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ABSTRACT

In Self-Supervised Learning (SSL), models are typically pretrained, fine-tuned,
and evaluated on the same domains. However, they tend to perform poorly when
evaluated on unseen domains, a challenge that Unsupervised Domain Generaliza-
tion (UDG) seeks to address. Current UDG methods rely on domain labels, which
are often challenging to collect, and domain-specific architectures that lack scala-
bility when confronted with numerous domains, making the current methodology
impractical and rigid. Inspired by contrastive-based UDG methods that mitigate
spurious correlations by restricting comparisons to examples from the same do-
main, we hypothesize that eliminating style variability within a batch could pro-
vide a more convenient and flexible way to reduce spurious correlations without
requiring domain labels. To verify this hypothesis, we introduce Batch Styles
Standardization (BSS), a relatively simple yet powerful Fourier-based method to
standardize the style of images in a batch specifically designed for integration with
SSL methods to tackle UDG. Combining BSS with existing SSL methods offers
serious advantages over prior UDG methods: (1) It eliminates the need for domain
labels or domain-specific network components to enhance domain-invariance in
SSL representations, and (2) offers flexibility as BSS can be seamlessly inte-
grated with diverse contrastive-based but also non-contrastive-based SSL meth-
ods. Experiments on several UDG datasets demonstrate that it significantly im-
proves downstream task performances on unseen domains, often outperforming
or rivaling UDG methods. Finally, this work clarifies the underlying mechanisms
contributing to BSS’s effectiveness in improving domain-invariance in SSL repre-
sentations and performances on unseen domains. Implementations of the extended
SSL methods and BSS are provided at this url.

1 INTRODUCTION

Motivations. In recent years, Self-Supervised Learning (SSL), has seen significant growth and suc-
cess (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2020; 2021; Assran et al., 2022; Bardes
et al., 2021; He et al., 2022). However, SSL generally assumes that pretraining, fine-tuning and
testing data come from the same domains, an assumption which does not hold true in practice and
thereby limits its real-life applications. The distribution shifts between pretraining/fine-tuning do-
mains (sources domains) and testing domains (targets domains) usually lead to poor generalization
on testing domains.

Unsupervised Domain Generalization (UDG) (Zhang et al., 2022), aims to tackle this issue by evalu-
ating how well fine-tuned SSL models generalize to unseen target domains. In UDG, models are first
pretrained on unlabeled data, fine-tuned on labeled data and finally evaluated on data from unseen
domains. This work focuses on the all-correlated UDG setting which is the most standard and stud-
ied one (Zhang et al., 2022; Harary et al., 2022; Yang et al., 2022b). In this setting, unlabeled and
labeled data come from the same source domains, testing data come from unseen target domains,
while all cover the same classes.

Current UDG methods suffer from the same drawbacks: (1) They require domain labels to rein-
force domain-invariance in SSL representations, while in practice these labels may be challenging
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to obtain or even unavailable and (2) they all rely on domain-specific architectures, such as domain-
specific negative queues or domain-specific decoders, that lack scalability when confronted to nu-
merous domains. These limitations highlight the need for more practical and flexible UDG methods.

Taking inspiration from contrastive-based UDG methods that reduce spurious correlations by re-
straining comparisons to examples from the same domain, we believe that removing style variability
within a batch through style standardization may provide a more practical and flexible way to miti-
gate spurious correlations and achieve domain-invariant SSL representations without requiring any
domain labels.

Contributions. To investigate the effectiveness of style standardization in mitigating spurious cor-
relations within SSL representations with the aim of proposing more convenient and flexible UDG
approaches, we introduce Batch Styles Standardization (BSS). BSS is a simple yet powerful Fourier-
based method for standardizing image styles within a batch purposefully designed for integration
with existing SSL methods to reinforce domain-invariance. Style standardization is performed by
transferring the style of a randomly selected image to all images in the batch.

Integrated with existing SSL methods, it confers significant advantages over prior UDG works: (1) it
reinforces domain-invariance without requiring any domain labels or domain-specific architecture,
and (2) it offers simplicity and flexibility, integrating easily with contrastive-based (SimCLR (Chen
et al., 2020a), SWaV (Caron et al., 2020)) but also non-contrastive-based SSL methods (MSN (Ass-
ran et al., 2022)).

Experiments conducted on UDG datasets indicate that BSS combined with the different SSL meth-
ods yields significant performance gains on unseen domains while outperforming or competing with
established UDG methods. Finally, extensive experiments have been conducted to clarify the under-
lying mechanisms driving BSS’s effectiveness in enhancing domain-invariance in SSL representa-
tions and performances on unseen domains.

2 RELATED WORKS

Domain Generalization. DG aims to learn a model from multiple source domains with distinct
distributions to generalize well to unseen target domains. Former DG methods have focused on
aligning source features distributions using a large panel of techniques (Ganin et al., 2016; Kang
et al., 2019; Li et al., 2018a;b; Peng et al., 2019; Scalbert et al., 2021; Zhao et al., 2020). Recently,
the trend has shifted towards improving cross-domain generalization by refining data augmentation
strategies. These strategies can be applied at either the image level (Scalbert et al., 2022; Xu et al.,
2021; Yang & Soatto, 2020; Zhou et al., 2020a;b) or the feature representation level (Kang et al.,
2022; Li et al., 2021; Zhou et al., 2021), and can be non-parametric (Xu et al., 2021; Zhou et al.,
2021), trained adversarially during the DG task (Hoffman et al., 2018; Kang et al., 2022; Zhou et al.,
2020a;b), or pretrained beforehand on source domains (Scalbert et al., 2022). Among these methods,
Fourier-based Augmentations (FA) (Xu et al., 2021; Yang & Soatto, 2020) stand out as a simple
and promising approach to instill domain-invariance into the representations and, thereby, enhance
generalization. In this work, the proposed BSS extends FA’s style transfer ability to standardize the
style of images within a batch so as to strengthen domain-invariance in SSL methods.

Self-Supervised Learning. SSL has gained a lot of attention for its ability to efficiently pretrain
models on abundant unlabeled data and subsequently fine-tune them for downstream tasks with
limited labeled data. Contrastive and non-contrastive-based methods have emerged as successful
approaches. The former focuses on making representations of similar examples (positives) closer
while pushing apart representations of dissimilar examples (negatives). Similar examples are usually
built by generating several augmented views of the same image. These methods operate either at
the instance-level (Chen et al., 2020a;c; Hu et al., 2021) or cluster-level (Caron et al., 2018; 2020).
Given their reliance on a large number of negatives, non-contrastive-based methods have attempted
to eliminate the use of negative examples but require additional tricks to avoid collapse (Grill et al.,
2020; Chen & He, 2021; Caron et al., 2021). In this work, harnessing FA and the proposed BSS,
we extend both contrastive-based (SimCLR, SWaV) and non-contrastive-based (MSN) methods to
strengthen domain-invariance and address UDG.

Unsupervised Domain Generalization. Contrastive-based UDG methods (DARLING (Zhang
et al., 2022), BrAD (Harary et al., 2022)) improve domain-invariance by ensuring that positive
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and negative examples share the same domain. This constraint mitigates spurious correlations
within SSL representations when repelling negative examples from positive ones. To respect this
constraint, DARLING exploits domain-specific adversarial negative queues while BrAD maintains
domain-specific negative queues containing past representations of a momentum encoder. Addi-
tionally, BrAD learns image-to-image mappings from the different domains to a shared space and
compares representations of raw and projected images. As an alternative, DiMAE (Yang et al.,
2022b) and CycleMAE (Yang et al., 2022a) rely on Masked Auto-Encoder (He et al., 2022) (MAE)
with domain-specific decoders to solve a cross-domain reconstruction task. However, these methods
rely on domain labels and complex domain-specific architectures, limiting scalability and adaptabil-
ity. Inspired by UDG contrastive methods, we propose removing style variability within a batch and
without domain labels to reduce spurious correlations in SSL methods resulting in simpler and more
flexible UDG approaches.

3 METHOD

3.1 PROBLEM FORMULATION

In the all-correlated UDG setting, an unlabeled dataset, a labeled dataset and a test dataset are
provided. Unlabeled and labeled training data are drawn from the same source domains DS while
testing data are drawn from unseen target domains DT . All data share the same class labels space
Y . The goal of UDG is to pretrain a model on the unlabeled data, fine-tune it on the labeled data and
achieve good generalization on the test dataset.

3.2 BATCH STYLES STANDARDIZATION

3.2.1 PRELIMINARIES ON FOURIER-BASED AUGMENTATIONS

Fourier-based Augmentations (Xu et al., 2021; Yang & Soatto, 2020) are motivated by a property
of the Fourier transform: phase components tend to retain semantic information while amplitude
components the style information such as intensity and textures. Therefore, to make the network
prioritize semantics over style, FA randomly alters the amplitudes of images during training.

More formally, given an image X ∈ RH×W , its Fourier transform F(X) along with the corre-
sponding amplitude A(X) and phase P(X) are computed as follows:

F(X)(u, v) =
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w=1

Xh,we
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H
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(1)
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√
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(3)

The amplitude A(X) is then altered by substituting its low-frequency components with those of a
randomly selected image A(X ′) resulting in the altered amplitude Â(X):

Â(X)(u, v) =

{
A(X ′)(u, v) if u ≤ r ∗H and v ≤ r ∗W,

A(X)(u, v) if u > r ∗H and v > r ∗W,
(4)

The strength of the augmentation is controlled by the hyperparameter r ∼ U(rmin, rmax) represent-
ing the ratio between the substituted amplitude area and the entire amplitude area, where rmin and
rmax stand for the minimum and maximum possible ratios. Finally, an augmented image X̂ with
the same content as the original image X and style as the randomly chosen image X ′ can be built
by applying the inverse Fourier transform F−1 onto the altered amplitude Â(X) and unmodified
phase P(X):

X̂ = F−1
(
Â(X)e−iP(X)

)
(5)
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3.2.2 EXTEND FOURIER-BASED AUGMENTATIONS FOR BATCH STYLES STANDARDIZATION

Drawing inspiration from contrastive-based UDG methods, we believe that removing style variabil-
ity within a batch might reduce spurious correlations in SSL methods without requiring domain
labels resulting in simpler and more flexible UDG approaches. Since FA possess a style transfer-
like ability, they can be extended to perform styles standardization/harmonization. Concretely, it can
be accomplished by transferring the style of a randomly chosen image within the batch to all other
images in that batch. Hence, the proposed method is referred to as Batch Styles Standardization.

The process of applying BSS is illustrated on Figure 1a. Specifically, given a batch of images and
their corresponding Fourier transforms, we manipulate the different amplitudes by substituting their
low-frequency components with those of a single randomly chosen image. Finally, after applying
the inverse Fourier transform to the different modified Fourier transforms, the style of the randomly
chosen image is transferred to all images, effectively standardizing/harmonizing the style. A pseudo-
code along with a PyTorch implementation of BSS are provided in Appendix A.

To highlight batch-level differences between standard FA and the proposed BSS, we display in
Figure 1b and Figure 1c, a N × V grid of augmented images generated by applying FA or BSS V
times on a batch of N images. For a specific view index (column index), it is clear that augmented
images produced by FA exhibit different styles whereas in the case of BSS, a unique style prevails. It
is important to notice that standardized images can undergo independent geometric augmentations,
but color augmentations must be batch-wise to preserve the unique style.

F

F

Phase P Amplitude A

F

F−1

F−1

F−1

Transfer

Transfer

r

(a) (b) (c)

Figure 1: (a) BSS: Fourier Transform F is applied on all batch images then low-frequency com-
ponents of the amplitudes A (determined by the areas ratio r) are replaced by those of a randomly
chosen image (the first one in this case). Finally, inverse Fourier transform F−1 is applied to the
altered Fourier transforms to build images with standardized styles. (b) Augmented images with
standard independent FA. (c) Augmented images with BSS.

As opposed to UDG methods exploiting domain labels to restrict comparisons to examples from the
same domain, standardizing the style of examples using a random style simulates as if they were
drawn from the same ”pseudo-domain”, thereby eliminating the need for domain labels. Moreover,
BSS’s seamless integration into existing SSL methods removes the need for UDG domain-specific
components, such as domain-specific negative queues (DARLING, BRaD) or domain-specific de-
coders (DiMAE). Collectively, these characteristics position BSS as a simpler and more versatile
solution to enhance domain-invariance within SSL methods and address UDG.

3.3 HOW TO INTEGRATE BATCH STYLES STANDARDIZATION INTO SSL METHODS?

Both contrastive and non-contrastive methods aim to distribute batch examples over the embedding
space. This distribution can be driven by explicit contrastive loss (SimCLR) or methods prevent-
ing representation collapse like the Sinkhorn-Knopp algorithm (SWaV, MSN), centering (DINO),
or variance regularization (VicReg). However, when dealing with diverse domains/styles within a
batch, distributing examples may unintentionally group them by domains/styles, resulting in spuri-
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ous correlations. To mitigate this, we propose applying BSS to examples undergoing this distribu-
tion. Removing style information through standardization should encourage the distribution to focus
more on example semantics. In the following sections, we extend three existing SSL methods (Sim-
CLR, SWaV and MSN) and detail where and how BSS should be integrated. For further technical
details about the regular SSL methods, readers may refer to Appendix B or the original papers.

SIMCLR aims to bring representations of several views of the same image closer (positives) while
repelling all other images representations (negatives). In standard SimCLR, each image in a batch
of N images is augmented V times resulting in V positive examples. However, this can result in
positive examples with domains/styles that differ from those of the negatives (see Figure 1b), risking
unintentional exploitation of this style/domain discrepancy to solve the contrastive task and causing
spurious correlations. To address this, we suggest independently applying BSS V times to the initial
batch, ensuring that positive and negative examples share the same styles (see Figure 1c).

SWAV computes representations of several views of the same image and clusters them using an
online algorithm. Given that representations should capture similar information, SWaV enforces
consistency between representations and cluster assignments produced from different views. To ob-
tain these cluster assignments, the Sinkhorn-Klopp (SK) algorithm (Cuturi, 2013) is performed on
the representations. Concretely, SK solves an optimal transport problem whose constraints are to
assign representations to the most similar centroids/prototypes while keeping a uniform assignment
distribution over centroids/prototypes. However, if several domains/styles are present within views
subject to SK, there is a risk of assigning and grouping the corresponding representations using do-
main/style information resulting in spurious correlations. To address this, we propose to standardize
the style of views subject to SK using BSS. In practice, SWaV employs a multi-crop strategy, gen-
erating 2 global views (large crops) and V local views (small crops) for each image. In this setting,
cluster assignments are computed only from the global views while representations are derived from
all views. Therefore, we suggest applying BSS only on the global views and augmenting the lo-
cal views using FA. As this results in two batches of global views, each with its own style, SK is
performed on each batch separately.

MSN aims to match the representations of masked views of the same image with that of an un-
masked view. To derive a view’s representation, MSN computes similarities between its embedding
and a set of learnable cluster centroids/prototypes and subsequently transforms them into a prob-
ability distribution. Since direct matching between masked and unmasked views’ representations
can lead to representation collapse, MSN simultaneously optimizes a cross-entropy term along with
an entropy regularization term on the mean representation of the masked views. This regularization
term encourages the model to use the entire set of centroids/prototypes. Additionally, MSN employs
SK on the representations of the unmasked views to avoid tuning the hyperparameter weighting the
entropy regularization term. Similarly to SWaV, if several domains/styles are present within un-
masked views, assigning the corresponding representations using SK may group examples using
domain/style information. To address this, we propose to standardize the style of unmasked views
using BSS while we recommend augmenting masked views using FA.

4 RESULTS

4.1 DATASETS

To evaluate the extended SSL methods, experiments were conducted on 3 datasets commonly used
for benchmarking DG / UDG methods, namely PACS, DomainNet and Camelyon17 WILDS.

PACS (Li et al., 2017) contains 4 domains (photo, art painting, cartoon, sketch) and 7 classes.
DomainNet (Peng et al., 2019) contains 6 different domains (clipart, infograph, quickdraw, paint-
ing, real and sketch) and covers 345 classes. Following prior UDG works (Harary et al., 2022;
Yang et al., 2022b; Zhang et al., 2022), a subset of DomainNet including 20 classes out of the 345
available classes is considered. Camelyon17 WILDS (Koh et al., 2021) includes images covering
2 classes (tumor, no tumor) from 5 domains (hospitals). It is split into train, val, and test
subsets comprising respectively 3, 1, and 1 distinct domains.
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Table 1: UDG performances on PACS. Best methods are highlighted in bold.

Label Fraction: 1% Label Fraction: 5%

Methods Target domain Target domain
photo art cartoon sketch avg. photo art cartoon sketch avg.

ERM 10.90 11.21 14.33 18.83 13.82 14.15 18.67 13.37 18.34 16.13
MoCo V2 22.97 15.58 23.65 25.27 21.87 37.39 25.57 28.11 31.16 30.56
SimCLR V2 30.94 17.43 30.16 25.20 25.93 54.67 35.92 35.31 36.84 40.68
BYOL 11.20 14.53 16.21 10.01 12.99 26.55 17.79 21.87 19.65 21.46
AdCo 26.13 17.11 22.96 23.37 22.39 37.65 28.21 28.52 30.35 31.18
MAE 30.72 23.54 20.78 24.52 24.89 32.69 24.61 27.35 30.44 28.77
DARLING 27.78 19.82 27.51 29.54 26.16 44.61 39.25 36.41 36.53 39.20
DiMAE* 48.86 31.73 25.83 32.50 34.73 50.00 41.25 34.40 38.00 40.91
BrAD* 61.81 33.57 43.47 36.37 43.80 65.22 41.35 50.88 50.68 52.03
CycleMAE* 52.63 36.25 35.53 34.85 39.82 63.24 39.96 42.15 36.35 45.43
SimCLR w/ FA 41.00 37.94 45.38 43.47 41.95 57.17 44.78 50.16 55.32 51.85
SimCLR w/ BSS 43.31 (↑ 2.31) 38.96 (↑ 1.02) 48.61 (↑ 3.23) 48.76 (↑ 5.29) 44.91 (↑ 2.96) 58.16 (↑ 0.99) 46.37 (↑ 1.59) 55.69 (↑ 5.53) 65.63 (↑ 10.04) 56.40 (↑ 4.55)
SWaV w/ FA 36.15 32.93 36.63 27.37 33.27 41.64 40.95 48.51 45.32 44.10
SWaV w/ BSS 39.74 (↑ 3.59) 35.82 (↑ 2.89) 42.59 (↑ 5.96) 36.12 (↑ 8.75) 38.57 (↑ 5.3) 50.58 (↑ 8.94) 43.00 (↑ 2.05) 53.81 (↑ 5.3) 52.61 (↑ 7.29) 50.00 (↑ 5.9)

Label Fraction: 10% Label Fraction: 100%

Methods Target domain Target domain
photo art cartoon sketch avg. photo art cartoon sketch avg.

ERM 16.27 16.62 18.40 12.01 15.82 43.29 24.27 32.62 20.84 30.26
MoCo V2 44.19 25.85 35.53 24.97 32.64 59.86 28.58 48.89 34.79 43.03
SimCLR V2 54.65 37.65 46.00 28.25 41.64 67.45 43.60 54.48 34.73 50.06
BYOL 27.01 25.94 20.98 19.69 23.40 41.42 23.73 30.02 18.78 28.49
AdCo 46.51 30.31 31.45 22.96 32.81 58.59 29.81 50.19 30.45 42.26
MAE 35.89 25.59 33.28 32.39 31.79 36.84 25.24 32.25 34.45 32.20
DARLING 53.37 39.91 46.41 30.17 42.46 68.86 41.53 56.89 37.51 51.20
DiMAE* 77.87 59.77 57.72 39.25 58.65 78.99 63.23 59.44 55.89 64.39
BrAD* 72.17 44.20 50.01 55.66 55.51 ✗ ✗ ✗ ✗ ✗
CycleMAE* 85.94 67.93 59.34 38.25 62.87 90.72 75.34 69.33 50.24 71.41
SimCLR w/ FA 62.67 49.92 54.79 58.32 56.43 78.36 59.41 65.16 63.59 66.63
SimCLR w/ BSS 63.29 (↑ 0.62) 51.37 (↑ 1.45) 59.43 (↑ 4.64) 66.09 (↑ 7.77) 60.04 (↑ 3.61) 79.50 (↑ 1.14) 62.73 (↑ 3.32) 65.67 (↑ 0.51) 73.02 (↑ 9.43) 70.23 (↑ 3.6)
SWaV w/ FA 46.27 44.68 50.27 50.02 47.81 77.50 57.49 64.32 66.08 66.35
SWaV w/ BSS 57.82 (↑ 11.55) 45.91 (↑ 1.23) 53.65 (↑ 3.38) 55.67 (↑ 5.65) 53.27 (↑ 5.46) 78.62 (↑ 1.12) 59.65 (↑ 2.16) 65.40 (↑ 1.08) 67.80 (↑ 1.72) 67.87 (↑ 1.52)

* Uses Imagenet transfer learning.

4.2 EXPERIMENTAL SETUP

Following the standard UDG evaluation protocol (Zhang et al., 2022), models were pretrained on
source data in an unsupervised way, fine-tuned on a fraction of the source data and finally evaluated
on the target data. For the pretraining step, all our models were trained using FA or BSS without
Imagenet (Deng et al., 2009) transfer learning, except on DomainNet to allow fair comparisons with
prior UDG works. In Appendix D.1, the choice of using transfer learning within a DG/UDG context
is further discussed while additional experiments on PACS reveal that SSL methods tend to benefit
unfairly from ImageNet transfer learning. For the fine-tuning step, following BrAD, on PACS and
DomainNet, all the models were fine-tuned via linear probing except when considering the entire
PACS dataset where full fine-tuning was performed like DARLING and DiMAE. On Camelyon17
WILDS, linear probing was performed for each fraction of labeled data. Pretraining and fine-tuning
implementation details are provided in Appendix C.

4.3 EXPERIMENTAL RESULTS

In the following experiments, the proposed extended SSL methods are compared to regular SSL
methods (MoCo V2 (Chen et al., 2020c), SimCLR V2 (Chen et al., 2020b), BYOL (Grill et al.,
2020), AdCo (Hu et al., 2021), MAE (He et al., 2022)) and UDG methods (DARLING, DiMAE,
BRaD, CycleMAE). For Camelyon17 WILDS, the extended SSL methods are compared to reim-
plemented UDG methods (DARLING, DiMAE) but also to the Semi-Supervised Learning method
FixMatch (Sohn et al., 2020) and SSL method SWaV trained with additional data from the target.

PACS. For each combination of (sources, target) domains, each fraction of labeled data and each
of our SSL models, averaged accuracy over 3 independent runs are reported on Table 1. Compared
to FA, integrating BSS to SimCLR or SWaV, significantly improves the overall accuracy (avg.):
SimCLR→ (+2.96%,+4.55%,+3.61%,+3.6%); SWaV→ (+5.3%,+5.9%,+5.46%,+1.52%)
for the fractions of labeled data 1%, 5%, 10% and 100%, respectively. Extended SSL methods with
BSS outperform most of the time other methods, except for the target domain photo (BrAD, DiMAE,
CycleMAE) or in the 10% (DiMAE) and 100% (DiMAE, CycleMAE) labeled data settings. For the
target domain photo, one possible explanation is that other methods benefit from transfer learning
on ImageNet while for the 10% and 100% labeled data settings, DiMAE and CycleMAE consider
different experimental settings (ViT-base architecture, full fine-tuning on 10%.)
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DomainNet. Following prior UDG methods, painting, real and sketch were selected as source do-
mains and others as target domains. The reversed domains combination was also considered. For
these two combinations, for each fraction of labeled data (1%, 5% and 10%) and each of our SSL
models, we report on Table 2, the accuracy on each target domain, the per-domain averaged accuracy
and the overall accuracy. The presented results are averaged over 3 independent runs. When inte-

Table 2: UDG performances on DomainNet subset. Best methods are highlighted in bold.

Sources painting ∪ real ∪ sketch clipart ∪ infograph ∪ quickdraw
Target clipart infograph quickdraw painting real sketch Overall Avg.

Label Fraction 1%
ERM 6.54 2.96 5.00 6.68 6.97 7.25 5.88 5.90
BYOL 6.21 3.48 4.27 5.00 8.47 4.42 5.61 5.31
MoCo V2 18.85 10.57 6.32 11.38 14.97 15.28 12.12 12.90
AdCo 16.16 12.26 5.65 11.13 16.53 17.19 12.47 13.15
SimCLR V2 23.51 15.42 5.29 20.25 17.84 18.85 15.46 16.86
DARLING 18.53 10.62 12.65 14.45 21.68 21.30 16.56 16.54
DiMAE 26.52 15.47 15.47 20.18 30.77 20.03 21.85 21.41
BrAD 47.26 16.89 23.74 20.03 25.08 31.67 25.85 27.45
CycleMAE 37.54 18.01 17.13 22.85 30.38 22.31 24.08 24.71
SimCLR w/ FA 60.83 18.42 26.31 24.29 29.73 40.29 30.82 33.31
SimCLR w/ BSS 61.94 (↑ 1.11) 19.58 (↑ 1.16) 26.98 (↑ 0.67) 27.40 (↑ 3.11) 31.55 (↑ 1.82) 41.49 (↑ 1.2) 32.27 (↑ 1.45) 34.82 (↑ 1.51)
SWaV w/ FA 59.27 20.95 18.94 30.99 35.73 45.28 31.87 35.19
SWaV w/ BSS 60.40 (↑ 1.13) 20.12 (↓ 0.83) 23.09 (↑ 4.15) 34.64 (↑ 3.65) 38.45 (↑ 2.72) 46.90 (↑ 1.62) 34.32 (↑ 2.45) 37.27 (↑ 2.08)

Label Fraction 5%
ERM 10.21 7.08 5.34 7.45 6.08 5.00 6.50 6.86
BYOL 9.60 5.09 6.02 9.78 10.73 3.97 7.83 7.53
MoCo V2 28.13 13.79 9.67 20.80 24.91 21.44 18.99 19.79
AdCo 30.77 18.65 7.75 19.97 24.31 24.19 19.42 20.94
SimCLR V2 34.03 17.17 10.88 21.35 24.34 27.46 20.89 22.54
DARLING 39.32 19.09 10.50 21.09 30.51 28.49 23.31 24.83
DiMAE 42.31 18.87 15.00 27.02 39.92 26.50 27.85 28.27
BrAD 64.01 25.02 29.64 29.32 34.95 44.09 35.37 37.84
CycleMAE 55.14 20.87 19.62 27.64 40.24 28.71 30.80 32.04
SimCLR w/ FA 69.04 20.31 29.76 36.44 41.95 51.05 38.60 41.42
SimCLR w/ BSS 71.21 (↑ 2.17) 20.93 (↑ 0.62) 32.42 (↑ 2.66) 36.68 (↑ 0.24) 41.49 (↓ 0.46) 52.75 (↑ 1.7) 39.73 (↑ 1.13) 42.58 (↑ 1.16)
SWaV w/ FA 68.84 24.05 26.06 43.97 49.11 59.16 41.68 45.20
SWaV w/ BSS 70.56 (↑ 1.72) 24.35 (↑ 0.3) 28.83 (↑ 2.77) 46.17 (↑ 2.2) 51.21 (↑ 2.1) 59.71 (↑ 0.55) 43.53 (↑ 1.85) 46.81 (↑ 1.61)

Label Fraction 10%
ERM 15.10 9.39 7.11 9.90 9.19 5.12 8.94 9.30
BYOL 14.55 8.71 5.95 9.50 10.38 4.45 8.69 8.92
MoCo V2 32.46 18.54 8.05 25.35 29.91 23.71 21.87 23.00
AdCo 32.25 17.96 11.56 23.35 29.98 27.57 22.79 23.78
SimCLR V2 37.11 19.87 12.33 24.01 30.17 31.58 24.28 25.84
DARLING 35.15 20.88 15.69 25.90 33.29 30.77 26.09 26.95
DiMAE (full fine-tune) 70.78 38.06 27.39 50.73 64.89 55.41 49.49 51.21
BrAD 68.27 26.60 34.03 31.08 38.48 48.17 38.74 41.10
CycleMAE(full fine-tune) 74.87 38.42 28.32 52.81 67.13 56.37 50.78 52.98
SimCLR w/ FA 70.12 20.50 31.23 39.16 44.45 52.87 40.31 43.05
SimCLR w/ BSS 71.95 (↑ 1.83) 21.27 (↑ 0.77) 33.47 (↑ 2.24) 39.49 (↑ 0.33) 44.67 (↑ 0.22) 55.42 (↑ 2.55) 41.57 (↑ 1.26) 44.38 (↑ 1.33)
SWaV w/ FA 69.81 24.39 28.97 45.92 50.79 60.78 43.46 46.78
SWaV w/ BSS 71.99 (↑ 2.18) 24.34 (↓ 0.05) 29.82 (↑ 0.85) 48.28 (↑ 2.36) 52.37 (↑ 1.58) 60.55 (↓ 0.23) 44.59 (↑ 1.13) 47.89 (↑ 1.11)

grating BSS, almost all target domain accuracies increase while per-domain-averaged accuracy al-
ways improves: SimCLR→ (+1.51%,+1.16%,+1.33%); SWaV→ (+2.08%,+1.61%,+1.11%)
for the labeled data fractions 1%, 5% and 10%, respectively.

Camelyon17 WILDS. Averaged accuracy over 10 independent runs, for different fractions of la-
beled data, on the test split are reported on Table 3. To ensure fair comparisons, the reimplemented
methods DARLING and DiMAE used identical pretraining and fine-tuning hyperparameters as ex-
tended SSL methods. For each extended SSL method, BSS leads to substantial performance gains

Table 3: UDG performances on Camelyon17 WILDS. Best methods are highlighted in bold.

Label Fraction
Method 1% 5% 10% 100%
DARLING* 70.44 72.00 72.43 72.36
DiMAE* 89.81 89.17 89.77 90.40
FixMatch† ✗ ✗ ✗ 71.00
SWaV† ✗ ✗ ✗ 91.40
SimCLR w/ FA 90.82 93.00 92.94 93.44
SimCLR w/ BSS 92.27 (↑ 1.45) 94.75 (↑ 1.75) 94.82 (↑ 1.88) 95.00 (↑ 1.56)
SWaV w/ FA 91.03 91.94 91.96 92.26
SWaV w/ BSS 93.42 (↑ 2.39) 93.99 (↑ 2.05) 94.07 (↑ 2.11) 94.08 (↑ 1.82)
MSN w/ FA 87.07 87.33 87.55 88.82
MSN w/ BSS 90.93 (↑ 3.86) 91.82 (↑ 4.49) 91.83 (↑ 4.28) 91.98 (↑ 3.76)

* Our implementation (no available public code).
† From WILDS challenge (Koh et al., 2021). Uses unlabeled data from the target domain.
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ranging from +1.45% to +4.49% resulting in state-of-the-art performances. Extended SSL methods
with BSS even surpass methods trained with additional unlabeled target data.

5 ABLATION STUDIES AND ADDITIONAL EXPERIMENTS

5.1 AUGMENTATION STRATEGY ABLATION STUDY

To evaluate the benefits of each component in our augmentation strategy (BSS + additional aug-
mentations) on performances, we pretrained a model on Camelyon17 WILDS using SimCLR and
different combinations of components. For each combination and each fraction of labeled data, av-
eraged accuracy over 10 independent runs are reported in Table 4. Sample-wise color jittering and

Table 4: SimCLR’s performances on Camelyon17 WILDS varying our augmentation strategy’s
components. Best methods are highlighted in bold.

Label Fraction
Color-jitter FA BSS 1% 5% 10% 100%

Sample-wise ✗ ✗ 63.54 63.58 63.50 65.06
Batch-wise ✗ ✗ 66.81 68.19 68.45 68.53

Sample-wise ✓ ✗ 90.82 93.00 92.94 93.44
Batch-wise ✗ ✓ 92.27 94.75 94.82 95.00

no FA or BSS, resulting in the regular SimCLR, leads to poor performance for the different frac-
tions of labeled data. Changing the color-jittering from sample-wise to batch-wise slightly improves
performances suggesting that even reducing the styles variability of augmented images helps for
generalization. FA leads to drastic performance gains compared to the regular SimCLR which is
not surprising given their prior success in DG tasks. Combining SimCLR with BSS and batch-wise
color-jitter yields even greater performance improvements and non-negligible gains compared to
FA. This observation is also supported by results from Tables 1, 2, 3.

5.2 UNDERLYING MECHANISMS INVOLVED IN BSS EFFICIENCY

Spurious correlations reduction, harder negatives creation and reduced batch size require-
ment (SimCLR). We hypothesized that BSS should help reduce the emergence of spurious corre-
lations when repelling negatives from positives. Additionally, standardizing styles among positives
and negatives should also facilitate the creation of harder negatives, a known factor contributing to
robust performance (Kalantidis et al., 2020; Robinson et al., 2020), while also reducing the demand
for large batch sizes. To validate these hypotheses, we conducted 3 comprehensive experiments em-
ploying SimCLR with standard augmentation, FA, or BSS on Camelyon17 WILDS: (1) To validate
BSS’s effectiveness in reducing spurious correlations, we computed the averaged domain purity for
representations of unseen source and target examples after pretraining. This metric, which quantifies
the degree to which each example and its nearest neighbors share the same domain label, serves as
an indicator of the domain-invariance within SSL representations (refer to Figure 2a). (2) To assess
the impact of BSS on encouraging the presence of harder negatives, we computed representations
for several augmented batches and calculated cosine similarities across all possible (anchor, neg-
ative) pairs, reporting the values in a histogram (refer to Figure 2b). (3) Lastly, to assess BSS’s
ability to mitigate the demand for large batch sizes, we pretrained SimCLR varying batch sizes and
assessed performance using linear probing (refer to Figure 2c). Figure 2a demonstrates that Sim-
CLR with FA exhibits slightly lower average domain purity than standard SimCLR while SimCLR
with BSS results in much lower average domain purity. This observation affirms BSS’s effective-
ness in attenuating spurious correlations and enhancing domain-invariance. Figure 2b indicates that
standard SimCLR tends to produce negatives that are dissimilar to the anchors. SimCLR with FA
produces negatives more similar to the anchors but not to the same extent as SimCLR with BSS
which confirms BSS’s role in creating harder negatives. Finally, Figure 2c reveals that standard
SimCLR yields considerably lower performances compared to SimCLR with FA or with BSS. FA
and BSS lead to improved performances for any batch size. As batch size increases, performances
augment until a plateau is reached. However, when using BSS, this plateau is reached for a lower
batch size supporting BSS’s efficacy in reducing the need for large batches.
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(a) Average domain purity varying
number of nearest neighbors

(b) (Anchor, negative) cosine simi-
larities

(c) Linear-probing accuracy vary-
ing batch size N

Figure 2: SimCLR experiments with standard augmentation, FA or BSS on Camelyon17 WILDS.

Better domain heterogeneity and class homogeneity for examples assigned to the same pro-
totype (SWaV, MSN). We postulated that the coexistence of multiple domains/styles within views
used for cluster assignments computation (i.e.: global views for SWaV and unmasked views for
MSN) could introduce correlations between the assignments and domains/styles. To investigate
the effectiveness of BSS in mitigating these correlations and shed light on why BSS yields su-
perior representations compared to FA, we conducted the following experiment: We pretrained
a backbone with SWaV using FA or BSS on DomainNet (sources: painting ∪ real ∪ sketch, tar-
gets: clipart ∪ infograph ∪ quickdraw). During training, at every 1K optimization step, we com-
puted representations from unseen source and target examples along with their hard assignments
resulting from SK. Subsequently, we evaluated the homogeneity of representations assigned to each
prototype in terms of domain or class labels and averaged the homogeneity scores over all proto-
types. The evolution of the averaged homogeneity score with respect to domain or class labels are
respectively reported in Figure 3a and Figure 3b. Figure 3a reveals that employing BSS instead of

(a) Domain label (b) Class label

Figure 3: Averaged homogeneity scores for representations assigned to the same prototype.

FA tends to reduce domain homogeneity (or improve domain heterogeneity) among representations
assigned to the same prototype. This observation confirms BSS’s role in reducing correlations be-
tween assignments and domains. Conversely, Figure 3b illustrates that BSS results in higher class
label homogeneity attesting that BSS helps to produce assignments more semantically coherent.

6 CONCLUSION

This work introduces Batch Styles Standardization, an image style standardization technique to be
combined with existing SSL methods to address UDG. Extending existing SSL methods with BSS
offers serious advantages over prior UDG methods, including the elimination of domain labels and
domain-specific network components dependencies to enhance domain-invariance while offering
versatility for integration. Leveraging BSS, the extended SSL methods exhibit improved general-
ization capabilities, often surpassing or competing with alternative UDG strategies. Comprehensive
experiments provide insights into the underlying mechanisms involved in BSS’s efficiency. Other
style transfer techniques, like GAN-based methods or AdaIN, could standardize image style to re-
duce spurious correlations in SSL. However, we leave this exploration for future research.
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A PSEUDO-CODE AND PYTORCH IMPLEMENTATION OF BATCH STYLES
STANDARDIZATION

On Algorithm 1 and Listing 1, a pseudo-code along with a PyTorch implementation of Batch Styles
Standardization are provided. The full code will be released upon acceptance.

Algorithm 1: Batch Styles Standardization
Input :

• {Xi}1≤i≤N : Batch of images
• (rmin, rmax): Minimum and maximum area ratios between the substituted amplitudes

components and the full amplitude.

Output: Batch of images with standardized style: {X̂i}1≤i≤N

1 // Computes Fourier transform for all images in the batch

2 for i← 1 to N do

3 A(Xi)←
√
Re (F(Xi))

2
+ Im (F(Xi))

2

4 P(Xi)← arctan

(
Im (F(Xi))

Re (F(Xi))

)
5 end for
6 // Sample the index k associated to the style image and sample the amplitudes area ratio r

7 k ∼ U({1, · · · , N})
8 r ∼ U(rmin, rmax)
9 // For each image, substitute the low-frequency components with those of the style image

then apply the inverse Fourier transform to transfer the style onto the original image.

10 for i← 1 to N do
11 Â(Xi)← substitute low freq(A(Xi),A(Xk), r)

12 X̂i ← F−1
(
Â(Xi)e

−iP(Xi)
)

13 end for
14 return {X̂i}1≤i≤N
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class BatchStylesStandardization():
"""Implements Batch Styles Standardization. Given a

batch of N images and their Fourier transforms,
we manipulate the different amplitudes by
substituting their low-frequency components
with those a randomly chosen image.

Attributes:
ratios (tuple): $(r_min, r_max)$ specifying

the minimum and maximum possible
areas ratio between the substituted
amplitude and the full amplitude.

"""
def __init__(self, ratios):

self.ratios = ratios

def substitute_low_freq(self, src_amp, tgt_amp, ratio):
"""Substitute the low-frequency components

of the source amplitudes with those
of the target amplitudes.

Args:
src_amp (torch.Tensor): Source amplitudes
tgt_amp (torch.Tensor): Target amplitudes
ratio (float): Area ratio between the

substituted amplitude and the full
amplitude.

Returns:
torch.Tensor: Source amplitudes where

the low-frequency components have been
substituted with those
of the target amplitudes.

"""
# Compute center coordinates of amplitudes
h, w = src_amp.shape[-2:]
hc, wc = int(h//2), int(w//2)

# Compute half length `l` of the components
# to be substituted
l = min([int(ratio*h/2), int(ratio*w/2)])

# Substitute low freq components of source
# amplitudes with those of the target amplitudes
low_freq_tgt_amp = tgt_amp[

..., hc-l:hc+l, wc-l:wc+l]
src_amp[

..., hc-l:hc+l, wc-l:wc+l] = low_freq_tgt_amp
return src_amp

def __call__(self, imgs, n_views):
"""Apply batch styles standardization `n_views` times

on a batch of $N$ images.

Args:
imgs (torch.Tensor): Batch of images (N, 3, H, W)
n_views (int): Number of augmented views

Returns:
torch.Tensor: Batch with standardized styles
(N, n_views, 3, H, W)

"""
# Apply FFT on source images
fft = torch.fft.fftn(

imgs, dim=(-2, -1))
# Shift low-frequency components to the center
fft = torch.fft.fftshift(

fft, dim=(-2, -1))
# Retrieve amplitude and phase
amp, phase = fft.abs(), fft.angle()

# Sample n_views images that will be used as
# ref styles
bs = imgs.size(0)
sampled_ind = torch.randperm(bs)[:n_views]

# Substitute low-freq of src amplitudes with those
# of the n_views sampled images
src_amp = amp.unsqueeze(1).repeat(

[1, n_views, 1, 1, 1])
tgt_amp = amp[sampled_ind].unsqueeze(0).expand(

bs, -1, -1, -1, -1)
sampled_ratio = random.uniform(*self.ratios)
amp = self.substitute_low_freq(

src_amp, tgt_amp, sampled_ratio)

phase = phase.unsqueeze(1)
# Reconstruct FFT from amp and phase
fft = torch.polar(amp, phase)
# Shift back low-frequency to their
# original positions
fft = torch.fft.ifftshift(fft, dim=(-2, -1))
# Invert FFT
imgs = torch.fft.ifftn(

fft, dim=(-2, -1)).real.clamp(0, 1)
return imgs

Listing 1: Batch Styles Standardization PyTorch implementation
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B TECHNICAL DETAILS ABOUT SSL METHODS

B.1 SIMCLR

SimCLR aims to bring representations of augmented views of the same image closer (positives)
while repelling all other images representations (negatives). In practice, given a batch of N images,
each image is augmented V times independently resulting in a N × V images grid where each row
c corresponds to a content and each column s to a view. For each image Xcs and its corresponding
representation zcs ∈ RD, SimCLR minimizes the NT-Xent loss with temperature T :

Lcs =
−1

V − 1

∑
s′ ̸=s

log

 ezcs·zcs′/T∑
(c′′,s′′) ̸=(c,s)

ezcs·zc′′s′′/T

 (6)

B.2 SWAV

SWaV computes the representations of different views of the same image while clustering them
using an online algorithm. Since representations should capture similar information, SWaV assumes
that one view’s cluster assignment can predicted from representations of other views. This swapped
prediction idea is the core concept behind SWaV loss formulation.

Concretely, in SWaV, an image Xn is augmented into 2 views X(s)
n and X

(t)
n , with corresponding

representations z(s)
n and z

(t)
n . Similarities between representations and K learnable cluster centroid-

s/prototypes C ∈ RK×D are computed and converted into probabilities such as follows:

p(v)
n = softmax

(
z
(v)
n ·CT

τ

)
∀v ∈ {s, t} (7)

To compute cluster assignments also referred to as codes and denoted q
(v)
n , SWaV relies on the

Sinkhorn-Klopp (SK) algorithm (Cuturi, 2013). SK is performed on all views representations trying
to assign representations to the most similar centroids but also uniformly among clusters. Finally,
based on the swapped prediction concept, SWaV minimizes the following per-sample loss:

Ln = H(q(s)
n ,p(t)

n ) +H(q(t)
n ,p(s)

n ) (8)

In Equation 8, H(p, q) stands for the cross-entropy between an approximated probability distribu-
tion q and a true probability distribution q.

In practice, SWaV employs a multi-crop strategy, generating 2 global views (large crops) and V local
views (small crops) for each image. Cluster assignments are then computed only from the 2 global
views while probabilities are derived from all the V +2 views. In this setting, SWaV minimizes the
following loss:

Ln =
1

2(V + 1)

2∑
i=1

V+2∑
v=1

1i ̸=vH(q(i)
n ,p(v)

n ) (9)

B.3 MSN

Given two views of the same image, MSN randomly masks the patches of one view and leaves the
other unchanged. Then, MSN’s goal is to match the representation of the masked view with that of
the unmasked view.

To derive a view’s representation, MSN computes the similarities between its embedding and a set
of cluster centroids/prototypes, subsequently transforming them into a probability distribution. As
direct matching of these representations can lead to representation collapse, MSN simultaneously
optimizes a cross-entropy term along with an entropy regularization term on the mean representation
of the masked views. The entropy regularization term encourages the model to use the entire set of
centroids/prototypes. Additionally, MSN employs Sinkhorn-Klopp on the representations of the
unmasked views to avoid tuning the hyperparameter weighting the entropy regularization term.

15



Published as a conference paper at ICLR 2024

In practice and more formally, MSN generates for each image Xn, M masked views
{Xn,1, . . . ,Xn,M} and a single unmasked view X+

n . Masked views are processed by a student
encoder and the unmasked view by a teacher encoder whose weights are updated via an exponential
moving average of the student encoder’s weights. Masked and unmasked views’ embeddings de-
noted {zn,1, . . . ,zn,M}, z+

n are then compared to a set of centroids/prototypes C ∈ RK×D and the
resulting similarities are converted into probability distributions {pn,1, . . . ,pn,M},p+

n :
pn,m = softmax

(
zn,m ·CT

τ

)
p+
n = softmax

(
z+
n ·CT

τ+

) (10)

τ and τ+ stand for temperature hyperparameters and are chosen such that τ > τ+ to encourage
sharper probability distributions implicitly guiding the model to produce confident masked views
representations. Given a batch of N images, MSN minimizes the following loss:

L =
1

NM

N∑
n=1

M∑
m=1

H(p+
n ,pn,m)− λH(p̄)

p̄ =
1

NM

N∑
n=1

M∑
m=1

pn,m

(11)

H(p, q) stands for the cross-entropy between an approximated probability distribution q and a true
probability distribution q while H(p̄) denotes the entropy of the masked views’ mean representation
p̄.

C IMPLEMENTATION DETAILS

C.1 PRETRAINING

On PACS and DomainNet, as part of the geometric augmentations, we use random crop resizing,
horizontal flips, small rotations, cutout(DeVries & Taylor, 2017) while color augmentations are ap-
plied in batch-wise manner using color jitter, random equalize, random posterize, random solarize
and random grayscale. On Camelyon17 WILDS, we use random crop resizing, flips, rotations,
cutout and batch-wise color jitter. All other hyperparameters for SimCLR, SWaV, MSN are respec-
tively specified on Tables 5, 6, 7.

Table 5: Hyperparameters used for SimCLR extension based on Batch Styles Standardization

datasets PACS DomainNet Camelyon17 WILDS
backbone ResNet-18 ResNet-18 ResNet-50

V 2× 2242 + 6× 1282 2× 2242 + 6× 1282 8× 1282

(rmin, rmax) (0.02, 1) (0.02, 1) (0.02, 0.1)
D 128 128 128
T 0.5 0.5 0.5
N 256 512 256

steps 60K 60K 150K
optimizer LARS LARS LARS

learning rate 0.2 0.4 0.2
learning rate schedule linear warmp-up + cosine decay linear warmp-up + cosine decay linear warmp-up + cosine decay

weight decay 10−6 10−6 10−6

C.2 FINE-TUNING/LINEAR-PROBING

For all datasets (PACS, DomainNet, and Camelyon17 WILDS), we use the Adam optimization
method (Kingma & Ba, 2014) with an initial learning rate of 10−4, a learning rate scheduler with
cosine decay, and weight decay of 10−4. The networks are trained respectively for 5K, 1K, and 15K
steps with batch sizes of 128, 64, and 64. When performing linear probing, we follow the same
normalization scheme as (He et al., 2022) by adding a batch normalization layer (Ioffe & Szegedy,
2015) without affine parameters before the linear classifier.
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Table 6: Hyperparameters used for SWaV extension based on Batch Styles Standardization

datasets PACS DomainNet Camelyon17 WILDS
backbone ResNet-18 ResNet-18 ResNet-50

global views 2× 2242 2× 2242 2× 1282

local views 6× 1282 6× 1282 6× 1282

(rmin, rmax) (0.02, 1) (0.02, 1) (0.02, 0.1)
K 256 256 256
D 128 128 128
τ 0.1 0.1 0.1
N 256 512 256

steps 60K 60K 150K
optimizer LARS LARS LARS

learning rate 0.2 0.4 0.2
learning rate schedule linear warmp-up + cosine decay linear warmp-up + cosine decay linear warmp-up + cosine decay

weight decay 10−6 10−6 10−6

Table 7: Hyperparameters used for MSN extension based on Batch Styles Standardization

backbone ViT-S/8
unmasked views 2× 962

masked views 10× 642

(rmin, rmax) (0.02, 0.1)
patch masking ratio 0.3

K 128
D 384
τ 0.1
τ+ 0.025
N 256

steps 150K
Optimizer LARS

learning rate 0.2
learning rate schedule linear warm-up + cosine decay

weight decay 10−6

EMA momentum 0.995

D DISCUSSIONS & ADDITIONAL VISUALIZATIONS

D.1 TRANSFER LEARNING IN DG/UDG

The usage of Transfer Learning in DG/UDG is common but we think it is misguided. Often the
pretraining dataset, such as Imagenet, can include one or more of the target domains, e.g., photo
for PACS or real for DomainNet. When evaluating on these domains, it is not possible to know if
performances result from the generalization ability of the DG/UDG methods or from the transfer
learning. For new DG/UDG methods, it is hard not to follow the common practice because transfer
learning unfairly boosts the results of previous works, and state-of-the-art performances are often
seen as a prerequisite for paper acceptance. We have tried to limit the usage of transfer learning in
our experiments and only used it for DomainNet.

To demonstrate that UDG methods can unfairly benefit from ImageNet transfer learning, we have
trained SimCLR with BSS both with and without ImageNet transfer learning. The resulting perfor-
mances are reported in Table 8. These results clearly show that ImageNet transfer learning leads to
a substantial improvement in UDG performance across all label fractions and for nearly all target
domains.

D.2 FEATURES VISUALIZATION

To assess the quality of the SSL representations and their ability to generalize across domains, we
display, in Figure 4, t-SNE plots of the backbone representations for SimCLR with BSS and com-
petitors on Camelyon17 WILDS. DARLING representations tend to be domain-invariant as lots of
examples from different domains are superimposed. However, this is also the case for many exam-
ples from different classes indicating potentially poor model generalization. In contrast, DiMAE
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Table 8: Impact of Imagenet transfer learning on UDG performances for PACS. Best methods are
highlighted in bold. ↑ and ↓ stand for absolute gain or loss of performances when using Imagenet
transfer learning.

Label Fraction: 1% Label Fraction: 5%

Methods Target domain Target domain
photo art cartoon sketch avg. photo art cartoon sketch avg.

DiMAE† 48.86 31.73 25.83 32.50 34.73 50.00 41.25 34.40 38.00 40.91
BrAD† 61.81 33.57 43.47 36.37 43.80 65.22 41.35 50.88 50.68 52.03
CycleMAE† 52.63 36.25 35.53 34.85 39.82 63.24 39.96 42.15 36.35 45.43
SimCLR w/ BSS 43.31 38.96 48.61 48.76 44.91 58.16 46.37 55.69 65.63 56.40
SimCLR w/ BSS† 42.04 (↓ 1.27) 42.84 (↑ 3.88) 55.37 (↑ 6.76) 53.41 (↑ 4.65) 48.42 (↑ 3.51) 63.59 (↑ 5.43) 53.65 (↑ 7.28) 62.06 (↑ 6.37) 62.81 (↓ 2.82) 60.53 (↑ 4.13)

Label Fraction: 10% Label Fraction: 100%

Methods Target domain Target domain
photo art cartoon sketch avg. photo art cartoon sketch avg.

DiMAE† 77.87 59.77 57.72 39.25 58.65 78.99 63.23 59.44 55.89 64.39
BrAD† 72.17 44.20 50.01 55.66 55.51 ✗ ✗ ✗ ✗ ✗
CycleMAE† 85.94 67.93 59.34 38.25 62.87 90.72 75.34 69.33 50.24 71.41
SimCLR w/ BSS 63.29 51.37 59.43 66.09 60.04 79.50 62.73 65.67 73.02 70.23
SimCLR w/ BSS† 66.11 (↑ 2.82) 56.04 (↑ 4.67) 64.56 (↑ 5.13) 61.86 (↓ 4.23) 62.15 (↑ 2.11) 85.35 (↑ 5.85) 69.47 (↑ 6.74) 73.36 (↑ 7.69) 78.57 (↑ 5.55) 76.69 (↑ 6.46)

† Uses Imagenet transfer learning.

Figure 4: t-SNE plots of the backbone representations for different UDG methods on Camelyon17
WILDS. Colors and markers correspond respectively to different domains and classes. On the tar-
get domains (hospital 1, hospital 2), our method (SimCLR w/ BSS) shows better domain
confusion while keeping better class separability. Zoom on pdf for better visualization.

representations appear to be well separated by classes but also by domains, especially for the target
domains hospital 1 and hospital 2, indicating a lack of domain-invariance. Finally, bet-
ter class separability and domain confusion emerge from the representations of SimCLR with BSS
revealing a better domain-invariance and a potentially better cross-domain generalization.

D.3 IMPACT OF r ON BSS GENERATED IMAGES

To illustrate the effect of the hyperparameter r on the generated images by BSS, we apply BSS on
a single batch fixing the chosen style image and varying r. The resulting images are reported in
Figure 5. We can observe that as r increases, textures/styles with higher frequencies are transferred
to the resulting images.
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Figure 5: Impact of hyperparameter r on augmented images with BSS
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