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Abstract

We prove rich algebraic structures of the solution space for 2-layer neural net-1

works with quadratic activation and L2 loss, trained on reasoning tasks in Abelian2

group (e.g., modular addition). Such a rich structure enables us to analytically3

construct the global optimal solutions to the task from partial solutions that only4

satisfy part of the loss, despite its high nonlinearity. Specifically, we show that5

the union-ed solution space of different number of hidden nodes of the 2-layer6

network is endowed with a semi-ring algebraic structure, and the loss function to7

be optimized consists of monomial potentials which are ring homomorphism, al-8

lowing composition of partial solutions by ring addition and multiplication. While9

the constructed global optimizers only require small number of hidden nodes, we10

show that overparameterization asymptotically decouples the training dynamics11

and thus is beneficial. We further show that training dynamics move towards sim-12

pler solutions under regularization, by proving that global optimizers algebraically13

connected by ring multiplication are also topologically connected. Experiments14

verify our theoretical findings.15

1 Introduction16

Large Language Models (LLMs) have shown impressive results in various disciplines [18, 1, 22, 4, 5,17

11], while they also make surprising mistakes in basic reasoning tasks [17, 2]. Therefore, it remains18

an open problem whether it can truly do reasoning tasks. On one hand, existing works demonstrate19

that the models can learn efficient algorithm (e.g., dynamic programming [27] for language structure20

modeling, gradient descent [24] for linear regressions, etc) and good representations [12]. Some21

reports emergent behaviors [25] when scaling up with data and model size. On the other hand, many22

works also show that LLMs cannot self-correct [9], and cannot generalize very well beyond the23

training set for simple tasks [6, 28, 19], let alone complicated planning [13, 26].24

To understand how the model performs reasoning and further improve its reasoning power, people25

have been studying simple arithmetic reasoning problems in depth. Modular addition [16, 29], i.e.,26

predicting a + b mod d given a and b, is a popular one due to its simple and intuitive structure27

yet surprising behaviors in learning dynamics (e.g., grokking [20]) and learned representations (e.g.,28

Fourier bases [30]). Most works focus on various metrics to measure the behaviors and extracting29

interpretable circuits from trained models [16, 23, 10]. Analytic solutions can be constructed and/or30

reverse-engineered [8, 29, 16] but it is not clear how to generalize the results.31

In this work, we systematically analyze 2-layer neural networks with quadratic activation and L2 loss32

on predicting group multiplication in Abelian group G, which is an extension of modular addition.33

We find that global optimizers can be constructed algebraically from small partial solutions that are34

optimal only for parts of the loss. We achieve this by showing that (1) for the 2-layer network, there35

exists a semi-ring structure over the set of solutions across different order (i.e., number of hidden36

nodes or network width), with specifically defined addition and multiplication (Def. 3), and (2) the37
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Figure 1: Overview of proposed theoretical framework CaGO. (1) The family of 1-hidden layer neural net-
works, Z , form a semi-ring algebraic structure ring addition and multiplication (Theorem 2). Z =

⋃
q≥0 Zq

where Zq is a collection of all weights (solutions) with order-q (i.e., q hidden nodes). (2) For Abelian reasoning
task, the MSE loss ℓ(z) is a function of monomial potentials (MPs) rk1k2k(z) and rpmk′k(z) (Theorem 1),
which are ring homomorphism (Theorem 3). (3) Thanks to the property of ring homomorphism, global op-
timizers to MSE loss ℓ(z) with quadratic activation can be constructed algebraically from partial solutions
that only satisfy a subset of constraints (Sec. A.1) using ring addition and multiplication, instead of running
gradient descent. Examples include Fourier solution zF6 (Corollary 2) and perfect memorization solution zM

(Corollary 4). In Sec. B, we analyze the role played of MPs in gradient dynamics, showing that the dynamics
favors low-order global optimizers (Theorem 5) under weight decay regularization, and the dynamics of MPs
become decoupled with infinite width (Theorem 6).

L2 loss is a function of monomial potentials (MPs), which are ring homomorphisms (Theorem 1)38

that allow compositions of partial solutions into global ones using ring addition and multiplication.39

As a result, our theoretical framework, named CaGO (i.e., Crafting Global Optimizers), successfully40

constructs two distinct types of Fourier-based solutions of per-frequency order 4 (= 2 × 2) and41

order 6 (= 2 × 3) that is global optimal, which are verified in the experiments, and global optimal42

solutions of order d2 that correspond to perfect memorization. To our best knowledge, we are the43

first to discover such algebraic structures inside network training, and apply it to analyze solutions44

to reasoning tasks such as modular additions in details.45

In addition, we also analyze the training dynamics of MPs. We show that the dynamics favors46

low-order solutions and perfect memorization is unfavorable in the dynamics, and the MP dynamics47

becomes decoupled when the network width goes to infinite, demystifying why overparameteriza-48

tion improves the performance.49

Most Related work. Existing theoretical work [15] also shows group-theoretical results on alge-50

braic tasks related to finite groups, also for networks with one-hidden layers and quadratic activa-51

tions. However, they use the max-margin framework with a special regularization (L2,3 norm) rather52

than MSE loss, do not characterize and leverage algebraic structures to construct solutions, and do53

not analyze the training dynamics.54

2 Decoupling L2 Loss in reasoning tasks of Abelian group55

Problem Setup. We consider the following 2-layer networks with one layer of hidden nodes, trained56

with (projected) ℓ2 loss on prediction of group multiplication in Abelian group G with |G| = d:57

ℓ =
∑
i

∥P⊥
1 (o[i]− l[i])∥2, o[i] = V σ(W⊤f [i]) =

∑
j

vjσ(w
⊤
j f [i]) (1)

where σ(x) = x2 is the quadratic activation function, P⊥
1 = I − 1

d11
⊤ is the zero-mean projection58

matrix, W = [w1, . . . ,wq] ∈ Rd×q , V = [v1, . . . ,vq]
⊤ ∈ Rd×q are learnable parameters. f [i] ∈59

Rd are input embeddings. i is the sample index.60
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Input and Output. The input contains the two group elements g1[i] and g2[i], encoded as f [i] =61

UG1eg1[i]+UG2eg2[i], where UG1 and UG2 are column orthogonal embedding matrices. The output62

is the result g1[i]g2[i] ∈ G, encoded as the label l[i] = g1[i]g2[i] to be predicted.63

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the scaled Fourier bases (or more formally, character function of the64

finite Abelian group G, see Appendix D). Then weight vector wj and vj can be written as:65

wj = UG1

∑
k ̸=0

zakjϕk + UG2

∑
k ̸=0

zbkjϕk, vj =
∑
k ̸=0

zckjϕ̄k (2)

where z := {zpkj} are the complex coefficients (p ∈ {a, b, c}, 0 ≤ k < d and j runs through66

hidden nodes). Leveraging the property of quadratic activation functions, we can write down the67

loss function analytically (see Appendix D):68

Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP69

network with quadratic activation can be written as ℓ =
∑

k ̸=0 ℓk + (d− 1)/d, where70

ℓk = −4rkkk + 4d
∑
k1k2

|rk1k2k|2 + d
∣∣∣ ∑
p∈{a,b}

∑
k′

rp0k′k

∣∣∣2 + d
∑
m̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rpmk′k

∣∣∣2 (3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpmk′k :=
∑

j zpk′jzp,m−k′,jzckj .71

Note that for cyclic group G, the frequency k is a mod-d integer. For general Abelian group which72

can be decomposed into direct sum of cyclic groups according to Fundamental Theorem of Finite73

Abelian Groups, k is a multidimensional frequency index. For convenience, we define ϕ−k := ϕk74

as the conjugate representation of ϕk. The reason why ϕ0 ≡ 1 is excluded is that the constant bias75

term has been filtered out by the top-down gradient from the loss function. Since weights are all76

real, the Hermitian constraints holds, i.e., zckj = ϕ∗
kvj = ϕ∗

−kvj = zc,−k,j (and similar for zakj77

and zbkj). Therefore, zp,−k,j = z̄pkj , r−k,−k,−k = r̄kkk and ℓ is real and can be minimized.78

Lemma 1 (A Sufficient Conditions of Global optimizers of Eqn. 3). If a solution z to Eqn. 3 satisfies79

the following, then it is a global optimizer with zero loss ℓ(z) = 0.80

rkkk(z) = I(k ̸= 0)/2d, rk1k2k(z) = 0, rpmk′k(z) = 0 (4)

Lemma 1 provides a sufficient condition since there may exist other solutions that achieve global81

optimum (e.g.,
∑

k′ rpmk′k = 0). It turns out Eqn. 4 already leads to very rich algebraic structures82

and we will not discuss more broader cases in this work.83

3 Beyond Fixed Parameter Space: The Semi-ring structure84

We define the solution space Zq = {z} to include all the weight matrices with q hidden nodes (Z085

means an empty network). Let Z =
⋃

q≥0 Zq be the solution space of all different number of hidden86

nodes. For clarity, we use bold symbol z to represent the collection of all its components {zpkj},87

and z1 := {z(1)pkj} and z2 := {z(2)pkj} represent two solutions.88

Directly finding the global optimizers to Eqn. 4 can be a bit complicated and highly non-intuitive.89

Interestingly, the Z naturally has an algebraic (semi-ring) structure, and global optimizers can be90

composited from non-optimal ones that only satisfies a subset of terms of the loss! Both the Fourier91

bases solution and the perfect memorization solution can be represented this way.92

Definition 1 (Order of z). The order ord(z) of z ∈ Z is its number of hidden nodes.93

Definition 2 (Identification of Z). In Z , two solutions of the same order that differ only by a per-94

mutation along hidden dimension j are considered identical.95

Note that for any two solutions z1, z2 ∈ Z , we can define their operations:96

Definition 3 (Addition and Multiplication in Z). Define z = z1 + z2 in which zpk· :=97

concat(z
(1)
pk·, z

(2)
pk·) and z = z1 ∗ z2, in which zpk· := z

(1)
pk· ⊗ z

(2)
pk·. The addition and multiplica-98

tion respect Hermitian and the identity element 1 is the 1-order solutions with {zpk0 = 1}.99

Note that the multiplication definition is one special case of Khatri–Rao product [14]. Although100

the Kronocker product and concatenation are not commutative, thanks to the identification (Def. 2),101

z1 + z2 = z2 + z1 and z1 ∗ z2 = z2 ∗ z1 and thus both operations are commutative. Then:102

3



0 2 4 6 8 10 12 14 16 18
j

0

2

4

6
k

|za|

0 2 4 6 8 10 12 14 16 18
j

0

2

4

6

k

|zb|

0 2 4 6 8 10 12 14 16 18
j

0

2

4

6

k

|zc|

0 2 4 6 8 10 12 14 16 18
j

0

2

4

6

k

|za|

0 2 4 6 8 10 12 14 16 18
j

0

2

4

6

k

|zb|

0 2 4 6 8 10 12 14 16 18
j

0

2

4

6

k

|zc|

Figure 2: Solutions obtained by the Adam optimizers on ℓ2 loss for modular addition task with |G| = d = 7
and q = 20 hidden nodes. Top: For each frequency ±k, there are exactly 6 hidden nodes represent-
ing such a frequency, consistent with Corollary 2. Bottom: Optimizing Eqn. 3 without the last term∑

m ̸=0

∑
p∈{a,b}

∣∣∣∑k′ rpmk′k

∣∣∣2 (equivalently removing the constraint R⊛). Now each frequency has ex-
actly 3 hidden nodes, which is also consistent with our analysis (Lemma 2).

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.103

In the following sections, the semi-ring structure of Z paves the way to construct explicitly the104

global optimal solutions for our ℓ2 objectives.105

Now let us study the structure of the loss function Eqn. 3 and how they are related to the semi-ring106

structure of Z . For this, we first define the concept of monomial potentials:107

Definition 4 (Monomial potential (MP)). Define the monomial potential (MP) r(z) :=108 ∑
j

∏
(p,k)∈idx(r) zpkj where idx(r) specifies the indices involved in the monomial terms.109

Following this definition, terms in the loss function (Theorem 1) are examples of MPs.110

Observation 1 (Specific MPs). rk1k2k(z) and rpmk′k(z) defined in Theorem 1 are MPs.111

So what is the relationship between MPs, which are parts of the loss function, and the semi-ring112

structure of Z? The following theorem tells that, MPs are ring homomorphism.113

Theorem 3. For any monomial potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and114

r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.115

Observation 2. The order function ord : Z 7→ N is also a ring homomorphism.116

Due to the property of ring homomorphism, we immediatenly know that there exists infinitely many117

global minimizers, via ring multiplication (Def. 3):118

Definition 5 (Unit). z is called a unit if rkkk(z) = 1 for all k ̸= 0.119

Corollary 1. If z is a global optimizer and y is a unit, then z ∗ y is also a global optimizer.120

More importantly, a global optimizer can be constructed from partial solutions that satisfy only some121

of the constraints. For example, if there exists z1 that satisfies constraint r1(z1) = 0 and z2 that122

satisfies constraint r2(z2) = 0, then their product z1 ∗ z2 satisfy both constraints. In particular, we123

want such seed solutions to be small in order, so that the order of the final solutions is not too large.124

4 Summary of the Appendix125

In Appendix A, we show concrete solutions that are constructed following the semi-ring structure,126

including a per-frequency order-6 solution zF6 (Corollary 2), a order-4 solution zF4 (Corollary 3)127

and the perfect memorization solution zM (Corollary 4). If we remove the last term in ℓ2 loss, then128

there will be order-3 solution (Lemma 2), as shown in Fig. 2.129

We also provide gradient dynamics analysis in Appendix B that shows that the inductive bias in130

gradient descent prefers simpler global optimizers (Theorem 5) and overparameterization decouples131

gradient dynamics for each MP, and thus makes the training easier (Theorem 6). We also provide132

experiments to verify the claim.133
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A Constructing global optimizers558

As mentioned in the main text, we find a mechanism to construct global optimizers from partial559

solutions that only make a subset of terms vanish in the loss function. This motivates us to find the560

“seed” solutions that satisfy individual constraints (MPs) in the loss, and then combine them. For561

this, we group MPs from the loss (Eqn. 3) into three types of constraints. Next, we discuss the partial562

solutions that satisfy a subset of them, which can be combined to obtain global optimizers.563

Definition 6 (Sets of Constraints). Four sets of constraints exist in MSE loss (Eqn. 3):564

• The main term constraints R+ := {z|rkkk(z) = 1/2d};565

• The cross term constraints Rc := {z|rk1k2k(z) = 0 except for k1 = k2 = k};566

• The norm constrains Rn := {z|rp0k′k(z) =
∑

j |zpk′j |2zckj = 0};567

• The circular convolution constraints R⊛ = {z|rpmk′k(z) = 0 form ̸= 0}.568

A.1 Global Optimizers leveraging Fourier Bases569

We first consider the case that the solution is only nonzero at frequency k0 but not others, i.e.,570

zpkj = 0 for k ̸= ±k0. Such solution corresponds to Fourier bases in the original domain.571

Lemma 2 (Solutions satisfying Rc). All order-1 or order-2 solutions satisfying Rc must have rkkk =572

0 for all k. With small L2 regularization, all order-3 solutions can be decomposed into z = z̃k0 ∗ y573

for certain frequency k0, where z̃k0
= {z̃pkj} has order 3 and corresponds to Fourier bases in the574

original domain:575

z̃pk0· = [1, ω3, ω
2
3 ]/

3
√
6d (5)

where ω3 := e−2πi/3 and y is a order-1 unit.576

Note that by simple calculation, z̃k0
∈ Rn but z̃k0

/∈ R⊛. Fortunately, leveraging the property of577

ring homomorphism, we can construct another solution z′
k0

∈ R⊛ of order-2, and they combined to578

form global optimizers.579

Corollary 2 (Order-6 global optimizers of Eqn. 3). The following “3×2” Fourier solutions satisfies580

the global optimality condition (Eqn. 4):581

zF6 =

(d−1)/2∑
k=1

z̃k ∗ z′
k ∗ yk (6)

where z′
k is order-2 (see Proof). As a result, ord(zF6) = 3 · 2 · 1 · (d− 1)/2 = 3(d− 1) and each582

frequency is affiliated with 6 hidden nodes (order-6).583

Fig. 2 shows a case with d = 7. In this case, each frequency, out of (d − 1)/2 = 3 total number of584

frequencies, is associated with 6 hidden nodes. If we remove the last term in the loss that corresponds585

to constraints R⊛, then an order-3 solution suffices.586

Interestingly, there also exists a lower-order solution, 2×2, which involves ω8 := e−πi/4, that meets587

Rc and R⊛ but not Rn:588

Corollary 3 (Order-4 “almost” global optimizers). The following order-2 solution satisfies Rc ex-589

cept for rk0,k0,−k0 = 0, R⊛ and rk0k0k0 = 1/
√
2d:590

zak0· = [1, ω̄2
8 ]/

√
2, zbk0· = [ω̄8, ω8]/

√
2, zck0· = [ω8, ω8]/

√
2d (7)

and the following order-2 solution satisfies rk0,k0,−k0
= 0 and rk0k0k0

= 1/
√
2d:591

zak0· = [1, ω8]/
√
2, zbk0· = [ω8, ω̄

2
8 ]/

√
2, zck0· = [ω̄8, ω8]/

√
2d (8)

Therefore, their product zF4, an “2× 2” order-4 solution satisfies both Rc and R⊛.592

Note that this solution is perceived in the experiments, in particular for larger scale problems, show-593

ing a strong preference of gradient descent towards lower order solutions.594
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Figure 3: The convergence path of za·· when training modular addition using Adam optimizer (learning rate
0.05, weight decay 0.005). The final solution contains 2 order-6 (zF6) and 1 order-4 (zF4) solutions. For each
hidden node j, once a dominant frequency emerges, others fade away.
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Figure 4: Dynamics of monomial potentials (MPs) over the training process for modular addition with d = 23
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A.2 Global Optimizers using Pure Memorization595

We can also construct perfect memorization solutions as follows.596

Corollary 4 (Perfect Memorization). Construct the following two d-order weights za and zb.597

Specifically, for 0 ≤ j < d and k ̸= 0:598

z
(a)
akj = ωkj

d /
√
d, z

(a)
bkj = 1/

√
d, z

(a)
ckj = ω−kj

d /
√
2d (9)

z
(b)
bkj = 1/

√
d, z

(b)
akj = ωkj

d /
√
d, z

(b)
ckj = ω−kj

d /
√
2d (10)

where ωd := e−2πi/d is the d-th root of unity. Here za ∈ Rc(k1 ̸= k)∩Rn ∩R⊛(p = b orm ̸= k),599

zb ∈ Rc(k2 ̸= k) ∩Rn ∩R⊛(p = a orm ̸= k). Then zM = za ∗ zb satisfies the global optimality600

condition (Eqn. 4) and is the perfect memorization solution with ord(zM ) = d2:601

z
(M)
akj1j2

= ωkj1/d, z
(M)
bkj1j2

= ωkj2/d, z
(M)
ckj1j2

= ω−k(j1+j2)/2d (11)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.602

To see why this corresponds to perfect memorization, simply apply an inverse Fourier transform for603

each hidden node (j1, j2), and the original weights are (zero-mean) delta function located at j1, j2604

and j1 + j2 accordingly.605
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Figure 5: Solution distribution over different weight decay regularization for q = 512, trained with 10k epochs
with Adams with learning rate 0.01 on modular addition (i.e., predicting a+b mod d) with d ∈ {23, 71, 127}.
The two red dashed lines correspond to order-4/6 solutions. The histogram is accumulated over 5 random seeds.
While heavily over-parameterized (in particular for small d), final solution order remains constant, consistent
with Corollary 1. Heavy weight decay shifts the distribution to the left (i.e., low-order solutions) until model
collapsing, consistent with Theorem 5.

B Gradient dynamics606

Now we have characterized the structures of global optimizers. One natural question arises: why607

the optimization procedure does not converge to the perfect memorization solution zM , but to the608

Fourier solutions zF6 and zF4? The answer is given by gradient dynamics.609

Let r = [rk1k2k, rpmk′k] ∈ C4d3

be a vector of all MPs, and J := ∂r
∂z

∂z
∂W be the Jacobian matrix610

of the mapping r = r(z(W)) in which W is the collection of original weights. Note that when we611

take derivatives with respect to r and apply chain rules, we treat r and its complex conjugate (e.g.,612

rkkk and r−k,−k,−k = r̄kkk) as independent variables.613

Since we run the gradient descent on W , will such (indirect) optimization leads to a descent of r614

towards the desired targets (Eqn. 4)? This is confirmed by the following theorem:615

Theorem 4 (Dynamics of MPs). The dynamics of MPs satisfies ṙ = −JJ∗∇rℓ, which has positive616

inner product with the negative gradient direction −∇rℓ.617

Corollary 1 shows that by ring multiplication, we could create infinitely many global optima from a618

base one. The following theorem answers which solution gradient dynamics picks.619

Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of620

order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′621

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.622

This shows that gradient dynamics with weight decay will pick a lower-order (i.e., simpler) solution.623

Fig. 5 verifies it with experiments.624

The following theorem shows that the dynamics also enjoys asymptotic freedom:625

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with626

only the first two terms: ℓ̃k := rkkk + d
∑

k1k2
|rk1k2k|2, if the weights are i.i.d Gaussian and627

network width q → +∞, then JJ∗ converge to diagonal and the dynamics of MPs is decoupled.628

Intuitively, this means that a large enough network width (q → +∞) makes the dynamics much629

easier to analyze, while the final solution may not require that large M . As analyzed in Corollary 2,630

for each frequency, to achieve global optimality, only 6 hidden nodes are needed.631

Ripple effects. While Theorem 6 only holds at initialization, the resulting decoupled MP dynamics,632

e.g., drkkk/dt = 1−2drkkk that leads to rkkk(t) = (1−e−t)/2d, already captures the rough shape633

of the curve (Fig. 4 top right). To capture its fine structures (e.g., ripples before stabilization), we can634

also model the dynamics of the diagonal element in JJ∗. Consider a symmetric 1D case on a fixed635

frequency k, where all diagonal rkkk = r0 − r (where r0 = 1/2d) and all off-diagonal rk1k2k = r,636
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then637

ṙ = −ṙkkk = κ(rkkk−r0) = −κr, κ̇ = α(r0−rkkk)−(1−α)rk1k2k−c0 = (2α−1)r−c0 (12)

where κ > 0 is the diagonal element of JJ∗ and α is a coefficient that characterizes the relative638

strength of two negative gradient −∇rkkk
ℓ = r0 − rkkk and −∇rk1k2k

ℓ = −rk1k2k, and c0 is the639

gradient terms caused by asymmetry and/or other frequencies. This yields a second-order ODE that640

has complex roots in the characteristic function when c0 > 0.641

C Conclusion and future work642

In this work, we propose CaGO (Crafting Global Optimizers), a theoretical framework that models643

the algebraic structure of global optimizers when training a 2-layer network on reasoning tasks of644

Abelian group with L2 loss. We find that the global optimizers can be algebraically composited (i.e.,645

“crafted”) by non-optimal partial solutions that only fit to parts of the loss, using ring operations646

defined in the solution space of the 2-layer neural networks across different network widths. Our647

constructed solutions (i.e., zF4 and zF6, see Corollary 3 and Corollary 2) are verified in modular648

addition tasks. Under CaGO, we also analyze the training dynamics, show the benefit of over-649

parameterization, and the inductive bias towards simpler solutions due to topological connectivity650

between algebraically linked high-order (i.e., involving more hidden nodes) and low-order global651

optimizers.652

Develop novel training algorithms. Our analysis suggests that instead of applying (stochastic)653

gradient descent to a greatly overparameterized network, we may be able to decompose the loss,654

construct low-order solutions and combine them to achieve the final solutions on the fly using al-655

gebraic operations. Such an approach may be more efficient (it takes a long time to get model656

training converged), and more scalable than a holistic end2end approach using gradient descent, due657

to its factorizable nature. Also our framework works for any loss function that is a combination of658

monomial potentials (L2 loss is just one example), which opens a new dimension for loss function659

design.660

Putting different widths into the same framework. Many existing theoretical works often as-661

sume that the network has a fixed width. However, our study demonstrates that nice mathematical662

structures can emerge when we consider networks of different widths together, which can be an663

interesting direction to consider in the future work.664

Grokking. When learning modular addition, there exists a phase transition from memorization665

to generalization during training, known as grokking [23, 20], long after the training performance666

becomes (almost) perfect. While our work focuses more on what representation is learned on a667

uniform training data distribution, by applying it to different data distribution, grokking can be668

studied.669

Extension to other activation functions. One key assumption of our approach is that the activation670

function is quadratic. For other activation functions (e.g., SiLU) with σ(0) = 0, we can do a Taylor671

expansion around the origin and the same framework can still apply (with higher rank MPs).672

16



D Decoupling L2 Loss (Proof)673

We use the character function ϕ : G → C, which maps a group element g into a complex number.674

Lemma 3. For finite Abelian group, the character function ϕ has the following properties [7, 21]:675

• It is a 1-dimensional (irreducible) representation of the group G, i.e., |ϕ(g)| = 1 for g ∈ G676

and for any g1, g2 ∈ G, ϕ(g1g2) = ϕ(g1)ϕ(g2).677

• There exists d character functions {ϕk} that satisfy the orthonormal condition678
1
d

∑
g∈G ϕk(g)ϕk′(g) = I(k = k′). Here ϕ is the complex conjugate of ϕ and is also679

a character function.680

• The set of character functions {ϕk} forms a character group Ĝ under pairwise multiplica-681

tion: ϕk1+k2
= ϕk1

◦ ϕk2
.682

Note that the frequency k goes from 0 to d − 1, where ϕ0 ≡ 1 is the trivial representation (i.e., all683

g ∈ G maps to 1). According to the Fundamental Theorem of Finite Abelian Groups, each finite684

Abelian group can be decomposed into a direct sum of cyclic groups, and the character function685

of each cyclic group is exactly (scaled) Fourier bases. Therefore, in Abelian group, k is a multi-686

dimensional frequency index. [3] shows that Ĝ ∼= G (Theorem 3.13) so each character function687

ϕ ∈ Ĝ can also be indexed by g itself. Right now we keep the index k.688

For convenience, we define ϕ−k := ϕk as the conjugate representation of ϕk.689

Let ϕk = [ϕk(g)]g∈G ∈ Cd be the vector that contains the value of the character function ϕk.690

Then {ϕk} form an orthogonal base in Cd and we can represent the weight vector wj and vj as the691

following:692

wj = UG1

∑
k ̸=0

zakjϕk + UG2

∑
k ̸=0

zbkjϕk, vj =
∑
k ̸=0

zckjϕ̄k (13)

where z := {zpkj} are the complex coefficients (p ∈ {a, b, c}, 0 ≤ k < d and j runs through hidden693

nodes). Then it is clear that w⊤
j f [i] =

∑
k ̸=0 hakjϕk(ι0(g[i])) +

∑
k ̸=0 hbkjϕk(x[i]).694

Theorem 1 (Analytic form of L2 loss with quadratic activation). The objective of 2-layer MLP695

network with quadratic activation can be written as ℓ =
∑

k ̸=0 ℓk + (d− 1)/d, where696

ℓk = −4rkkk + 4d
∑
k1k2

|rk1k2k|2 + d
∣∣∣ ∑
p∈{a,b}

∑
k′

rp0k′k

∣∣∣2 + d
∑
m̸=0

∑
p∈{a,b}

∣∣∣∑
k′

rpmk′k

∣∣∣2 (3)

Here rk1k2k :=
∑

j zak1jzbk2jzckj and rpmk′k :=
∑

j zpk′jzp,m−k′,jzckj .697

Proof. Note that the objective ℓ can be written down as698

ℓ = Eg,x

[
∥P⊥

1 (o(g, x)− egx)∥2
]

(14)

= Eg,x

[
o⊤P⊥

1 o− 2o⊤P⊥
1 egx + e⊤gxP

⊥
1 egx

]
(15)

For E
[
o⊤P⊥

1 egx
]
, since699

e⊤gxP
⊥
1 o =

∑
j

e⊤gxP
⊥
1 vjσ(w

⊤
j f(g, x)) (16)

=
∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(gx)

(∑
k

akjϕk(ι0(g)) + bkjϕk(x) + e⊤g w
⊥
j

)2

(17)

Note that by our previous analysis, there exists y1 := ι0(g) so that gy = x1y. Let x2 := x. For700

notation brevity, let zakj := akj , zbkj := bkj and zckj := ckj ,, then we have:701

e⊤gxP
⊥
1 o =

∑
j

∑
k′ ̸=0

ck′j ϕ̄k′(x1x2)

(∑
k

∑
p

zpkjϕk(xp) + e⊤x1
w⊥

j

)2

(18)
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Therefore, we have:702

Eg,x

[
e⊤gxP

⊥
1 o
]
=

∑
k1,k2,k′ ̸=0,p1,p2,j

ck′jzp1k1jzp2k2jE
[
ϕ̄k′(x1)ϕ̄k′(x2)ϕk1(xp1)ϕk2(xp2)

]
(19)

Note that due to the fact that Eg∈ι−1
0 (x1)

[
e⊤g w

⊥
j

]
= 0 and Eg∈ι−1

0 (x1)

[
ege

⊤
g

]
is only a function of703

x1 and becomes 0 if multiplied with
∑

k′ ̸=0 ck′j ϕ̄k′(x1x2) and taking expectation w.r.t x2, in the704

final expression, all terms involving w⊥
j vanish.705

Since Ex

[
ϕk(x)ϕ̄k′(x)

]
= I(k = k′), there are only a few cases that the summand is nonzero:706

• p1 = 1, p2 = 2, k′ = k1 = k2 ̸= 0.707

• p1 = 2, p2 = 1, k′ = k1 = k2 ̸= 0.708

In both cases, the summation reduces to
∑

k ̸=0,j ckjz1kjz2kj =
∑

k ̸=0,j ckjakjbkj . Let rk1k2k′ :=709 ∑
j ak1jbk2jck′j , then we have710

E
[
o⊤P⊥

1 egy
]
= 2

∑
k ̸=0,j

akjbkjckj = 2
∑
k ̸=0

xkkk (20)

For E
[
o⊤P⊥

1 o
]
, if w⊥

j = 0, then we have:711

o⊤P⊥
1 o =

∑
j,j′

v⊤
j P

⊥
1 vj′σ(w

⊤
j f(g, y))σ(w

⊤
j′f(g, y)) (21)

here712

v⊤
j P

⊥
1 vj′ =

∑
k′ ̸=0

ck′jϕ̄k′

⊤∑
k′′ ̸=0

c̄k′′j′ϕk′′

 = d
∑
k′ ̸=0

ck′j c̄k′j′ (22)

due to the fact that ϕ̄⊤
k ϕk′ =

∑
y ϕ̄k(y)ϕk′(y) = dI(k = k′).713

Then the key part is to compute the following terms:714

Ey1,y2 [zp1k1j1zp2k2j1zp3k3j2zp4k4j2ck′j1 c̄k′j2ϕk1(yp1)ϕk2(yp2)ϕk3(yp3)ϕk4(yp3)] (23)

summing over {p1, p2, p3, p4, k1, k2, k3, k4, k′ ̸= 0, j1, j2}. Note that since each p ∈ {a, b}, there715

are 24 = 16 choices of (p1, p2, p3, p4). For notation brevity, we use (1, 3) to represent the subset of716

p that takes the value of a (e.g., (1, 3) means that p1 = p3 = a and p2 = p4 = b). It is clear that for717

odd assignments such as (1, 2, 3), since zp0j = 0, the summation is zero. Then, we only discuss the718

even cases as follows:719

Case 1: (1, 3), (2, 4), (1, 4), (2, 3). The 4 cases are identical so we only need to analyze one. We720

take (1, 3) as an example. For (1, 3), p1 = p3 = a, p2 = p4 = b and the only nonzero terms is when721

k1 + k3 = 0 mod d, k2 + k4 = 0 mod d, since Ey1
[ϕk1

(y1)ϕk3
(y1)] = I(k1 + k3 = 0 mod d)722

(and similar in other cases). Then Eqn. 23 becomes:723 ∑
k1,k2,k′ ̸=0

∑
j1j2

zak1j1zbk2j1za,−k1,j2zb,−k2,j2ck′j1 c̄k′j2 (24)

=
∑

k1,k2,k′ ̸=0

∑
j1

zak1j1zbk2j1ck′j1

∑
j2

zak1j2zbk2j2ck′j2 (25)

=
∑

k1,k2,k′ ̸=0

∑
j1

ak1j1bk2j1ck′j1

∑
j2

ak1j2bk2j2ck′j2 (26)

=
∑

k1,k2,k′ ̸=0

rk1k2k′rk1k2k′ =
∑

k1,k2,k′ ̸=0

|rk1k2k′ |2 (27)

Since there are 4 such cases, we have:724

ϵ1 = 4
∑
k′ ̸=0

∑
k1k2

|rk1k2k′ |2 (28)
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Case 2: (1, 2) and (3, 4). The two cases are identical. Take (1, 2) as an example. In this case,725

p1 = p2 = a and p3 = p4 = b. The only non-zero terms are when k1 + k2 = 0, k3 + k4 = 0. Then726

Eqn. 23 becomes:727 ∑
k1,k3,k′ ̸=0

∑
j1j2

zak1j1 z̄ak1j1zbk3j2 z̄bk3j2ck′j1 c̄k′j2 (29)

=
∑

k1,k3,k′ ̸=0

∑
j1

|ak1j1 |2ck′j1

∑
j2

|bk3j2 |2c̄k′j2 (30)

=
∑
k′ ̸=0

∑
j1

(∑
k1

|ak1j1 |2
)
ck′j1

∑
j2

(∑
k3

|bk3j2 |2
)
c̄k′j2

 (31)

Let r⊛amk′ :=
∑

j

(∑
k1+k2=m ak1jak2j

)
ck′j (similar for r⊛bmk′), then the above becomes728 ∑

k′ ̸=0 r
⊛
a0k′ r̄

⊛
b0k′ .729

Similarly, for (3, 4), the above equation becomes
∑

k′ ̸=0 r̄
⊛
a0k′r

⊛
b0k′ . Therefore, we have:730

ϵ2 =
∑
k′ ̸=0

r⊛a0k′ r̄
⊛
b0k′ + r̄⊛a0k′r

⊛
b0k′ (32)

Note that this term can be negative. However, we will see that when it is combined with the following731

terms, all terms will be non-negative.732

Case 3: (1, 2, 3, 4) and (). In this case we have:733 ∑
k′ ̸=0

∑
j1j2

∑
p∈{1,2}

∑
k1+k2+k3+k4=0

zpk1j1zpk2j1zpk3j2zpk4j2ck′j1 c̄k′j2 (33)

=
∑
k′ ̸=0

∑
j1j2

∑
p∈{1,2}

∑
k1+k2=k3+k4

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (34)

=
∑
k′ ̸=0

∑
m

∑
p∈{1,2}

∑
j1j2

∑
p∈{1,2}

∑
k1+k2=m

∑
k3+k4=m

zpk1j1zpk2j1 z̄pk3j2 z̄pk4j2ck′j1 c̄k′j2 (35)

=
∑
k′ ̸=0

∑
m

∑
p∈{1,2}

∑
j1

( ∑
k1+k2=m

zpk1j1zpk2j1

)
ck′j1

∑
j2

( ∑
k3+k4=m

zpk3j2zpk4j2

)
c̄k′j2


=

∑
k′ ̸=0

∑
m

|r⊛amk′ |2 + |r⊛bmk′ |2 (36)

In particular, when m = 0, we have
∑

k′ ̸=0 |r
⊛
a0k′ |2 + |r⊛b0k′ |2. Therefore, we have734

ϵ2 + ϵ3,m=0 =
∑
k′ ̸=0

|r⊛a0k′ + r⊛b0k′ |2 (37)

Finally, putting them together, we have:735

E
[
o⊤P⊥

1 o
]

= d(ϵ1 + ϵ2 + ϵ3) = d(ϵ1 + (ϵ2 + ϵ3,m=0) + ϵ3,m ̸=0) (38)

= d
∑
k′ ̸=0

4
∑
k1k2

|rk1k2k′ |2 + |r⊛a0k′ + r⊛b0k′ |2 +
∑
m̸=0

|r⊛amk′ |2 + |r⊛bmk′ |2


≥ 0 (39)

736

Lemma 1 (A Sufficient Conditions of Global optimizers of Eqn. 3). If a solution z to Eqn. 3 satisfies737

the following, then it is a global optimizer with zero loss ℓ(z) = 0.738

rkkk(z) = I(k ̸= 0)/2d, rk1k2k(z) = 0, rpmk′k(z) = 0 (4)
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Proof. Note that d−1
∑

k rkkk −
∑

k |rkkk|2 has a minimizer rkkk = 1/2d. Therefore, the best loss739

value any assignment of weights is able to achieve is the following:740

rk1k2k′ =
∑
j

ak1jbk2jck′j =
1

2d
I(k1 = k2 = k′) k′ ̸= 0 (40)

r⊛a0k′ + r⊛b0k′ :=
∑
j

(∑
k

|akj |2 + |bkj |2
)
ck′j = 0 k′ ̸= 0 (41)

r⊛amk′ :=
∑
j

( ∑
k1+k2=m

ak1jak2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (42)

r⊛bmk′ :=
∑
j

( ∑
k1+k2=m

bk1jbk2j

)
ck′j = 0 k′ ̸= 0,m ̸= 0 (43)

Therefore the sufficient conditions (Eqn. 4) will make all above come true.741

E Semi-ring structure of Z (Proof)742

Theorem 2 (Algebraic Structure of Z). ⟨Z,+, ∗⟩ is a commutative semi-ring.743

Proof. Straightforward from the definition of addition and multiplication (Def. 3) and identification744

of hidden nodes under permutation (Def. 2). Note that ring addition (i.e., concatenation) does not745

have inverse and thus it is a semi-ring.746

Theorem 3. For any monomial potential r : Z 7→ C, r(1) = 1, r(z1 + z2) = r(z1) + r(z2) and747

r(z1 ∗ z2) = r(z1)r(z2) and thus r is a ring homomorphism.748

Proof. Let r(z) =
∑

j

∏
(p,k)∈idx(r) zpkj . Since the ring identity 1 is order-1 and all zpkj = 1, it is749

obvious that r(1) = 1.750

Let supp(z1) be the subset of the hidden nodes that corresponds to z1 in the concatenated solution751

z1 + z2, similar for supp(z2). Note that752

r(z1 + z2) =
∑

j∈supp(z1)

∏
(p,k)∈idx(r)

z
(1)
pkj +

∑
j∈supp(z2)

∏
(p,k)∈idx(r)

z
(2)
pkj = r(z1) + r(z2) (44)

On the other hand, we have753

r(z1 ∗ z2) =
∑
j1j2

∏
(p,k)∈idx(r)

(
z
(1)
pkj1

z
(2)
pkj2

)
(45)

=
∑
j1j2

 ∏
(p,k)∈idx(r)

z
(1)
pkj1

 ∏
(p,k)∈idx(r)

z
(2)
pkj2

 (46)

=

∑
j1

∏
(p,k)∈idx(r)

z
(1)
pkj1

∑
j2

∏
(p,k)∈idx(r)

z
(1)
pkj2

 (47)

= r(z1)r(z2) (48)

754

Corollary 1. If z is a global optimizer and y is a unit, then z ∗ y is also a global optimizer.755

Proof. Straightforward by leveraging the property of ring homomorphism. E.g.,756

rkkk(z ∗ y) = rkkk(z)rkkk(y) = rkkk(z) (49)

and the proof is complete.757
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F Solution Construction (Proof)758

Lemma 2 (Solutions satisfying Rc). All order-1 or order-2 solutions satisfying Rc must have rkkk =759

0 for all k. With small L2 regularization, all order-3 solutions can be decomposed into z = z̃k0
∗ y760

for certain frequency k0, where z̃k0 = {z̃pkj} has order 3 and corresponds to Fourier bases in the761

original domain:762

z̃pk0· = [1, ω3, ω
2
3 ]/

3
√
6d (5)

where ω3 := e−2πi/3 and y is a order-1 unit.763

Proof. We first prove that z̃k0
satisfies Rc. To see this, we have764

rk1k2k =
∑
j

I(k1 = k2 = k = k0)ω
3j
3 +

∑
j

I(−k1 = k2 = k = k0)ω
j
3 (50)

+ . . .+
∑
j

I(−k1 = −k2 = −k = k0)ω̄
3j
3 (51)

= 3I(k1 = k2 = k = k0) + 3I(k1 = k2 = k = −k0) (52)

Note that all cross terms are gone since
∑

j ω
j
3 = 0. It is clear that rk1k2k ̸= 0 unless k1 = k2 = k765

so z0 satisfies Rc.766

To show the reverse direction, first notice that for any order-1 solution, for any k, in order to make767

rk,−k,k = zak0zb,−k,0zck0 = zak0z̄bk0zck0 = 0, either zak0, zbk0 or zck0 has to be zero, which768

means that rkkk = 0.769

For order-2, first of all if any zpk0 = 0 for any p ∈ {a, b, c}, then a constraint like rk,k,−k =770

zak0zbk0z̄ck0+zak1zbk1z̄ck1 = 0 yields zak1zbk1zck1 = 0 and thus rkkk = 0. If not, then for any two771

complex numbers zpk0 and zpk1, there always exist four real numbers θp ∈ (−π, π], θ′p ∈ (−π, π],772

mp0 > 0 and mp1 > 0 so that773

zpk0 = mp0e
iθ′

peiθp , zpk1 = mp1e
iθ′

pe−iθp (53)

Then a constraint like rk,k,−k = zak0zbk0z̄ck0+zak1zbk1z̄ck1 = 0 can be written as zak0zbk0z̄ck0 =774

−zak1zbk1z̄ck1, or equivalently:775

ma0mb0mc0e
i(θ′

a+θ′
b+θ′

c)ei(θa+θb−θc) = −ma1mb1mc1e
i(θ′

a+θ′
b+θ′

c)e−i(θa+θb−θc) (54)
ma0mb0mc0e

iθaeiθbe−iθc = −ma1mb1mc1e
−iθae−iθbeiθc (55)

Comparing their magnitude and phase, we have ma0mb0mc0 = ma1mb1mc1 and776

θa + θb − θc = ±π/2 mod 2π (56)

Similarly, we have:777

θa + θc − θb = ±π/2 mod 2π, θb + θc − θa = ±π/2 mod 2π (57)

Solving the three equations and we have 6 solutions:778

(θa, θb, θc) = (0, 0,±π/2) mod 2π (58)
(θa, θb, θc) = (0,±π/2, 0) mod 2π (59)
(θa, θb, θc) = (±π/2, 0, 0) mod 2π (60)

For all such solutions, we have rkkk = 0.779

For order-3 solutions, for each k, let aj := zakj , bj := zbkj and cj := zckj . Let a = [aj ] ∈ C3,780

b = [bj ] ∈ C3 and c = [cj ] ∈ C3. Then the conditions yield that781

(a ◦ b̄)⊤c = 0, (a ◦ b̄)⊤c̄ = 0, (ā ◦ b)⊤c = 0, (ā ◦ b)⊤c̄ = 0 (61)

which means that in R3 space, the following condition holds:782

span(ℜ(a ◦ b̄),ℑ(a ◦ b̄)) ⊥ span(ℜ(c),ℑ(c)) (62)

where ℜ(·) and ℑ(·) are real and imaginary parts of a complex vector. Since Eqn. 62 holds in R3,783

it must be the case that either ℜ(a ◦ b̄) is co-linear with ℑ(a ◦ b̄), or ℜ(c) is co-linear with ℑ(c).784
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If the former is true (i.e., there exists β so that ℜ(c) = βℑ(c)), then there exists a scalar θ so that785

ce−iθ = cR ∈ R3, since all angles in the components of c are the same. Then we have:786

rkkk = (a ◦ b)⊤c = (a ◦ b)⊤c̄e2iθ = 0 (63)
If the latter is true, then there exists θab̄ so that787

(a ◦ b̄)e−iθab̄ ∈ R3
+ (64)

Applying the same reasoning symmetrically, in order to find cases such that rkkk ̸= 0, a necessary788

condition is that789

(a ◦ b̄)e−iθab̄ ∈ R3
+, (b ◦ c̄)e−iθbc̄ ∈ R3

+, (c ◦ ā)e−iθcā ∈ R3
+ (65)

with the condition that θab̄ + θbc̄ + θcā = 0 mod 2π. To determine these angles, we look at a0, b0790

and c0 and their angles θa0, θb0, and θc0, it is clear that791

θab̄ = θa0 − θb0 mod 2π (66)
θbc̄ = θb0 − θc0 mod 2π (67)
θcā = θc0 − θa0 mod 2π (68)

Therefore, if we multiple a, b and c with e−iθa0 , e−iθb0 and e−iθc0 , and still note the resulting vectors792

to be a, b and c, then we have:793

a ◦ b̄ ∈ R3
+, b ◦ c̄ ∈ R3

+, c ◦ ā ∈ R3
+ (69)

Note that is equivalent to a decomposition of z into a multiplication of 1-order term and another794

3-order term. Then we have θa0 = θb0 = θc0 = θ0 = 0, θa1 = θb1 = θc1 = θ1, θa2 = θb2 = θc2 =795

θ2.796

Letting mj := |aj ||bj ||cj |, then the corresponding rkkk can be written as:797

rkkk =

2∑
j=0

mje
3iθj (70)

with the constraints that
∑2

j=0 mje
iθj = 0 imposed by RA. One interesting question is that what798

is the minimal norm representation that achieves the highest objective? For this we can solve the799

following optimization problem:800

max
{mj ,θj}

∑
j

mj(e
3iθj + e−3iθj )− ϵ

∑
j

m2
j s.t.

∑
j

mje
iθj = 0 (71)

which achieves the maximal when mj = 1/ϵ, θ1 = 2πj/3 and θ2 = 4πj/3 (or vise versa). Note801

that θj is fixed no matter how small the regularization ϵ is.802

To see that, let uj := eiθj . Then we have:803 ∑
j

mj(uj + ūj)
3 =

∑
j

mj [u
3
j + 3uj ūj(uj + ūj) + ū3

j ] =
∑
j

mj(u
3
j + ū3

j ) (72)

Therefore, we can instead solve the following optimization in R:804

max
{mj ,−2≤xj≤2,x0=2}

∑
j

mjx
3
j − ϵ

∑
j

m2
j s.t.

∑
j

mjxj = 0 (73)

whose solutions give a sufficient condition. Using Lagrangian multiplier, we have:805

∂L

∂xj
= mj(3x

2
j − λ) = 0,

∂L

∂mj
= x3

j − 2ϵmj − λxj = 0 (74)

which leads to λ = 3, mj = 1/ϵ and x1 = x2 = −1. Therefore, u1 = ω3 and u2 = ω2
3 for 3-th root806

of unity ω3 = e2π/3 (or vise versa).807

Constructing z′ ∈ R⊛. It is clear that rpmk0k0(z̃k0) ̸= 0 for m = ±2k0 so z̃k0 /∈ R⊛. We808

construct z′ of order-2 so that rpmk0k0(z
′
k0
) = 0:809

z′pk1 = I(k = k0)ξp + I(k = −k0)ξ̄p, z′pk2 = I(k = k0)ξ̄p + I(k = −k0)ξp (75)

with the constraint that ℜ(ξ2pξc) = 0 (i.e., pure imaginary) for p ∈ {a, b} so that rpmk0k0
(z′) =810

ξ2pξc + ξ2pξc = 0, but ℜ(ξaξbξc) > 0 so that rk0k0k0
= ξaξbξc + ξaξbξc > 0. This is possible, e.g.,811

by setting ξb = ξ̄a = e±πi/4 (i.e., ω8 or ω̄8), ξc = 1.812
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Corollary 4 (Perfect Memorization). Construct the following two d-order weights za and zb.813

Specifically, for 0 ≤ j < d and k ̸= 0:814

z
(a)
akj = ωkj

d /
√
d, z

(a)
bkj = 1/

√
d, z

(a)
ckj = ω−kj

d /
√
2d (9)

z
(b)
bkj = 1/

√
d, z

(b)
akj = ωkj

d /
√
d, z

(b)
ckj = ω−kj

d /
√
2d (10)

where ωd := e−2πi/d is the d-th root of unity. Here za ∈ Rc(k1 ̸= k)∩Rn ∩R⊛(p = b orm ̸= k),815

zb ∈ Rc(k2 ̸= k) ∩Rn ∩R⊛(p = a orm ̸= k). Then zM = za ∗ zb satisfies the global optimality816

condition (Eqn. 4) and is the perfect memorization solution with ord(zM ) = d2:817

z
(M)
akj1j2

= ωkj1/d, z
(M)
bkj1j2

= ωkj2/d, z
(M)
ckj1j2

= ω−k(j1+j2)/2d (11)

where each hidden node is indexed by j = (j1, j2), 0 ≤ j1, j2 < d, k ̸= 0.818

Proof. Simply plugging in the solution and check whether the equations specified the equations. For819

za, for k = 0 everything is zero; for k ̸= 0, we have:820

rk1k2k(za) =
∑
j

ak1jbk2jckj =
1

d
√
2d

∑
j

ωj(k1−k) =
1√
2d

I(k1 = k ̸= 0) (76)

ramk′k(za) =
∑
j

ak′jam−k′,jckj =
1

d
√
2d

∑
j

ωj(m−k) =
1√
2d

I(m = k ̸= 0) (77)

rbmk′k(za) =
∑
j

bk′jbm−k′,jckj =
1

d
√
2d

∑
j

ω−jk =
1√
2d

I(k = 0) = 0 (78)

(79)

Therefore, za ∈ Rc(k1 ̸= k) ∩ Rn ∩ R⊛(p = b orm ̸= k). Similar for zb. For zM := za ∗ zb,821

it satisfies all constraints (i.e., for any r, either za satisfies with r(za) = 0, or zb satisfies with822

r(zb) = 0) and we have:823

rkkk(za ∗ zb) = rkkk(za)rkkk(zb) = 1/2d (80)

So zM satisfies the sufficient conditions (Eqn. 4).824

G Gradient Dynamics (Proof)825

Theorem 4 (Dynamics of MPs). The dynamics of MPs satisfies ṙ = −JJ∗∇rℓ, which has positive826

inner product with the negative gradient direction −∇rℓ.827

Proof. By gradient descent of W , we have Ẇ = −∇Wℓ. By chain rule, we have:828

Ẇ = −∇Wℓ = −J⊤∇rℓ = −J∗∇rℓ (81)

Then the dynamics of r = r(z(W)), as driven by the dynamics of W , is given by829

ṙ = JẆ = −JJ∗∇rℓ (82)

To show positive inner product, we have:830

−∇rℓ
∗
ṙ = ∇rℓ

∗
JJ∗∇rℓ = ∥J∗∇rℓ∥22 ≥ 0 (83)

831

Theorem 5 (The Occam’s Razer: Preference of low-order solutions). If z = y ∗ z′ and both z (of832

order q) and z′ are global optimal solutions, then there exists a path of zero loss connecting z and z′833

in the space of Zq . As a result, lower-order solutions are preferred if trained with L2 regularization.834

Proof. Let ord(z) = q and ord(z′) = q′. Then q′|q. Since both z and z′ are global optimal. Since835

rkkk is ring homomorphism, we know that rkkk(z) = rkkk(z
′)rkkk(y) = 1/2d = rkkk(z

′) and836

thus rkkk(y) = 1 for all k ̸= 0.837
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Let the augmented identity e ∈ Zq be epmj = I(j = 0). Then rkkk(e) = 1 for all k ̸= 0.838

We want to construct a path in Zq , the space of order-q solutions as follows:839

z̃(t) = ỹ(t) ∗ z′, 0 ≤ t ≤ 1 (84)
in which ỹ(0) = e, ỹ(1) = y, and rkkk(ỹ(t)) = 1 for any t. To see why this is possible, pick a840

continuous family of trajectories ŷ(t;λ) with λ ∈ [0, 1] so that they satisfies841

ŷ(0;λ) = e, ŷ(1;λ) = y, rkkk(ŷ(t; 0)) ≤ 1, rkkk(ŷ(t; 1)) ≤ 1 (85)
which can always be achieved by scaling some trajectory with a factor that depends on λ. Then842

by intermediate theorem, there exists λ(t) so that rkkk(ŷ(t;λ(t))) = 1 for some k. Note that for843

different frequency k and k′, rkkk and rk′k′k′ involves disjoint components of z so we could find844

such a path for all k ̸= 0.845

Therefore, for any monomial potential r included in MSE loss (Eqn. 3), we have846

r(z̃(t)) = r(ỹ(t))r(z′) =

{
finite · 0 = 0 r ̸= rkkk

1 · 1/2d = 1/2d r = rkkk
(86)

and thus the entire trajectory z̃(t) = ỹ(t)∗z′ ∈ Zq connecting z and e∗z′, which is z′ in the space847

of Zq , is also globally optimal.848

To see why weight decay regularization leads to lower-order solution, we could simply compare the849

ℓ2 norm of z = y ∗ z′ and e ∗ z′. At each frequency k, this reduces to the following optimization850

problem:851

min
∑
j

|aj |2 + |bj |2 + |cj |2, s.t.
∑
j

ajbjcj = 1 (87)

where aj := yakj , bj := ybkj and cj := yckj . Since we know that arithmetic mean is no less than852

geometric mean:853

|aj |2 + |bj |2 + |cj |2

3
≥ 3

√
|ajbjcj |2 (88)

We have:854 ∑
j

|aj |2 + |bj |2 + |cj |2 ≥ 3
∑
j

|ajbjcj |2/3 ≥ 3 (89)

The last inequality holds because (1) if any |ajbjcj | ≥ 1, then it holds, (2) if all |ajbjcj | < 1, then855

since ax is a decreasing function for a < 1,
∑

j |ajbjcj |2/3 ≥
∑

j |ajbjcj | ≥ |
∑

j ajbjcj | = 1.856

The minimizer is reached when |aj | = |bj | = |cj |. Note that if ajbjcj has any complex phase or857

negative, then in order to satisfy
∑

j ajbjcj = 1, objective function needs to be larger. So without858

loss of generality, we could study aj = bj = cj = xj ≥ 0 and the optimization problem becomes859

min
∑
j

x2
j , s.t.

∑
j

x3
j = 1, xj ≥ 0 (90)

which has a minimizer at the corners (1, 0, . . .). This corresponds to aj = bj = cj = I(j = 0),860

which is the augmented identity e ∈ Zq .861

Theorem 6 (Infinite Width Limits at Initialization). Considering the modified loss of Eqn. 3 with862

only the first two terms: ℓ̃k := rkkk + d
∑

k1k2
|rk1k2k|2, if the weights are i.i.d Gaussian and863

network width q → +∞, then JJ∗ converge to diagonal and the dynamics of MPs is decoupled.864

Proof. For each component of H = JJ∗, after computation, they can be written as the following:865

hk1k2k3,k′
1k

′
2k

′
3
=
∑
pmj

∂rk1k2k3

∂zpmj

∂rk′
1k

′
2k

′
3

∂zpmj
(91)

= I(k1 = k′1)
∑
j

bk2j b̄k′
2j
ck3j c̄k′

3j
(92)

+ I(k2 = k′2)
∑
j

ak1j āk′
1j
ck3j c̄k′

3j
(93)

+ I(k3 = k′3)
∑
j

ak1j āk′
1j
bk2j b̄k′

2j
(94)

24



where akj := zakj , bkj := zbkj and ckj := zckj . Then for component (k1k2k3, k′1, k
′
2, k

′
3), if any866

kp ̸= k′p for some p ∈ {a, b, c}, then the corresponding zpkpj z̄pk′
pj

has random phase for hidden867

node j, and hk1k2k3,k′
1k

′
2k

′
3
→ 0 when q → +∞.868
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