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Abstract

Machine Translation (MT) has considerably001
improved over the years, especially with the002
introduction of neural approaches. However,003
such approaches lack the ability to tackle sce-004
narios like domain adaptation and low-resource005
settings due to their dependence on only their006
parametric knowledge. We explore using a re-007
trieval mechanism for MT and provide a de-008
tailed analysis of the quantitative and quali-009
tative improvements obtained by its use. We010
introduce RAGMT, a retrieval augmented gen-011
eration (RAG)-based multi-task fine-tuning ap-012
proach for Machine Translation (MT) using013
non-parametric knowledge sources. We also014
propose using new auxiliary training objec-015
tives that improve the performance of RAG for016
domain-specific MT. To the best of our knowl-017
edge, we are the first to adapt the RAG frame-018
work with a multi-task training objective for019
MT to support end-to-end training. Our exper-020
iments demonstrate that retrieval-augmented021
fine-tuning of MT models under the RAGMT022
framework results in an average improvement023
of 12.90 BLEU scores compared to simple fine-024
tuning approaches on English-German domain-025
specific translation. We also demonstrate026
RAGMT’s ability to exploit in-domain knowl-027
edge bases versus domain-agnostic ones and028
perform careful ablations over the model com-029
ponents. Qualitatively, RAGMT is easily inter-030
pretable, stylistically aligns translation outputs031
to the domain of interest, and appears to demon-032
strate “copy-over-translation” behaviour with033
respect to named entities.034

1 Introduction035

Neural Machine Translation (NMT) has shown sig-036

nificant improvements in its ability to produce high-037

quality translations. However, NMT systems often038

struggle to maintain accuracy and fluency in spe-039

cialized domains such as medicine, law, and infor-040

mation technology, where domain-specific termi-041

nology, sentence structures, tone and context play a042

crucial role (Chu and Wang, 2018, 2020). General 043

translation models trained on generic datasets lack 044

the ability to capture the nuances and intricacies 045

of these specialized domains, leading to subop- 046

timal translation quality that may fail to convey 047

the intended meaning accurately. This serves as 048

a strong motivation for us to explore the use of 049

non-parametric methods, specifically RAG. 050

The problem of domain adaptation of translation 051

can be stated as obtaining high-quality translation 052

for a specific domain of interest. When fine-tuning 053

a pretrained NMT model for a particular domain, 054

some of the key challenges include limited avail- 055

ability of in-domain data, catastrophic forgetting, 056

and inadequacy to adapt to domain style and tonal- 057

ity (Saunders, 2021). 058

Integrating non-parametric memory to paramet- 059

ric neural networks (Khandelwal et al., 2019; Guu 060

et al., 2020; Lewis et al., 2020) has shown great 061

promise when it comes to language models. For 062

the task of MT, various approaches and integra- 063

tion of different types of non-parametric memories 064

have been explored (Bulté and Tezcan, 2019; Mous- 065

sallem et al., 2019; Zhao et al., 2020; Khandelwal 066

et al., 2020; Zhang et al., 2021; Cai et al., 2021; He 067

et al., 2021; Hoang et al., 2022; Cheng et al., 2023). 068

By incorporating relevant information from these 069

external sources, MT systems can produce more 070

accurate and contextually appropriate translations 071

tailored to the specific domain. 072

Despite their differences, all the approaches men- 073

tioned above either lack the ability to train the 074

model to effectively utilize the retrieved documents 075

and train the memory retriever to retrieve contex- 076

tually highly relevant documents or fail to make 077

use of weak signals to train the retrieval mecha- 078

nism. For better domain adaptation, we require 079

to train a model in such a way that it improves 080

the downstream translation task along with its abil- 081

ity of domain-style adaptation and accurate entity 082

translation. Although it has been shown that trans- 083
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lation quality improves with retrieval mechanisms,084

no methodology to train the NMT and retriever085

component jointly for domain adaptation has been086

explored.087

In this work, we propose a novel fine-tuning088

approach RAGMT to enhance MT systems us-089

ing an end-to-end multi-task RAG framework for090

retrieval-augmented machine translation. Our ap-091

proach builds upon the RAG framework (Lewis092

et al., 2020), combining document retrieval with a093

generative model to produce translations enriched094

with domain-specific knowledge. We utilize a095

multi-task framework and introduce an explicit doc-096

ument similarity term to the training objective of097

retrieval-augmented NMT. This results in improved098

effectiveness of the model for domain-adaptation099

scenarios.100

Our contributions are:101

1. RAGMT (section 3), a new RAG-based multi-102

task fine-tuning approach for machine trans-103

lation with a new end-to-end training objec-104

tive, along with Entity masked language mod-105

elling (MLM) as an auxiliary task (Song et al.,106

2019) and explicit document similarity term that107

boosts documents that are very similar to the108

source sentence, in contrast, penalizing docu-109

ments that are further off.1110

2. In-depth analysis (section 5) of our proposed111

approach on domain-specific machine trans-112

lation using knowledge graphs (KG) as non-113

parametric sources. Compared with neural and114

retrieval-based baselines, we achieve an aver-115

age improvement of +12.90 BLEU score across116

domains. Additionally, we demonstrate that117

domain-specific knowledge sources provide an118

average improvement of +0.625 BLEU score119

over domain-agnostic sources.120

3. Ablation study (section 5) on the proposed121

RAGMT training objective, quantifying the122

contribution of each loss term. Our analysis123

highlights the impact of the document similar-124

ity term with an average improvement of 1.125125

BLEU scores across domains.126

We intend RAGMT to be a generalized frame-127

work for retrieval-augmented fine-tuning of NMT128

models. Hence, we describe it as a modular frame-129

work with flexible plug-and-play components.130

1The codebase for RAGMT and the datasets to replicate
our results will be released upon publication.

2 Background and Related Work 131

Domain-specific Machine Translation Trans- 132

former models, such as Raffel et al. (2019), Lam- 133

ple and Conneau (2019), Shazeer et al. (2017), and 134

NLLB Team et al. (2022), have become founda- 135

tional in NMT due to their ability to handle com- 136

plex linguistic structures and long sequences. Re- 137

cent works, including Alves et al. (2024), Wei et al. 138

(2021), Yang et al. (2023) and Zhang et al. (2023) 139

explore the use of LLMs for translation. 140

Despite these advancements, general models 141

struggle to perform well in domain adaptation sce- 142

narios. For domain-specific MT, methods such 143

as Luong and Manning (2015); Khayrallah et al. 144

(2018); Thompson et al. (2019a,b); Lu et al. (2023); 145

Ghazvininejad et al. (2023); Moslem et al. (2023); 146

Anonymous (2024) have been proposed. 147

Some methodologies, including Khandelwal 148

et al. (2020); Cai et al. (2021); Hoang et al. 149

(2022); Ghazvininejad et al. (2023); Moslem et al. 150

(2023), are particularly focused on integrating non- 151

parametric knowledge in the process of translation. 152

Retrieval for Text Generation. This class of 153

techniques represent methods for integrating ex- 154

ternal knowledge for text generation. Retrieval 155

Augmented Generation (RAG) (Khandelwal et al., 156

2019; Guu et al., 2020; Lewis et al., 2020; 157

Borgeaud et al., 2021) combines information re- 158

trieval with generation, allowing to leverage re- 159

trieved documents for better context. Works in- 160

cluding Karpukhin et al. (2020); Siriwardhana et al. 161

(2022) advance RAG models in open-domain ques- 162

tion answering through domain adaptation. Re- 163

trieval augmented text generation has significant 164

advancements, including Lin et al. (2023); Asai 165

et al. (2023); Xu et al. (2023); Wang et al. (2023); 166

Shi et al. (2023). Recent work has also focused 167

on retrieval-augmented fine-tuning, including Lin 168

et al. (2023); Wang et al. (2023); Xu et al. (2023); 169

Liu et al. (2024); Zhang et al. (2024). 170

3 RAGMT 171

In this section, we describe the proposed RAGMT 172

approach. First, we formulate machine translation 173

as a retrieve-then-generate process in section 3.1. 174

We then describe the constituent components of 175

RAGMT in section 3.2. RAGMT is described as 176

a framework that allows for end-to-end retrieval- 177

augmented training of NMT models with inter- 178

changeable plug-and-play components. In sec- 179
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tion 3.3, we formulate the auxiliary task used in180

RAGMT. Lastly, in section 3.4, we describe how181

the components of RAGMT are optimized end-to-182

end.183

3.1 Problem Formulation184

Given an input sentence S in the source language,185

S = (s1, s2, . . . , sm), the problem of retrieval-186

augmented machine translation can be formulated187

as finding the target sentence, T̂ = (t1, t2, . . . , tn),188

by first retrieving a set of helpful documents, D =189

{di}Ki=1, from an external knowledge base, where190

K is the number of retrieved documents. Then,191

the generation of the target sentence is conditioned192

on both the source sentence, S, along with the193

documents from the retrieved set, D, as given by194

equation (1).195

T̂ = argmax
T

∑
d∈D

P (d|S)P (T |d, S) (1)196

Knowledge base is a generic term denoting various197

structures, including KG triples, textual documents,198

and precomputed embeddings.199

3.2 Overview200

RAGMT framework (illustrated in Figure 1) con-201

sists of four main components: knowledge base,202

retriever, integrator and generator. The knowledge203

base is a collection of documents that can consist of204

structured information, such as KGs and wordnets,205

or unstructured information, such as translation206

memory.207

Similar to Bromley et al. (1993), we use a dual208

encoder structure for the retriever. It consists of209

the document encoder, EncoderD and the source210

encoder, EncoderS . The relevance score between211

a source sentence S, and a candidate document, d,212

is defined as the dot product of their encodings:213

f(S, d) = EncoderD(d)
TEncoderS(S)214

The encoding of the documents is generated using215

the document encoder and is stored in a vector216

index. We use FAISS (Johnson et al., 2019) for this217

purpose. When a source sentence is provided to218

the retriever, it encodes the sentence and passes it219

to FAISS to retrieve the most relevant documents220

from the knowledge base. The retriever component221

Pη(d|S), parametrized by η gives the relevance of222

the document d, given the source sentence, S as:223

Pη(d|S) ∝ exp(EncoderD(d)
TEncoderS(S)) 224

Given the source sentence, S, and the retrieved 225

set of documents, D, the generator finally performs 226

the downstream translation task and the auxiliary 227

task of entity MLM (described in section 3.3). The 228

conditional probability for a translation candidate 229

T , given by the generator for the translation task, 230

is defined as: 231

P (T |S,D) =
n∏
i=i

P (ti|S,D, t<i) 232

=
n∏
i=i

∑
d∈D

Pη(d|S)Pθ(ti|S, d, t<i) 233

where, Pθ(ti|S, d, t<i), parametrized by θ, gives 234

the probability of generation of the current token, 235

ti, based on the source sentence, S, one of the 236

documents from the retrieved set of documents, d 237

and the previous generation context, t<i. 238

As there is no optimal strategy for encoding the 239

retrieved documents and the source sentence to 240

prepare the input for the generator, we introduce 241

a plug-and-play integrator component. Different 242

types of knowledge bases can require different in- 243

tegration strategies. KGs, for example, have struc- 244

tural information, which needs to be encoded in 245

the input to the generator (Shen et al., 2020; Sun 246

et al., 2020; Wen et al., 2024). The simplest inte- 247

gration strategy is to prepend the source sentence 248

with documents from the retrieved set. 249

RAGMT enables training of the two paramet- 250

ric components, the retriever and the generator, 251

with the use of different knowledge bases and in- 252

tegration strategies. Similar to Lewis et al. (2020), 253

RAGMT does end-to-end propagation of the gradi- 254

ents, allowing for joint training of the two compo- 255

nents. 256

The translation output is obtained using the gen- 257

erator with the loss function, LG, as given in equa- 258

tion 2. 259

LG = −
n∑

i=1

logP (ti|S,D, t<i) (2) 260

3.3 Auxiliary Task: Entity Masked Language 261

Modelling 262

We introduce an auxiliary task derived from entity- 263

masked language modelling (E-MLM) (Song et al., 264
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Retriever

Knowledge
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{ed1, ed2, ..., edk}
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EncoderS
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Output

{sd1, sd2, ..., sdk}

Integrator

Training
Objective

Generator 
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Output

Figure 1: RAGMT Architecture: The KB consists of documents to be retrieved, which are indexed using FAISS
over the embeddings computed using EncoderD. For a source sentence, S, The retriever first encodes S using
EncoderS, then retrieves documents using the FAISS index. The retrieved documents, along with the source sentence,
are then inputs for the Integrator, which outputs the formatted input to be used by the Generator.

2019; Siriwardhana et al., 2022) training to en-265

hance the model’s capacity to integrate external266

knowledge. This auxiliary task supplements the267

primary training objective by providing additional268

context about named entities in the input text. By269

training the model to predict masked entities within270

the input text, we aim to improve its understand-271

ing of domain-specific terminology and entities,272

enhancing translation accuracy and domain adapta-273

tion capabilities.274

For a particular training pair, (S, T ), where S is275

the source sentence and T is the target sentence,276

let the retrieved results from the retriever be D =277

R(S) = top− k(Pη(.|x)) = {d1, . . . , dK} where278

η parameterizes the retriever model, R. Let SM be279

the source sentence with named entities masked.280

The task of entity MLM is to predict the masked281

entities in the source sentence, given the set D and282

SM , as stated in Equation (3).283

Ŝ = argmax
S

P (S|SM , D) (3)284

This auxiliary task is a form of multi-task learn-285

ing, where multiple learning tasks are performed286

simultaneously, and each task aids the learning of287

the other task.288

Equation (4) below shows the loss function for289

entity MLM loss, where M = {m1,m2, . . . ,mk}290

is the set of positions in the entity masked source291

sentence, corresponding to named entities.292

LMLM = −
∑
m∈M

logP (ŝm = sm|SM , D) (4)293

where ŝm denotes the source token predicted by294

the generator.295

With its entity reconstruction objective, the en-296

tity MLM loss further aligns the model’s outputs297

with the retrieved documents. This auxiliary loss 298

complements the primary loss (LG) by encouraging 299

the model to produce fluent, accurate translations 300

closely aligned with the content and context of the 301

retrieved documents. 302

3.4 Training 303

Along with the generator loss, LG, RAGMT ex- 304

plicitly models the similarity between the source 305

sentence, S, and the retrieved document set, D = 306

{di}Ki=1 with a document similarity-based loss, LD, 307

as given in equation 5. 308

LD =

(
−

K∑
i=1

log(sdi)

)
(5) 309

where, sdi is given by f(S, di). 310

The model parameters of RAGMT, η and θ are 311

optimized using the final training objective: 312

L = LG · LD + LMLM 313

where LG is the generator model’s loss and LMLM 314

is the entity MLM loss, and LD is the docu- 315

ment similarity term. The first component of the 316

RAGMT training objective is a product between 317

LG and LD, as both the retrieval and generation 318

processes are mutually dependent. By multiplying 319

the two terms, we enforce that both retrieval and 320

generation work well together. If the retrieval com- 321

ponent retrieves irrelevant documents, the transla- 322

tion generated suffers; conversely, if the generator 323

doesn’t utilize the retrieved documents effectively, 324

the overall translation still suffers.2 325
2We conducted experiments with the more traditional for-

mulation of the training objective, L = LG + LD + LMLM,
but found that our formulation performs significantly better
where the external knowledge base actively contributes to the
generation.
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Domain # Training Samples # KG Triples
Law 222927 454148
Medical 17982 37176
Koran 467310 753082
IT 248099 471002

Table 1: Dataset statistics: English-German Domain
Specific Parallel Corpus. The table shows the number of
training data points in the dataset, along with the number
of knowledge graph triples extracted as described in
section 4.1.

Model Name IT Koran Law Medical
Baseline FT 38.35 16.26 45.48 39.99

Hoang et al. (2022) 33.84 27.53 52.17 46.95
Khandelwal et al. (2020) 48.63 19.22 61.11 54.54

Cai et al. (2021) 35.33 16.26 53.97 50.32
Ghazvininejad et al. (2023) 33.58 20.34 45.92 50.38

RAGMT 49.12 26.99 61.23 54.36

Table 2: Comparison of BLEU score of different setups
on domain adaptation. Each setup is described in section
4.

4 Experiments326

4.1 Dataset327

We utilized the English and German parallel corpus328

from Aharoni and Goldberg (2020), a re-split ver-329

sion of the multi-domain data set from Koehn and330

Knowles (2017). The dataset comprises Law, Med-331

ical, Koran, IT and Subtitles domains. We leave332

out the Subtitles domains from all our experiments333

since the data lacks consistency in terms of the334

constituent topics. Hence, a cohesive knowledge335

base could not be constructed from the data. Each336

domain consists of 2000 validation and 2000 test337

points.338

For our main experiment, comparing the domain339

adaptation of MT, we use the complete training sets340

of each domain and translate in German-to-English341

direction.342

For all the other experiments, we use a randomly343

sampled subset of 15000 data points from the train-344

ing set of each domain. This was done primar-345

ily for two reasons: 1) We wanted to restrict the346

amount of available fine-tuning data to reflect real-347

world settings where domain-specific fine-tuning348

data is limited. 2) Our available compute was insuf-349

ficient to run experiments using the entire training350

datasets. In this constrained setting, we have care-351

fully compared it against existing baseline systems,352

as detailed below.353

Knowledge Base We conduct all our experi-354

ments with a knowledge base made up of knowl- 355

edge graphs. For this purpose, we extract in- 356

domain knowledge graphs for each domain men- 357

tioned above, using a pre-trained multilingual 358

model, REBEL (Resource Extraction from BERT 359

Embeddings for Linked data) (Cabot and Navigli, 360

2021). The dataset statistics have been depicted in 361

table 1. 362

4.2 Implementation Details 363

RAGMT is set up with a retriever based on Dense 364

Passage Retrieval (DPR) (Karpukhin et al., 2020) 365

and generator based on NLLB200 (NLLB Team 366

et al., 2022).34 367

The RAGMT setup that we use for our experi- 368

ments consists of the following components: 369

1. Knowledge Base: We use knowledge graphs as 370

the knowledge base. Each document consists of a 371

KG triple of the form, <h,r,t>, where h is the head, 372

t is the tail, and r is the relationship of the triple, 373

respectively. 374

2. Retriever: The retriever consists of a dual- 375

encoder setup, as described in section 3.2. We 376

use Dense Passage Retrieval (DPR) (Karpukhin 377

et al., 2020) for the document and source encoders. 378

3. Generator: We use the pre-trained 600M param- 379

eter checkpoint of NLLB-200 (NLLB Team et al., 380

2022) as the generator. 381

4. Integrator: For all our experiments, we use 382

the simple integration strategy of prepending the 383

source sentence, S, with the retrieved document, d, 384

so the input for the generator after we obtain the 385

retrieved set of documents, becomes <d, [SEP], 386

S>. 387

4.3 Baselines 388

RAGMT is compared with the following baselines: 389

Baseline FT, Khandelwal et al. (2020), Hoang et al. 390

(2022), Cai et al. (2021) and Ghazvininejad et al. 391

(2023). We consider an NMT model fine-tuned 392

without any retrieval mechanism as our baseline 393

(Baseline FT). For this purpose, we fine-tune the 394

600M parameter checkpoint of NLLB-200 NLLB 395

Team et al. (2022).56 396

3Available at: https://huggingface.co/facebook/
nllb-200-distilled-600M

4We discuss the training details in appendix A.
5Details about the compared models are presented in ap-

pendix B.
6We couldn’t compare our work with (Anonymous, 2024),

as the code was not publicly available, and the experimental
settings presented in their work differ from ours.
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BLEU chrF++ TER BERTScore COMET
Domain Baseline FT RAGMT Baseline FT RAGMT Baseline FT RAGMT Baseline FT RAGMT Baseline FT RAGMT

German → English
IT 38.35 49.12 55.00 72.50 52.23 33.42 0.89 0.89 0.68 0.80

Koran 16.26 26.99 30.50 44.00 75.42 58.66 0.60 0.75 0.45 0.58
Law 45.48 61.23 60.00 78.00 40.65 28.58 0.85 0.91 0.75 0.85

Medical 39.99 54.36 54.50 74.50 50.76 31.75 0.78 0.88 0.70 0.83
English → German

IT 35.36 45.32 61.28 65.12 50.43 44.56 0.89 0.90 0.48 0.60
Koran 18.43 24.34 43.67 40.23 68.12 70.15 0.83 0.78 0.25 0.30
Law 42.34 57.23 66.45 68.75 45.87 42.10 0.91 0.93 0.58 0.65

Medical 37.54 50.34 63.12 64.80 48.35 46.25 0.90 0.91 0.53 0.55

Table 3: Comparison of metrics for the baseline and RAGMT setups in En−→De and De−→En directions.

Model Name BLEU chrf++ TER BERTScore COMET
Law Domain

(1) Baseline FT 35.45 60.07 47.51 0.84 0.51
(2) ConceptNet 36.23 61.73 45.18 0.81 0.52
(3) In-domain KG 37.42 62.12 43.79 0.82 0.54

Medical Domain
(1) Baseline FT 36.60 57.26 42.33 0.78 0.55
(2) ConceptNet 38.82 58.61 42.15 0.79 0.56
(3) In-domain KG 39.12 59.12 41.55 0.83 0.58

Koran Domain
(1) Baseline FT 20.85 43.02 63.21 0.74 0.21
(2) ConceptNet 22.56 45.94 62.22 0.79 0.28
(3) In-domain KG 22.34 44.37 61.78 0.76 0.30

IT Domain
(1) Baseline MT 27.77 48.69 54.64 0.79 0.38
(2) ConceptNet 28.71 48.92 53.37 0.78 0.38
(3) In-domain KG 29.94 49.12 52.30 0.81 0.41

Table 4: Comparison of domain-agnostic vs domain-
specific knowledge graph with RAGMT across various
domains.

Baseline FT RAGMT
Training Latency 1x 3x
Inference Latency 1x 1.71x

Table 5: Comparison of latency between baseline fine-
tuning approach and RAGMT fine-tuning

Approach Law Medical Koran IT
Baseline FT 35.45 36.60 20.85 27.77

RAGMT - w/o LMLM 37.17 39.02 21.98 29.68
RAGMT - w/o LD 36.52 38.94 20.64 28.21

RAGMT 37.42 39.12 22.34 29.94

Table 6: Ablation on the RAGMT training objective.
The BLEU scores obtained across all the domains, using
different settings described in section 5.

Example Retrieved Documents Translation Outputs
(Source)
Your doctor will prescribe
Truvada with other
antiretroviral medicines.

(Reference Transalation)
Ihr Arzt wird Ihnen
Truvada in Kombination
mit anderen
antiretroviralen
Arzneimitteln verschreiben.

(1)
Truvada
instance of
antiretroviral combination
therapy
(2)
Truvada
instance of
antiretroviral therapies

Ihr Arzt wird
Truvada zusammen
mit anderen
antiretroviralen
Arzneimitteln
verschreiben.

(Source)
Convert current frame to
an inline frame

(Reference Translation)
Aktuellen Rahmen in
einen im Text mitfließenden
Rahmen umwandeln

(1)
convert files
facet of
file format
(2)
inline frames
type of
frames

Aktuellen Rahmen
in einen
Inline-Rahmen
umwandeln

Table 7: Example translation using RAGMT. The
retrieved documents are contextually relevant to the
source as well as target sentence, with the retrieved enti-
ties being used in both the source as well as the target
sentence.

4.4 Evaluation 397

For evaluating the performance of all the setups 398

in our experiments, we utilize a comprehensive 399

set of metrics, including BLEU (Post, 2018), 400

chrF++ (Popović, 2015), TER (Snover et al., 2006), 401

BERTScore (Zhang et al., 2019) and COMET (Rei 402

et al., 2020).7 403

5 Results and Analysis 404

Domain adaptation of MT. We first test if fine- 405

tuning the proposed framework using a domain- 406

specific dataset, with a retrieval mechanism ap- 407

plied over an in-domain KG, would improve perfor- 408

mance over the baseline approaches. Table 2 shows 409

the BLEU scores of all the compared approaches 410

on the domain adaptation experiment for German 411

to English translation. Compared to the Baseline 412

MT, RAGMT improves performance by an average 413

of 12.90 BLEU scores, with the largest improve- 414

7We defer the discussion on metrics other than BLEU score
to appendix.
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ment on the Law domain data with 15.75 BLEU415

score improvement. This signifies that fine-tuning416

an NMT model using the RAGMT framework for417

MT on a domain-specific dataset with access to418

an in-domain knowledge base, such as KGs, helps419

improve the performance of the MT model. Com-420

paring the proposed RAGMT framework with the421

Khandelwal et al. (2020), we observe an average422

improvement of 2.05 BLEU scores, with the largest423

improvement of 7.77 BLEU scores on the Koran424

domain.425

To further test the generalizability of RAGMT,426

we conduct experiments in both translation direc-427

tions. The results across various metrics have been428

shown in table 3 for the baseline fine-tuning ap-429

proach and RAGMT.430

Domain-specific KG vs Domain-agnostic KG.431

We explore the effects of using an in-domain knowl-432

edge base as opposed to a domain-agnostic knowl-433

edge base. We use the domain-specific KGs ex-434

tracted for each domain (as described in section 4.1)435

for fine-tuning RAGMT for the respective domain.436

We use ConceptNet (Speer et al., 2016) as our437

domain-agnostic KG. Table 4 shows the difference438

in the performance of the RAGMT framework with439

in-domain KG instead of using a domain-agnostic440

KG. Using domain-specific KG, we observe an av-441

erage improvement of 0.62 BLEU scores over the442

use of ConceptNet, with improvements in three443

of the four domains. We analyze the performance444

degradation in the Koran domain later in this sec-445

tion.446

Latency RAGMT employees a retrieve-then-447

translate mechanism with end-to-end gradient prop-448

agation during training. Compared to the baseline449

fine-tuning approach, RAGMT introduces addi-450

tional parameters due to the addition of the retriever451

component. We compare the latency incurred by452

RAGMT fine-tuning over the baseline fine-tuning453

approach. For both the training and inference, we454

retrieve top 5 documents from the knowledge base.455

We observe that RAGMT is nearly 3 orders of456

magnitude slower than the baseline during train-457

ing, while nearly 1.7 orders of magnitude slower458

during inference.459

Ablations on the RAGMT training objective.460

We analyze the contribution of each of the con-461

stituent components of the training objective as462

described in section 3.4. We compare the perfor-463

mance of RAGMT framework under the following464

settings: (1) RAGMT - w/o LMLM, the RAGMT 465

training objective without the loss from the En- 466

tity MLM component; (2) RAGMT - w/o LD, the 467

RAGMT objective without the explicit Document 468

Similarity component; and (3) RAGMT, the train- 469

ing objective as described in section 3.4. 470

Table 6 presents the BLEU score comparison 471

across domains for each ablation. Across all do- 472

mains, the variations of the RAGMT training objec- 473

tive result in higher BLEU scores than the baseline. 474

The obtained results signify that the Document Sim- 475

ilarity component substantially contributes to the 476

training objective with an average difference of 477

1.12 BLEU score due to its removal. The loss from 478

the Entity MLM component results in an average 479

difference of 0.24 BLEU scores across domains. 480

Overall, we observe consistent improvement in per- 481

formance across domains with the addition of each 482

of the two components, showing the efficacy of the 483

proposed RAGMT training objective and justifying 484

the inclusion of each component. 485

Quantitative and Qualitative Analysis. We 486

quantitatively analyze the benefits of using a non- 487

parametric knowledge base for MT using the 488

RAGMT framework by looking at the entity over- 489

lap in the translation outputs. More precisely, for 490

each entity present in the translation output, we cat- 491

egorize the entity into four categories: (1) Present 492

only in the source sentence; (2) Present only in the 493

knowledge base; (3) Present in both; (4) Present in 494

neither. While using an in-domain datastore, on av- 495

erage, the entities are present in both the source sen- 496

tence and knowledge base 38.5% times, as opposed 497

to the domain-agnostic knowledge base, where en- 498

tities are present 35.25% times. Compared with 499

the domain-agnostic KG, we see a lower propor- 500

tion of entities being exclusively present only in 501

the KG for all domains except Koran. Unlike the 502

other three domains, Koran has 19% translated enti- 503

ties exclusively present in the domain-agnostic KG 504

setup and only 11% translated entities exclusively 505

present in the domain-specific KG. This poten- 506

tially explains why the domain-agnostic KG yields 507

higher BLEU scores for the Koran domain com- 508

pared to the domain-specific KG. Table 7 shows 509

a few examples of translations performed using 510

the RAGMT framework. For the second example 511

(taken from the IT domain), we can observe that the 512

reference translation does not consist of the phrase 513

inline frame, but it is present in the translation out- 514

put. 515
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To further investigate the domain adaptation ca-516

pabilities of RAGMT, we conducted a clustering-517

based analysis. Specifically, a domain fine-tuned518

BERT (Devlin et al., 2019) encoder was employed519

to extract dense representations of target-side sen-520

tences from the training sets across different do-521

mains. These representations were used to iden-522

tify cluster centers for each domain. We then523

evaluated how closely the translations generated524

by the RAGMT system aligned with their respec-525

tive domain-specific cluster centers. On average,526

the translations achieved an alignment accuracy of527

89%, with the law domain exhibiting the highest528

accuracy at 95%, and the Koran domain demon-529

strating the lowest accuracy at 79%.530

6 Conclusion and Future Work531

We address the shortcomings of NMT models due532

to their reliance on just their parametric knowledge.533

We present RAGMT, a RAG-based multi-task MT534

fine-tuning approach to enhance machine transla-535

tion using non-parametric knowledge bases. Com-536

pared to existing baselines, we show the efficacy537

of our approach to the problem of domain-specific538

MT using knowledge graphs as the knowledge base.539

Our approach improves the performance of the540

baseline MT model using both domain-agnostic541

and domain-specific knowledge graphs across all542

domains. For future work, we aim to use the pro-543

posed framework for other nuanced MT tasks, such544

as low-resource language adaptation, accurate en-545

tity translation, and usage of other non-parametric546

knowledge sources.547

7 Limitations548

• We study the efficacy of RAGMT for the set-549

ting of domain-adaptation of MT. The same550

framework can be adapted for low-resource551

MT settings, however, the efficacy and analy-552

sis of RAGMT for such a setting is yet to be553

studied.554

• There is an inherent trade-off with increasing555

the number of retrieved documents using RAG556

versus improving BLEU scores. The former557

can improve the quality of the generated trans-558

lations but leads to increased computational559

overhead. This balance needs to be considered560

depending on the downstream task.561
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A Training Details871

All models have their maximum input and output872

length set to 1024. We use the Adam optimizer873

(Kingma and Ba, 2014) and train each setup for a874

maximum of 50K steps. All the models are trained875

with fp16 precision. We extract the top 5 docu-876

ments from the knowledge base for all our experi-877

ments. As described in section 3.2, we use FAISS878

(Johnson et al., 2019) to index the knowledge base879

encoding for faster retrieval during training and880

inference time.881

B Compared Setups882

We compare RAGMT with the following setups:883

• Baseline FT: We consider an NMT model884

fine-tuned without any retrieval mechanism885

as our baseline. For this purpose, we fine-tune886

the 600M parameter checkpoint of NLLB-200887

NLLB Team et al. (2022).888

• Khandelwal et al. (2020): This approach uses 889

a k-nearest-neighbour-based retrieval over a 890

translation memory based knowledge base 891

with no additional training of NMT models. 892

• Hoang et al. (2022): This approach uses a 893

fuzzy-matching-based retrieval mechanism 894

over a source-target translation-based knowl- 895

edge base and performs a zero-shot adaptation 896

of NMT models. 897

• Cai et al. (2021): This approach uses mono- 898

lingual translation memory, retrieves them by 899

source side similarity and adopts a dual en- 900

coder (source and target) architecture. 901

• Ghazvininejad et al. (2023): This approach 902

uses LLMs for translation via dictionary- 903

based prompting. 904

C Additional Result Analysis 905

The performance of RAGMT generalizes well 906

across various metrics we use for evaluation. As 907

shown in table 3, RAGMT shows consistent and 908

significant improvement in terms of chrF++, TER, 909

BERTScore and COMET scores, except for the Ko- 910

ran domain, where the baseline FT approach shows 911

better TER and BERTScore values. A similar trend 912

can be observed in table 4, where the in-domain 913

KG performs well compared to domain-agnostic 914

KG for all domains except the Koran domain. We 915

study this behaviour in section 5 by qualitatively 916

analyzing the nature of the Koran domain. 917

The significant improvement shown by the 918

RAGMT system in our experiments indicate its 919

ability for other nuanced MT tasks, such as low- 920

resource adaptation and accurate entity translation, 921

although a detailed study needs to be conducted to 922

conclusively make the claim. 923
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