has individual utility and desired credit, we can translate this problem to the
well known 0− 1 knapsack problem (Assi and Haraty, 2018). Here, the weight capacity of the
knapsack is the budget r, we have n items (individuals), each item i has value vi = u(xi) and
a weight wi. Items with negative utility can be removed since including them cannot increase
the allocation utility. Considering weights and values to be non-negative, the problem is given
by max

∑n
i=1 viyi s.t.

∑n
i=1 wiyi ≤ r, i.e., filling the "knapsack" with the most value while

respecting its capacity. This constrained optimisation problem is NP-complete, yet solvable in
pseudo-polynomial time using dynamic programming.3 We therefore assume that the DM’s
allocation policy for this application is determined by the optimal solution.

Motivating Example Consider the applicants described in Table 1 under the utility function
u(xi) = M(xi)(wi(G1 + C) + G2)−Cwi using the parameters G1 = 0.05, G2 = 1, C = 0.2 and
budget of 6 (thousand dollars). The optimal allocation is Y = (0, 1, 1, 1), meaning approving
the loan for applicants 2, 3 and 4 with utility of 1.55 for the DM. Note that applicant 1 was
not selected, even though their probability of repaying the loan is higher than that of the other
applicants, as well as their individual utility for the DM. Thus, it would be difficult to explain
the decision when only considering the prediction model, without the allocation mechanism,
remaining population and budget constraint.

1Other examples of such allocation problems, with a limited budget and applicants requesting different
quantities in batches, include funding agencies and grant applications.

2In practice, the utility function also depends on the time for which the loan is requested, but we
have ignored this component for simplicity.

3Note that we assume discretisation: the credit has a minimal step size (e.g. 100$).
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4 Counterfactual Explanations

We start off by giving a formal definition of counterfactual explanations that is based on the
definition of counterfactual explanation for classification problems (Guidotti, 2022). We then
describe how to generate these in our specific setting.
Definition 1 (Counterfactual Explanation for Binary Allocations). Given an allocation policy
π that outputs the decision Y for population X, utility function U and given resource r, a
counterfactual explanation for individual xi ∈ X consists of an alternative vector of features x′ for
which the allocation Y ′ = π(r, X∪{x′}\{xi}, U) is different from Y such that y′

i = 1. We define
such a CE to be minimal if its cost d(xi, x′) is minimal under some metric d : Rl × Rl → R.4

Assume we are given a prediction model M , an allocation policy π, an individual utility function
u = Sθ ◦M such that Sθ is a monotonically increasing function, a population X, resources r and
a metric d in the feature space. We propose to generate a CE according to the pipeline below.

1) Computing the minimal utility-CE: Given an allocation policy, we first produce a minimal
utility-CE v′, i.e., the minimal utility that would have led to a preferred assignment. Here we
explain how to produce this for the optimal 0 − 1 knapsack policy. Intuitively, the individual
utility should increase by the difference between the current maximal allocation utility and the
maximal allocation utility under the constraint of including individual i. We denote the optimal
allocation for applicant set [n] and available resources r as Y ∗([n], r). We can show that the
minimal utility-CE for individual i is v′

i = U(Y ∗([n], r)) − U(Y ∗([n] \ i, r − wi)), where U
is the utility of the allocation. A proof for this result and additional notes can be found in
Appendix A. We can thus use a dynamic programming algorithm 5 for 0− 1 knapsack, see e.g.,
Martello and Toth (1990), to compute the minimal utility-CE. In practice, to avoid ties we set
v′

i = U(Y ∗([n], r))− U(Y ∗([n] \ i, r − wi)) + ϵ for some ϵ > 0.

2) Computing a prediction-CE: The minimal utility-CE is translated to a prediction-CE m′,
i.e., the minimal success probability that would have led to a preferred assignment. Because Sθ

is monotonically increasing, it is also invertible. Then the prediction-CE is m′ = S−1
θ (v′).

3) Computing a minimal (feature-based) CE: Using the prediction-CE, a minimal CE x′ is
generated by solving the following optimisation problem: x′ = arg minz d(z, x) s.t. M(z) ≥ m′.
For example, we can construct the function hm′ with hm′(x) = 1 if M(x) ≥ m′ and hm′(x) = 0
otherwise. Then, one of the many existing explanation models for classifiers (Pawelczyk et al.,
2021; Guidotti, 2022) can be used on hm′ with metric d, which provides x′, a minimal CE with
respect to the feature-based cost function d.
At the end of this process, x′ is minimal with respect to d and M(x′) ≥ m′. Hence, x′ is a
minimal CE for the allocation problem under the following assumptions: 1) The utility function
is monotonic in the prediction scores, and 2) the allocation policy is monotonic in the utility,
i.e., increasing the utility for an individual assigned with the resource could never change the
allocation such that the individual is not assigned with the resource. The 0− 1 optimal knapsack
policy satisfies these monotonicity assumptions.
To mitigate the effect of specific classification explanation choices in step 3), we can define the
CE in terms of success probability or prediction score (prediction-CE). In the remainder of the
paper, we assume the cost function is defined with respect to the predicted probability of success:
dM (M(xi), m′) = |M(xi)−m′|.
Using our proposed method, we can see that for the example in table 1 the optimal allocation
under the constraint of including applicant 1 is Y ′ = (1, 0, 1, 0) with utility of 1.3. Hence,
applicant 1 should increase their individual utility to be at least 1.55−0.5 = 1.05 which translates
to increasing their probability of repaying the loan from 0.8 to 0.925.

4Note that here, there could be j ̸= i for which y′
j ≠ yj , meaning that the CE might change the

assignment for other individuals and not only the individual requesting the CE.
5Simply put, a table V of size n × r is being filled. Each cell V [i, j] holds the value of the maximal

utility that can be obtained given items 1, . . . , i and maximal weight j.
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5 Robust Recourse for Binary Allocations

We fist define (robust) recourse for binary allocations under variables distributions. We then
describe how to generate approximate robust recourse and evaluate this in our experiments.
Definition 2 (Valid Recourse for Repeated Allocations). At time t1, given the allocation variables
rt1 , Xt1 , Ut1 , a recourse for individual xi ∈ Xt1 consists of an alternative vector of features
x′. This recourse is valid at time t2 > t1 if given the new set of allocation variables for t2:
rt2 , Xt2 ∈ Rn−1,l, Ut2 , the allocation policy outputs the allocation Y t2 = π(rt2 , Xt2 ∪ {x′}, Ut2)
such that yt2

i = 1. A recourse is said to be minimal if its cost d(xi, x′) is minimal under some
metric d : Rl × Rl → R.

We assume that at each time step the available resources, applicants and utility function are
sampled i.i.d. according to a joint distribution D. Using this distribution, we follow the approach
of Pawelczyk et al. (2022) and allow the user to control the robustness-cost trade-off by providing
a validity probability ρ ∈ [0, 1].
Definition 3 (ρ-Robust Recourse for Allocations). Let x′ be a recourse generated at time t1
for individual i given an allocation problem. Given distribution D over resources, applicants
and utility function, x′ is ρ-robust if the expected validity at time t2 > t1 is at least ρ, i.e.,
ED[I{x′ valid for ⟨Rt2 , Xt2 , Ut2⟩}] ≥ ρ, where I[·] is an indicator function. Among all ρ-robust
recourses, a recourse with minimal cost d(xi, x′) is denoted as a minimal ρ-robust recourse.

Interestingly, under our definition, a robust recourse may be of cost 0, depending on the distribution
and the initial allocation variables. For example, the recourse might have been generated under
an extremely unlikely combination of variables, so that the individual was simply "unlucky".

5.1 Approximated Robust Recourse

We approximate the ρ-robust recourse for binary allocations, a monotonic separable utility and a
monotonic policy using a Monte-Carlo approximation (see Algorithm 1 in Appendix C). Given
a prediction model M , an allocation policy π, distribution D over resource r, applicants X
and utility function parameter θ, for each allocation problem ⟨r, X, u = Sθ ◦M⟩ such that
(r, X, θ) ∼ D, we can generate a minimal prediction-CE for individual i as shown in Section 4.
Given the minimal prediction-CE for n sampled problems, we can find mρ, the prediction-CE
that is valid for at least ρ of the sampled allocation problems. Such mρ exists as the allocation
is monotonic with respect to the prediction score: for every allocation problem which requires
individual i to have a prediction score of m in order to receive the resource, any larger prediction
score q > m would also guarantee the resource being allocated to i. As we can estimate the
distribution’s quantiles using Monte Carlo approximation (Dong and Nakayama, 2018), this mρ

approximates the validity over the entire distribution.6 This ρ-robust prediction-CE can then
be translated to features, as was proposed in step 3 in Section 4. The produced feature vector
x′ is then the minimiser of minz d(z, xi) s.t. 1

n

∑n
j=1 I[M(z) > m′

j ] ≥ ρ. Here, m′
j is the

j-th prediction-CE. Note that it is sufficient to sort the thresholds, as is done in Algorithm 1 in
Appendix C. Hence, x′ is the feature vector with the lowest cost w.r.t. d which provides individual
i with the resource in approximately ρ of the allocations. We note that using the intermediate
step of prediction-CE, we reduce the problem to a one-dimensional monotonic recourse. Without
this step, for each sampled allocation problem we would generate a different feature-based CE x′.
We do not assume the prediction model M to be monotonic in the features, i.e., a specific value
of feature j in x′ does not guarantee that all feature vectors with a higher value for feature j
would have a greater or equal prediction score.

5.2 Experiments

We empirically evaluate the performance of our robust recourse method in terms of cost and
validity. We focus on the case of a changing budget, assuming that the utility of the DM is fixed
and the recourse is generated with respect to the current population. In our experiments we
produce prediction-CE or prediction-recourse, and measure the recourse cost with respect to the

6The accuracy of the approximation depends on the sample size which we consider to be fixed.
However, our method could be extended to include a parameter to control the required sample size.
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Table 2: Empirical results for robust recourse under resource distribution

Method Cost Validity
Static CE 0.42 0.823
0.7-robust 0.407 0.84
0.9-robust 0.51 0.917
0.7-noisy 0.571 0.888
0.9-noisy 0.649 0.977
Optimistic 1 1

difference in prediction score. As there is no other method for generating a CE for allocation
problems, we cannot compare our results with previous methods. Thus, the goal of the empirical
results is twofold: 1) Evaluate the cost and validity of the robust-recourse compared to the static
CE. 2) Compare our approach of distribution-aware robust-recourse to the previously proposed
approach of perturbation-based robust recourse (Virgolin and Fracaros, 2022; Dominguez-Olmedo
et al., 2022; Nguyen et al., 2022, 2023; Bui et al., 2022; Upadhyay et al., 2021). See Appendix B
for additional related work.

Dataset We use the German credit dataset (Dua and Graff, 2017) which is one of the most
common benchmarks used for CE and algorithmic recourse (e.g. Dutta et al. (2022); Black et al.
(2021); Bui et al. (2022); Guo et al. (2022)). The data is split to train and test sets with the
ratio of 70− 30. Then, a random forest classifier with 200 trees is trained on the train set. We
construct 20 allocation problems by uniformly sampling 20 individuals from the test set, set the
utility function parameters to G1 = 0.06, G2 = 4, C = 0.5, and sample a budget from the budget
distribution. See additional preprocessing details in Appendix D.1.

Method and Baselines We test our ρ-robust recourse method, described in Algorithm 1 in
Appendix C, with ρ ∈ {0.7, 0.9}, with 200 budget samples, which we denote as the validation set.
We compare our results to the static prediction-CE for allocations. In addition, we implement
another recourse method we denote as p-noisy. This method is designed to be of a similar nature
to perturbation robustness. See additional details in Appendix D.2. In our experiments we use
p ∈ {0.7, 0.9}. Moreover, we define an optimistic baseline which is a ρ-robust recourse generated
based on the test budget samples. For this baseline we set ρ = 1, so that the generated recourse
is valid for the entire test set.

Evaluation For each allocation problem, we find the optimal allocation via the optimal 0− 1
knapsack and provide recourse for all individuals not included in the allocation. The results are
described in Table 2. The recourse validity of each individual is measured as the average validity
over a test set of 200 samples from the budget distribution. The validity of the method is then
the average validity across all individuals. The recourse cost for each method is the average
prediction score difference. We normalise all costs by the cost of the optimistic baseline.

Results From table 2, we can observe that as expected, higher ρ or noise values achieve higher
validity at a higher cost. We can also observe that the 0.7-robust method Pareto-dominates the
static-CE, as it achieves higher validity at a lower cost. This shows that the budgets of some of
the allocation problems did not represent the test set and produced a higher-cost prediction-CE.
Similarly, the 0.9-robust method Pareto-dominates the 0.7-noisy method. We can also observe
that the ρ-robust methods are never Pareto-dominated by any other. This shows the advantage
of our distribution-based robust-method. See Appendix D.3 for additional discussion.

6 Discussion

In this paper, we present the first attempt to define robust recourse for binary allocation problems.
Under this setting, we provide a use case of lending for which methods for generating CE
given a classifier would fail to explain the decision. For repeated allocations, we provide a
distribution-aware method for generating robust recourse, as opposed to other methods which
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consider perturbations of the current problem variables. This approach allows for a recourse
which might provide the user with high enough validity at the price of a lower cost.
In this paper we only make the first step in solving this new setting of recourse for allocation
problems. We addressed allocation problems with binary decisions and separable utilities. More
complex problems within the scope of allocation problems could be addressed in the future. For
example, the probabilities of people repaying their loan might not be independent. They might,
e.g., be influenced by sectoral or global crises. Thus, a decision maker might assign a higher
utility to allocations with a sectoral balance, which cannot be represented by separable utilities.
Additional limitations and possible extensions can be found in Appendix E.
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A Proof of Minimal Utility-CE for 0-1 Knapsack

In Section 4 we claim the following:
Lemma 1. The minimal utility-CE v′

i for individual i under an optimal 0− 1 knapsack policy is
v′

i = U(Y ∗([n], r))− U(Y ∗([n] \ i, r − wi))
.

Proof. We prove this claim by contradiction. Suppose not, and let us assume that there exists
v̄i < v′

i such that for v̄i, individual i is included in the optimal set. We assume that wi ≤ r
(otherwise individual i could never be included in the allocation). As the order of the individuals
does not change the optimal allocation, let us assume w.l.o.g. that individual i is the last
individual inserted into table V (i = n). Thus, when filling the cell V [n, r] we choose whether to
include individual n or not: V [n, r] = max(V [n− 1, W ], V [n− 1, r −w[n]] + v̄n). By assuming
that the individual is included, we get that

V [n− 1, r] ≤ V [n− 1, r − wn] + v̄n

⇔ U(Y ∗([n], r)) ≤ U(Y ∗([n− 1], r − wn)) + v̄n

⇔ U(Y ∗([n], r))− U(Y ∗([n− 1], r − wn)) ≤ v̄n

⇔ U(Y ∗([n], r))− U(Y ∗([n] \ i, r − wi)) ≤ v̄n

⇔ v′
n ≤ v̄n

Which contradicts our assumption of v̄i < v′
i. Note that U(Y ∗([n], r)) = V [n − 1, r] as the

individual was not originally included in the allocation. In practice, we add ϵ > 0 to the utility-CE
in order to avoid ties.

9



Notes:

1. Another approach for generating CE for the 0 − 1 knapsack problem was previously
proposed (Korikov and Beck, 2021). Yet, our approach allows efficient calculation of
multiple CE for different budgets by filling the table V (both with and without individual
i) for a maximal budget rmax, which then provides all solutions for all r ∈ [rmax].

2. In some cases, the required utility-CE would entail a prediction-CE that is grater than
1, which is impossible. Thus, in those cases, the applicant would learn that given
the current allocation variables, there is nothing they could have changed in order to
receive the requested loan. Nevertheless, we only consider here the option to change
user features (excluding the requested credit), assuming the requested credit cannot be
changed.

B Additional Related Work

Recourse Invalidation The problem of algorithmic recourse invalidation (or invalidation of
counterfactual explanations) and the need for robustness has already been recognised in recent
years (Mishra et al., 2021). The majority of papers consider invalidation due to model retraining
with different training data, usually following a distribution shift (Nguyen et al., 2022, 2023;
Guo et al., 2022; Rawal et al., 2020; König et al., 2021; Bui et al., 2022; Black et al., 2021;
Upadhyay et al., 2021; Dutta et al., 2022). We propose that even with the same data distribution,
the differences in sampled populations from one allocation to another may lead to recourse
invalidation. Moreover, we also address possible invalidation due to change of resources or utility
function. The latter was identified as an open problem in a recent survey of causal machine
learning (Kaddour et al., 2022). Other studied causes of invalidation are change of prediction
model (Pawelczyk et al., 2020) and feature perturbation, which could be due to inaccurate
implementation of the recourse (Dominguez-Olmedo et al., 2022; Pawelczyk et al., 2022; Virgolin
and Fracaros, 2022) or privacy perturbation (Mochaourab et al., 2021). We do not address these
kinds of invalidation and assume that the recourse is implemented in full.

Robust Recourse Many works try to improve recourse robustness by considering the worst-case
adversarial perturbation (e.g. of the data distribution) within a set of plausible changes, usually
measured by distance up to a specific value (Virgolin and Fracaros, 2022; Dominguez-Olmedo
et al., 2022; Nguyen et al., 2022, 2023; Bui et al., 2022; Upadhyay et al., 2021). While these
methods indeed improve the robustness of the recourse, they also present a trade-off between
robustness and cost (distance of the counterfactual from the original feature vector) (Rawal
et al., 2020; Pawelczyk et al., 2020; Upadhyay et al., 2021). For deep networks, even if no
explicit trade-off exists, the robust recourse is still presented as more costly (Black et al., 2021).
Nonetheless, these methods do not take into account the probability of such worst cases or
question whether the current variables should be used as a point of reference for increasing
robustness. We present a robust recourse under the variables’ distribution, not the worst-case with
respect to current variables, which might result in a lower cost for the user. When considering
the distribution, we can also provide the user with more control over the robustness-cost trade-off.
This was proposed in a recent paper (Pawelczyk et al., 2022) assuming a specific noise distribution
over recourse implementation. A similar method was also suggested for generating counterfactual
explanations under uncertainty of the causal relations in the data (Karimi et al., 2020). We
facilitate the same kind of control for allocation problems.

Other approaches Ferrario and Loi (2022) suggest a different approach for handling recourse
invalidation. They propose a method for retraining the prediction model such that counterfactual
explanations generated in the past would still hold.
A similar problem to recourse robustness is the uncertainty of counterfactual examples with
respect to the data distribution (Delaney et al., 2021; Schut et al., 2021; Ali et al., 2021). We do
not address this problem, and assume that the black-box explanation model provides a reasonable
counterfactual explanation with respect to the data distribution7.

7We note that a problem which might be considered as related is the of use counterfactuals to explain
classification uncertainty (Ley et al., 2022). This is a different objective and in our work we do not
account for prediction uncertainty.
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C Algorithm

Algorithm 1 Approximated ρ-Robust Recourse
Require: sample size n > 0, prediction model M , feature-based explanation function E, allo-

cation problem ⟨r, X, u⟩, allocation policy π, n samples from distribution D over resources,
applicants and utility parameters {(rj , Xj , θj)}j∈[n], individual i, desired validation level
ρ ∈ [0, 1].
for j from 1 to n do

Get sampled variables (rj , Xj , θj) ∼ D
Get utility-CE v′

j with respect to APj = ⟨rj , Xj , uj = Sθj
◦M⟩ and policy π

Get prediction-CE m′
j = S−1

θj
(v′

j)
end for
Sort all prediction-CE: sorted← sort([m′

j ]nj=1)
Get ρ-robust prediction-CE mρ ← sorted[⌈ρn⌉]
return Feature-based CE x′ = E(M, i, mρ)

D Additional Experimental Details

D.1 Dataset and Preprocessing

We scale numeric features to [0, 1] and encode categorical features as 1-hot vectors. In addition,
the requested credit is divided by 100. The random forest classifier achieves accuracy of 0.78
on the test set. We sample 50 batches of 20 applicants and consider the sum of given credit
as the current budget. We then fit a normal distribution to it, and consider this as the budget
distribution.

D.2 Noisy Robust Recourse

According to this method, given an allocation problem with a specific budget r, and an individual
i, we generate a validation set by sampling 200 values from a truncated normal distribution
νj ∼ N(0, σ2)[a,b], j ∈ [200]. Then, we generate the minimal prediction-CE for all budgets
{r + νj}j∈[200]. The p-noisy robust recourse is the maximal among them. The parameter p

controls the range [a, b] such that p of the values lie according to distribution N(0, σ2) in the range
[a, b]. We set σ to be the standard deviation of the underlying variable (budget) distribution.

D.3 Result Discussion

When considering a single individual, by increasing the validity we also increase the cost of the
recourse. This is due to our monotonicity assumption for the utility function and the allocation
policy. However, when considering the average over the population and the test set, we can see
it is possible for our method to achieve higher validity at a lower cost. This could be explained by
the fact that the validation set is more likely to represent the test set. When the original variable
is more permissive, allowing resource allocation to more individuals, our method can provide a
recourse that would be valid for more restricting samples of the distribution. Thus increasing the
average validity and the average cost. When the original variable hinders resource allocation,
our method would be able to find "unlucky" individuals that do not require a costly recourse (or
recourse at all) to be allocated with the resource for many variable values. Thus, the average
cost would be reduced and the validity would remain high.
Another observation we can make from the experimental results, is the difference between the
validity on the test set and the requested validity. This gap can be explained by the fact that the
validity is estimated based on the validation set and the final validity is computed based on the
test set. Since the two sets are not identical, the recourse for which the estimated validity was ρ
(the requested validity) may provide lower or higher validity on the test set. In addition, it is
possible that the minimal recourse for the requested validity level already provides a higher validity.
For example, let us assume a user is requesting 0.5 validity and the validation set produces the
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following minimal CE: (0.01, 0.1, 0.2, 0.2, 0.2, 0.25). If we wish to provide 0.5 validity, we must
have a recourse of 0.2, but that recourse already provides us with a higher validity of 0.83. This
could explain the fact that all methods provide test-set validity that is higher than the requested
validity.

E Limitations and Additional Future Work

Our proposed method assumes full knowledge of the utility function structure and the allocation
policy. These are reasonable assumptions when considering that the DM is the one providing
the recourse. Moreover, we make no assumptions regarding the prediction model and address
it as a black-box. In addition, we assume a specific structure of the individual utility function:
composition of a parametric function Sθ and a prediction model M , where S is monotonically
increasing. As illustrated in Section 3 this structure is reasonable in some applications. However,
it fails to capture other interesting applications in which the utility is affected directly by features.
For example, for allocating research grants, the utility of a project may depend on the specific
topic or planned collaborations, not only on the success probability of the proposed project. Our
pipeline for generating CE and robust recourse does not provide a solution for these cases and an
extension is left for future work.
We assume the allocation variables are sampled i.i.d. from a static distribution. As previously
mentioned, when the true variable distribution is unknown, we can maintain a belief over the
distribution and sample from the posterior to compute the robust recourse. Furthermore, this
process can be adapted to consider changes in the underlying distribution over time. We also
assumed a constant population size, but that could be easily changed.
Our methods and definitions assume that the user’s requested resource remains unchanged. Yet, it
could be reasonable for an individual to change their requested resource, for example in exchange
for increasing their probability of receiving it. A CE which includes change of preferences is left
for future work.
An unexplored interesting facet of recourse for allocation problems is the fact that an implemen-
tation of a recourse by one individual might impact the allocation outcome for other individuals
in the current population. This calls for fairness considerations. Minimal (negative) impact on
other individuals could be defined as a new desired property of CE and recourse, similarly to other
properties in the literature (e.g. diversity, efficiency and stability). Furthermore, recourse models
could includes possible feedback as a result of recourse implementation. We do not address this
direction in the paper and leave it for future work.
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