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Abstract

Machine Translation (MT) has considerably
improved over the years, especially with the
introduction of neural approaches. However,
such approaches lack the ability to tackle sce-
narios like domain adaptation and low-resource
settings due to their dependence on only their
parametric knowledge. We explore using a re-
trieval mechanism for MT and provide a de-
tailed analysis of the quantitative and quali-
tative improvements obtained by its use. We
introduce RAGMT, a retrieval augmented gen-
eration (RAG)-based multi-task fine-tuning ap-
proach for Machine Translation (MT) using
non-parametric knowledge sources. We also
propose using new auxiliary training objec-
tives that improve the performance of RAG for
domain-specific MT. To the best of our knowl-
edge, we are the first to adapt the RAG frame-
work with a multi-task training objective for
MT to support end-to-end training. Our exper-
iments demonstrate that retrieval-augmented
fine-tuning of MT models under the RAGMT
framework results in an average improvement
of 12.90 BLEU scores compared to simple fine-
tuning approaches on English-German domain-
specific translation. We also demonstrate
RAGMT’s ability to exploit in-domain knowl-
edge bases versus domain-agnostic ones and
perform careful ablations over the model com-
ponents. Qualitatively, RAGMT is easily inter-
pretable, stylistically aligns translation outputs
to the domain of interest, and appears to demon-
strate “copy-over-translation” behaviour with
respect to named entities.

1 Introduction

Neural Machine Translation (NMT) has shown sig-
nificant improvements in its ability to produce high-
quality translations. However, NMT systems often
struggle to maintain accuracy and fluency in spe-
cialized domains such as medicine, law, and infor-
mation technology, where domain-specific termi-
nology, sentence structures, tone and context play a

crucial role (Chu and Wang, 2018, 2020). General
translation models trained on generic datasets lack
the ability to capture the nuances and intricacies
of these specialized domains, leading to subop-
timal translation quality that may fail to convey
the intended meaning accurately. This serves as
a strong motivation for us to explore the use of
non-parametric methods, specifically RAG.

The problem of domain adaptation of translation
can be stated as obtaining high-quality translation
for a specific domain of interest. When fine-tuning
a pretrained NMT model for a particular domain,
some of the key challenges include limited avail-
ability of in-domain data, catastrophic forgetting,
and inadequacy to adapt to domain style and tonal-
ity (Saunders, 2021).

Integrating non-parametric memory to paramet-
ric neural networks (Khandelwal et al., 2019; Guu
et al., 2020; Lewis et al., 2020) has shown great
promise when it comes to language models. For
the task of MT, various approaches and integra-
tion of different types of non-parametric memories
have been explored (Bulté and Tezcan, 2019; Mous-
sallem et al., 2019; Zhao et al., 2020; Khandelwal
et al., 2020; Zhang et al., 2021; Cai et al., 2021; He
et al., 2021; Hoang et al., 2022; Cheng et al., 2023).
By incorporating relevant information from these
external sources, MT systems can produce more
accurate and contextually appropriate translations
tailored to the specific domain.

Despite their differences, all the approaches men-
tioned above either lack the ability to train the
model to effectively utilize the retrieved documents
and train the memory retriever to retrieve contex-
tually highly relevant documents or fail to make
use of weak signals to train the retrieval mecha-
nism. For better domain adaptation, we require
to train a model in such a way that it improves
the downstream translation task along with its abil-
ity of domain-style adaptation and accurate entity
translation. Although it has been shown that trans-



lation quality improves with retrieval mechanisms,
no methodology to train the NMT and retriever
component jointly for domain adaptation has been
explored.

In this work, we propose a novel fine-tuning
approach RAGMT to enhance MT systems us-
ing an end-to-end multi-task RAG framework for
retrieval-augmented machine translation. Our ap-
proach builds upon the RAG framework (Lewis
et al., 2020), combining document retrieval with a
generative model to produce translations enriched
with domain-specific knowledge. We utilize a
multi-task framework and introduce an explicit doc-
ument similarity term to the training objective of
retrieval-augmented NMT. This results in improved
effectiveness of the model for domain-adaptation
scenarios.

Our contributions are:

1. RAGMT (section 3), a new RAG-based multi-
task fine-tuning approach for machine trans-
lation with a new end-to-end training objec-
tive, along with Entity masked language mod-
elling (MLM) as an auxiliary task (Song et al.,
2019) and explicit document similarity term that
boosts documents that are very similar to the
source sentence, in contrast, penalizing docu-
ments that are further off.!

2. In-depth analysis (section 5) of our proposed
approach on domain-specific machine trans-
lation using knowledge graphs (KG) as non-
parametric sources. Compared with neural and
retrieval-based baselines, we achieve an aver-
age improvement of +12.90 BLEU score across
domains. Additionally, we demonstrate that
domain-specific knowledge sources provide an
average improvement of +0.625 BLEU score
over domain-agnostic sources.

3. Ablation study (section 5) on the proposed
RAGMT training objective, quantifying the
contribution of each loss term. Our analysis
highlights the impact of the document similar-
ity term with an average improvement of 1.125
BLEU scores across domains.

We intend RAGMT to be a generalized frame-
work for retrieval-augmented fine-tuning of NMT
models. Hence, we describe it as a modular frame-
work with flexible plug-and-play components.

'The codebase for RAGMT and the datasets to replicate
our results will be released upon publication.

2 Background and Related Work

Domain-specific Machine Translation Trans-
former models, such as Raffel et al. (2019), Lam-
ple and Conneau (2019), Shazeer et al. (2017), and
NLLB Team et al. (2022), have become founda-
tional in NMT due to their ability to handle com-
plex linguistic structures and long sequences. Re-
cent works, including Alves et al. (2024), Wei et al.
(2021), Yang et al. (2023) and Zhang et al. (2023)
explore the use of LL.Ms for translation.

Despite these advancements, general models
struggle to perform well in domain adaptation sce-
narios. For domain-specific MT, methods such
as Luong and Manning (2015); Khayrallah et al.
(2018); Thompson et al. (2019a,b); Lu et al. (2023);
Ghazvininejad et al. (2023); Moslem et al. (2023);
Anonymous (2024) have been proposed.

Some methodologies, including Khandelwal
et al. (2020); Cai et al. (2021); Hoang et al.
(2022); Ghazvininejad et al. (2023); Moslem et al.
(2023), are particularly focused on integrating non-
parametric knowledge in the process of translation.

Retrieval for Text Generation. This class of
techniques represent methods for integrating ex-
ternal knowledge for text generation. Retrieval
Augmented Generation (RAG) (Khandelwal et al.,
2019; Guu et al., 2020; Lewis et al., 2020;
Borgeaud et al., 2021) combines information re-
trieval with generation, allowing to leverage re-
trieved documents for better context. Works in-
cluding Karpukhin et al. (2020); Siriwardhana et al.
(2022) advance RAG models in open-domain ques-
tion answering through domain adaptation. Re-
trieval augmented text generation has significant
advancements, including Lin et al. (2023); Asai
et al. (2023); Xu et al. (2023); Wang et al. (2023);
Shi et al. (2023). Recent work has also focused
on retrieval-augmented fine-tuning, including Lin
et al. (2023); Wang et al. (2023); Xu et al. (2023);
Liu et al. (2024); Zhang et al. (2024).

3 RAGMT

In this section, we describe the proposed RAGMT
approach. First, we formulate machine translation
as a retrieve-then-generate process in section 3.1.
We then describe the constituent components of
RAGMT in section 3.2. RAGMT is described as
a framework that allows for end-to-end retrieval-
augmented training of NMT models with inter-
changeable plug-and-play components. In sec-



tion 3.3, we formulate the auxiliary task used in
RAGMT. Lastly, in section 3.4, we describe how
the components of RAGMT are optimized end-to-
end.

3.1 Problem Formulation

Given an input sentence S in the source language,
S = (s1,82,...,5m), the problem of retrieval-
augmented machine translation can be formulated
as finding the target sentence, T = (t1,t2, ..., tn),
by first retrieving a set of helpful documents, D =
{d;} |, from an external knowledge base, where
K 1is the number of retrieved documents. Then,
the generation of the target sentence is conditioned
on both the source sentence, .S, along with the
documents from the retrieved set, D, as given by
equation (1).

T = argmax »  P(d|S)P(T|d,S) (1)
T 4ep

Knowledge base is a generic term denoting various
structures, including KG triples, textual documents,
and precomputed embeddings.

3.2 Overview

RAGMT framework (illustrated in Figure 1) con-
sists of four main components: knowledge base,
retriever, integrator and generator. The knowledge
base is a collection of documents that can consist of
structured information, such as KGs and wordnets,
or unstructured information, such as translation
memory.

Similar to Bromley et al. (1993), we use a dual
encoder structure for the retriever. It consists of
the document encoder, Encoderp and the source
encoder, Encoderg. The relevance score between
a source sentence S, and a candidate document, d,
is defined as the dot product of their encodings:

f(S,d) = Encoderp(d)T Encoderg(S)

The encoding of the documents is generated using
the document encoder and is stored in a vector
index. We use FAISS (Johnson et al., 2019) for this
purpose. When a source sentence is provided to
the retriever, it encodes the sentence and passes it
to FAISS to retrieve the most relevant documents
from the knowledge base. The retriever component
P, (d|S), parametrized by 7 gives the relevance of
the document d, given the source sentence, S as:

P,(d|S) o exp(Encoderp(d)” Encoderg(S))

Given the source sentence, S, and the retrieved
set of documents, D, the generator finally performs
the downstream translation task and the auxiliary
task of entity MLM (described in section 3.3). The
conditional probability for a translation candidate
T, given by the generator for the translation task,
is defined as:

P(T|S, D) = [ [ P(tS, D, t<:)

=1

= H Z P, (d|S)Py(t;|S,d,t<;)

1=1 deD

where, Py(t;|S,d,t<;), parametrized by 6, gives
the probability of generation of the current token,
t;, based on the source sentence, S, one of the
documents from the retrieved set of documents, d
and the previous generation context, {;.

As there is no optimal strategy for encoding the
retrieved documents and the source sentence to
prepare the input for the generator, we introduce
a plug-and-play integrator component. Different
types of knowledge bases can require different in-
tegration strategies. KGs, for example, have struc-
tural information, which needs to be encoded in
the input to the generator (Shen et al., 2020; Sun
et al., 2020; Wen et al., 2024). The simplest inte-
gration strategy is to prepend the source sentence
with documents from the retrieved set.

RAGMT enables training of the two paramet-
ric components, the retriever and the generator,
with the use of different knowledge bases and in-
tegration strategies. Similar to Lewis et al. (2020),
RAGMT does end-to-end propagation of the gradi-
ents, allowing for joint training of the two compo-
nents.

The translation output is obtained using the gen-
erator with the loss function, Lg, as given in equa-
tion 2.

Lg=—-)Y log P(ti|S, D, t<;) 2)
=1

3.3 Auxiliary Task: Entity Masked Language
Modelling

We introduce an auxiliary task derived from entity-
masked language modelling (E-MLM) (Song et al.,
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Figure 1: RAGMT Architecture: The KB consists of documents to be retrieved, which are indexed using FAISS
over the embeddings computed using Encoderp. For a source sentence, S, The retriever first encodes S using
Encoders, then retrieves documents using the FAISS index. The retrieved documents, along with the source sentence,
are then inputs for the Integrator, which outputs the formatted input to be used by the Generator.

2019; Siriwardhana et al., 2022) training to en-
hance the model’s capacity to integrate external
knowledge. This auxiliary task supplements the
primary training objective by providing additional
context about named entities in the input text. By
training the model to predict masked entities within
the input text, we aim to improve its understand-
ing of domain-specific terminology and entities,
enhancing translation accuracy and domain adapta-
tion capabilities.

For a particular training pair, (S, 7"), where S is
the source sentence and 7' is the target sentence,
let the retrieved results from the retriever be D =
R(S) =top — k(P,(.]x)) = {d1,...,dk} where
71 parameterizes the retriever model, R. Let Sjs be
the source sentence with named entities masked.
The task of entity MLM is to predict the masked
entities in the source sentence, given the set D and
S, as stated in Equation (3).

S = argmax P(S|Sn, D) 3)
S

This auxiliary task is a form of multi-task learn-
ing, where multiple learning tasks are performed
simultaneously, and each task aids the learning of
the other task.

Equation (4) below shows the loss function for
entity MLM loss, where M = {m1,ma,...,my}
is the set of positions in the entity masked source
sentence, corresponding to named entities.

Lviv = — Y 1og P(3y = sm|Sar, D) (4)
meM

where 3, denotes the source token predicted by
the generator.

With its entity reconstruction objective, the en-
tity MLLM loss further aligns the model’s outputs

with the retrieved documents. This auxiliary loss
complements the primary loss (L) by encouraging
the model to produce fluent, accurate translations
closely aligned with the content and context of the
retrieved documents.

3.4 Training

Along with the generator loss, Lg, RAGMT ex-
plicitly models the similarity between the source
sentence, S, and the retrieved document set, D =
{d;} fil with a document similarity-based loss, L p,
as given in equation 5.

K
Lp= - log(sq) )
=1

where, sq, is given by f(.5, d;).
The model parameters of RAGMT, 1 and 6 are
optimized using the final training objective:

L= Lg-Lp+ Lviim

where L is the generator model’s loss and L sz pr
is the entity MLM loss, and Lp is the docu-
ment similarity term. The first component of the
RAGMT training objective is a product between
L¢g and Lp, as both the retrieval and generation
processes are mutually dependent. By multiplying
the two terms, we enforce that both retrieval and
generation work well together. If the retrieval com-
ponent retrieves irrelevant documents, the transla-
tion generated suffers; conversely, if the generator
doesn’t utilize the retrieved documents effectively,
the overall translation still suffers.”

2We conducted experiments with the more traditional for-
mulation of the training objective, L = Lg + Lp + Lmim,
but found that our formulation performs significantly better
where the external knowledge base actively contributes to the
generation.



Domain # Training Samples # KG Triples
Law 222927 454148
Medical 17982 37176
Koran 467310 753082
IT 248099 471002

Table 1: Dataset statistics: English-German Domain
Specific Parallel Corpus. The table shows the number of
training data points in the dataset, along with the number
of knowledge graph triples extracted as described in
section 4.1.

Model Name 1T Koran Law Medical
Baseline FT 38.35 16.26 4548  39.99
Hoang et al. (2022) 33.84 27.53 52.17 4695
Khandelwal et al. (2020) 48.63 19.22 61.11 54.54
Cai et al. (2021) 3533 16.26 5397 50.32
Ghazvininejad et al. (2023) || 33.58 20.34 45.92  50.38
RAGMT 49.12 2699 61.23 54.36

Table 2: Comparison of BLEU score of different setups
on domain adaptation. Each setup is described in section
4.

4 Experiments

4.1 Dataset

We utilized the English and German parallel corpus
from Aharoni and Goldberg (2020), a re-split ver-
sion of the multi-domain data set from Koehn and
Knowles (2017). The dataset comprises Law, Med-
ical, Koran, IT and Subtitles domains. We leave
out the Subtitles domains from all our experiments
since the data lacks consistency in terms of the
constituent topics. Hence, a cohesive knowledge
base could not be constructed from the data. Each
domain consists of 2000 validation and 2000 test
points.

For our main experiment, comparing the domain
adaptation of MT, we use the complete training sets
of each domain and translate in German-to-English
direction.

For all the other experiments, we use a randomly
sampled subset of 15000 data points from the train-
ing set of each domain. This was done primar-
ily for two reasons: 1) We wanted to restrict the
amount of available fine-tuning data to reflect real-
world settings where domain-specific fine-tuning
data is limited. 2) Our available compute was insuf-
ficient to run experiments using the entire training
datasets. In this constrained setting, we have care-
fully compared it against existing baseline systems,
as detailed below.

Knowledge Base We conduct all our experi-

ments with a knowledge base made up of knowl-
edge graphs. For this purpose, we extract in-
domain knowledge graphs for each domain men-
tioned above, using a pre-trained multilingual
model, REBEL (Resource Extraction from BERT
Embeddings for Linked data) (Cabot and Navigli,
2021). The dataset statistics have been depicted in
table 1.

4.2 Implementation Details

RAGMT is set up with a retriever based on Dense
Passage Retrieval (DPR) (Karpukhin et al., 2020)
and generator based on NLLB200 (NLLB Team
etal., 2022).34

The RAGMT setup that we use for our experi-
ments consists of the following components:
1. Knowledge Base: We use knowledge graphs as
the knowledge base. Each document consists of a
KG triple of the form, <A,rt>, where h is the head,
t is the tail, and r is the relationship of the triple,
respectively.
2. Retriever: The retriever consists of a dual-
encoder setup, as described in section 3.2. We
use Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020) for the document and source encoders.
3. Generator: We use the pre-trained 600M param-
eter checkpoint of NLLB-200 (NLLB Team et al.,
2022) as the generator.
4. Integrator: For all our experiments, we use
the simple integration strategy of prepending the
source sentence, S, with the retrieved document, d,
so the input for the generator after we obtain the
retrieved set of documents, becomes <d, [SEP],
S>.

4.3 Baselines

RAGMT is compared with the following baselines:
Baseline FT, Khandelwal et al. (2020), Hoang et al.
(2022), Cai et al. (2021) and Ghazvininejad et al.
(2023). We consider an NMT model fine-tuned
without any retrieval mechanism as our baseline
(Baseline FT). For this purpose, we fine-tune the
600M parameter checkpoint of NLLB-200 NLLB
Team et al. (2022).%°

3Available at: https://huggingface.co/facebook/
nllb-200-distilled-600M

*We discuss the training details in appendix A.

Details about the compared models are presented in ap-
pendix B.

®We couldn’t compare our work with (Anonymous, 2024),
as the code was not publicly available, and the experimental
settings presented in their work differ from ours.
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BLEU chrF++ TER BERTScore COMET
Domain H Baseline FT RAGMT H Baseline FT RAGMT H Baseline FT RAGMT H Baseline FT RAGMT H Baseline FT RAGMT

German — English

IT 38.35 49.12 55.00 72.50 52.23 33.42 0.89 0.89 0.68 0.80

Koran 16.26 26.99 30.50 44.00 75.42 58.66 0.60 0.75 0.45 0.58

Law 45.48 61.23 60.00 78.00 40.65 28.58 0.85 0.91 0.75 0.85

Medical 39.99 54.36 54.50 74.50 50.76 31.75 0.78 0.88 0.70 0.83
English — German

IT 35.36 45.32 61.28 65.12 50.43 44.56 0.89 0.90 0.48 0.60

Koran 18.43 24.34 43.67 40.23 68.12 70.15 0.83 0.78 0.25 0.30

Law 42.34 57.23 66.45 68.75 45.87 42.10 0.91 0.93 0.58 0.65

Medical 37.54 50.34 63.12 64.80 48.35 46.25 0.90 0.91 0.53 0.55

Table 3: Comparison of metrics for the baseline and RAGMT setups in En—De and De—En directions.

Model Name BLEU chrf++ TER BERTScore COMET
Law Domain
(1) Baseline FT 3545 | 60.07 | 47.51 0.84 0.51
(2) ConceptNet 36.23 | 61.73 | 45.18 0.81 0.52
(3) In-domain KG || 37.42 | 62.12 | 43.79 0.82 0.54
Medical Domain
(1) Baseline FT 36.60 | 57.26 | 42.33 0.78 0.55
(2) ConceptNet 38.82 | 58.61 | 42.15 0.79 0.56
(3) In-domain KG | 39.12 | 59.12 | 41.55 0.83 0.58
Koran Domain
(1) Baseline FT 20.85 | 43.02 | 63.21 0.74 0.21
(2) ConceptNet 22.56 | 4594 | 62.22 0.79 0.28
(3) In-domain KG | 22.34 | 44.37 | 61.78 0.76 0.30
IT Domain
(1) Baseline MT 27.77 | 48.69 | 54.64 0.79 0.38
(2) ConceptNet 28.71 | 48.92 | 53.37 0.78 0.38
(3) In-domain KG || 29.94 | 49.12 | 52.30 0.81 0.41

Table 4: Comparison of domain-agnostic vs domain-
specific knowledge graph with RAGMT across various
domains.

Baseline FT RAGMT

3x
1.71x

1x
1x

Training Latency
Inference Latency

Table 5: Comparison of latency between baseline fine-
tuning approach and RAGMT fine-tuning

Approach Law Medical Koran IT
Baseline FT 3545 36.60 20.85 27.77
RAGMT - w/o Lyuwm || 37.17  39.02 2198 29.68
RAGMT - w/o Lp 36.52 3894 20.64 28.21
RAGMT 3742 3912 2234 29.94

Table 6: Ablation on the RAGMT training objective.
The BLEU scores obtained across all the domains, using
different settings described in section 5.

Example Retrieved Documents
(Source)

Your doctor will prescribe

Translation Outputs

O]

Truvada with other Truvada .

. . L. . Ihr Arzt wird
antiretroviral medicines. instance of

. . Lo Truvada zusammen
antiretroviral combination .
. mit anderen
(Reference Transalation) therapy 3 N
. antiretroviralen

Thr Arzt wird Thnen ?2) Arzneimitteln
Truvada in Kombination Truvada

. verschreiben.
instance of

antiretroviral therapies

mit anderen
antiretroviralen
Arzneimitteln verschreiben.
(Source)

Convert current frame to

an inline frame

1)

convert files
facet of

file format
(2

inline frames
type of
frames

Aktuellen Rahmen
in einen
Inline-Rahmen
umwandeln

(Reference Translation)
Aktuellen Rahmen in

einen im Text mitflieBenden
Rahmen umwandeln

Table 7: Example translation using RAGMT. The
retrieved documents are contextually relevant to the
source as well as target sentence, with the retrieved enti-
ties being used in both the source as well as the target
sentence.

4.4 Evaluation

For evaluating the performance of all the setups
in our experiments, we utilize a comprehensive
set of metrics, including BLEU (Post, 2018),
chrF++ (Popovié, 2015), TER (Snover et al., 2006),
BERTScore (Zhang et al., 2019) and COMET (Rei
et al., 2020).”

5 Results and Analysis

Domain adaptation of MT. We first test if fine-
tuning the proposed framework using a domain-
specific dataset, with a retrieval mechanism ap-
plied over an in-domain KG, would improve perfor-
mance over the baseline approaches. Table 2 shows
the BLEU scores of all the compared approaches
on the domain adaptation experiment for German
to English translation. Compared to the Baseline
MT, RAGMT improves performance by an average
of 12.90 BLEU scores, with the largest improve-

"We defer the discussion on metrics other than BLEU score
to appendix.



ment on the Law domain data with 15.75 BLEU
score improvement. This signifies that fine-tuning
an NMT model using the RAGMT framework for
MT on a domain-specific dataset with access to
an in-domain knowledge base, such as KGs, helps
improve the performance of the MT model. Com-
paring the proposed RAGMT framework with the
Khandelwal et al. (2020), we observe an average
improvement of 2.05 BLEU scores, with the largest
improvement of 7.77 BLEU scores on the Koran
domain.

To further test the generalizability of RAGMT,
we conduct experiments in both translation direc-
tions. The results across various metrics have been
shown in table 3 for the baseline fine-tuning ap-
proach and RAGMT.

Domain-specific KG vs Domain-agnostic KG.
We explore the effects of using an in-domain knowl-
edge base as opposed to a domain-agnostic knowl-
edge base. We use the domain-specific KGs ex-
tracted for each domain (as described in section 4.1)
for fine-tuning RAGMT for the respective domain.
We use ConceptNet (Speer et al., 2016) as our
domain-agnostic KG. Table 4 shows the difference
in the performance of the RAGMT framework with
in-domain KG instead of using a domain-agnostic
KG. Using domain-specific KG, we observe an av-
erage improvement of 0.62 BLEU scores over the
use of ConceptNet, with improvements in three
of the four domains. We analyze the performance
degradation in the Koran domain later in this sec-
tion.

Latency RAGMT employees a retrieve-then-
translate mechanism with end-to-end gradient prop-
agation during training. Compared to the baseline
fine-tuning approach, RAGMT introduces addi-
tional parameters due to the addition of the retriever
component. We compare the latency incurred by
RAGMT fine-tuning over the baseline fine-tuning
approach. For both the training and inference, we
retrieve top 5 documents from the knowledge base.
We observe that RAGMT is nearly 3 orders of
magnitude slower than the baseline during train-
ing, while nearly 1.7 orders of magnitude slower
during inference.

Ablations on the RAGMT training objective.
We analyze the contribution of each of the con-
stituent components of the training objective as
described in section 3.4. We compare the perfor-
mance of RAGMT framework under the following

settings: (1) RAGMT - w/o Lym, the RAGMT
training objective without the loss from the En-
tity MLM component; (2) RAGMT - w/o Lp, the
RAGMT objective without the explicit Document
Similarity component; and (3) RAGMT, the train-
ing objective as described in section 3.4.

Table 6 presents the BLEU score comparison
across domains for each ablation. Across all do-
mains, the variations of the RAGMT training objec-
tive result in higher BLEU scores than the baseline.
The obtained results signify that the Document Sim-
ilarity component substantially contributes to the
training objective with an average difference of
1.12 BLEU score due to its removal. The loss from
the Entity MLM component results in an average
difference of 0.24 BLEU scores across domains.
Overall, we observe consistent improvement in per-
formance across domains with the addition of each
of the two components, showing the efficacy of the
proposed RAGMT training objective and justifying
the inclusion of each component.

Quantitative and Qualitative Analysis. We
quantitatively analyze the benefits of using a non-
parametric knowledge base for MT using the
RAGMT framework by looking at the entity over-
lap in the translation outputs. More precisely, for
each entity present in the translation output, we cat-
egorize the entity into four categories: (1) Present
only in the source sentence; (2) Present only in the
knowledge base; (3) Present in both; (4) Present in
neither. While using an in-domain datastore, on av-
erage, the entities are present in both the source sen-
tence and knowledge base 38.5% times, as opposed
to the domain-agnostic knowledge base, where en-
tities are present 35.25% times. Compared with
the domain-agnostic KG, we see a lower propor-
tion of entities being exclusively present only in
the KG for all domains except Koran. Unlike the
other three domains, Koran has 19% translated enti-
ties exclusively present in the domain-agnostic KG
setup and only 11% translated entities exclusively
present in the domain-specific KG. This poten-
tially explains why the domain-agnostic KG yields
higher BLEU scores for the Koran domain com-
pared to the domain-specific KG. Table 7 shows
a few examples of translations performed using
the RAGMT framework. For the second example
(taken from the IT domain), we can observe that the
reference translation does not consist of the phrase
inline frame, but it is present in the translation out-
put.



To further investigate the domain adaptation ca-
pabilities of RAGMT, we conducted a clustering-
based analysis. Specifically, a domain fine-tuned
BERT (Devlin et al., 2019) encoder was employed
to extract dense representations of target-side sen-
tences from the training sets across different do-
mains. These representations were used to iden-
tify cluster centers for each domain. We then
evaluated how closely the translations generated
by the RAGMT system aligned with their respec-
tive domain-specific cluster centers. On average,
the translations achieved an alignment accuracy of
89%, with the law domain exhibiting the highest
accuracy at 95%, and the Koran domain demon-
strating the lowest accuracy at 79%.

6 Conclusion and Future Work

We address the shortcomings of NMT models due
to their reliance on just their parametric knowledge.
We present RAGMT, a RAG-based multi-task MT
fine-tuning approach to enhance machine transla-
tion using non-parametric knowledge bases. Com-
pared to existing baselines, we show the efficacy
of our approach to the problem of domain-specific
MT using knowledge graphs as the knowledge base.
Our approach improves the performance of the
baseline MT model using both domain-agnostic
and domain-specific knowledge graphs across all
domains. For future work, we aim to use the pro-
posed framework for other nuanced MT tasks, such
as low-resource language adaptation, accurate en-
tity translation, and usage of other non-parametric
knowledge sources.

7 Limitations

* We study the efficacy of RAGMT for the set-
ting of domain-adaptation of MT. The same
framework can be adapted for low-resource
MT settings, however, the efficacy and analy-
sis of RAGMT for such a setting is yet to be
studied.

* There is an inherent trade-off with increasing
the number of retrieved documents using RAG
versus improving BLEU scores. The former
can improve the quality of the generated trans-
lations but leads to increased computational
overhead. This balance needs to be considered
depending on the downstream task.
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A Training Details

All models have their maximum input and output
length set to 1024. We use the Adam optimizer
(Kingma and Ba, 2014) and train each setup for a
maximum of 50K steps. All the models are trained
with fpl6 precision. We extract the top 5 docu-
ments from the knowledge base for all our experi-
ments. As described in section 3.2, we use FAISS
(Johnson et al., 2019) to index the knowledge base
encoding for faster retrieval during training and
inference time.

B Compared Setups
We compare RAGMT with the following setups:

* Baseline FT: We consider an NMT model
fine-tuned without any retrieval mechanism
as our baseline. For this purpose, we fine-tune
the 600M parameter checkpoint of NLLB-200
NLLB Team et al. (2022).

11

» Khandelwal et al. (2020): This approach uses
a k-nearest-neighbour-based retrieval over a
translation memory based knowledge base
with no additional training of NMT models.

* Hoang et al. (2022): This approach uses a
fuzzy-matching-based retrieval mechanism
over a source-target translation-based knowl-
edge base and performs a zero-shot adaptation
of NMT models.

 Cai et al. (2021): This approach uses mono-
lingual translation memory, retrieves them by
source side similarity and adopts a dual en-
coder (source and target) architecture.

* Ghazvininejad et al. (2023): This approach
uses LLMs for translation via dictionary-
based prompting.

C Additional Result Analysis

The performance of RAGMT generalizes well
across various metrics we use for evaluation. As
shown in table 3, RAGMT shows consistent and
significant improvement in terms of chrF++, TER,
BERTScore and COMET scores, except for the Ko-
ran domain, where the baseline FT approach shows
better TER and BERTScore values. A similar trend
can be observed in table 4, where the in-domain
KG performs well compared to domain-agnostic
KG for all domains except the Koran domain. We
study this behaviour in section 5 by qualitatively
analyzing the nature of the Koran domain.

The significant improvement shown by the
RAGMT system in our experiments indicate its
ability for other nuanced MT tasks, such as low-
resource adaptation and accurate entity translation,
although a detailed study needs to be conducted to
conclusively make the claim.
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