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Abstract
In the field of tabular ML, table rows are typically treated as independent data
samples, but sometimes additional information about relations between them is
available, and such information can be naturally modeled with a graph. Thus,
tabular ML may benefit from graph ML methods. However, graph ML models
are typically evaluated on datasets with homogeneous node features, which are
very different from heterogeneous mixtures of numerical and categorical features
present in tabular datasets. Hence, there is a critical difference between the data
used in tabular and graph ML studies, which does not allow one to understand
how successfully graph models can be transferred to tabular data. To bridge
this gap, we propose a new benchmark of diverse graphs with heterogeneous
tabular node features and realistic prediction tasks. We use this benchmark to
evaluate a vast range of models, including simple methods previously overlooked
in the literature. Our experiments show that graph neural networks indeed can
often bring gains in predictive performance for tabular data, but standard tabular
models can also be adapted to work with graph data by using simple graph-based
feature augmentation, which sometimes enables them to compete with and even
outperform graph neural models. Based on our empirical study, we provide
insights for researchers and practitioners in both tabular and graph ML fields.

1 Introduction
Tabular data is ubiquitous in industry and science, and thus machine learning methods for working
with such data are of great importance. A key distinction of tabular data is that it typically comprises a
mixture of numerical and categorical features that vary widely in their distribution and have different
meanings and levels of importance for the task. We call such features heterogeneous or tabular.
Standard deep learning methods do not always perform well on datasets with heterogeneous features,
so the machine learning methods of choice for tabular data are often ensembles of decision trees, in
particular gradient-boosted decision trees (GBDT) [1]. However, there is a growing number of recent
works trying to adapt deep learning methods to tabular data [2–7].

In tabular machine learning, table rows are usually treated as independent data samples. However,
there is often additional information available about the relations between samples, and leveraging
this information has the potential to improve predictive performance. Such relational information
can be represented as a graph. There are many areas where graphs naturally arise. For example, all
sorts of user interactions can be modeled as graphs: social networks, chat applications, discussion
forums, question-answering websites, financial transaction networks, etc. And even without direct
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interactions, meaningful relations between samples can often be defined: for example, connecting
users who buy similar products on shopping websites, watch similar content on video hosting services,
or perform the same tasks on crowdsourcing platforms. In all these and many other cases, using
graph information can improve the quality of predictions made by machine learning models.

Graph machine learning is a field focused on the development of methods for learning on graph-
structured data. In recent years, the most successful models for such data have become Graph Neural
Networks (GNNs) [8, 9]. Therefore, it can be desirable to adapt these models to tabular data with
relational information. However, GNNs are typically evaluated on graphs with homogeneous features
(most frequently, bags of words or text embeddings), which are very different from heterogeneous
features present in tabular data. Because of this, it is unclear how successfully these models can be
transferred to tabular data. Recently, two methods have been proposed specifically for learning on
graphs with heterogeneous tabular node features [10, 11]. However, their evaluation setting is limited,
since, as the first of these works notes, there is currently a lack of publicly available graph datasets
with heterogeneous node features. This highlights the difference between industry, where data with
heterogeneous tabular features is abundant, and graph machine learning benchmarks, where such data
is barely present. We believe that this difference holds back the adoption of graph machine learning
methods to tabular data.

In our work, we aim to bridge this gap. First, we create a benchmark of graphs with heterogeneous
tabular node features — TabGraphs. For this benchmark, we collect tabular datasets and augment
each dataset with a natural graph structure based on external (i.e., not present in the sample features)
information about the data: interactions between users, similar behavior of users, traffic between
websites, connections between roads, frequent co-purchasing of products, etc. Our benchmark has
realistic prediction tasks and is diverse in data domains, relation types, graph sizes, graph structural
properties, and feature distributions. Further, we use this benchmark to evaluate a comprehensive set
of machine learning methods. Specifically, we consider models for tabular data (both GBDT and
deep learning ones), their versions augmented with graph information, several GNN architectures,
their versions augmented with a special numerical feature embedding technique for neural networks,
and the recently proposed specialized methods for graphs with heterogeneous node features. Thus,
we experiment not only with models used in previous studies but also with several simple methods
overlooked in the existing literature. We find that using relational information in data can indeed
lead to an increase in predictive performance for many real-world tabular datasets, and that standard
tabular and graph ML models and their simple modifications work better in this setting than the
recently proposed specialized models.

We believe that our benchmark will serve two main purposes. First, as discussed above, there are
many real-world applications where graph structure can be naturally added to tabular data, and
those interested in such applications can test their models on our benchmark. Hence, we hope that
the proposed benchmark and new insights obtained using it will lead to a wider adoption of graph
machine learning methods to tabular data in industry and science. Second, our benchmark provides
an alternative testbed for evaluating GNN performance and, compared to standard graph benchmarks,
offers datasets with very different feature types and prediction tasks which are more realistic and
meaningful. Thus, we expect that our benchmark will be useful for researchers and practitioners in
both tabular ML and graph ML fields.

Our benchmark and the code for reproducing our experiments can be found in our repository.

2 TabGraphs: a benchmark of graphs with tabular node features
In this section, we briefly describe graph datasets with tabular node features that comprise our
benchmark. A more detailed discussion, including the information about the sources of data, the
preprocessing steps, the graph propertiess, and the node features, can be found in Appendix A.

tolokers-tab This dataset is based on the data provided by the Toloka crowdsourcing platform
[12]. The nodes represent tolokers (workers), and they are connected by an edge if they have worked
on the same task. The task is to predict which tolokers have been banned in one of the projects.

questions-tab This dataset is based on the data from a question-answering website. The nodes
represent users who post questions or leave answers on the site, and two users are connected by a
directed edge if one of them has answered the other’s question. The task is to predict which users
remained active on the website (i.e., were not deleted or blocked).
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city-reviews This is a fraud detection dataset collected from a review service of organizations in
two major cities. The nodes are users who leave ratings and post comments about various places, and
they are connected with an edge if they have left reviews for the same organizations. The task is to
predict whether a user leaves fraudulent reviews.

browser-games This dataset is collected from an online game platform. The nodes represent
browser games that are developed and uploaded by various independent publishers, and they are
connected with an edge if they are frequently played by the same users during a specific period of
time. The task is to predict the categories of games.

hm-categories and hm-prices These two datasets are obtained from a co-purchasing network
of products from the H&M company [13]. The nodes are products and they are connected with an
edge if they are frequently bought by the same customers. We prepared two datasets with the same
graph but different tasks: for hm-categories, the task is to predict the categories of products, while
for hm-prices, the task is to predict their average prices.

city-roads-M and city-roads-L These datasets represent road networks of two major cities,
with the second one being several times larger than the first. The nodes correspond to segments of
roads, and a directed edge connects two segments if they are incident to each other and moving from
one segment to the other is permitted by traffic rules. The task is to predict the average traveling
speed on the road segment at a specific timestamp.

avazu-devices This dataset is based on the data about user interactions with ads provided by the
Avazu company [14]. The nodes are devices used for accessing the internet and they are connected
with an edge if they frequently visit the same websites. The task is to predict the click-through rate
for devices based on data about viewed advertisements.

web-fraud and web-traffic These two datasets represent a part of the Internet. The nodes are
websites, and a directed edge connects two nodes if at least one user followed a link from one website
to the other in a selected period of time. We prepared two datasets with the same graph but different
tasks: for web-fraud, the task is to predict which websites are fraudulent, while for web-traffic,
the task is to predict the logarithm of how many users visited a website on a specific day.

3 Simple model modifications
Standard models for tabular machine learning cannot leverage information provided by the graph
structure available in the data, while standard models for graph machine learning can struggle to
efficiently use heterogeneous node features. Thus, both approaches can be suboptimal for learning on
graphs with tabular node features. However, one can apply simple modifications to these models to
address their discussed drawbacks. The modifications suggested below are not novel, but they were
previously overlooked in the works on learning on graphs with tabular node features.

To make tabular models graph-aware, we propose augmenting the node features with information
about the features of their neighbors. Specifically, we compute various feature statistics (such as
mean, maximum, minimum values) over the 1-hop neighborhood of each node and, together with
the node degree, append them to the original features. We refer to this procedure as Neighborhood
Feature Aggregation (NFA) and describe it in more detail in Appendix B.1.

The main problem of heterogeneous features for standard GNNs is the presence of numerical features.
Thus, to make GNNs better handle numerical features, we propose augmenting GNNs with the
recently introduced specialized learnable embeddings for numerical features [6]. Specifically, we use
Periodic-Linear-ReLU (PLR) numerical feature embeddings, see Appendix B.2 for details.

4 Experiments
First, we briefly describe the models used in our experiments (see Appendix C for more details).
As a simple baseline, we use a ResNet-like model: an MLP with skip-connections [15] and layer
normalization [16]. For tabular ML models, we consider the three most popular implementations of
GBDT: XGBoost [17], LightGBM [18], and CatBoost [19], and two recently proposed neural models:
MLP-PLR [6] and TabR-PLR [20]. All the models discussed above do not have any information
about the graph structure and operate on nodes as independent samples (we call such models graph-
agnostic). We additionally test LightGBM and MLP-PLR with NFA, our simple feature preprocessing
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procedure which makes these models graph-aware (these methods are denoted with the -NFA suffix).
Further, we consider four representative GNN architectures: GCN [8], GraphSAGE [21], GAT [22],
and Graph Transformer (GT) [23], as well as their versions augmented with PLR embeddings for
numerical features (these versions are denoted with the -PLR suffix). Finally, we also evaluate two
recently proposed methods designed specifically for learning on graphs with heterogeneous tabular
node features: BGNN [10] and EBBS [11]. The details of our experimental setup and hyperparameter
tuning for different models are provided in Appendix F.

The results for classification and regression datasets are provided in Tables 2 and 3 in Appendix D,
respectively. Let us discuss them below.

First, we note that our simplest baseline ResNet achieves worse results than GBDTs and neural tabular
learning models on all the proposed datasets. This shows that our datasets indeed have meaningful
tabular features, and methods designed specifically for tabular data outperform a simple deep learning
approach. Second, all the considered GNNs outperform ResNet on the proposed graph datasets, with
the only exception of GT on the questions-tab dataset. This shows that the graph structure in our
datasets is indeed helpful for the given tasks.

Further, we can see that the best of vanilla GNNs outperform the best of graph-agnostic models on all
of the proposed datasets, except for city-roads-L, and the difference in performance is often quite
large. The relative performance of different GNN models varies across graph datasets, and there is
no best GNN architecture that universally provides the highest results for all datasets. Next, we can
notice that BGNN and EBBS, the recently proposed models designed specifically for graphs with
heterogeneous tabular node features, failed to produce results competitive with vanilla GNNs or even
graph-agnostic tabular models on almost all of our datasets.

Now, let us discuss the impact of simple model modifications proposed in Section 3. PLR embeddings
for numerical features often improve the performance of GNNs, and sometimes these improvements
are quite large. Further, the proposed NFA, a simple feature augmentation technique, leads to
significant performance gains for the considered tabular models, which are originally graph-agnostic.
Thus, with simple feature augmentation, standard tabular models become strong baselines and can
sometimes compete with and even outperform GNNs, which has been overlooked in previous studies.

Based on our results, we obtained the following insights that we hope will be useful for researchers
and practitioners working with tabular and graph data:

• If it is possible to define meaningful relations between data samples, it is worth trying to convert
the given data to a graph and experiment with ML methods that are capable of processing graph
information, as it can lead to significant performance gains.

• Standard GNNs can provide strong performance on graphs with tabular node features, but the
best GNN architecture depends on the specific dataset.

• The recently proposed models designed specifically for graphs with heterogeneous node features
are consistently outperformed by standard tabular and graph ML models.

• The recently proposed PLR embeddings for numerical features can be easily integrated into
GNNs and can often further improve their performance.

• Graph-based feature augmentation allows graph-agnostic tabular models to use some of the
relational information provided by the graph and significantly improves their performance,
making them a strong and simple baseline. Such models are easy to experiment with in existing
tabular ML pipelines, so we recommend using them for initial experiments to check if graph
structure is helpful in a particular application.

5 Conclusion
To conclude, we introduce TabGraphs, a benchmark for learning on graphs with heterogeneous
tabular node features, which covers various industrial applications and includes graphs with diverse
properties and meaningful prediction tasks. Using the proposed benchmark, we evaluate a vast range
of ML models. Based on our experimental results, we provide insights and tips for researchers
and practitioners in both tabular and graph machine learning fields. We hope that the proposed
datasets will contribute to further developments in these fields by encouraging the use of graph ML
methods for tabular data and by providing an alternative testbed for evaluating models for learning on
graph-structured data.
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A The TabGraphs benchmark details
A.1 Datasets descriptions

In this section, we provide more detailed descriptions of the TabGraphs datasets. The instructions
on how to download the datasets can be found at https://github.com/yandex-research/
tabgraphs. In most of our datasets, the features come with their names, which are stored in our
data files (the exceptions are the city-reviews, browser-games, web-fraud, and web-traffic
datasets, for which the features are anonymized). Note that none of the proposed datasets contain any
personal information.

tolokers-tab. This is a new version of the tolokers dataset from Platonov et al. [24]. It is based
on the data from the Toloka crowdsourcing platform [12]. The nodes represent tolokers (workers) and
they are connected by an edge if they have worked on the same task within one of several projects.
The task is to predict which tolokers have been banned in one of the projects. For this dataset, we
kept the task and graph from the previous version, but replaced the processed node features with
unprocessed ones. The new node features include various performance statistics of workers, such as
the number of approved assignments and the number of skipped assignments (numerical features), as
well as worker’s profile information, such as their education level (categorical feature).

questions-tab. This is a new version of the dataset questions from Platonov et al. [24]. It is
based on the data from a question-answering website. Here, the nodes represent users, and there is
a directed edge from node i to node j if user i answered a question posted by user j. The task is
to predict which users remained active on the website (i.e., were not deleted or blocked). For this
dataset, we kept the task and graph from the previous version (except we provide directed edges, in
contrast to the previous version of the dataset in which the graph was converted to an undirected one
and no information about the original edge directions was provided), but replaced the node features
to make them heterogeneous. The original version of this dataset used bag of word embeddings
representations of user descriptions as node features, while our features are based on the activity
of users on the website, such as articles count, achievements count, subscribers count, categories
subscriptions count, rating (numerical features), as well as their profile information, such as what city
the user is from (categorical feature), whether the user has a profile description, whether the user has
filled the education field, whether the user has left a contact URL (binary features). Note that these
new features are much more predictive of the target, as demonstrated by much better performance
achieved by models on the new version of the dataset compared to the previous one.

city-reviews. This dataset is obtained from the logs of a review service. It represents the
interactions between users of the service and various organizations located in two major cities. The
organizations are visited and rated by users, so the dataset is originally bipartite and contains entities
of these two types. Thus, we transform it by projecting to the part of users. Let P ∈ {0, 1}m×n

be a binary adjacency matrix of users and organizations, where m is the number of organizations,
n is the number of users, and pij denotes whether a user j has left a review for an organization
i. Then, B = P⊤P ∈ Rn×n corresponds to the weighted adjacency matrix of users, where bij
is the dot product of columns i and j in P. Here, the more common rated organizations there are
for two users, the greater the weight of the connection between them. Further, we obtain a binary
adjacency matrix A ∈ {0, 1}n×n of users with aij = [bij ⩾ γ] by applying a threshold γ to the
weights bij . The resulting graph is undirected, and the task is to predict whether a user is a fraudster.
The features include the information about the user profile, such as the length of the nickname in
characters (numerical feature) and whether the profile information is hidden (binary feature), as well
as their behavior on the websites and other services, such as the share of negative ratings among user
reviews, the number of search queries, the number of different categories in search queries (numerical
features), the type of browser (categorical feature).

browser-games. This dataset is obtained from the logs of an online game platform and represents
the network of browser games that are created and hosted by various game developers. These games
are played by users, so the dataset is originally bipartite and contains entities of these two types.
Thus, we transform it by projecting to the part of games. Let P ∈ {0, 1}m×n be a binary adjacency
matrix of users and games, where m is the number of users, n is the number of games, and pij
denotes whether a user i has played a game j. Then, B = P⊤P ∈ Rn×n corresponds to the weighted
adjacency matrix of games, where bij is the dot product of columns i and j in P. The more common
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users there are for the given pair of games, the greater the weight of the connection between these
games. Further, we obtain a binary adjacency matrix A ∈ {0, 1}n×n of games with aij = [bij ⩾ γ]
by applying a threshold γ to the weights bij . The resulting graph is undirected, and the task is to
predict the categories of games. The features describe various attributes of games, such as the average
play time on different platforms (numerical feature), the most popular user language (categorical
feature), game retention (numerical feature), the number of user clicks (numerical feature), various
information about the game publisher and many other game statistics (numerical features).

hm-categories and hm-prices. These datasets are based on an open-source dataset that has been
introduced at the Kaggle competition hosted by H&M Group [13]. The dataset is originally bipartite
and contains entities of two types — customers and products that they purchase at the H&M shop.
Thus, we transform it by projecting to the part of products. The connections in the original dataset
can be described by a weighted adjacency matrix P ∈ Rm×n, where m is the number of users, n
is the number of products, and pij denotes how many times a user i has bought a product j. Then,
B = P⊤P ∈ Rn×n corresponds to the weighted adjacency matrix of products, where bij is the dot
product of columns i and j in P. The more often either of two products is bought by a common
customer, and the more shared customers there are in general, the greater the weight bij of the
connection between these products. After that, we obtain a binary and more sparse adjacency matrix
A ∈ {0, 1}n×n of products with aij = [bij ⩾ γ] by applying a threshold γ to the weights bij . The
resulting graph is undirected. For this dataset, we consider two different versions: hm-categories
with the product group as the target for the classification task and hm-prices with the average price
of a product as the target for the regression task. In both cases, we adjust the set of features so that
the problem does not become trivial, but the underlying graph is the same for these two versions. For
the regression task, we consider such features as product types, graphical appearance (categorical
feature), perceived color (categorical feature), etc. For the classification task, the set of features
includes average price (numerical feature) and a reduced subset of categorical attributes from the
regression task, which makes the problem more challenging.

city-roads-M and city-roads-L. These datasets are obtained from the logs of a navigation
service and represent the road networks of two major cities. Here, the nodes are road segments, and
there is a directed edge from node i to node j if the corresponding road segments are incident to each
other and moving from segment i to segment j is permitted by traffic rules. The task is to predict
the travel speed on roads at a specific timestamp. The features include numerous binary indicators
describing a road, such as whether there is a bike dismount sign, whether the road segment ends with
a crosswalk or toll post, whether it is in poor condition, whether it is restricted for trucks or has a
mass transit lane. Other features include the length of the road and the geographic coordinates of the
start and the end of the road (numerical features), as well as the speed mode of the road (categorical
feature). For these datasets, we found that providing DeepWalk node embeddings [25] as additional
input node features to different models significantly improves their performance, so we use these
embeddings in all our experiments with these datasets and provide them with the data.

avazu-devices. This is another dataset based on open-source data that has been introduced at
the Kaggle competition organized by Avazu [14]. It represents the interactions between devices and
advertisements on the internet. This dataset is originally bipartite and contains entities of three types
— devices, websites that are visited by these devices, and applications that are used to visit them. A
version of this dataset has been used by Ivanov and Prokhorenkova [10] in their study. However, it
contained only a small subset of interactions from the original dataset, which resulted in a small-sized
graph. Because of that, we decided to consider the whole dataset and transform it by projecting to
the part of devices. Let P ∈ Rm×n be a weighted adjacency matrix of devices and entry points
defined as the combinations of sites and applications, where m is the number of entry points, n is the
number of devices, and pij denotes how many times device j has used entry point i (i.e., visited a
specific site under a specific application). Then, B = P⊤P ∈ Rn×n corresponds to the weighted
adjacency matrix of devices, where bij is the dot product of columns i and j in P. The interpretation
of this matrix is similar to what we discussed above for hm-products. Finally, we obtain a binary
adjacency matrix A ∈ {0, 1}n×n of devices with aij = [bij ⩾ γ] by applying a threshold γ to the
weights bij . The resulting network is undirected. The task is to predict the click-through rate (CTR)
observed on devices. The features include numerous categorical attributes, such as device model,
banner position, and some number of additional features that have been already anonymized before
being released to public access.
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web-fraud and web-traffic. These two datasets represent a segment of the Internet. Here, the
nodes represent websites, and there is a directed edge from node i to node j with weight wij , if there
were wij > 0 users who followed a link from website i to website j in a selected period of time. We
prepared two datasets with the same graph but different tasks: for web-fraud, the task is to predict
which websites are fraudulent, while for web-traffic, the task is to predict the logarithm of how
many users visited a website on a specific day. The features in the dataset were obtained from the
website content, such as the numbers of incoming and outgoing links, the numbers of words and
sentences in the text content, the number of videos on the website (numerical features), the website’s
zone and what topic is the website dedicated to based on a classifier’s prediction (categorical features),
whether the website is on a free hosting and whether it has numbers in its address (binary features).

All graphs in our benchmark are (weakly-)connected graphs without self-loops. All graphs except for
questions-tab, city-roads-M, city-roads-L, web-fraud, web-traffic are undirected, and
all graphs except for web-fraud and web-traffic are unweighted. In our experiments, we convert
all directed edges to undirected ones and do not use edge weights in order to run all experiments in a
unified setting.

A.2 Datasets properties

Table 1: Statistics of the proposed TabGraphs datasets.
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# nodes 11.8K 48.9K 148.8K 15.2K 46.5K 2.9M 57.1K 142.3K 76.3K 46.5K 2.9M
# edges 519.0K 153.5K 1.2M 5.1M 10.7M 12.4M 107.1K 231.6K 11.0M 10.7M 12.4M
avg degree 88.28 6.28 15.66 676.93 460.92 8.56 3.75 3.26 288.04 460.92 8.56
% leaves 3.6 53.1 25.9 6.1 8.6 48.4 0.1 0.1 5.6 8.6 48.4
avg distance 2.79 4.29 4.91 2.23 2.45 3.08 126.75 194.05 3.55 2.45 3.08
diameter 11 16 19 7 13 36 383 553 14 13 36
global clustering 0.23 0.02 0.26 0.47 0.27 0.00 0.00 0.00 0.24 0.27 0.00
avg local clustering 0.53 0.03 0.41 0.81 0.70 0.33 0.00 0.00 0.85 0.70 0.33
degree assortativity −0.08 −0.15 0.01 −0.40 −0.35 −0.14 0.70 0.74 −0.30 −0.35 −0.14

# classes 2 2 2 16 21 2 N/A N/A N/A N/A N/A
target assortativity 0.09 0.02 0.59 0.05 0.08 0.01 0.74 0.72 0.18 0.12 −0.21
label informativeness 0.01 0.00 0.31 0.03 0.02 0.00 N/A N/A N/A N/A N/A
% labeled nodes 100.0 100.0 93.3 100.0 100.0 100.0 63.3 86.8 100.0 100.0 99.7

# num features 6 19 11 33 1 109 6 6 4 0 109
# cat features 1 1 5 3 6 20 5 5 13 11 20
# bin features 2 11 38 0 0 139 15 15 0 0 139

A key characteristic of our benchmark is its diversity. As described above, our graphs come from
different domains and have different prediction tasks. Their edges are also constructed in different
ways (based on user interactions, activity similarity, physical connections, etc.). However, the
proposed datasets also differ in many other ways. Some properties of our graphs are presented
in Table 1 (see below for the details on how the provided statistics are defined). First, note that
the sizes of our datasets range from 11K to 3M nodes. The smaller graphs can be suitable for
compute-intensive models, while the larger graphs can provide a moderate scaling challenge. The
average degree of our graphs also varies significantly — most graphs have the average degree
ranging from tens to hundreds, which is larger than the average degrees of most datasets used in
present-day graph ML research; however, we also have some sparser graphs such as questions-tab,
city-roads-M, city-roads-L. The average distance between two nodes in our graphs varies from
2.23 for browser-games to 194 for city-roads-L, and graph diameter (maximum distance) varies
between 7 for browser-games to 553 for city-roads-L. Further, we report the values of clustering
coefficients which show how typical are closed node triplets for the graph. In the literature, there
are two definitions of clustering coefficients [26]: the global clustering coefficient and the average
local clustering coefficient. We have graphs where the clustering coefficients are high or almost zero,
and graphs where global and local clustering coefficients significantly disagree (which is possible
for graphs with imbalanced degree distributions). The degree assortativity coefficient is defined as
the Pearson correlation coefficient of degrees among pairs of linked nodes. Most of our graphs have
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negative degree assortativity, which means that nodes tend to connect to other nodes with dissimilar
degrees, while for the city-roads-M and city-roads-L datasets the degree assortativity is positive
and large.

Further, let us discuss the graph-label relationships in our datasets. To measure the similarity of labels
of connected nodes for regression datasets, we use target assortativity — the Pearson correlation
coefficient of target values between pairs of connected nodes. For instance, for the city-roads-M
and city-roads-L datasets, the target assortativity is positive and quite large, which shows that
nodes tend to connect to other nodes with similar target values, while for the web-traffic dataset,
the target assortativity is negative. For classification datasets, the similarity of neighbors’ labels
is usually called homophily: in homophilous datasets, nodes tend to connect to nodes of the same
class. We use adjusted homophily to characterize homophily level, as it has been shown to have more
desirable properties than other homophily measures used in the literature [27]. In Table 1, we refer
to adjusted homophily as target assortativity, as it is a special case of the assortativity coefficient
[28]. We can see that for the city-reviews dataset, adjusted homophily is positive and quite large,
which shows that this dataset is homophilous, while for the rest of our classification datasets, adjusted
homophily is close to zero. One more characteristic to describe graph-label relationships is label
informativeness [27]. It shows how much information about the label of a given node can be derived
from the label of a neighbor node. In our datasets, label informativeness correlates with adjusted
homophily, which is typical for real-world labeled graphs.

Note that some of our graphs contain unlabeled nodes. This is a typical situation for industry and
science, yet it is underrepresented in graph machine learning benchmarks. Unlabeled nodes give an
additional advantage to graph-aware models, as they can utilize the information about the features of
these nodes and their position in the graph even without knowing their labels.

Finally, our datasets have sets of heterogeneous tabular node features with different number and
balance of numerical, categorical, and binary attributes. The numerical features have widely different
scale and distribution. For example, for the questions-tab dataset, most of the features are counters
(questions count, answers count, subscribers count, achievements count, articles count) with different
scales, while the rating feature has a very different distribution with negative values and lots of
outliers.

Overall, our datasets are diverse in domain, scale, structural properties, graph-label relations, and
node attributes. Providing meaningful prediction tasks, they may serve as a valuable tool for the
research and development of machine learning models that can process graph-structured data with
heterogeneous features.

Computing dataset statistics. Let us further describe the statistics that we use in Table 1. Note that
before computing all the considered graph characteristics, we transformed the graphs to be undirected
and unweighted, since some of the characteristics are only defined for such graphs.

Average degree is the average number of neighbors a node has. % leaves is the percentage of nodes of
degree 1 in the graph. Since all our graphs are connected (when treated as undirected graphs), for any
two nodes there is a path between them. Average distance is the average length of the shortest paths
among all pairs of nodes, while diameter is the maximum length of the shortest paths among all pairs
of nodes. For our largest graph — the one used for web-fraud and web-traffic datasets — we
approximate average distance with an average over distances for 100K randomly sampled node pairs.
Global clustering coefficient is computed as the tripled number of triangles divided by the number of
pairs of adjacent edges (i.e., it is the fraction of closed triplets of nodes among all connected triplets).
Average local clustering coefficient first computes the local clustering of each node, which is the
fraction of connected pairs of its neighbors, and then averages the obtained values among all nodes.
Degree assortativity is the Pearson correlation coefficient between the degrees of connected nodes.
Further, target assortativity for regression datasets is the Pearson correlation coefficient between
target values of connected nodes. For classification tasks, we measure target assortativity via adjusted
homophily [27] that can be computed as follows:

hadj =
hedge − µ

1− µ
, with µ =

C∑
k=1

D2
k/(2|E|)2 and Dk =

∑
v : yv=k

dv,

where hedge is the fraction of edges connecting nodes with the same label, and dv denotes the degree
of a node v. In Platonov et al. [27], it was shown that adjusted homophily satisfies a number of
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desirable properties, which makes it appropriate for comparing datasets with different number and
balance of classes. Finally, label informativeness (LI) was introduced by Platonov et al. [27] and
was shown to be more consistent with GNN performance than homophily. Label informativeness
quantifies how much information a neighbor’s label gives about the node’s label. To formally define
this measure, we let (ξ, η) ∈ E be an edge sampled uniformly at random among all edges and define

LI := I(yξ, yη)/H(yξ) .

Here yξ and yη are (random) labels of ξ and η, H(yξ) is the entropy of yξ and I(yξ, yη) is the mutual
information of ξ and η.

B Simple modifications for tabular models and GNNs
B.1 Feature augmentation based on graph structure

There are a number of possible approaches to augmenting node features with graph-based information
in order to provide graph-agnostic models with some information about the graph.

Neighborhood Feature Aggregation (NFA). First, we describe our Neighborhood Feature Ag-
gregation (NFA) technique. This technique augments node features with the information about
features of the node’s neighbors in the graph. As we show in our experiments, this technique often
significantly improves the performance of graph-agnostic tabular models. We consider the set of
1-hop neighbors of each node and compute various statistics over the node features in this set. In
particular, for numerical features, we compute their mean, maximum, and minimum values in the
neighborhood. For categorical features, we first transform them into a set of binary features using
one-hot encoding. Then, for each binary feature, be it an original binary feature or a binary obtained
from a categorical one by one-hot encoding, we compute their mean values in the neighborhood, i.e.,
their ratios of 1s for binary indicators. Additionally, we compute the degree of the node and use it
as one more additional feature. Then, we concatenate all the produced additional features with the
original node features. We treat all these additional features as numerical features in our experiments,
i.e., apply scaling transformations and possibly PLR embeddings to them.

Let us describe the NFA procedure slightly more formally. Consider some specific feature x ∈ X
from the set of features X , an arbitrary node v ∈ V in the graph G(V,E) and its 1-hop neighbors
NG(v). Then, we can collect the values of this feature for the node v and its neighbors NG(v) and
apply some aggregation function f (e.g., mean, max, min) to them in order to obtain a single value h:

h = f
(
xv,

{
xu : u ∈ NG(v)

})
.

This value h is then used as an additional feature for the considered node v. This procedure is done
for each node v ∈ V and each feature x ∈ X . In particular, for numerical features, we apply three
aggregation functions separately: mean, max, min, thus producing three new features. For binary
features, we apply the mean aggregation function, hence producing one new feature. For categorical
features, we first apply one-hot encoding to them, and then apply the mean aggregation function
to each of the resulting binary features, thus producing as many additional features as there were
possible values of the original categorical feature. In addition, we also append the node degree to the
resulting NFA vector. We concatenate this NFA vector to the original features of the node v. We treat
all these additional node features as numerical.

For example, consider the questions-tab dataset from our benchmark. Each node has a numerical
feature answers count — the number of answers the user represented by this node has given
to questions asked on the question-answering platform. Based on this feature, our NFA proce-
dure creates three additional numerical node features: answers count mean, answers count max,
answers count min, which for each node contain respectively the mean, maximum, and minimum
of the values of the answers count feature for all 1-hop neighbors of the node in the graph. Each
node also has a binary feature has description — an indicator if the user has provided a pro-
file description. Based on this feature, our NFA procedure creates one additional numerical node
feature — has description mean. Each node also has a categorical feature profile quality
characterizing the quality of the user profile estimated by a model. This feature has four possi-
ble values encoded as integers 0, 1, 2 and 3. Based on this feature, our NFA procedure creates
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Figure 1: An illustrative example of applying Neighborhood Feature Aggregation (NFA).

four additional numerical features: profile quality is 0 mean, profile quality is 1 mean,
profile quality is 2 mean, profile quality is 3 mean.

In Figure 1 we provide a simple illustration of our approach. Here, we consider a central node with
three neighbors, which have one numerical feature (blue), one categorical feature (green), and one
binary feature (orange). To construct NFA for the central node, we compute across all its neighboring
nodes (including the central node, as it has a self-loop) the minimum, maximum, and average values
for the numerical feature, average values for the one-hot-encoded categorical feature, and average
value for the binary feature. After that, we append the node degree to the NFA vector. Note that, if
categorical features are present, we first transform them to binary features with one-hot-encoding, so
NFA is always applied to numerical or binary features.

Other possible approaches to graph-based feature augmentation. It is possible to augment
node features with other types of information obtained from the graph structure besides aggregating
neighborhood node features. For example, counters of local graph substructures (e.g., network motifs
or, more generally, graphlets) or various node centrality values can be used to extend node features.
Further, different self-supervised node embeddings can be added to node features. We experimented
with these approaches and found that using DeepWalk node embeddings [25] is very beneficial on
city-roads-M and city-roads-L datasets, and thus use them in all our experiments with these
two datasets. Note that these datasets (which represent road networks) are originally embedded in
two-dimensional space, and we hypothesize that DeepWalk embeddings combine information about
graph connectivity with implicitly learned information about node relative positions in this space,
which explains why these node embeddings are helpful. It is particularly interesting that DeepWalk
node embeddings provide additional benefits to models even despite the fact that the coordinates
of starts and ends of road segments (nodes) are provided in node features in city-roads-M and
city-roads-L datasets, so models can leverage them to obtain similar information. Note that
DeepWalk is a relatively old method for obtaining unsupervised node embeddings and there have
been many other methods proposed after it. However, in our experiments we chose to focus on
DeepWalk because, as recent research shows, it typically performs on par with or even better than
later methods [29], while also being simpler than most of them.

B.2 Embeddings for numerical features

In practice, neural networks are good at handling data with binary features and with categorical
features transformed to binary features by one-hot encoding (when input features are immediately
followed by a linear transformation, which is typically the case in neural networks, the model
essentially learns an embedding for each binary feature). However, numerical features can be a
problem for neural networks. Standard neural network building blocks represent (mostly) smooth
functions, and thus neural networks cannot sharply vary their predictions based on changes in
numerical features. However, in many cases, such smooth decisions are suboptimal. In contrast,
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decision trees, which are the basis of GBDT, select thresholds for values of numerical features and
make hard discontinuous decisions based on them. This strategy often fits tabular data with rich
numerical features better, and this is often considered to be one of the main reasons why neural
networks still cannot consistently outperform GBDT models on tabular data, despite the large amount
of research resources spent on improving neural networks for tabular data [30–32].

Recently, Gorishniy et al. [6] proposed several specialized techniques for embedding numerical
features to improve the performance of neural networks on tabular data. These techniques introduce
learnable modules that transform numerical features into embeddings — arguably a more natural
form of inputs for neural networks. Of several methods proposed in the original paper, we focus on
Periodic-Linear-ReLU (PLR) numerical feature embeddings, since according to the experiments
from the original paper they provide the best average performance. This method is inspired by
periodic activation functions that have recently found success in computer vision [33–36]. The PLR
embedder first passes a numerical feature through several sine and cosine functions with different
(learnable) frequencies obtaining a periodic embedding, and then passes this embedding through a
linear layer and a ReLU activation function obtaining the final numerical feature embedding that
becomes the input to the main model (see the original paper of Gorishniy et al. [6] for more details).

Note that later a more memory-efficient modification of PLR embeddings called lite was introduced
by [20]. This method differs from the original PLR embeddings in that, in order to save memory,
it uses a shared linear layer for all input numerical features instead of a unique linear layer per
feature. We found that the original PLR embeddings often perform better than PLR-lite embeddings,
so, in our work, we use the original PLR embeddings for all experiments that include numerical
feature embeddings, except for experiments with the TabR model for which PLR-lite embeddings
were originally introduced. For this model, we follow the official implementation and use PLR-lite
embeddings.

C Models
In this section, we describe the models used in our experiments in more detail.

A simple baseline. As a simple baseline, we use a ResNet-like model: an MLP with skip-
connections [15] and layer normalization [16]. This model does not have any information about the
graph structure and operates on nodes as independent samples (we call such models graph-agnostic).
This model also does not have any specific design for working with tabular features.

Tabular models. We consider the three most popular implementations of GBDT: XGBoost [17],
LightGBM [18], and CatBoost [19]. Further, we consider two recently proposed deep learning
models for tabular data. One is MLP-PLR [6], a simple MLP augmented with PLR numerical feature
embeddings. It has been shown by Gorishniy et al. [6] that this model outperforms many other
tabular deep learning methods. Another is TabR-PLR [20], which is a retrieval-augmented model.
TabR-PLR also uses PLR embeddings for numerical features processing, although it uses a simplified
version of them called lite (see Appendix B.2 for a detailed discussion), as is done in the original
implementation of the model [20]. Note that all models discussed above are graph-agnostic.

To investigate how effectively graph structure can be used in combination with tabular models, we
also experiment with the proposed NFA strategy for augmenting node features with information
about the features of 1-hop neighbors in the graph, as described in Appendix B.1. In particular, we
provide such an augmentation for LightGBM, an efficient implementation of GBDT, and MLP-PLR,
a simple yet strong neural baseline. We denote these models with the -NFA suffix. Comparing the
performance of standard models and their versions with graph-augmented node features is one way
to see if graph information is helpful for the task.

Graph deep learning models. We also consider several representative GNN architectures. First,
we use GCN [8] and GraphSAGE [21] as simple classical GNN models. For GraphSAGE, we use
the version with the mean aggregation function, and we do not use the neighbor sampling technique
proposed in the original paper, instead training the model on a full graph, like all other GNNs in our
experiments. Further, we use two GNNs with attention-based neighborhood aggregation function:
GAT [22] and Graph Transformer (GT) [23]. Note that GT is a local graph transformer, i.e., each
node only attends to its neighbors in the graph (in contrast to global graph transformers, in which each
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node attends to all other nodes in the graph, in which are thus not instances of the standard MPNN
framework). We equip all 4 considered GNNs with skip-connections and layer normalization, which
we found important for stability and strong performance. We add a two-layer MLP with the GELU
activation function [37] after every neighborhood aggregation block in GNNs. Our graph models
are implemented in the same codebase as ResNet — we simply swap each residual block of ResNet
with a residual neighborhood aggregation block of the selected GNN architecture. Thus, comparing
the performance of ResNet and GNNs is one more way to see if graph information is helpful for the
task. Further, for all the considered GNNs, we experiment with their versions augmented with PLR
embeddings, as described in Appendix B.2 — we denote these models with the -PLR suffix (we do
not use these model modifications for the hm-prices dataset, since it does not contain numerical
features).

Specialized models. We also use two recently proposed methods designed specifically for learning
on graphs with heterogeneous tabular node features: BGNN [10] and EBBS [11].

The details of our experimental setup and hyperparameter tuning for different models are provided in
Appendix F.

D Experimental results
We provide the results of our experiments for classification and regression datasets in Tables 2 and 3,
respectively. These results are discussed in Section 4.

Table 2: Results for classification datasets. Accuracy is reported for multiclass classification datasets
(browser-games and hm-categories) datasets, Average Precision (AP) is reported for binary
classification datasets (all other datasets). The best results are marked with orange, and the results
for which the mean differs from the best one by no more than the sum of the two results’ standard
deviations are marked with cyan. There are also some experiments where the results could not be
reported due to different reasons: MLE — memory limit exceeded, TLE — time limit exceeded, FCP —
an experiment failed against a constant prediction baseline (the majority class on train).

tolokers-tab questions-tab city-reviews browser-games hm-categories web-fraud

ResNet 45.17± 0.61 84.01± 0.26 64.33± 0.32 78.82± 0.32 70.45± 0.24 14.21± 0.24
XGBoost 48.79± 0.25 85.03± 5.78 65.55± 0.18 79.73± 0.17 71.08± 0.70 16.95± 0.18
LightGBM 48.49± 0.27 87.24± 0.14 66.17± 0.17 79.28± 0.15 71.09± 0.10 17.08± 0.11
CatBoost 48.61± 0.25 87.59± 0.04 66.05± 0.16 80.46± 0.22 71.14± 0.12 TLE
MLP-PLR 47.72± 0.45 87.34± 0.42 66.36± 0.11 80.69± 0.24 71.02± 0.08 16.24± 0.12
TabR-PLR 48.50± 0.69 85.56± 0.52 66.50± 0.26 80.29± 0.26 71.38± 0.22 MLE

LightGBM-NFA 57.99± 0.43 87.79± 0.19 71.66± 0.11 83.09± 0.26 81.72± 0.12 23.72± 0.16
MLP-PLR-NFA 57.70± 0.20 87.43± 0.07 71.93± 0.12 83.36± 0.26 81.35± 0.21 22.33± 0.29

GCN 61.09± 0.38 84.92± 0.95 71.08± 0.32 79.17± 0.41 86.42± 0.31 14.65± 0.24
GraphSAGE 57.08± 0.24 85.70± 0.30 71.15± 0.27 82.56± 0.11 86.35± 0.18 20.28± 0.48
GAT 58.77± 1.00 84.44± 0.68 71.38± 0.53 82.60± 0.26 87.84± 0.23 19.95± 0.51
GT 58.92± 0.57 83.59± 1.17 71.72± 0.23 83.29± 0.33 89.00± 0.23 20.19± 0.44

GCN-PLR 60.81± 0.56 88.80± 0.25 70.40± 0.58 80.50± 0.58 83.85± 0.28 MLE
GraphSAGE-PLR 60.28± 0.97 88.55± 0.48 72.26± 0.40 83.19± 0.34 86.77± 0.12 MLE
GAT-PLR 60.99± 0.82 88.69± 0.63 71.66± 0.66 83.59± 0.33 87.94± 0.20 MLE
GT-PLR 61.95± 0.73 82.41± 1.60 71.80± 0.21 83.26± 0.36 89.01± 0.15 MLE

BGNN 47.45± 1.29 47.20± 5.24 51.59± 3.42 75.92± 0.34 84.60± 0.50 3.21± 0.15
EBBS 43.86± 1.63 79.03± 3.57 57.40± 1.99 64.56± 0.16 41.77± 1.89 6.00± 0.68

E Related work
Machine learning for tabular data. The key distinction of tabular data is that it typically consists
of a mixture of numerical and categorical features with vastly different distribution, meaning, and
importance. Standard deep learning models do not always perform well on such heterogeneous
features. Thus, the ML methods of choice for tabular data are often ensembles of decision trees, in
particular gradient-boosted decision trees (GBDT) [1], with the most popular implementations being
XGBoost [17], LightGBM [18], and CatBoost [19]. However, deep learning models have several
advantages compared to tree-based ones, such as modularity, ease of integration of different data
modalities, the ability to learn meaningful data representations, and the ability to leverage pretraining
on unlabeled data. Because of this, there has been an increasing number of works trying to adapt
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Table 3: Results for regression datasets. R2 is reported for all datasets. The best results are marked
with orange, and the results for which the mean differs from the best one by no more than the sum of
the two results’ standard deviations are marked with cyan. There are also some experiments where
the results could not be reported due to different reasons: MLE — memory limit exceeded, TLE —
time limit exceeded, FCP — an experiment failed against a constant prediction baseline (the average
target on train).

city-roads-M city-roads-L avazu-devices hm-prices web-traffic

ResNet 70.58± 0.35 67.49± 0.09 21.60± 0.08 67.31± 0.21 73.19± 0.04
XGBoost 71.54± 0.08 69.02± 0.03 24.43± 0.03 67.63± 0.08 75.41± 0.01
LightGBM 71.24± 0.10 68.86± 0.08 24.18± 0.05 68.52± 0.15 75.27± 0.01
CatBoost 71.88± 0.09 68.46± 0.03 25.56± 0.12 69.07± 0.26 TLE
MLP-PLR 71.52± 0.17 68.91± 0.16 22.52± 0.29 68.26± 0.04 74.53± 0.04
TabR-PLR 73.24± 0.26 72.92± 0.07 MLE 68.46± 0.29 MLE

LightGBM-NFA 72.59± 0.10 70.98± 0.04 31.97± 0.03 78.64± 0.05 86.66± 0.01
MLP-PLR-NFA 72.06± 0.16 68.81± 0.13 31.49± 0.16 75.18± 0.50 86.17± 0.03

GCN 72.87± 0.21 70.92± 0.23 27.31± 0.17 77.05± 0.25 81.95± 0.08
GraphSAGE 73.35± 0.58 71.03± 0.90 27.99± 0.32 76.01± 0.47 84.04± 0.19
GAT 73.64± 0.30 71.74± 0.23 28.28± 0.54 78.02± 0.32 84.85± 0.17
GT 72.95± 0.47 69.98± 0.57 30.27± 0.26 78.44± 0.58 85.17± 0.17

GCN-PLR 73.08± 0.33 70.95± 0.18 24.68± 0.12 N/A MLE
GraphSAGE-PLR 73.51± 0.37 71.97± 0.31 27.64± 0.23 N/A MLE
GAT-PLR 73.25± 0.33 71.78± 0.20 28.29± 0.36 N/A MLE
GT-PLR 73.09± 0.35 71.12± 0.56 29.88± 0.20 N/A MLE

BGNN 57.80± 0.16 58.73± 0.34 22.67± 0.19 70.23± 0.56 FCP
EBBS 24.40± 3.06 32.54± 5.17 8.59± 1.73 30.49± 2.83 26.39± 0.16

deep learning to tabular data [2–7, 38–45]. Further, there is recent research comparing different kinds
of tabular models and trying to determine which ones are the best [30–32].

Among the tabular deep learning literature, the retrieval-augmented deep learning models [20, 46–49]
are particularly relevant to our work. For each data sample, these models retrieve information about
other examples from the dataset, typically employing some form of attention mechanism [50, 51],
and use it to make predictions. Thus, these models learn to find other relevant samples in the dataset,
where relevance is determined by feature similarity. This can be viewed as an implicit learning of a
similarity graph between data samples. A recent work by Liao and Li [52] directly considers this as a
problem of graph structure learning and applies a GNN on top of the learned graph. In contrast, in
our work, we assume that some (ground-truth) relations between data samples are already given in
advance, which is common in many real-world applications, and focus on the models that can utilize
these relations.

Machine learning for graphs. Graphs are a natural way to represent data from various domains.
Hence, machine learning on graph-structured data has experienced significant growth in recent years,
with Graph Neural Networks (GNNs) showing particularly strong results in many graph machine
learning tasks. Most of the proposed GNN architectures [8, 21, 22] can be unified under a general
Message-Passing Neural Networks (MPNNs) framework [9]. However, GNNs are typically evaluated
on graphs with homogeneous node features, most often text-based ones, such as bags of words or
text embeddings. For instance, the most frequently used datasets for node classification are the
three citation networks cora, citeseer, and pubmed [53–57]. The first two datasets use bags of
words as node features, while the third one uses TF-IDF-weighted bags of words. Other datasets
for node classification often found in the literature include coauthorship networks coauthor-cs
and coauthor-physics [58] that use bags of words as node features, and co-purchasing networks
amazon-computers and amazon-photo [58] that also use bags of words. In the popular Open
Graph Benchmark (OGB) [59], ogbn-arxiv, ogbn-papers100M, and ogbn-mag datasets also use
bags of words as node features, while ogbn-products uses dimensionality-reduced representations
of bags of words. In a recently proposed benchmark of heterophilous graphs [24], roman-empire
uses word embeddings as node features, while amazon-ratings and questions use bags of word
embeddings. Recently, there has been a push for providing raw text descriptions of nodes for such
text-attributed graphs (TAGs) in order to use models from the field of natural language processing
(NLP) such as Large Language Models (LLMs) in combination with GNNs [60], but the features
that GNNs receive in such scenarios are still homogeneous text embeddings. Several benchmarks
providing such raw text descriptions of graph nodes have been created [61–63], and even a benchmark
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of graphs with both texts and images as node attributes has recently been proposed [64]. While
there are a few graph datasets that have heterogeneous tabular node features, such as fraud-yelp
from Mukherjee et al. [65] and fraud-amazon from McAuley and Leskovec [66], they are not very
popular in graph machine learning research, and the works that do use them [e.g., 67, 68] typically do
not apply any specialized feature processing and do not compare with GBDT baselines, thus ignoring
the specifics of tabular node features. Indeed, fully leveraging the specifics of heterogeneous tabular
node features for these datasets is difficult since feature types are not explicitly provided with the
data. From these examples, it becomes clear that the effectiveness of graph machine learning models
on graphs with heterogeneous tabular node features remains under-explored, despite such datasets
being wide-spread in industry and science. We aim to partially address this issue with our benchmark
and experimental results on it.

One more downside of existing popular GNN benchmarks is that they often do not provide realistic
and meaningful prediction tasks. For instance, the most popular task in current academic graph
machine learning is predicting paper subject areas in citation networks. However, this task can be
better solved by analyzing the text of the paper with an LLM, or, even better, by simply using the
subject area information provided by the paper authors. In contrast, we aim to provide datasets with
meaningful prediction tasks.

Machine learning for graphs with tabular node features. Recently, two methods have been
proposed specifically for learning on graphs with heterogeneous tabular node features. The first one
is BGNN [10], an end-to-end trained combination of GBDT and GNN, where GBDT takes node
features as input and predicts node representations that are further concatenated with the original node
features and used as input for a GNN. Another recent method is EBBS [11], which alternates between
decision trees boosting and graph propagation steps, essentially fitting GBDT to a graph-aware loss,
and is also trained end-to-end. However, as Ivanov and Prokhorenkova [10] note, there is currently a
lack of publicly available datasets of graphs with heterogeneous node features. For this reason, the
evaluation of these two methods provided in the original papers is limited, and the datasets used for it
have various issues that make results obtained using them unreliable (see Appendix H for the detailed
discussion). Thus, the community needs a better benchmark for evaluating models on graphs with
heterogeneous tabular node features, and we aim to provide one.

Graph machine learning for relational databases. One more field of research related to our work
is machine learning for relational databases. This field also deals with a combination of tabular
and graph data, although these types of data appear in it in a form different from the one studied in
our work. In this field, the data is represented as a relational database: a collection of tables, each
containing objects of a single type, with specified relationships between entries of different tables.
Such data can be represented as a heterogeneous graph: a graph with multiple types of nodes and/or
edges.2 The nodes correspond to table entries (with nodes from different tables having different
types) and edges correspond to relationships between entries of different tables (with different
types of edges representing different kinds of relationships). Due to this possibility of representing
relational databases as a heterogeneous graph, there have been several works applying graph machine
learning methods to relational databases [69–76]. Regarding publicly available datasets, for a long
time the main source of open RDB data for machine learning was the Prague Relational Learning
Repository [77]. However, some of its datasets are synthetic, most of its datasets are quite small,
and not all of its tasks are realistic. Further, on some of its tasks, even quite simple models achieve
nearly perfect performance, hence these tasks cannot be used for meaningful model comparison [78].
Later, several temporal RDB datasets for machine learning were introduced in the KDD Cup 2019
AutoML Competition [79]. However, these datasets, while being obtained from real-world industrial
applications, do not provide any information about feature and target names or even data domains,
which makes working with them particularly difficult. Very recently, two benchmarks of large-scale
relational databases have been proposed: RelBench [80] and 4DBInfer [78].

Machine learning over relational databases is related to our work because it often also aims to bring
graph ML methods to tabular data. Entities in relational database tables (and nodes in the correspond-
ing heterogeneous graph) typically have heterogeneous tabular features, so using methods that can

2Note that there is a difference between heterogeneous graphs and graphs with heterogeneous node features.
The first term refers to heterogeneity of the structure of the graph, while the second term refers to heterogeneity
of the types of node features. Graphs with heterogeneous node features can be either homogeneous (which is the
focus of our work) or heterogeneous (which appear in machine learning over relational databases).
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effectively work with graph structure and heterogeneous features is desirable. However, relational
database ML differs from our work in the structure of graphs used to represent relational databases. In
a relational database, there are several tables, and relationships usually can exist only between entities
from different tables. Therefore, a relational database can be modeled with a heterogeneous graph
where nodes of the same type usually cannot be connected (i.e., this heterogeneous graph is typically
also multipartite). In contrast, in our work, we focus on datasets that consist of a single table (which is
the standard setting for tabular machine learning) and have additional information about relationships
between entities in this table (and all of these relationships are of the same type, although in general
this need not be the case even for single-table data). Thus, such datasets can be modeled with a
homogeneous graph (i.e., a graph in which all nodes have the same type and all edges have the same
type). Taking into account that working with heterogeneous graphs requires specialized methods
that can be quite different from those used for homogeneous graphs, we consider that different
benchmarks and possibly different methods are needed for machine learning over relational databases
and machine learning over single-table tabular data with additional relational information. Both types
of data are widespread in industry and science and have attracted attention from machine learning
researchers and practitioners. The purpose of our work is to create a benchmark of single-table tabular
datasets with additional relational information since there is currently a lack of open datasets of this
type. That being said, both machine learning for relational databases and our work aim to bring graph
machine learning methods to tabular data, which we believe to be potentially a very fruitful direction.

F Experimental setup and hyperparameter selection details

For our experiments, we split nodes of each dataset into train, validation, and test sets in proportion
50%/25%/25%. These splits are random and stratified, where the stratification is done by class
for the classification datasets and by target variable quantile for the regression datasets. The only
exception is city-reviews, where we choose a natural split based on the city. Recall that the
organizations reviewed by users (nodes) in this dataset are located in two cities, so we can split the
users into two groups based on in which city most of the organizations they were interacting with
are located. Then, the users from the larger group are split randomly into train and validation sets
in proportion 50%/50%, while the users from the smaller group form the test set. The resulting
proportion for train/validation/test splits for the city-reviews dataset becomes approximately
34%/34%/32%. This split introduces a natural distribution shift between train/validation and test
sets. We report Average Precision (AP) for binary classification datasets, Accuracy for multiclass
classification datasets, and R2 for regression datasets. For each dataset, we train each model 5 times
with different random seeds and report the mean and standard deviation of performance in these runs.

Some of the graphs in our benchmark are directed and/or weighted. In order to run all experiments in
a unified setting, we converted directed graphs to undirected ones (by replacing each directed edge
with an undirected one) and did not use edge weights in weighted graphs. We leave the exploration of
whether utilizing edge directions and weights can lead to better performance on those of our datasets
that have this information for future work.

For experiments with GBDT and tabular deep learning models, we used the source code from the
TabR repository [20]. For experiments with GNNs, we used a modification of the code from the
repository of Platonov et al. [24]. For experiments with BGNN and EBBS, we used the official
repositories of these models Ivanov and Prokhorenkova [10], Chen et al. [11]. Tabular deep learning
models are implemented using PyTorch [81], and GNNs are implemented using PyTorch and DGL
[82].

We train all our GNNs in a full-batch setting, i.e., we do not use any subgraph sampling techniques
and train the models on the full graph. Our ResNet baseline is implemented in the same codebase
as our GNNs and is thus also trained in the full-batch setting. In contrast, the tabular neural models
MLP-PLR and TabR-PLR are trained on random batches of data samples.

Since GBDT and tabular deep learning models are relatively fast, we conducted an extensive hy-
perparameter search on the validation set — 70 iterations of Bayesian optimization using Optuna
[83]. Each method was trained until convergence, which is determined after 16 epochs without
improvement on the validation set for neural models and 200 iterations for GBDT models. The batch
size for neural models was set to 256 when training. In Tables 4 and 5, we provide the hyperparameter
search space for tabular models: XGBoost, LightGBM, CatBoost, MLP-PLR, and TabR-PLR.
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As GNNs are relatively slower, we ran a less extensive hyperparameter search for them. Specifically,
we ran grid search selecting the learning rate from {3 × 10−5, 3 × 10−4, 3 × 10−3} and dropout
probability from {0, 0.2} (note that the highest learning rate of 3× 10−3 often resulted in NaN issues,
however, we still included it in our hyperparameter search, as in our preliminary experiments we found
it to be beneficial for some of our dataset + model combinations). In our preliminary experiments we
found that the performance of our GNNs is quite stable for a wide variety of reasonable architecture
hyperparameters values (we found the use of skip-connections and layer normalization to be important
for this stability). Hence, for our final experiments, we kept these hyperparameters fixed. Their values
were set as follows: the number of graph neighborhood aggregation blocks was set to 3, the hidden
dimension was set to 512 (the only exceptions to these two values were made for our largest datasets
web-fraud and web-traffic, for which, to avoid OOM issues, we decreased the number of graph
neighborhood aggregation blocks to 2, and decreased the hidden dimension to 256). For GNNs with
attention-based graph neighborhood aggregation (GAT and GT), the number of attention heads was
set to 4. We used the Adam optimizer [84] in all our experiments. We trained each model for 1000
steps and then selected the best step based on the performance on the validation set.

Table 4: The hyperparameter search space for GBDT models.
XGBoost

Parameter Distribution

colsample_bytree Uniform[0.5, 1.0]

gamma {0.0,LogUniform[0.001, 100.0]}
lambda {0.0,LogUniform[0.1, 10.0]}
learning_rate LogUniform[0.001, 1.0]

max_depth UniformInt[3, 14]

min_child_weight LogUniform[0.0001, 100.0]

subsample Uniform[0.5, 1.0]

LightGBM
Parameter Distribution

feature_fraction Uniform[0.5, 1.0]

lambda_l2 {0.0,LogUniform[0.1, 10.0]}
learning_rate LogUniform[0.001, 1.0]

num_leaves UniformInt[4, 768]

min_sum_hessian_in_leaf LogUniform[0.0001, 100.0]

bagging_fraction Uniform[0.5, 1.0]

CatBoost
Parameter Distribution

bagging_temperature Uniform[0.0, 1.0]

depth UniformInt[3, 14]

l2_leaf_reg Uniform[0.1, 10.0]

leaf_estimation_iterations Uniform[1, 10]

learning_rate LogUniform[0.001, 1.0]

Table 5: The hyperparameter search space for neural tabular models.

MLP-PLR
Parameter Distribution

num_layers UniformInt[1, 6]

hidden_size UniformInt[64, 1024]

dropout_rate {0.0,Uniform[0.0, 0.5]}
learning_rate LogUniform[3e-5, 1e-3]
weight_decay {0,LogUniform[1e-6, 1e-3]}
plr_num_frequencies UniformInt[16, 96]

plr_frequency_scale LogUniform[0.001, 100.0]

plr_embedding_size UniformInt[16, 64]

TabR-PLR
Parameter Distribution

num_encoder_blocks UniformInt[0, 1]

num_predictor_blocks UniformInt[1, 2]

hidden_size UniformInt[96, 384]

context_dropout Uniform[0.0, 0.6]

dropout_rate Uniform[0.0, 0.5]

learning_rate LogUniform[3e-5, 1e-3]
weight_decay {0,LogUniform[1e-6, 1e-3]}
plr_num_frequencies UniformInt[16, 96]

plr_frequency_scale LogUniform[0.001, 100.0]

plr_embedding_size UniformInt[16, 64]

Table 6: The hyperparameter search space for specialized models.

BGNN
Parameter Distribution

learning_rate {0.01, 0.1}
iter_per_epoch {10, 20}
hidden_size {64, 256}
graph_convolution {GCN,GAT,AGNN,APPNP}
use_only_gbdt {true, false}

EBBS
Parameter Distribution

learning_rate {0.1, 1.0}
propagation_weight {2.0, 20.0, 50.0}
num_propagation_steps {2, 5}

When applying deep learning models to tabular data, the preprocessing of numerical features is
critically important. In our experiments, we considered two possible numerical feature transformation
techniques: standard scaling and quantile transformation to standard normal distribution. We included
them in the hyperparameter search for neural models (both tabular ones and GNNs). Note that,
when using PLR embeddings for numerical features, we first apply one of the numerical feature
transformations discussed above and only then apply PLR embeddings. For categorical features,
we used one-hot encoding for all models except for LightGBM and CatBoost, which support the
use of categorical features directly and have their specialized strategies for working with them
(XGBoost also offers such a feature, but it is currently marked as experimental, and we were not able
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to make it work). For regression datasets, neural models might perform better if the target variable is
transformed. Therefore, in our experiments on regression datasets with neural models (both tabular
ones and GNNs), we considered the options of using the original targets or preprocessing targets with
standard scaling, including these two options in the hyperparameter search.

Note that PLR embeddings for numerical features have a number of their own hyperparameters: the
number of frequencies used, the frequencies scale, and the embedding dimension. For neural tabular
models, we simply included these hyperparameters in the Optuna’s hyperparameter search space (see
Table 5). For GNNs, due to their relatively longer training time, we fixed the number of frequencies
to 48 and the embedding dimension to 16 — the default values recommended by the method authors.
As for the frequencies scale, which is typically the most important hyperparameter, we searched over
the following set of values: {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0}. Specifically, we fixed the values
of learning rate, dropout probability, and, for regression experiments, also the regression target
transformation, to the best values found in experiments without PLR embeddings, and then searched
only over numerical feature transformation (standard scaling or quantile transformation to standard
normal distribution) and PLR frequencies scale for our experiments with PLR embeddings. We used
the standard original version of PLR numerical feature embeddings [6] for all models except for
TabR-PLR, for which we used the lite version of PLR embeddings in accordance with the official
implementation of the model [20].

For the specialized methods BGNN and EBBS, we used the experimental pipelines from their official
implementations. For BGNN, this pipeline includes hyperparameter selection. Specifically, the
hyperparameter tuning is performed over a predefined grid of values. The method uses decision trees
of depth 6 and trains for 200 epochs until convergence, which is determined by 20 epochs without
improvement on the validation set. As for EBBS, the authors of the method state in their work [11]
that their method should work universally well across different graph datasets using a default set
of hyperparameters. However, we found this not to be the case, and for the sake of completeness
performed a moderate hyperparameter search for EBBS around the provided default values. This
method also uses decision trees of depth 6 and trains for 2000 epochs, after which the best epoch is
selected based on the performance on the validation set. In Table 6, we provide the hyperparameter
search space for specialized methods BGNN and EBBS used in our experiments.

G Computation time examples for experiments on TabGraphs datasets

In this section, we provide the computation time of our experiments on a subset of dataset + model
combinations. The computation cost significantly depends on the dataset and model used. In Table
7 we provide the time required for a single run of 9 models with their optimal hyperparameters:
LightGBM (our fastest GBDT model), MLP-PLR (our fastest graph-agnostic neural network model),
TabR-PLR (our slowest graph-agnostic neural network model — note that it uses a retrieval mecha-
nism), LightGBM-NFA and MLP-PLR-NFA (to show how neighborhood feature aggregation affects
computation time), GraphSAGE (our fastest GNN), GT (our slowest GNN), GraphSAGE-PLR and
GT-PLR (to show how PLR embeddings affect computation time). We provide the computation time
of these models on 5 datasets: tolokers-tab (our smallest dataset), city-roads-M (a mid-sized
dataset), city-roads-L (a dataset that is approximately 2.5 times larger than city-roads-M, but
otherwise has graph properties very similar to it), hm-categories (a dataset that is mid-sized in the
number of nodes, but has significantly higher edge density than most datasets from standard graph
ML benchmarks), web-fraud (our largest dataset).

All the provided experiments were run on an NVIDIA Tesla A100 80GB GPU, except for LightGBM,
which was run on AMD EPYC CPUs. Automatic mixed precision was used in all the provided
experiments with neural network models except for the GraphSAGE and GraphSAGE-PLR models
on hm-categories and web-fraud datasets, where we encountered NaN issues, and thus ran
experiments in full precision. We ran multiple experiments for each model + dataset combination
to conduct the hyperparameter search (see Appendix H for details) and made 5 runs with different
random seeds in each experiment to compute the mean and standard deviation of model performance.
Hence, the total amount of runs for each model + dataset combination was quite large.
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Table 7: Computation time for one model run (with optimal hyperparameters).

tolokers-tab city-roads-M city-roads-L hm-categories web-fraud

LightGBM 1s 15s 1m 14s 12s 6m 26s
MLP-PLR 3s 2m 29s 3m 20s 53s 1h 17m
TabR-PLR 7s 3m 9s 34m 12m 19s MLE

LightGBM-NFA 1s 32s 1m 55s 2m 54s 48m
MLP-PLR-NFA 7s 1m 2s 4m 8s 1m 17s 4h 10m

GraphSAGE 19s 33s 1m 16s 2m 36s 35m
GT 54s 55s 2m 9s 11m 53s 1h 36m

GraphSAGE-PLR 23s 53s 2m 6s 2m 41s MLE
GT-PLR 58s 1m 16s 3m 11m 56s MLE

H Issues with previously used graph datasets with tabular node features
In this section, we discuss the issues of graph datasets with heterogeneous tabular node features used
for model evaluation in the previous studies [10, 11].

First, let us discuss the classification datasets. dblp and slap datasets are heterogeneous information
networks (HINs) that have several relation types, yet only one relation type was used for constructing
the graphs. Better results can likely be achieved by modeling these datasets as heterogeneous graphs.
Further, these datasets originally have homogeneous features, which were augmented with some
graph statistics to make them heterogeneous. house-class and vk-class datasets are originally
regression datasets, but they were converted to classification datasets by binning target values, since
there was a lack of classification datasets.

Now, let us discuss the regression datasets. First, county and avazu datasets are very small. For
our benchmark, we adopt an extended version of avazu dataset, which is significantly larger. For vk
dataset, we found that CatBoost, GCN, and GAT achieve values of R2 less than 0.1 in the user age
prediction task used in the previous studies, which shows that the provided node features and graph
structure are not very helpful for the task. house dataset originally does not contain a graph at all. For
the purpose of applying graph ML methods to it, edges were constructed between properties (nodes)
based on their geographic proximity, while the original property features representing geographic
coordinates were removed. However, these node features provide no less information than the graph
structure (which is based exclusively on them), so we expect that keeping these features and removing
the graph will lead to the same or even better predictive performance. Thus, using the graph structure
is not necessary for this dataset. The same might also apply to the county dataset, where edges
connect counties that share a border, which is strongly related to their geographical position and thus
can be encoded using coordinates as additional node features instead of a graph. Note that in our
benchmark we have city-roads-M and city-roads-L datasets which include coordinates of the
starts and ends of road segments (nodes) in their features. However, in these datasets, edges are based
not simply on the physical proximity of road segments, but on whether the road segments are incident
to each other and moving from one segment to another is permitted by traffic rules. Note that this
information cannot be completely inferred from coordinates alone. We keep coordinates in our data
as node features (which are available to all our models) and verify in our experiments that the graph
structure still provides benefits to graph-aware models. Generally, we believe that it is important to
be very careful if one constructs a graph based on the spatial proximity of nodes for the purpose of
applying graph ML methods to the data. It should always be verified that this graph indeed provides
benefits to the models beyond what can be achieved by simply using spatial coordinates as node
features (which is much easier than adding a graph structure).

I Limitations and future work
In this work, we exclusively consider the problem of node property prediction in the transductive
setting, i.e., when the entire graph, including the test nodes, is available in advance. We choose to
focus on it because it is by far the most popular setting in the current graph ML research and captures
many real-world applications. However, there are also many applications where the inductive setting,
in which test nodes are not available during training, is more realistic. This setting presents new
problems such as a lack of historical features for newly added nodes (the cold start problem) and
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model generalization to a changing graph structure. We believe creating separate benchmarks for this
setting is an important direction for future work.

Further, we consider only the most standard setting of homogeneous static graphs, while more
complicated settings are possible: heterogeneous graphs, dynamic graphs, graphs with time series
as node attributes (spatiotemporal graphs), etc. These settings are also relevant to many real-world
applications and can be explored in future works.
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