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Abstract

The goal of semantic correspondence (SC) estimation is to establish semantically
meaningful matches across different instances of an object category. In this work,
we illustrate how recent supervised SC methods generalize poorly beyond the anno-
tated keypoints seen during training, thus effectively acting as keypoint detectors.
To address this, we propose a new approach for learning dense correspondences by
lifting 2D keypoints into a canonical 3D space using monocular depth estimation.
Our method constructs a continuous canonical manifold that captures object geom-
etry without requiring explicit 3D supervision or camera annotations. Additionally,
we introduce SPair-U, an extension of SPair-71k with novel keypoint annotations,
to better assess generalization. Experiments not only demonstrate that our model
significantly outperforms supervised baselines on unseen keypoints, highlighting
its effectiveness in learning robust correspondences, but that unsupervised baselines
outperform supervised counterparts when evaluated across different datasets.

1 Introduction

Semantic correspondence (SC) estimation involves identifying semantically matching regions in
images across different instances of the same object category. It remains a challenging problem,
as it requires recovering fine-grained details while maintaining robustness against variations in
object appearance, shape, and viewing conditions. Recent advances in large-scale vision models,
particularly self-supervised transformers [6} 139] and generative diffusion models [41], have led to
notable improvements in SC. When employed as backbones, these models have achieved over 20%
gains in accuracy on the SPair-71k benchmark [34]]. However, despite these advances, recent studies
have highlighted that these powerful representations often struggle to disambiguate symmetric object
parts due to their visual similarity [62} 32].

SC methods can be broadly categorized into two groups in terms of supervision: unsupervised models,
which do not require correspondence annotations during training [1, 2 161} 132], and supervised mod-
els [8, [18} 162], which are trained on manually annotated correspondences. As expected, supervised
models generally achieve higher performances when using the same backbone and same training
set as unsupervised models. However, a key limitation of current benchmarks is that evaluation is
typically performed on the same set of keypoints used for training, potentially inflating perceived
generalization. As illustrated in Fig. [T} the performance of supervised models drops significantly
when evaluated on unseen keypoints, while unsupervised models maintain their performance.

Building dense correspondences are key to fine-grained object understanding and improving robust-
ness in various recognition tasks, and essential to many applications including texture transfer [38]]
and robotic manipulation [49]. In this work, we examine the performance of state-of-the-art SC
models when evaluated on points that lie outside the set of annotated training keypoints. Under these
conditions, we observe that supervised pipelines often underperform their unsupervised counterparts,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/VICO-UoE/JamaisVu

Source Ours Geo-SC

it

® Seen @® Unseen

Seen Keypoints

Geo-SC  Unsup
PCK@0.1

Unseen Keypoints

Figure 1: Illustration of the generalization gap on unseen keypoints. (Left) Top row: when evaluated on
known keypoints, both our model and Geo-SC [62] perform well, while the unsupervised DINOv2+SD [61]]
struggles to correctly disambiguate the legs of the horse. Bottom row: when presented with keypoints unseen
at training time, both our model and DINO+SD predict noisy but reasonable correspondence, while Geo-SC
predictions noticeably degrade. (Right) Even though it obtains strong performance on known keypoints, Geo-SC
performs worse than its unsupervised counterpart on our new benchmark of unseen keypoints. In comparison,
our model still achieves competitive results.

effectively reducing their function to that of ‘sparse keypoint detectors’. We attribute this limitation
to two main factors: (i) the sparsity of supervision, which typically focuses on a limited number of
keypoints and (ii) the lack of evaluation on unseen points, which tends to favor models that bias their
predictions toward the nearest seen annotations.

We argue that an ideal SC method should be capable of matching arbitrary points, akin to the objectives
in classical dense correspondence tasks [26]. To move beyond sparse supervision, we propose a
learning framework that predicts dense feature maps and supervises them using geometry from an
off-the-shelf depth estimator, thereby enabling training on richer and more spatially diverse cues.
Some unsupervised SC methods [46), 32]] have leveraged 3D geometry to learn dense correspondences
through mapping object pixels to a spherical coordinate system where each coordinate corresponds
to a different characteristic point of the object. However, this approach requires estimating the
object shape and viewpoint from a collection of 2D images, which limits the applicability of such
models to synthetically generated datasets [46] and they can require additional camera viewpoint
supervision [32].

We propose a new approach that leverages existing 2D keypoint annotations and estimated 3D
geometry to learn dense correspondences. We build on the idea of learning a canonical representation
of the object category, which is invariant to the object instance, viewpoint, and pose. We achieve this
by lifting the 2D keypoints to 3D using a monocular depth model, aligning them with a set of canonical
keypoints that are shared across all instances of the object category. Finally, by interpolating between
them, we learn a continuous canonical manifold, that captures the underlying 3D shape of the object
and incorporates geometric constraints into learning more effective and general feature representations.
We also introduce a new dataset for SC estimation, SPair-U, which extends the original SPair-71k
test annotations with a set of new keypoints, allowing us to evaluate the generalization of SC models
on unseen keypoints. We show that supervised SC models trained on the original SPair-71k dataset
typically fail to generalize well to unseen keypoints, while our method is able to learn a more general
representation that can be applied to unseen keypoints.

2 Related Work

Supervised methods. Supervised approaches rely on the availability of datasets with annotated
keypoints such as CUB [51]], PF-PASCAL [15]], and SPair-71k to learn corresponding points
across instances of the same object class depicted in different images. This is typically using
contrastive objectives minimizing distance between features coming from the same keypoints while
pushing other features away [[16), [62]]. A more computationally intensive option is to compute
dense 4D correlations maps between each source and target locations [8}, 33} [22]]. To obtain
stronger descriptors, it is also common to aggregate features from multiple network layers to form



hypercolumns [35, [1,162]. Current state-of-the-art supervised methods forego training from scratch
and instead typically use a large pretrained vision model as a backbone, the most popular options
being DINOvV2 [39]] and Stable Diffusion [41]. While effective at matching instances of keypoints
of the same type that have been observed during training, in our experiments we demonstrate that
current supervised methods have a tendency to overfit to the set of keypoints observed during training
and struggle to generalize to previously unseen keypoints (see Fig. [T] for an example).

There have also been recent attempts to utilize the expressive power of the representations encoded
in large multi-modal models for detecting sets of keypoints. Few-shot methods require supervision
in the form of a support set at inference time [28| 29, |17]. Zero-shot methods forego the need
for such supervision, but instead require that keypoints should be described via natural language
prompts [63}160]. Describing common keypoints (e.g., ‘the left eye’) can be easily done via language,
but how to best describe less salient points via text is not so clear. There have also been attempts to
develop models that can take different various modalities (i.e., text and or keypoints) as input [30].
While promising, these methods make use of large multi-modal models and need large quantities of
keypoint supervision data, spanning many diverse keypoints and categories, for pretraining.

Unsupervised / weakly-supervised methods. Methods that do not use correspondence supervision
during training range from unsupervised approaches using general-purpose backbones [[1},161], very
weakly supervised methods that only assume an curated training set without labels, e.g., images
of a single category [46} 45| 2], zero-shot methods that only use test-time information about the
relationships between keypoints [38] 62], dense methods that directly impose structure on the
correspondence field [7], and weakly supervised methods that use extra labels like segmentation
masks or camera pose [20, 32, |4]. Earlier unsupervised methods typically use self-supervised
objectives that make use of synthetic deformations/augmentations of the same image [46] or by using
cycle consistencies [45} 147, 48] to provide pseudo ground truth correspondence. Later it was observed
that large pretrained vision models naturally posses features that are very strong for SC, despite not
being trained on this task explicitly. As a result, more recent unsupervised methods tend to not train
their own backbones from scratch and instead explore ways to aggregate [1,161], or align [14}|32]
these features across images.

Geometry-aware methods. Inspired by the classic correspondence setting in vision that relies on
geometric constraints to match the same 3D locations across views [[10} 42], utilizing geometry cues
is an effective way to learn SC. For SC, the underlying assumption is that different instances from the
same object category share a similar spatial structure. Flow and rigidity constraints are often used in
tracking [53},158]] and unsupervised SC [25} 14} 4]. Recent studies have shown that ambiguities caused
by symmetric objects are a major source of errors in SC [62}32]. One potential way to mitigate these
errors is to develop 3D-aware methods. Initially, this has been explored by building correspondence
across images by matching points along the surface of objects to 3D meshes (|64} 24, 37, 156, [11]],
but the requirement for meshes greatly limits the applicability of these approaches. More recently,
methods have been proposed to learn 3D shape from image collections [36, 57, 3]. However, these
methods require solving multiple problems at once, i.e., estimating object shape, deformations,
camera pose, and are therefore limited to specific types of object categories and tend to break easily
when applied to more complex shapes. Recent advances in monocular depth [40, 15, 21}, 159} 113} 154]
and geometry prediction [53] allows for reliable geometry estimation from a single image, which can
be leveraged for imparting 3D-awareness in into SC methods.

Concurrent work [52]] also proposes to geometrically align images in 3D using depth maps to build
category prototypes. It is designed around a test-time alignment of the 3D prototype to the test image.
This requires knowing the test category beforehand, having build a dedicated prototype for it, having a
segmentation mask for the test instance, and solving a computationally expensive alignment problem,
limiting its applicability to severely constrained scenarios where the category has been seen during
training and throughput it not an issue. In comparison, while our model shares a similar concept
of building 3D category prototype, our goal is to design a generalizable SC pipeline by training a
correspondence head on top of a backbone. This allows our model to compute correspondence in a
single feedforward pass and generalize to new categories all the while not requiring knowledge of the
test category or segmentation.
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Figure 2: Overview of our approach. We extract segmentation masks and depths maps from training images
and backproject object points to produce the posed point clouds X°. We predict dense features with ® and match
them against our jointly learned sparse category prototype (P, Z) to produce the canonical point clouds X°.
The local geometric alignment between the two provides supervision for updating ®.
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3 Method

3.1 Overview

Let I € RTXWx3 be an RGB image depicting an object, defined over the image domain A € R?, a
lattice of size H x W. Our objective is to learn a function ®(/, u) — w, which maps each pixel
coordinate u € A to a descriptor w € R . The descriptor w should be semantically consistent, be
meaningfully aligned across different images of objects from the same category, and be invariant to
changes in pose and shape. Once @ is learned, SC between two images I and I’, depicting the same
object category, can be established by finding, for a pixel » in image I, the most similar pixel »’ in
the other image I’. This is done by querying nearest-neighbor matching in descriptor space according
to distance d, typically the cosine distance, i.e., d(a,b) = 1 — (a, b)/(||al|2||b]|2):

u = argm&nd(@(],u),@(]',’v)). (1)

In the standard supervised SC task, we are given a training set, {(I(1), K1) ... (1N K(N)}
where each image (™) is annotated with a sparse set of semantic keypoints K = {k1,..., kixi}
where k € A. A common strategy, adopted in recent works [[18}, 8] [0} 31} 61, [62]), is to learn a
descriptor function ®(7,w) that produces a local descriptor w for each pixel w in I such that the
descriptors of corresponding keypoints in paired images are close in feature space. While this sparse
keypoint supervision helps the model learn semantically meaningful descriptors for the annotated
keypoints, it does not guarantee generalization to unlabeled regions of the object.

A promising direction to address this limitation is to incorporate 3D geometry by assigning each
pixel a coordinate in an object centric reference frame. Prior works [46,[32] explores this idea by
projecting object surfaces onto a spherical coordinate system, with each coordinate on the sphere
corresponding to a different characteristic point of the object. However, this necessitates inferring
both object shape and the viewpoint from a collection of 2D images, a highly ill-posed problem,
which requires generating pairs through synthetic warps resulting unrealistic shapes [46]] or relies on
viewpoint supervision which can be challenging to predict automatically. In the next section we show
how to combine sparse keypoints annotations with 3D geometry cues to learn dense and semantically
consistent descriptors for every pixel in an image. An overview of our approach is shown in Fig.[2]

3.2 Canonical Representation Learning

Similar to [46}32]], we aim to learn a 3D canonical representation for each object category, along with
a function (I, u) — x € R3 that maps a pixel u in image I to its 3D coordinates in the canonical
object-centric coordinate system. Unlike the spherical representations in prior work [46) 32]], we do
not impose any topological constraints on the canonical representation (e.g., enforcing a spherical
surface). We parameterized the canonical representation by a set of 3D keypoints P = {p1, ..., D|x| },
where each p; corresponds to a labeled keypoint k; in I. A crucial aspect of this parametrization is



that unlike the labeled image keypoints /C, P is shared across all instances of the category, and is
invariant to object instance, viewpoint, and pose, ensuring the canonicity of the representation.

To compute P, we first estimate the 3D coordinates of each keypoint k in image / using a monocular
depth model ¥(I, k) — R* and then backproject it using estimated camera intrinsics A € R?*3 as
follows:

k=U(k)A " [k by, 1], )

where k = (k, k,) and k € R3 represents the 3D ‘posed’ coordinate. We denote the set of
backprojected coordinates as K = {ki, ..., kg }.

To align K with P, we compute a rigid transformation, comprising rotation R € SO(3) and
translation T € R3*!, and scale s € RT such that M = s[R|T] € R3*4. We optimize the canonical
keypoints P by minimizing their alignment error across the training set by solving a generalized
Procrustes problem:

K|
mlnz [|lpi — M(")IEE")Hl where M™ = arglrlglnz |lpi — MEZ(”)H; 3)

n=1 i=1

We use the Kabsch-Umeyama algorithm [19, |50] to compute the optimal transformation M™)
between the canonical and posed coordinates keypoints. To prevent the degenerate solution where
s = 0 leads to a global collapse, we modify the procedure to constrain s > 1. This ensures objects
cannot shrink in size, effectively resizing them to the size of the largest object in the training set.
Even though alignments rely on only a sparse subset of visible keypoints per-image, i.e., occluded
and out-of-frame points are not considered, we find this sufficient to recover a globally consistent
arrangement for P.

Next we associate each canonical keypoint in p with a learnable descriptor z, forming a set Z =
{z1,...,2k|}. We learn these jointly with ®, using a cross-entropy loss over cosine similarities
between extracted and canonical descriptors:

N K| I
mm—f ZZ exp(sim(z;, ®(I¢ )7k1( ))/7) “
ST explsim(z;, (100, KM /7)

with cosine similarity sim(-, -) and learned temperature parameter 7. This objective encourages P to
produce distinctive and semantically consistent features across object instances for each keypoint k.

3.3 Dense Geometric Alignment

So far, we have only modeled object geometry at the sparse level via P. We now extend this to dense
correspondence by defining (I, u), a function that maps every pixel  in I to a coordinate in the
canonical space. We compute it as an attention-weighted sum over canonical keypoints:

K| .
o u) = Z exp(sim(z;, (I, u))/T) ) )

L S exp(sim(z;, (1, w)/7)

This is equivalent to computing descriptors via softmax attention over Z, using ® (I, u) as queries, z
as keys, and p as values. For labeled keypoints k;, minimizing Eq. @) ensures (I, k;) = p;.

For each tralnlng image I, we can now estimate the dense canonical coordinates X'“ over its pixels
via Eq. (5)), and the posed coordinates X® via depth backprOJectlon using Eq. (2). In practice, X'¢
and A? only consist of object points that are selected using an object segmentation mask. We aim
to align these two representations so that X' properly reflects the object geometry. However, our
annotations are only sparse, thus we cannot directly supervise ¢ (I, u) for arbitrary coordinates u.
Instead, we make the assumption that even though the posed and canonical shape are different, they
should be locally similar. We encourage the geometric alignment between a small neighborhood of
points sampled in the posed space, and their corresponding locations in the canonical space.

For a given point q € X'°, we sample its k nearest neighbors to obtain C, in the canonical space,
and the corresponding coordinates in the posed space B, and minimize the alignment error between



two sets. We also sample neighbors of a given point » € X'? in the posed space, denoted as B,., and
compute the loss in the other direction:

N

min = (|G — M Bl + (B ~ Mz |, ©)
’ n=1

where M 9, and M., are the rigid transformations between the canonical and posed coordinates,

computed using the Kabsch-Umeyama algorithm at each iteration as in Eq. (3).

In the canonical space, neighbors are selected using a standard k-nearest neighbors strategy. However,
this approach can be unreliable in the posed space due to object deformations. For instance, in the
case of a person eating, the hand might be close to the face in 3D space, and thus points belonging to
the face might mistakenly be selected as neighbors of the hand. Instead, we use a pseudo-geodesic
sampling strategy that samples points along the surface of the object. Starting from a seed point, we
iteratively grow the neighborhood by selecting the next point with the shortest distance to the current
set, effectively approximating surface-based proximity rather than raw spatial closeness. Pseudocode
is provided in Alg.[T}

We jointly optimize the descriptor learning loss in Eq. (@) and the geometric consistency loss in
Eq. (6) to learn ® and P. While these objectives suffice to learn a SC model, in practice we build our
implementation on Geo-SC [62] and optimize its parameters jointly over the sum of our objective and
the original one. At inference time, rather than simply querying nearest-neighbor in the descriptor
space predicted by ®, we make use of the soft-argmax window matching strategy proposed in [62].
Unlike ¢, which relies on category-specific canonical coordinate set P and descriptors Z, ® can be
applied to previously unseen object categories directly.

4 SPair-U: A Benchmark for Evaluating Unseen Keypoints

As illustrated in Fig. [T] the performance of the state-of-the-art supervised SC methods [62, 61]
degrades significantly when queried on keypoints that are not part of their training sets. We posit
that this is caused by models only learning strong representations for these specific points, while
largely ignoring the remaining pixels. We would like to assess the performance of SC methods
when evaluated on keypoints that were previously unseen (i.e., not in the labeled set) at training time.
A possible solution is to use an existing dataset while splitting the annotations into two mutually
exclusive sets of keypoints, seen and unseen, between training and evaluation. However, this strategy
would reduce the supervision available, and require retraining previous techniques for evaluation.

Instead, we introduce a new evaluation benchmark, SPair-U, by labeling additional keypoints from
the SPair-71k dataset [34]. We added at least four new points for each of the 18 categories found
in SPair-71k. For animals, we focused on additional joints on the limbs, and for vehicles we added
semantic parts that were not already labeled, e.g., windshield or fenders. Boats, bottles, potted plants,
and tv monitors keypoints are not semantic per se in SPair-71k, but are rather spread around on the
outline of the object. Thus, we added midway points between those already defined. In total, we add
1,272 new individual test keypoint annotations resulting in 19,990 new keypoint pairs spread across
8,254 image pairs. We illustrate some of these new annotations in Fig.[3] and the full list with more
details can be found in Table[A3] As shown in Fig. [I] current supervised methods tend to predict
locations of keypoints seen during when queried on the new SPair-U points.

SPair-U Dataset Statistics

# of image pairs 8,254
# of new keypoints 1,272
# of keypoint pairs 19,990
# of images without new points 53
# of occurrences for least frequent kp 2
# of occurrences for most frequent kp 27
average # of occurrences 16
average # of new points per-image 2.6

Figure 3: Example keypoint annotations from our new SPair-U evaluation dataset. It utilizes the same
images as the SPair-71k dataset [34]], but adds additional keypoints not present in SPair-71k. This enables
benchmarking of SC methods on the existing keypoints along with our new ones. On the right we summarize the
main statistics of our new dataset.



Table 1: Results on standard evaluation keypoints for SPair-71k. Per-image PCK@O0.14p0, Scores are
reported. In this table and the following: All models use the soft matching strategy described in [62] except
those followed by *. Models with a dagger’ benefit from AP-10K pretraining. Models in the C category use
keypoint supervision, while #C do not. Best results are bolded and second best are underlined.

(> o 4 & & Q@ & & B w o ® i ¥ o Q@ O

4 SD [41][61 62.8 527 80.6 312 434 39.1 356 760 320 676 509 597 510 473 486 438 618 529|520
DINOv2 [39][61 734 602 888 432 41.1 467 451 750 334 698 66.1 69.6 60.7 66.6 30.7 613 542 239|553
DINOv2+SD [61 738 61.0 89.6 402 525 474 441 811 415 768 648 70.5 61.7 663 543 627 635 524 |61.1
SphericalMaps [32] | 76.2 60.1 90.0 46.5 53.0 749 68.0 838 451 817 676 754 69.1 589 50.0 675 739 58.1 | 66.1

K SCorrSan* [18 57.1 403 783 38.1 518 57.8 47.1 679 252 713 639 493 453 49.8 488 403 777 69.7 | 553
CATS++* [9. 60.6 469 825 416 568 649 504 728 292 758 654 625 509 56.1 548 482 809 749 |59.8
DHF* [31 740 61.0 872 407 478 70.0 744 809 385 76.1 609 668 666 703 580 543 874 603 | 64.9
DINO+SD (S) [61 847 675 932 645 592 857 820 898 570 893 762 808 759 802 647 712 936 705|765
Geo-SC [62 86.6 70.7 958 692 648 945 90.6 91.0 67.1 91.8 86.1 863 793 879 808 821 96.6 834|832
Geo-SC! [62 92.0 761 972 704 705 914 897 927 734 950 905 87.7 818 916 823 834 965 853 | 856
Ours 868 726 953 707 648 946 903 894 707 941 848 830 805 870 79.1 775 958 82.8 | 829
Ours’ 922 763 965 720 681 950 908 931 751 942 912 860 821 91.7 800 812 958 84.0 | 854

Table 2: Results on unseen keypoints on our SPair-U benchmark. Per-image PCK@O.144,, scores on unseen
keypoints are reported.
(> o 4 B F B @ W B e W ff ® i ¥ W Q O

% SD [ET16]1 732 718 488 377 430 551 472 254 359 604 462 416 599 531 578 361 506 19.5 | 474
DINOv2 [391[61] | 882 756 79.0 529 398 541 600 439 348 672 646 536 758 79.01 378 456 533 84 | 549
DINOv2+SD [61] | 88.0 80.4 723 482 479 623 615 448 450 730 647 582 755 80.0 627 46.1 559 169 | 59.4
SphericalMaps [32] | 90.2 768 717 556 44.6 89.5 8L7 508 464 712 704 629 654 682 561 459 516 269 | 61.0

K SCorrSan* [18 569 269 230 376 314 528 417 166 154 210 47.1 178 273 481 478 201 280 342|327
CATS++* [O 69.9 438 140 47.1 319 695 470 117 244 151 479 258 320 543 516 175 279 228|359
DHF* 31 714 581 390 358 447 740 402 335 274 520 504 416 565 516 416 300 425 145 | 433
DINO+SD (S) [61] | 81.5 73.6 57.1 634 358 857 677 643 393 679 868 795 609 70. 558 578 427 126 | 60.0
Geo-SC [62 80.9 714 518 653 369 910 708 557 369 557 792 537 665 623 611 390 390 174|569
Geo-SC! [62 746 706 555 65.1 364 851 723 50 40.1 606 853 657 529 619 666 418 366 138 |57.1
Ours 80.3 745 706 67.1 402 929 727 538 458 685 753 620 67.8 654 68.1 454 479 305 | 624
Ours’ 811 732 720 675 352 921 755 612 514 743 868 788 709 689 726 547 448 322 | 66.1

S Experimental Results

5.1 Implementation Details

Our 3D prototype approach is complementary to existing semantic correspondence architectures, thus
we can add it as an additional objective on top of established models. We base our experiments on Geo-
SC [62], strictly following their provided hyperparameters, e.g., learning rate, batch size, optimizer,
scheduler, and epoch count, simply adding our additional loss terms and jointly optimizing P and
Z alongside Geo-SC’s feature extractor ®. We also preserve the contrastive Lgparse and dense Lense
objectives with gaussian noise, as well as feature maps dropout and pose-variant augmentation. We
refer to the original publication and official implementation for in-depth description of these features.
While P and Z are category-specific, a single ® is trained on the full dataset, allowing generalization
to new categories. Furthermore, gradients coming from Eq. (6) are not backpropagated to P, meaning
it is only optimized using Eq. (3).

Our complete loss term is Lyparse + Laense + Lp + 0.3 X Lz + Lgeom, Where Lp, Lz, and Lgcom
correspond to Eq. (3), Eq. @) and Eq. (6) respectively. The justification for setting the weight
Az = 0.3 is provided in Appendix B}

In practice, ® consists of additional bottleneck layers trained on top of frozen DINOv2 and SD
backbones. We extract depth maps and camera intrinsics using MoGe [54]], and use Segment
Anything [23] to obtain segmentation masks. Importantly, these are only used during training. During
evaluation, matches are computed only from the predictions of ®. Additional implementation details
can be found in Appendix

5.2 Quantitative Results

Seen — SPair-71k. We first compare our models to other SC approaches on the SPair-71k bench-
mark [34], which contains images from 18 categories. We use the standard PCK@O0.1,,, which
considers a match to be correct if its prediction lies within distance 0.1 x max(h, w) of the ground
truth location, where (h, w) is the height and width of the target object bounding box. Typically,
supervised models report per-image PCK, i.e., the average score of each image per-category, while
unsupervised ones use per point PCK, i.e., the average number of correct matches per-category. In
order to properly compare results between the two families, we recompute per-image PCK for all
models, which results in a small drop for the unsupervised models.



Table 3: Cross-benchmark evaluation on held-out datasets. Scores are reported using PCK with different
thresholds. Here, only keypoint supervision from Spair-71k is used for supervised models.

Spair-71k Spair-U AP-10K IS AP-10K CS AP-10K CF PF-PASCAL
PCK threshold 0.01 005 0.10] 001 005 0.10| 001 005 0.10 001 005 0.10]0.01 005 0.10]0.05 0.10 0.15
4 SD [41][61] 63 373 520 6.6 326 479
DINOv2 [39][61] 6.8 380 553 37 324 549|105 448 636 | 88 41.7 616 | 7.7 347 520|624 782 835

DINOV2+SD [61

SphericalMaps [32
K DINO+SD (S) [61]

Geo-SC [62]

Ours

82 442 o6l.1
82 47.7 66.1

13.0 61.6 765
20.0 722 832
205 721 829

47 37.0 594 | 11.7 474 658
45 382 61.0 | 125 485 66.7

3.6 359 59.3‘15.1 543 717

10.0 440 635 | 7.7 354 524|725 856 903
10.6 449 63.6 | 80 357 521|746 889 932

13.6 51.1 M‘ILO 44.0 M‘M.S 874 9l.1

33 280 474 | 84 369 525

43 246 376 |66.1 80.0 853

46 355 569|166 558 705
42 3718 624|165 558 713

152 524 677 | 11.9 459 596 | 753 87.0 90.7
151 530 69.0 | 11.2 461 61.1 | 758 875 912

Results on seen keypoints in Table[T|show that our model ranks competitively against other approaches,
with a marginal 0.2% performance drop on average against its backbone Geo-SC [62]. Per-category
results show small improvements in nine of the categories, the highest one being 3.6% on bus, and
small drop on the other nine, the largest being 2.4% on bottle. Overall, the differences are minor,
illustrating that adding our extra objective does not interfere with the original model.

Unseen — SPair-U. To evaluate a model’s ability to generalize to unseen semantic points, we assess
its performance on our new SPair-U keypoints using per-image PCK@0. 1y« for a like-for-like
comparison. We exclude the Test-time Adaptive Pose Alignment from [62] since it requires prior
knowledge of keypoint semantics to relabel flipped keypoints, which contradicts the assumption that
evaluation keypoints are unknown.

As shown in Table[2] results on SPair-U reveal a stark contrast between supervised and unsupervised
models. While unsupervised models see only a modest performance drop, likely due to increased task
difficulty, supervised models experience a significant decline. Many of the pre-existing approaches
are outperformed by the unsupervised DINO+SD baseline [61]] and they are consistently beaten by
the weakly-supervised Spherical Maps [32]]. Notably, in eight categories, the best-performing model
Has not seen keypoints during training, suggesting that supervised approaches behave more like
keypoint regressors and fail to generalize to novel correspondences.

Our method also shows some performance degradation on SPair-U, but the drop is smaller than that
of its backbone Geo-SC. It achieves the highest overall performance, improving upon the best prior
supervised model by 6.1%, indicating stronger generalization to unseen keypoints. Nevertheless, the
substantial gap between results on SPair-71k and SPair-U underscores a broader limitation: despite
recent progress, most models struggle to move beyond sparse keypoint supervision toward robust,
general semantic correspondence.

Cross-benchmark evaluation. We further evaluate our model on four benchmarks: SPair-71k,
SPair-U, AP-10k [62], and PF-PASCAL [15]. While most supervised SC methods train separate
models for each benchmark, this setup encourages overfitting to the benchmark and is impractical
for real-world use. Instead, we advocate for evaluating generalization by training a single model
on one dataset and testing it across multiple benchmarks. We choose SPair-71k for training due to
its balanced mix of object and animal categories, making it suitable for generalization. To ensure
fairness, we exclude models pretrained on AP-10K and standardize evaluation using the windowed
soft-argmax protocol from [62].

As shown in TableE], while Geo-SC [62] achieves the best performance on the standard SPair-71k test
set, it underperforms on all other benchmarks, highlighting its limited generalization. Notably, even a
simple supervised DINO+SD [61]] baseline outperforms Geo-SC at the standard 0.10 threshold when
using the same soft window matching strategy. This stands in sharp contrast to the findings in [|62]]
where Geo-SC consistently outperforms its baseline by 10% on the three AP-10K benchmarks, when
both models are trained on AP-10K, indicating potential overfitting to that dataset.

Consistent with earlier observations, a clear pattern emerges: models trained without keypoint
supervision maintain stable rankings and performance gaps across datasets, whereas supervised
models cluster more tightly in performance when evaluated out of their training distribution, revealing
weaker cross-set generalization.

5.3 Qualitative Results

In Fig.[d] we visualize PCA projections of object features produced by our model, Geo-SC, and the
unsupervised DINO+SD. Our model produces descriptors that vary smoothly over the object surface
while uniquely identifying each point. In comparison, the predictions of Geo-SC are noisier, with
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Figure 4: PCA visualization of the feature maps from different models. Note that PCA is computed on object
features only. The inclusion of geometric constraints during training results in fewer high frequency artifacts in
the predicted feature maps for our approach.

Geo-SC

Ours

Figure 5: Visualization of keypoint matches for randomly selected object points. On each source image
(left) we randomly sample points on the object of interest and compute their match on the target (right). Colored
lines are used as a way to distinguish the points.

sudden discontinuities (e.g., bus) and uniform descriptors on regions that have no keypoints (e.g., the
body of the cat and the cow). Meanwhile, the unsupervised features fail to separate repeated parts
(e.g., plane engines) and produces noisy features in textureless areas (e.g., tv).

In Fig. [5] we further qualitatively evaluate our model’s ability to generalize to unseen points. We
randomly sample points on the source object and compute their matches on the target. Compared
with Geo-SC, our approach exhibits better robustness against matching outside the target object,
as well as better spatial awareness of points (e.g., Geo-SC matching points from the bottom of the
source bus to the roof of the target), leading to higher matching quality. Further examples, along with
comparisons to the unsupervised DINOv2+SD backbone, are provided in Fig.[A4]

Following [52]], we visualize our learned canonical shapes in Fig. [6] by collecting predicted canonical
coordinates of multiple objects in order to overlap their partial point clouds over the training data.
We observe that the spatial organization of P, i.e., the large bold points, captures the general shape
of the category, and the predicted coordinates densely span the object surface. Interestingly, our
parametrization of the canonical shape Eq. (§) forces predicted coordinates to lie within the convex
hull of P, which explains the incomplete wheel on the motorbike. We also observe that very few
points are mapped towards the end of the train, which we attribute to the varying length of trains
across instances and the bias toward frontal viewpoints. Note that contrary to [52], these are simply
visualizations and are not used for inference, meaning this limitation is unlikely to significantly affect
performance.
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Figure 6: Visualization of our learned canonical shapes. Large points correspond to P, each being attributed a
distinctive color for visualization. Small points are predicted canonical coordinates of objects, colored with PCA
of the features predicted by .

6 Limitations

While augmenting the test set of SPair-71k with new keypoints enables us to evaluate existing
techniques with their provided models and code, our proposed benchmark SPair-U inherits some
drawbacks from SPair-71k. In particular, the test set is small, consisting of only 481 images but
with over 8,000 test pairs, and the categories are restricted to only common objects and animals.
Furthermore, some categories were already labeled with a high number of keypoints where it is
potentially easier to detect the newly added ones by relating them to the existing ones. While our
findings related to generalization issues in supervised SC techniques remain valid, a larger, higher-
quality held-out set of images and keypoints would be beneficial for more extensive evaluation.

Compared to prior supervised methods [18] (8] 31} [62]], our approach incorporates additional supervi-
sion in the form of depth maps and segmentation masks, similar to [52], although in our case, they are
only used during training. Furthermore, unlike [32]], which relies on camera viewpoint annotations
that off-the-shelf models cannot reliably provide, we obtain all additional signals using existing
pretrained models.

In Eq. (3), we assume there exist a global rigid transformation between the posed keypoints and their
canonical counterpart, which in practice is not the case especially for deformable objects. However,
the sole purpose of this step is to optimize P into a coarse spatial organization of 3D keypoints (e.g.,
making sure that the left hand keypoint generally sits opposite of the right one) in order to allow the
computation of local geometric alignment in Eq. (6). We show in Fig.[6|and Section[5.2]that despite
this coarse assumption, our method is able to recover a reasonable 3D structure and performs well on
deformable objects.

Finally, our assumption that geometry is a good proxy for semantics breaks down for complex object
categories with diverse spatial part configurations. For example, cabinets may have different numbers
of doors that open in various directions, leading to inconsistent placement of features like handles.
Finally, we do not foresee any negative social impacts of our work.

7 Conclusion

We addressed the challenge of estimating semantic correspondences across different image instances
of the same object category. Although recent supervised methods perform well on keypoints seen
during training, we show that they often struggle to generalize to unseen keypoints. To overcome this,
we introduced a new approach that incorporates geometric constraints during training by learning a
continuous canonical manifold specific to each category. Our method outperforms both supervised
and unsupervised baselines, as demonstrated on SPair-U — a new dataset we introduce with additional
keypoint annotations for the widely used SPair-71k benchmark.

Acknowledgements. HB was supported by the EPSRC Visual Al grant EP/T028572/1.
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Appendix

A Additional Implementation Details

General implementation. We base our model on Geo-SC [62]], reusing all default hyperparameters
that come with the official implementatiorﬂ, e.g., training for 2 epochs using AdamW [27] optimizer
with 1.25 x 10~ initial learning rate and 1.0 x 10~2 weight decay, coupled with one-cycle learning
rate scheduler [43]], with a batch size of 1. Every 5,000 iterations, models are evaluated on the
validation split, and the best performing model is retained. For evaluation, unless stated otherwise, a
soft-argmax window of size 15 is used.

Experiments were performed on a single NVIDIA RTX 6000 Ada Generation, using pre-extracted
DINOV2 and SD feature maps, depth maps, and segmentation masks. Training a model on SPair-71k
consumes roughly 4.3GB of VRAM over 8 hours, representing an increased memory cost over
Geo-SC’s 2.9GB, mainly due to the many A} and X, we sample, and a doubling of runtime from
roughly 4 hours. At inference time however, there is no impact as we estimate matches using features
predicted with ® in the exact same way Geo-SC does.

Point cloud sampling. When backprojecting image points using Eq. (2), we obtain a point cloud
whose size depends on the number of visible object pixels. This can cause an imbalance of the
samples in the final loss terms, with larger objects contributing more. Furthermore, these point clouds
have a very specific grid-like structure inherited from the bitmap format of images, which is dense
on surfaces parallel to the image plane and gets sparser as the angle increases. Therefore, we first
subsample each training point cloud to a size of £ = 1024 points using farthest point sampling to
obtain a fixed number of well-distributed samples.

When computing the local geometry 10ss Loeom, We use neighborhoods of size k' = 64. An ablation
study of this parameter is provided in Table We also provide in Alg. [I]the pseudocode for the
sampling strategy used to obtain B,. in the posed space.

Input: Point cloud &, seed point p, number of neighbors k

Output: neighbor set B

// Start with the seed

B < {p};

while |B| < k do

// Filter out already selected points

X'+ X\ B,

for x in X’ do
// Compute the distance to the closest point in B
D, < mingep ||z — y5;

end

// Add the point with minimal distance to B

B + BU{argmingeys D };

end
return B;
Algorithm 1: Pseudo-geodesic sampling

B Ablations

General ablations. We perform ablations of our designs in Table[AT] and report results on the the
SPair-71k [34] validation set which helps us chose the best performing model. It is not possible to
ablate individual loss terms as they each have a distinct purpose without which the prototype cannot
properly be learned: Lp optimizes P, Lz optimizes Z, and Lgeom provides a dense supervision
signal, i.e., a loss for ®(/, w) when w is an arbitrary object pixel, i.e., not a keypoint. We can however
examine the different effect of our and Geo-SC'’s specific loss terms on both SPair-71k and SPair-U,
by comparing a simple supervised approach using a DINOv2 and SD backbone trained only using
Liparse> adding only the Geo-SC specific losses, adding only our canonical prototype losses, and

"https://github.com/Junyi42/geoaware-sc
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Table Al: Results of different ablations.
(a) Average PCK@0.1 on SPair-71k test set and SPair-U for different models.
DINOvV2+SD  Geo-SC losses Canonical prototype | Spair-71k  Spair-U

v 76.5 60.0
v v 85.6 57.1
v v 75.9 66.0
v v v 85.4 66.1
(c) Average PCK@0.1 on (d) Average PCK@0.1
. SPair-71k validation set for on SPair-71k validation
(7b1)kAver.a £e P CK@0.1 on SPair- different neighborhood size. set for different rigidity
validation set for general constraints
ablations. Neighborhood size | PCK ) L
Ablation PCK 4 85.5 Selected points | PCK
Az =1 85.9 8 86.1 3 86.6
— ) 16 85.9 4 86.4
Az =0.1 86.1
: 32 86.5 5 86.1
K-nn sampling 85.9
: : 64 86.5 6 86.4
Geodesic sampling | 86.2
Full model 86.5 128 86.6 7 86.5
256 86.1 8 86.0
all 86.5

our proposed model that combines them. Results shown in Table [ATa] show a clear pattern, i.e.,
adding our canonical prototype loss results in a very small drop in performance on seen keypoints
(i.e., SPair-71k), which we attribute to the models having less capacity to fully overfit the training
keypoint supervision, but endows them with the ability to generalize much better to unseen points
(i.e., SPair-U). Conversely, the Geo-SC losses allow models to perform really well on seen keypoints
but its effect on generalization ranges from harmful to null (with vs. without Geo-SC losses). These
results also demonstrate that our contributions do not require Geo-SC to work, as they also boost
performance of the supervised baseline on unseen keypoints (with vs. without Canonical prototype).

We show that setting Az to 1 or 0.1 both negatively affect performance. We believe this is due to
the interaction between £z and Lgeom, as a high Az would push @ to collapse towards defaulting to
predicting keypoint features Z for most points, while a weight too low prevents correct prediction
on the keypoints. We also test different neighbor sampling strategies for X}, and &, and show that
sampling both spaces with either K-nearest neighbor or geodesic sampling is ineffective.

Neighborhood size in C, and B,.. We experiment with different neighborhood sizes when computing
Lgeom and valite the different models on the SPair-71k validation set in Table Results show little
to no effect of the neighborhood size, which is consistent with our previous finding that our losses do
not improve performance on semantics points that are present in the training set.

Number of points in Eq. (3) To compute L5, we compute a global rigid transformation between
the posed and canonical keypoints, which our qualitative analysis in Fig. [6]and Fig. [AT] shows to
be reasonable despite being a coarse simplification of the problem. In order to evaluate its impact
quantitatively, we evaluate altered version of this procedure where we learn P not by globally aligning
all keypoints but only a randomly sampled local subset of them. Results in Table show that only
considering a local neighborhood does not impact the validation performance of our model.

C Additional Results
C.1 Additional Metrics
Multiple recent works pointed out issues with evaluating using PCK, and proposed additional

evaluation metrics to address its limitations.

PCK' [2] PCK matches are counted correct even if the prediction lies closer to a keypoint that is
not the target, which can lead to high scores when many points are grouped together, even though
the system does not distinguish between them. The authors introduce PCK' which only considers a
match correct if it lies within the threshold and its closest annotated point is the target.
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Table A2: Evaluation under robust metrics. All metrics use per-image averaging, and all models use window
soft-argmax. All models are trained on SPair-71k, and models with a double dagger* benefit from AP-10K
pretraining. Models in the /C category use keypoint supervision, while 4 do not. Best results are bolded and
second best are underlined.

Spair-71k KAP Spair-U KAP Spair-71k PCKT Spair-U PCKT Spair-71k GA AP-10K IS GA
Threshold 001 005 0.0 ] 001 005 010|001 005 0.10 |00l 005 010|001 005 0.10 |00l 005 0.10
# SD [11I611 382 475 530|434 516 585| 63 344 444 | 33 277 454 | 42 283 433 | 13 153 310

DINOv2 391611 37.8 47.1 528|433 524 606 | 6.7 344 460 | 3.7 32.1 521 3.6 263 434 | 23 256 470
DINOv2+SD [611 384 496 559|437 542 628 | 81 410 528 | 47 366 566 | 48 327 508 | 24 261 481
SphericalMaps 389 512 582|443 554 642 | 88 444 573 | 45 378 585 | 56 377 581 26 284 518

K DINO+SD (S) [6I] | 39.1 554 64.1 | 438 547 639|130 597 720 | 3.6 355 572|102 536 69.7] 28 321 56.6

Geo-SC [62] 398 593 67.8 | 438 542 628 200 698 783 | 46 351 549|172 656 780 | 3.7 336 553
Geo-SCH 40.1 610 69.2 | 438 541 628|220 730 809 | 43 358 553|200 709 823 - - -
Ours 398 59.8 68.1 | 440 550 645|204 69.8 78.1 | 42 374 603|174 658 777 | 3.5 335 561
Ours? 400 603 69.0 | 442 560 660 | 208 721 807 | 45 413 642|188 707 824 - -

KAP [32] PCK only considers matches when both ground-truth points are visible and does not
penalize systems that predict strong similarities for points that do not correspond, for instance
between the two opposite sides of a car. KAP reformulates the correspondence evaluation as a binary
classification problem between the pixels that are close to the target and those those that are not.
Crucially, it penalizes high predictions when a source keypoint is invisible in the target.

Geo-aware subset (GA) [62] Finally, [2],(62] and noted that SC pipelines - especially unsuper-
vised ones - often make mistakes because of repeated parts and object symmetries. [62] proposed
evaluation on the Geo-aware subset of points only, e.g., the points for which there is a symmetric
corresponding point.

Results in Table [AZ] confirm the patterns observed in Section[5.2] For all metrics, supervised models
performances drop back down to unsupervised-level or worse when evaluated outside their training
labels. Interestingly, KAP scores do not widely vary between supervised and unsupervised models,
indicating that supervised models are still likely to predict strong similarity between points when
none exists.

C.2 Additional Visualizations

We visualize more canonical surfaces in Fig. [AT] While the shapes are sensible, we observe some
limitations in adequately modeling categories with extreme deformations like birds: points belonging
to the wings are predicted close to the body when they are folded, and away when they are spread.
However, this is consistent with SPair-71k labeling, where the tips are only labeled when the wings
are spread.

Bicycle Bird Bus Cow

&g

Horse Plant pot Sheep TV

Figure A1l: Visualization of extra canonical shapes. Large points correspond to P, each being attributed a
distinctive color for visualization. Small points are predicted canonical coordinates of objects, colored with PCA
of the features predicted by .
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We also show some predictions for the unsupervised DINOv2+SD, Geo-SC, and our model on SPair-
U in Fig. We observe some interesting failure cases: on the aeroplane, the unsupervised model
correctly matches the door, while both supervised models incorrectly predict a training keypoint. In
two occasions, Geo-SC predicts points outside of the object when queried on points that are far from
training annotations (cow and person). Finally, two very challenging cases are shown with the chair
and the tv, illustrating that generic semantic correspondence is still a particularly challenging task.

D Additional SPair-U Details

We annotated images using the VGG Image Annotator [12]. We further post-processed the annotations
into JSON files replicating the structure of SPair-71k annotations, i.e., per-image annotations and a
list of testing pairs. This allows SPair-U to function as a drop-in replacement for SPair-71k evaluation
in any semantic correspondence evaluation script. Note that it is designed to be a benchmark of
unseen semantic points intended for evaluating the generalization ability of SC models, therefore
does not come with a training or validation split. We present the full list of keypoint semantics of
SPair-U in Table per-category statistics in Table and some keypoint visualization in Fig.

Table A3: List of SPair-U keypoint semantics.

Aeroplane front-left, front-right, rear-left, rear-right doors

Bicycle top and bottom of head tube; front brake; rear brake

Bird center of back, chest; left wing wrist; right wing wrist

Boat midpoint of the bow; front-left, front-right, rear-left, rear-right side midpoints
Bottle center and corner points of label

Bus top-left, top-right, bottom-left, bottom-right corners of windshield

Car front-left, front-right, rear-left, rear-right top of the wheel arches

Cat front-left, front-right, rear-left, rear-right hocks

Chair leg midpoints; seat edge midpoints; seat center

Cow left and right shoulder joints; left and right hip joints; left and right centers of the body; middle of back
Dog front-left, front-right, rear-left, rear-right hocks

Horse left and right shoulder joints; left and right hip joints

Motorbike front fender midpoint; seat front edge, seat rear edge; engine compartment center
Person forehead center; navel; neck base; left hip joint, right hip joint

Plant Pot center of pot; midpoints of edges; midpoints of rim

Sheep left and right shoulder joints; left and right hip joints

Train locomotive rear top-left, top-right, bottom-left, bottom-right corners

Tv center point; top-left, top-right, bottom-left, bottom-right quadrant centers

Table A4: Per-category statistics for our SPair-U benchmark.
| v 4 &% & B & W 8B o o of ® 3 ¥ M @ Oae

Image count 27 26 27 27 30 27 25 25 26 26 25 25 27 26 30 27 28 27 27
Number of pairs 254 576 480 666 338 304 300 510 552 466 488 420 536 483 744 218 314 600 | 458
Count of new semantic labels 4 4 4 5 5 4 4 4 9 7 4 4 4 5 5 4 4 5 4.7
Total labeled points 39 74 37 74 71 66 44 64 138 81 72 60 67 62 118 39 50 116 | 70.7
Average number of visible points 14 29 1.4 27 24 24 18 26 53 3.1 29 24 25 24 39 1.4 1.8 43 2.6
Number of zero-kp images 3 1 2 0 11 9 0 1 1 2 2 3 2 0 2 10 2 2| 29
Min keypoint occurrence 8 14 2 11 13 17 10 14 11 8 17 15 16 9 22 9 12 23 | 12.8
Avg keypoint occurrence 108 195 103 158 152 175 120 17.0 163 126 190 160 178 134 246 108 135 242|159
Max keypoint occurrence 13 25 20 23 19 18 14 21 21 19 20 17 20 21 27 13 15 25 | 195
Avg kp per pair 14 24 12 1.7 29 34 15 19 38 20 25 20 20 17 36 16 19 43| 23
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Aeroplane Bicycle

Boat Bottle Bus

Car Cat Chair

Plant Pot

Sheep Train

Figure A2: Visualization of keypoint annotations from SPair-U. Colors represent keypoint IDs.
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DINOv2+SD Geo-SC Ours

1§

it

Figure A3: Visualization matches for SPair-U. Green lines are correct, red ones are incorrect.
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DINOv2+SD

Figure A4: Visualization matches for randomly selected object points. Colors are provided as a way to
distinguish the points.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We illustrate the lack of generalization of supervised SC models by introducing
a novel benchmark of unseen points, while showing qualitatively and quantitatively that our
proposed approach outperforms prior works in generalization settings

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss our limitations in a Section[6] where we highlight shortcomings in
our proposed benchmark and discuss the key limitations associated the assumptions made
when designing our model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed implementation details in the supplementary material.
Code for reproducing our results will be provided upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release both code for our model and experiments as well as our
new SPair-U benchmark upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed implementation details and training settings are provided in the
supplementary material. We plan to release the code detailing training and evaluation
settings upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Retraining all methods evaluated on the multiple benchmarks we include in
our experiments would incur a computational cost beyond our means. Instead, we report
performance using the standard protocol used in the semantic correspondence literature,
where results are averaged over many categories and many images.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information related to computational resources used in our supple-
mentary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the code of ethics and confirm our paper conforms to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We briefly discuss broader impacts at the end of our limitations section. We do
not anticipate any negative societal consequences stemming from our method. However,
like any learning-based methods our approach is subject to potential limitations stemming
from biases in the training data and there could be certain negative consequences in specific
high stakes use cases if the outputs of the model are used without being validated first.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As discussed in the previous answer, we do not anticipate any risks associated
with the use of our method or SPair-U dataset.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite and discuss the relevant datasets we use for evaluation in Section

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We use the same data format for SPair-U as used in SPair-71k to ensure that it
is a drop in replacement for users. We describe the data annotation process in Section 4]

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.
The authors themselves were responsible for annotating the correspondences in SPair-U.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The topic of this paper does not overlap with LLMs. Beyond conventional
spell checkers, no LLMs were used in the writing of text for this paper. We did use LLMs to
assist with visualizing the results.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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