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Abstract
The deep image prior regularises under-specified image reconstruction problems by repara-
metrising the target image as the output of a CNN. We induce a prior over images by scoring
CNN outputs using a classical image reconstruction regulariser. We translate this functional
prior into weight space using a change of variables and propose an efficient linearised Laplace
inference algorithm. Hyperparameters are optimised with Type-II MAP. We obtain pixel-
wise uncertainty estimates, which we show to be calibrated to the reconstruction error.

1. Introduction

Inverse problems in imaging centre around the recovery of an unknown image x ∈ Rdx from
the corrupted measurement

yδ = Ax+ η, (1)

where yδ ∈ Rdy is the noisy measurement data, A ∈ Rdy×dx a linear forward operator, and
η an i.i.d. noise (e.g., Gaussian noise η ∼ N (0, σ2

yI)). Many tomographic reconstruction
problems take this form (e.g., computed tomography (CT), magnetic resonance imaging
and magnetic particle imaging). Due to the inherent ill-posedness of the reconstruction
task (e.g., in the under-determined case dy � dx), suitable regularisation is crucial and is
key for a successful recovery of x (Tikhonov and Arsenin, 1977; Engl et al., 1996; Ito and Jin,
2014). A successful approach is the deep image prior (DIP), introduced by Ulyanov et al.
(2018), which regularises the reconstruction by reparametrising x as the output of a deep
convolutional neural network (CNN). Liu et al. (2019) and Baguer et al. (2020) combine
DIP with the total variation (TV) regulariser, one of the most popular and well-established
penalties for image reconstruction (Rudin et al., 1992).

In this work, we re-cast the deep image prior as a probabilistic prior over images. Within
the probabilistic framework, a natural approach to regularise the ill-posed inverse imaging
problem is to place a prior over the reconstruction. Our prior scores the outputs of a
neural network according to their TV seminorm. We then translate this functional prior
into weight space using the predictive complexity prior (PredCP) framework of Nalisnick
et al. (2021). We provide a linearised Laplace inference algorithm with computational
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Figure 1: Example of an original image x. Its noisy measurement Ax+ η, is reconstructed
by FBP, A†yδ. The DIP provides a higher quality image x∗. The pixel-wise DIP
reconstruction error |x − x∗| visually correlates with the uncertainties provided
by our method. The scale of the pixel-wise standard deviation (std-dev) obtained
when employing the proposed prior (Type-II MAP) matches the error more closely
than when the hyperparameters are optimised with standard marginal likelihood.

cost scaling in O(dxd
2
y), and select hyperparameters via a Type-II MAP objective with a

complexity O(d3y). Our method provides pixel-wise uncertainty estimates, which we show
to be predictive of the reconstruction error. We show that our TV-PredCP prior results in
increased calibration, cf. fig. 1. A distinct feature of the proposed approach is that it keeps
the mean reconstruction obtained using the traditional regularised DIP formulation, which
allows us to leverage state of the art DIP training methods (Baguer et al. (2020); Barbano
et al. (2021)).

2. Deep Image Prior and Total Variation Regulariser

DIP (Ulyanov et al., 2018, 2020) aims at finding the minimiser of the fidelity ‖Ax− yδ‖2,
by assuming that the unknown x is the output of a CNN, x = f(A†yδ,θ). As input it takes
an approximate reconstruction A†yδ of x (Barbano et al., 2021), which is constant and we
can thus abbreviate our notation f(A†yδ,θ) = f(θ). A† is an approximate inverse, e.g.,
filter back-projection (FBP) in CT (Dudgeon and Mersereau, 1984). θ ∈ Rdθ denotes the
network’s parameters to be learned. The standard choice of the network architecture f is
U-Net (Ronneberger et al., 2015). Thus, DIP solves

θ∗ ∈ argmin
θ∈Rdθ

‖Af(θ)− yδ‖2, (2)

and presents f(θ∗) as the recovered image. Ulyanov et al. (2018) use early stopping to avoid
overfitting to noise in yδ. However, the need for early stopping can be avoided by properly
regularising the TV of the network output, leading to an objective

θ∗ ∈ argmin
θ∈Rdθ

‖Af(θ)− yδ‖2 + λTV(f(θ)), (3)
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Figure 2: Samples from the linearised prior N (0,Σf ) and posterior N (f(θ∗),Σf |yδ
) for the

image from fig. 1. The top row hyperparameters have been optimised with
marginal likelihood (MLL) while the bottom with Type-II MAP using our pro-
posed TV-PredCP prior. Although the difference is subtle, the latter are smoother
and present less artefacts.

where λ > 0 balances the two terms. TV(f(θ)) denotes the anisotropic TV seminorm of
the network output f(θ)

TV(x) =
∑
i

∑
j

|Xi,j −Xi+1,j |+
∑
i

∑
j

|Xi,j −Xi,j+1|,

where X ∈ Rh×w denotes the image vector x reshaped into a matrix of height h by width w.
TV has been widely used in image processing (Chambolle et al., 2010), and more recently
also found to improve performance of DIP methods (Liu et al., 2019; Baguer et al., 2020).
See Appendix C for a more in-depth discussion on TV as a regulariser.

3. Transforming the DIP into a Bayesian Prior over Images

We can interpret the loss in eq. (3) as a maximum a posteriori (MAP) objective, where we
have imposed a probabilistic prior over neural functions f that favour smoothness in a TV
sense

p(f) ∝ exp(−λTV(f)), with f ∈ {f(θ) : θ ∈ Rdθ}. (4)

We combine this prior with sum of squares projection loss between f(θ) and yδ. The latter
is obtained from a Gaussian conditional likelihood: p(yδ|f) = N (yδ;Af , σ2

yI) with σ2
y=1.

Despite the space of functions providing a convenient canvas in which to express our prior
beliefs, it significantly complicates subsequent probabilistic reasoning with NNs (Sun et al.,
2019; Burt et al., 2020). Instead, we consider the following weight-space hierarchical model

yδ|θ ∼ N (yδ;Af(θ), σ2
yI), θ|` ∼ N (θ;0,Σθ(`,σ

2
θ)), ` ∼ p(`), (5)
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in which, building upon Fortuin et al. (2021), the spatial covariance Σθ(`,σ
2
θ) among pa-

rameters is specified as

[Σθ(`,σ
2
θ)]ij,i′j′ = cov(θi,j ,θi′ ,j′ ) =

σ2
d exp

(
−∆(j, j

′
)

`d

)
, if i = i

′
,

0, else,
(6)

where i indexes a convolutional filter and j the spatial location of a specific parameter
within a filter. ∆(·, ·) is the Euclidean distance between filter pixels. `d acts as a char-
acteristic length-scale and σ2

d is the marginal prior variance. These two parameters are
defined per convolutional block d ∈ {1, 2, . . . , D} in the CNN such that ` = [`1, `2, . . . , `D]
and σ2

θ = [σ2
1, σ

2
2, . . . , σ

2
D]. We do not place a prior over the latter, instead treating it as

a hyperparameter. A diagram showing the correspondences between blocks 1, . . . , D and
U-Net architectural components is included in appendix A.

By choosing a larger `, we constrain the parameters in the convolutional filters and thus
effectively enforce smoothness in the output. Thus, a prior placed over the filter length-scale
` can act as a surrogate for the TV prior in eq. (4). To make this connection explicit, we
construct a predictive complexity prior (PredCP) (Nalisnick et al., 2021) over `:

p(`) = p(`1)p(`2) ... p(`D) =
D∏

d=1

π(κd)

∣∣∣∣∂κd∂`d

∣∣∣∣ , with (7)

κd := Ep(θd|`d)
∏D

i=1,i 6=d δ(θi−θ∗
i )
[λTV(f(θ))] . (8)

Here κd is the expected smoothness (in a TV sense) of the network output f(θ) induced
by the prior over parameters of block d, when the parameters of all other blocks are set to
some reference value θ∗. The random variable κd is modelled by an exponential distribu-
tion π(κd) = Exp(κd; 1) and is related to the filter lengthscale `d by means of the change
of variable formula. The separable factorisation of p(`) expresses our belief that blocks
placed at different positions within the network will have different sized contributions to
TV(f(θ)). The definition of κd ensures that we can measure the contribution of every block
independently of the rest, ensuring the dimensionality match formally needed in the change
of variables. We discuss the bijectivity of the mapping between `d and κd in Appendix
E. In summary, by using the predictive complexity prior, we translate the image space
smoothness prior in eq. (4) into a prior on the spatial smoothness of our convolutional filter
parameters.

4. Linearised Laplace Inference in the Low-Dimensional Dual Space

Even when working in parameter space, inference in the model from eq. (5) is computation-
ally intractable. We resort to locally linearising the U-Net around θ∗

h(θ) := f(θ∗) + J(θ − θ∗), with θ ∼ N (θ;0,Σθ(`,σ
2
θ)), (9)

where J = ∇θf(θ)|θ=θ∗ ∈ Rdx×dθ denotes the Jacobian matrix of the network with respect
to θ. The covariance structure of this model matches that of a generalised linear model with

4



A Probabilistic Deep Image Prior over Image Space

J as a design matrix. It can be written over image space as Σf = JΣθ(`,σ
2
θ)J

> ∈ Rdx×dx .
The Jacobian term enforces the structure of CNN while the weight prior covariance enforces
TV smoothness in eq. (7). We display draws from this model in fig. 2. For brevity, we hereon
omit the dependence on kernel parameters (`,σ2

θ).

4.1. Efficient Posterior Predictive Computation

The linearised posterior over the image space is obtained in closed form using linear-
Gaussian conjugacy p(f |yδ) = N (f ;µf |yδ

,Σf |yδ
) ∝ N (yδ;Af , σ2

yI)N (f ;h(0),Σf ). Its mean
is µf |yδ

= f(θ∗), leaving the DIP’s output unchanged. Its covariance is Σf |yδ
= (Σ−1

f +

σ−2
y A>A)−1. Using the Woodbury matrix identity, we adopt the dual form

Σf |yδ
= (Σ−1

f + σ−2
y A>A)−1 = Σf − ΣfA>(AΣfA> + σ2

yI)−1AΣ>
f , (10)

and obtain an expression in terms of the inverse of the observation space posterior covariance
Σy = AΣfA> + σ2

yI ∈ Rdy×dy . The computational complexity of eq. (10) scales as O(dxd
2
y)

as opposed to O(d3x) or O(d3θ) for the image space or parameter space views, respectively.
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Figure 3: Optimisation of (`,σ2
θ) via MLL and Type-II MAP. Traces in red refer to the

optimisation of the exemplary reconstruction shown in fig. 1. The TV-PredCP
leads to larger prior lengthscales ` and lower variances σ2

θ.

4.2. Type-II MAP Learning of Hyperparamters with the TV-PredCP

Once a mode θ∗ of the posterior p(θ|yδ) has been found with the MAP criterion eq. (3), we
select hyperparameters (σ2

y , `,σ
2
θ) that will provide well calibrated error-bars by maximising
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the volume of the posterior mode. This is done with the linearised Type-II MAP objective:

G(σ2
y , `,σ

2
θ) = log p(yδ, `;σ

2
y ,σ

2
θ) = logN (yδ;0,Σy(`,σ

2
θ) + σ2

yI) + log p(`;σ2
θ)

=
1

2

(
−σ−2

y ||yδ − Af(θ∗)||22 − ||θ∗||2
Σ−1

θ (`,σ2
θ)

− log |Σy(`,σ
2
θ) + σ2

yI|
)

+
D∑

d=1

−κd(`d, σ
2
d) + log

∣∣∣∣∂κd(`d, σ2
d)

∂`d

∣∣∣∣+ C, (11)

where C is independent of our hyperparameters. See Appendix D.2 for a derivation of (11).
We again employ the dual formulation to keep our update cost O(d3y). As shown in fig. 3,
the PredCP acts not only on the convolutional filters’ lengthscale `, but also informs their
prior marginal variances σ2

θ which parametrise the bijection in eq. (7). Additionally, as
described in Appendix D, the linearised model allows us to compute κd in closed form.

Table 1: Test log-likelihood on KMNIST averaged over 10 randomly chosen characters.
#directions (Sparse) 20 10

noise (%) 5 10 5 10

DIP(σ2
y = 1) 1.4188±0.1140 0.0007±0.2971 0.4562±0.1991 −2.6569±0.5695

DIP (MLL σ2
y) 1.5118±0.1157 0.0552±0.2997 0.5566±0.2008 −2.5967±0.5716

Bayes DIP MLL 2.1782±0.0367 2.0132±0.0411 2.0407±0.0370 1.7386±0.1032
Bayes DIP TV-MAP 2.2372±0.0371 2.0407±0.0430 2.1011±0.0449 1.7516±0.1139

5. Experimental Evaluation

We reconstruct CT measurement data yδ simulated from the Kuzushiji-MNIST (KMNIST)
dataset consisting of 28×28 grayscale images of Hiragana characters (Clanuwat et al., 2018).
The linear forward map A is given by the discrete Radon transform. For each simulated
measurement yδ, we train f(θ) via (3), fixing the input to a coarse FBP reconstruction, for
25k iterations. We then optimise the hyperparameters (σ2

y , `,σ
2
θ) with Type-II MAP using

(11) for 1.25k iterations. We also consider omitting the PredCP in (11), reverting to the
standard marginal likelihood (MLL).

Qualitative Results Figure 1 shows an exemplary character which we recover with both
FBP and DIP. The reconstruction problem is highly ill-posed (10 directions), thus FBP
reconstructions exhibit strong artefacts. As expected, the DIP reconstruction obtains 12dB
higher peak noise-to-signal ratio (psnr). The pixel-wise standard deviation provided by
our method correlates strongly with the DIP reconstruction error. However, the hyperpa-
rameters found via MLL lead to excessively large uncertainty. TV-PredCP regularisation
leads to hyperparameters that produce better-calibrated uncertainty. In fig. 3 we show how
the TV-PredCP drives ` to larger values and σ2

θ to be smaller. The use of the PredCP
restricts our prior, and thus posterior, to functions that are smooth in a TV sense, resulting
in smaller error-bars. This can also be seen in fig. 2, where samples from the TV-PredCP
model are smoother and present less artefacts. See Appendix A for additional experimental
figures.
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Quantitative Results We consider 20 and 10 directions taken uniformly from 0◦ to
180◦. We add 5% (low-noise) and 10% (high-noise) Gaussian noise to Ax. We conduct each
experiment using the same 10 randomly chosen KMNIST test images. We find some images
to include spurious large valued pixels far away from the region of interest, violating the
modelling assumption that x is noiseless eq. (1). DIP treats these pixels as noise, does not
reconstruct them and the hyperparameter optimisation eq. (11) converges to larger values
of σ2

y . We thus add the correction term σ2
y(A>A)† to our predictive variance and provide

further discussion in appendix D.1. We study the standalone effect of this correction by
treating it as a baseline, labelled “MLL σ2

y”. We also consider an isotropic unit variance noise
model. Table 1 show test log-density, obtained by method (predictive posterior given in
section 4) and baselines, for all experimental settings. All methods share the same network
parameters and thus the same mean reconstruction. Consequently, higher values in log-
density indicate better uncertainty calibration. In all settings, capturing model uncertainty
significantly improves performance. There is a clear but smaller benefit in employing the
TV-PredCP prior which is most notable in the low-noise setting.

6. Limitations and Conclusion

We have demonstrated how a probabilistic formulation of the DIP can yield well-calibrated
uncertainty in a computational tomography setting. Our results suggest that the TV, apart
from acting as a regulariser, can yield a performant probabilistic prior over images for
the inverse problem. Open questions are whether performance can be improved by giving
a fully probabilistic treatment to ` and whether the strength of the TV can be chosen
with an MLL objective. The KMNIST setting under consideration is quite small. We will
investigate how to scale our method to larger output spaces, where Jacobian computation
might be intractable and the observation dimension dy may still be large.
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Appendix A. Additional Experimental Details

In our experiments we use a down-sized version of U-Net. The reduced output dimension
dx, and the simplicity of the reconstruction problem allow us to adopt a shallow architecture
without compromising on reconstruction quality. Figure 4 shows the network architecture
used for this work. We adopt the U-Net architecture proposed by Barbano et al. (2021),
with the only difference being that we remove group-normalisation layers. Each light-blue
box corresponds to a multi-channel feature map. The number of channels is set to 32 at
every scale. The arrows denote the different operations. We give a Bayesian treatment to
all parameters in convolutional layers (approx. 78k parameters). We denote with ∗ the
operations that do not receive a Bayesian treatment (1x1 convolution mixing layers). We
identify 4 blocks: Down0 (d = 0), Down1 (d = 1), Up0 (d = 2) and Up1 (d = 3). The Down
blocks consists of a 3 × 3 convolution followed by a 3 × 3 convolution operation; the Up
blocks instead consists of two successive 3× 3 convolutional operations.

1x1 conv + leaky ReLU

2x (3x3 conv + leaky ReLU)

1x1 conv

3x3 conv + leaky ReLU

3x3 conv with stride 2 + leaky ReLU

bilinear upsampling

Down0

Down1 

Up0

Up1

* *

*

*

Figure 4: U-Net architecture diagram.

A.1. Additional Experimental Figures
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Figure 5: Exemplary reconstruction of a Hiragana character.
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Figure 6: Exemplary reconstruction of a Hiragana character.

Figure 5 and fig. 6 show additional reconstructions of two exemplary characters taken
from the KMNIST dataset. We also include additional samples from both the linearised
prior N (0,Σf ) and posterior N (f(θ∗),Σf |yδ

) for the image from fig. 1 in fig. 7 and fig. 8,
respectively. A careful visual inspection suggests that the sample obtained using the hyper-
parameters optimised with Type-II MAP presents higher degree of smoothness, along with
less artefacts, as one may expect from the construction of the PredCP prior.

Appendix B. Discussion on Previous Work on Bayesian DIP

Cheng et al. (2019) perform stochastic gradient Langevin dynamics (SGLD) inference with
an isotropic Gaussian prior over the network parameters. Laves et al. (2020); Tölle et al.
(2021) use both Monte Carlo (MC) dropout inference, and then Gaussian mean-field varia-
tional inference. These works resorted to a Bayesian treatment of DIP as a way to alleviate
the need for early-stopping. However, Baguer et al. (2020) show that the TV regulariser is
a simpler yet more effective approach.

Our proposed probabilistic method aims at producing prior and predictive distributions
in the image space, which is in its goal essentially different from existing probabilistic
treatment of DIP (Cheng et al., 2019; Tölle et al., 2021). Indeed, Dropout and SGLD have
been found to not be very robust methods for uncertainty estimation (Snoek et al., 2019;
Antorán et al., 2020; Daxberger et al., 2021). Furthermore, the previous work is sampling
based, and does not place an explicit likelihood function over the image space.

To the best of our knowledge there is little existing work on the application of predictive
uncertainty to deep tomographic reconstructions, with the most notable being (Seeger and
Nickisch, 2011). However, there is a rapidly growing body of literature on the utility of
uncertainty for human computer interaction (Antorán et al., 2021; Bhatt et al., 2021).
With our work we hope to take steps towards building a foundation for more research in
this area.
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Figure 7: Drawing sample from the linearised prior over images. Each sample is drawn
from a multivariate Gaussian with zero mean and prior covariance Σf . Samples
in the top row are obtained with hyperparameters optimised with MLL. Samples
in the bottom row, instead, are collected using the hyperparameters optimised
with Type-II MAP.

Appendix C. Discussion on the TV Regulariser as a Prior

We may question whether TV is the ideal regulariser for the KMIST dataset. The TV
regulariser enforces sparsity in the overall image gradients, which in turn induces smoothness
in the image. A TV regulariser is highly recommended when we observe sparsity in the edges
present in an image, especially when the edges are a small fraction of the overall image
pixels. That is often the case in high-resolution medical images. Intuitively, the higher
the resolution of the image is, the higher the sparsity level of the edges is. However, in the
KMIST dataset, due to the low resolution of the images, the edges constitute a considerable
fraction of the total pixels. Therefore, a TV regulariser could be sub-optimal. In KMNIST,
it is difficult to clearly distinguish (in TV sense) what is part of the image structure, what
is part of the background. The stroke is only a few pixels wide, and ground-truth pixel
values are generated through interpolation (Clanuwat et al., 2018). In future work, we plan
to compare different regularisers, such as an L1 norm.

It is tempting to think that we do not need the PredCP machinery to translate the
TV regulariser into the weight space. Indeed, the Laplace approximation simply involves
a quadratic approximation around a mode of the log posterior, without placing any re-
quirements on the prior used to induce said posterior. Along this line of reasoning, we
can decompose the Hessian of the log posterior log p(θ|yδ) into the contributions from the
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Figure 8: Drawing sample from the linearised posterior over images. Each sample is drawn
from a multivariate Gaussian with mean µf |yδ

and posterior covariance Σf |yδ
.

Samples in the top row are obtained with hyperparameters optimised with MLL.
Samples in the bottom row are, instead, collected using the hyperparameters
optimised with Type-II MAP.

likelihood and the prior as

∇2
θ (log p(yδ|Af(θ)) + log p(f(θ))) |θ=θ∗

and quickly realise that the log of the anisotropic TV prior chosen to be p(f) ∝ exp(−λTV(f))
as in eq. (4) is only once differentiable. Ignoring the the origin (where the absolute value
function is non-differentiable), we obtain:

∇2
θ log p(f(θ))|θ=θ∗ ∝ −∇2

θTV(f(θ))|θ=θ∗ = 0.

Thus, a naive application of the Laplace approximation would eliminate the effect of the
prior, leaving the posterior ill defined.

Appendix D. Derivation of Method Proposed in Section 4

D.1. Posterior Predictive Covariance

We provide an alternative derivation for the posterior predictive covariance, where the
probabilistic reasoning is performed in the weight space. We start from the model introduced
in eq. (5):

yδ|θ ∼ N (yδ;Af(θ), σ2
yI), θ|` ∼ N (θ;0,Σθ)
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and write down the linearized Laplace approximate posterior distribution over weights:

p(θ|yδ) ≈ N (θ;θ∗,Σθ|yδ
) with Σθ|yδ

=
(
σ−2
y A>J>JA +Σ−1

θ

)−1
. (12)

This expression is obtained by substituting the NN f(θ) with the linearised surrogate h and
computing the product of Gaussian prior and posterior. We refer to (Mackay, 1992; Immer
et al., 2021) for a derivation. Then we rewrite the above expression using the Woodbury
matrix inversion identity:

Σθ|yδ
=
(
σ−2
y A>J>JA +Σ−1

θ

)−1
= Σθ − ΣθJ>A>(σ2

yI + AJΣ−1
θ J>A>)−1AJΣ>

θ (13)

The predictive distribution over images can be built by marginalising the NN parameters
in the conditional likelihood p(x|yδ) =

∫
p(x|θ)p(θ|yδ) dθ.

As mentioned in section 5, KMNIST presents spurious high valued pixels away from the
region containing the handwritten character. This presents a problem due to our modelling
assumptions in eq. (1), assuming x is noiseless, and thus our likelihood function from eq. (5)
being defined over the space of observations yδ. We translate the uncertainty induced by the
observation noise to the space of images by computing the conditional log-likelihood Hessian
with respect to f : −∇2

f log p(yδ|f) = σ−2
y A>A ∈ Rdx×dx . This matrix is of rank at most dy,

which can be much smaller than dx due to the ill-conditioning of the reconstruction problem,
and therefore cannot act as a proper Gaussian precision matrix on its own. However, we
incorporate the noise uncertainty from the observation subspace into the image space x by
adding the pseudoinverse σ2

y(A>A)† to the predictive covariance. We move forward with
weight marginalisation when using the linear model to recover the predictive distribution:

p(x|yδ) =

∫
N (x; f(θ∗) + J(θ − θ∗), σ2

y(A>A)†)N (θ;θ∗,Σθ|yδ
) dθ

=N (x; f(θ∗), JΣθ|yδ
J> + σ2

y(A>A)†)
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Figure 9: Evolution of standard marginal likelihood (MLL) and Type-II MAP during opti-
misation along with their individual components. The log TV-PredCP log p(`),
the log-determinant of the posterior Hessian log |H|, the weight-mode log prior
density log p(θ∗), and the observation conditional log-density log p(yδ|θ∗). Traces
in red refer to the optimisation of the exemplary reconstruction shown in fig. 1.
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D.2. Laplace Marginal Likelihood and Type-II MAP eq. (11)

The Laplace method provides an estimate of the model evidence, also known as marginal
likelihood (MLL) or Type-II maximum likelihood, based on a quadratic approximation to
the volume of a mode θ∗ of the log joint log p(yδ,θ) (Mackay, 1992):

log p(yδ) = log

∫
p(yδ,θ) dθ ≈ log

(
p(yδ,θ

∗)(2π)dθ/2| − ∇2
θ log p(yδ,θ)θ=θ∗ |−

1
2

)
, (14)

where the Hessian determinant of the joint log-density with respect to the model parameters
H = −∇2

θ log p(yδ,θ)θ=θ∗ captures the width of the mode θ∗ in question. Expanding the
above expression we have:

log p(yδ) ≈ log p(yδ|θ∗) + log p(θ∗)− 1

2
log |H|+ dθ

2
log(2π). (15)

Note that the observation conditional log-density log p(yδ|θ∗) and the weight-mode log prior
density log p(θ∗) are given respectively by

log p(yδ|θ∗) = −dy
2

log(2π)− 1

2
log |σ2

yI| − 1

2σ2
y

||yδ − Af(θ∗)||22,

log p(θ∗) = −dθ
2

log(2π)− 1

2
log |Σθ| −

1

2
||θ∗||2

Σ−1
θ

.

Accordingly, the Hessian term H can be decomposed into

H = −∇2
θ log p(yδ,θ)θ=θ∗ = −∇2

θ log p(yδ|θ∗)−∇2
θ log p(θ

∗).

Under the linearised approximation (i.e., substituting f(θ) with its first-order Taylor ex-
pansion h = f(θ∗) + J(θ − θ∗)), we obtain:

−∇2
θ log p(yδ|θ∗) = ∇2

θ

1

2σ2
y

||yδ − A(f(θ∗) + J(θ − θ∗))||22 =
1

σ2
y

J>A>AJ.

Trivially, we have −∇2
θ log p(θ

∗) = Σ−1
θ . By the matrix determinant lemma, the determinant

of H is given by

|H| = | 1
σ2
y

J>A>AJ +Σ−1
θ | = |AJΣθJ>A> + σ2

yI||Σ−1
θ || 1

σ2
y

I|. (16)

Finally, recall from eq. (6) that Σθ depends on hyperparameters (σ2
θ, `), which is explic-

itly indicated for the purpose of derivation. Thus, the expanded linearised Laplace model
evidence is given by

logp(yδ;σ
2
y ,σ

2
θ, `)

=− 1

2
log |σ2

yI| − 1

2σ2
y

||yδ − Af(θ∗)||22 −
1

2
log |Σθ(σ

2
θ, `)| −

1

2
||θ∗||2

Σ−1
θ (σ2

θ ,`)

− 1

2
log |AJΣθ(σ

2
θ, `)J>A> + σ2

yI|+ 1

2
log |Σθ(σ

2
θ, `)|+

1

2
log |σ2

yI|+ C

=− 1

2σ2
y

||yδ − Af(θ∗)||22 −
1

2
||θ∗||2

Σ−1
θ (σ2

θ ,`)
− 1

2
log |AJΣθ(σ

2
θ, `)J>A> + σ2

yI|+ C (17)
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where C captures all terms constant with respect to (σ2
y ,σ

2
θ, `). Recall that Σy(σ

2
θ, `) =

AJΣθ(σ
2
θ, `)J

>A>. Next we turn to the Pred-CP TV prior over `:

log p(`;σ2
θ) =

D∑
d=1

−κd + log

∣∣∣∣∂κd∂`d

∣∣∣∣ , with κd := Ep(θd|`d;σ2
d)

∏D
i=1,i6=d δ(θi−θ∗

i )
[λTV(f(θ))] .

Combining this with eq. (17), we obtain a Type-II maximum a posteriori (MAP) objective
from eq. (3):

G(σ2
y , `,σ

2
θ) = log p(yδ, `;σ

2
y ,σ

2
θ) = logN (yδ;0,Σy(`,σ

2
θ) + σ2

yI) + log p(`;σ2
θ)

=
1

2

(
−σ−2

y ||yδ − Af(θ∗)||22 − ||θ∗||2
Σ−1

θ (`,σ2
θ)

− log |Σy(`,σ
2
θ) + σ2

yI|
)

+
D∑

d=1

−κd(`d, σ
2
d) + log

∣∣∣∣∂κd(`d, σ2
d)

∂`d

∣∣∣∣+ C.

Figure 9 shows the evolution of standard marginal likelihood (MLL) and Type-II MAP
during optimisation along with their individual components. The TV-PredCP introduces
additional constraints into the model by encouraging the prior to contract (stronger param-
eter correlations and smaller marginal variances as shown in fig. 3). This prior concentrates
a higher density on θ∗. In turn, this results in a more contracted posterior which we ob-
serve as a larger Hessian determinant. The conditional data density is unaffected by the
TV-PredCP.

Appendix E. Monotonicity of the TV in the Prior Lengthscales

In order to apply the change of variables formula in eq. (7), we require bijectivity in the
relationship between `d and κd := Ep(θd|`d)

∏D
i=1,i 6=d δ(θi−θ∗

i )
[TV(f(θ))]. In the current set-

ting, both variables are one-dimensional, making this constraint easier to satisfy. In fact, it
suffices to show monotonicity between the two. We estimate the relationship between this
variable pair empirically for every convolutional block in the U-net using Monte Carlo.

Figure 10: Experimental evidence of monotonicity in the non-linearised network. κ is esti-
mated with 1000 Monte Carlo samples.

The results are displayed in fig. 10. In practise, we work with the linearised model in
eq. (9) for the purposes of inference. In fig. 11, we show very compelling numerical evidence
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for the monotonicity. We observe that κ increases in ` since large values for ` lead to
an increased marginal variance σ2

θ over images. Just as expected, after fixing the marginal
variance to 1, we observe that the lengthscales have a monotonically decreasing relationship
with the expected TV.
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Figure 11: Experimental evidence of monotonicity for the linearised network. κ is estimated
with 500 Monte Carlo samples. In the bottom row we fix the marginal variance
in image space to be 1. This allows us to observe the smoothing effect from `.

However, analytically studying the monotonicity can be a delicate matter. A simple
analysis follows on the bijectivity of the mapping in the linear setting, which is of great
interest as it matches our experimental setup.

κd =Ep(θd|`d)
∏D

j=1,j 6=d δ(θj−θ∗
j )
[TV(h(θ))]

=Ep(θd|`d)
∏D

j=1,j 6=d δ(θj−θ∗
j )

[∑
i

|h(θ)i − h(θ)i+1|
]
, (18)

assuming that the output is a one-dimensional signal so there is only one derivative to
simplify the discussion. First we interpret the distribution of h(θ)i − h(θ)i+1. Note that
h(θ) can be written as h(θ) = C + J(θ− θ∗), by slightly abusing the notation C to denote
the terms constant with respect to `d and i indexes an entry of (Jθ) ∈ Rdx . Thus, we can
rewrite this expression as an inner product between two vectors:

h(θ)i − h(θ)i+1 = (Jθ)i − (Jθ)i+1 = (Ji − Ji+1)θd = viθd,

where Ji ∈ R1×dθd denotes our NN’s Jacobian for a single output pixel i (i.e., the ith row
of the Jacoian matrix J, corresponding to the block parameters θd, which has a length dθd)
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and vi = Ji − Ji+1 ∈ R1×dθd , i = 1, . . . , dx − 1. Now, recall that the block parameters θd is
distributed as

θd ∼ N (θd;0,Σd(`d, σ
2
d)),

in the expectation in (18), whereas the remaining parameters are fixed at the mode θ∗
j ,

j 6= d, i.e.,
∏D

j=1,j 6=d δ(θj − θ∗
j ). Let Vd ∈ R(dx−1)×dθd correspond to the stacking of the

vectors vi ∈ R1×dθd , i.e., the Jacobian of the network output with respect to the weights in
convolutional group d. Since the affine transformation of a Gaussian distribution remains
Gaussian, Vdθd is distributed according to

Vdθd ∼ N (0,VdΣdV
>
d ).

Note that the matrix VdΣdV
>
d is not necessarily invertible, and if not, as usual, the inverse

covariance should be interpreted in the sense of pseudo-inverse. Let a =: Vdθd ∈ Rdx−1.
Then we can rewrite our quantity of interest as

κd = Ea∼N (0,VdΣdV
>
d )

[∑
i

|ai|
]
=
∑
i

Eai∼N (0,viΣdv
>
i )[|ai|]. (19)

The distribution of |ai| can be expressed in terms of the truncated normal distributions.
It is known that the expectation increases monotonically with the variance viΣdv

>
i . It

remains to examine the monotonicity of viΣdv
>
i in `d. Indeed, by the definition of Σd, we

have
∂

∂`d
viΣdv

>
i = vi

∂

∂`d
Σdv

>
i .

Direct computation gives

∂

∂`d
[Σd(`d)]j,j′ =

∂

∂`d
σ2
d exp

(
− ∆(j, j′)

`d

)
=

σ2
d∆(j, j′)

`2d
exp

(
− ∆(j, j′)

`d

)
,

and thus
∂

∂`d
viΣdv

>
i =

σ2
d

`2d

∑
j

∑
j′

vi,j∆(j, j′) exp
(
− ∆(j, j′)

`d

)
vi,j′ .

Then it follows that if the vectors vi were arbitrarily, the monotonicity issue essentially
rests on the positive definiteness of the associated derive kernel. For example, for the

standard Gaussian kernel e−
(x−y)2

`d (i.e., ∆ is the squared Euclidean distance), we need to

verify the positive definiteness of the kernel k(x, y) = (x − y)2e
− (x−y)2

`d . This issue seems
generally challenging to verify directly, since (x−y)2 is not a positive semidefinite kernel by

itself on R, even though the Gaussian kernel e−
(x−y)2

`d is indeed positive semidefinite. Thus,
one cannot use the standard Schur product theorem to conclude the positive definiteness.
Alternatively, one can also compute the Fourier transform of the kernel k(x) = x2e−x2

directly, which is given by

F [k(x)](ω) =
2− ω2

4

1√
2
e−

ω2

4 .
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Clearly, the Fourier transform is not positive over the whole real line R. By Bochner’s
theorem, this kernel is actually not positive. The fact that the kernel is no longer positive
definite makes the analytical study challenging. This indicates the risk for a potential non-
monotonicity in `. Nonetheless, we emphasise that this condition is only sufficient, but not
necessary. We leave a full investigation of the monotonicity to a future work, given the the
compelling empirical evidence for monotonicity in both the NN and linearised settings.
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