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Abstract
We studied the effect of pause-internal phonetic particles
(PINTs) on recall for native and non-native listeners of English
in a listening experiment with synthesized material that simu-
lated a university lecture. Using a neural speech synthesizer
trained on recorded lectures with PINTs annotations, we gener-
ated three distinct conditions: a base version, a “silence” ver-
sion where non-silence PINTs were replaced with silence, and
a “nopints” version where all PINTs, including silences, were
removed. Half of the participants were informed they were lis-
tening to computer-generated audio, while the other half were
told the audio was recorded with a poor-quality microphone.
We found that neither the condition nor the participants’ native
language significantly affected their overall score, and the pres-
ence of PINTs before critical information had a negative effect
on recall. This study highlights the importance of considering
PINTs for educational purposes in speech synthesis systems.
Index Terms: speech synthesis, pause particles, recall

1. Introduction
Pause-internal phonetic particles (PINTs) refer to various phe-
nomena, such as breath noises (i.e., inhalations and exhala-
tions), filler particles (FPs) like “uh” or “um”, tongue clicks,
and acoustic-phonetic silence. Studies have shown that PINTs
can benefit listeners in both natural and synthetic speech. In nat-
ural speech, FPs have been found to improve the recall of story
plot points [1] and the following word [2], while silent pauses
have been found to improve the recall of the following word
[3]. In synthetic speech, FPs have been shown to reduce the
cognitive load for the listener [4], silent pauses have improved
recall for digits [5], and breath noises have improved recall for
sentences [6]. These findings collectively illustrate that PINTs
can improve the recall for small contexts, such as words or sen-
tences, in laboratory settings.

Research in speech synthesis for education is an important
area of study that can yield benefits for both native speakers
(NSs) and non-native speakers (NNSs). [7] found that NNSs
comprehended synthetic sentences more easily than synthetic
words, and that ratings were dependent on the listener’s com-
prehension level. Additionally, [7] highlighted the need for in-
vestigating longer material lengths for speech synthesis. For
example, when evaluating recall for larger contexts with real-
world data, [8] found no recall effect for PINTs for both native
and non-native listeners. Specifically, [8] used segments from
English-language universities and found that PINTs reduced the
recall for upcoming information. Therefore, we were interested
in investigating how PINTs might influence synthesized speech
in the same lecture setting, and whether their impact on recall
was similar for both NSs and NNSs. Our present study repli-

cated [8], using the same textual material but with a novel ap-
proach: the material was synthesized instead of being natural
speech, and two instruction sets were created. One instruc-
tion set informed participants they were listening to synthesized
speech, while the other instruction set told participants that the
audio was recorded with a poor-quality microphone. Our inves-
tigation focused on the impact of PINTs on the recall of sections
of synthesized lectures.

2. Method
We sourced lecture material from Open Yale Courses [9], a col-
lection of free and open access courses provided by Yale Uni-
versity. The speaker used for this study had a significant oc-
currence of PINTs during their lectures, accounting for 40% of
their total lecture time. We annotated a subset of these lectures
to train the speech synthesis model. Fig. 1 shows a compari-
son of the same segment of speech from both the original and
synthesized versions.

2.1. Stimuli

To generate the stimuli for the experiment, a neural text-to-
speech (TTS) voice was created, using a method similar to the
one described in [10]. This TTS system was trained using a
PyTorch implementation1 of the sequence-to-sequence neural
TTS engine Tacotron 2 [11]. We used phoneme-level input for
training and synthesis, which was obtained from the transcripts
using the g2p en package [12]. The training corpus was di-
vided into segments, delineated by an inhalation breath on each
end, where multiple breath groups were joined into utterances
of at most 11 seconds. For the phonetic input, specific tokens
for the different PINTs were added to allow exact prompted re-
production. The voice was trained for 70k iterations on top of
the published read speech model, using 3 GPUs and a batch size
of 28. The speech signal was decoded from the model output,
using the neural vocoder HiFi-GAN [13]. The published model
was finetuned for 1.33M iterations on the corpus.

The perceptual experiment material was generated one
breath group at a time following [14, 15], with each segment
starting and ending with an inhalation. Since the synthesizer is
non-deterministic, we synthesized multiple versions and chose
the version that included fewest distortions or errors2. Specif-
ically, we avoided versions that included background noises,
which occasionally occurred due to the varying audio quality
of the speech corpus. After synthesizing all breath groups for

1https://github.com/NVIDIA/tacotron2
2Sample audio used for TTS comparison and perceptual experiment

can be found at https://mikeyelmers.github.io/paper_
ssw23ttsdemo/



Figure 1: Spectrogram comparison of original (top) and synthetic speech (bottom) for the same textual material. PINTs annotations:
silence (sil), inhalation noise (in), exhalation noise (ex), filler particles (uh) and (um), tongue click (cl), and other (o).

each lecture segment, we concatenated the segments together
using Praat [16].

The study we replicated included three different conditions
for the audio stimuli. We created the same conditions using a
Praat [16] script, which either removed or replaced the PINTs
material. For the silence condition, the non-silence PINTs were
replaced with silence taken from the audio that was adjusted to
match the duration of the removed material. As a result, the
silence condition maintains the same duration as the base con-
dition. The “nopints” condition removed all acoustic pauses.
Both the base and silence conditions provide the same process-
ing time, whereas the “nopints” condition allows for less pro-
cessing time (see Fig. 2).

2.2. Perceptual Study

2.2.1. Participants

This study used a web-based experiment, designed with the
Labvanced [17] platform, to present the audio stimuli and col-
lect responses and questionnaire data from participants. Re-
cruitment was carried out with the crowd-sourcing platform
Prolific [18]. A total of 180 participants were recruited, includ-
ing 90 monolingual English participants (mean age 40 years,
age range 20–75 years) and 90 L1 German participants (mean
age 33 years, age range 18–70 years), who received compen-
sation for their participation. Three monolingual English par-
ticipants and two L1 German participants self-reported hearing
impairment and were excluded from the results.

2.2.2. Procedure

Participants listened to four sections of synthesized material,
each approximately three minutes in length, and then answered
two multiple-choice questions based on the content. The exper-
imental material used the same textual content from [8], which
extracted sections from full-length lectures. The stimuli were
carefully chosen to ensure that all information needed to answer
the question was present in the audio, i.e., no prior knowledge
was required to answer the questions. For each audio segment,

Figure 2: Duration schematic for the three conditions, with
speech material in white, PINTs in grey, and speech material
that includes the answer depicted in black.



one question was preceded by PINTs material, while the other
was not. In the “nopints” condition, neither question contained
PINTs material. An example question was, “According to Paul
Fussell, what is the essential trope or rhetorical figure of World
War One poetry?” Possible answers included: a) hyperbole, b)
metaphor, c) oxymoron, d) irony. Participants only needed to
understand the contents, as presented by the speaker, and did
not require any encyclopedic or background knowledge to an-
swer the questions. The study was balanced to ensure that the
material preceding the first and second question was equally
distributed, with or without PINTs.

Before beginning the experiment, participants received a set
of instructions. They were informed that the study involved
listening to four audio clips, each lasting approximately three
minutes, and answering content-based questions immediately
following each clip. The participants were instructed to use
headphones and test their audio volume prior to commencing
the experiment. There were told to not take any notes while
listening to the audio clips. Half of the participants were in-
formed that the audio was computer-generated audio, while the
other half were informed that the recordings were made us-
ing a sub-optimal microphone, and contained some background
noise. The latter group of participants were not informed that
the audio was computer-generated. Participants were told that
they would receive a score at the end of the experiment to in-
centivize them to perform well.

Following the listening task, participants were required to
complete a questionnaire. The questionnaire included various
demographic and language-related questions such as age, hear-
ing impairment, L1, highest level of completed education, in-
terest in the audio contents (1: very uninterested to 5: very in-
terested), ease of following/understanding the speaker (1: very
difficult to 5: very easy), and perception of the speaker’s pre-
paredness (1: very unprepared to 5: very prepared). The L1
German listeners were asked to provided their self-reported En-
glish proficiency and, if available, a test score. The total time
for completing the listening task and questionnaire averaged be-
tween 15 to 20 minutes.

Each participant listened to one of three conditions. Specif-
ically, one-third of the participants listened to four unmodified
(i.e., “base” condition) audio clips, another one-third listened to
four audio clips from the “silence” condition, and the remain-
ing one-third listened to four clips from the “nopints” condition.
The textual material was the same across all conditions, but the
order of the four audio clips was randomized to prevent poten-
tial order effects. Participants saw “Listen closely!” displayed
on their screen while the audio played, and each audio clip was
played only once.

3. Results
R [19] (Version 4.1.2) was used to perform both descriptive
and inferential statistics3. Prior to analysis, the data was pre-
processed using the dplyr [20] (Version 1.1.1), stringr [21] (Ver-
sion 1.5.0), and tidyr [22] (Version 1.3.0) packages. The ho-
mogeneity of variance assumption was assessed using Levene’s
test from the car [23] (Version 3.1.2) package. Cohen’s d was
calculated using the effsize [24] (Version 0.8.1) package. Post-
hoc comparisons after conducting the Kruskal-Wallis rank sum
test were performed using Dunn’s Test from the dunn.test [25]
(Version 1.3.5) package. The statistical models were analyzed

3All data and code for the results can be accessed at https://
github.com/MikeyElmers/paper_ssw23

using either linear regression or with binomial generalized lin-
ear mixed models (binomial GLMMs) implemented through the
lme4 [26] (Version 1.1.32) and lmerTest [27] (Version 3.1.3)
packages. The Akaike Information Criterion (AIC) [28] was
used to compare models and choose the best fit model with the
lowest AIC. Visualizations were generated using ggplot2 [29]
(Version 3.4.2).

3.1. Duration and Count

We compared the count and duration information of the four
synthesized passages to the original versions. The originals had
a longer PINTs duration, a longer total duration, and a higher
PINTs proportion (see Table 1). However, while the synthe-
sized passages were shorter overall, the PINTs proportions were
comparable. Both versions were similar to the speaker’s overall
PINTs profile proportion of 40%. Table 2 contains count in-
formation for the individual PINTs grouped by condition. The
original material had more silences, exhalations, and “other”
particles. Both versions had a similar number of inhalations,
filler particles “uh” and “um”, and tongue clicks.

Table 1: Duration information for the original and synthesized
material. Values include all four passages. Total PINTs du-
ration (PINTs dur) and total audio duration (total dur) are re-
ported in seconds. Proportion (prop) is expressed as a percent-
age value out of 100%.

condition PINTs dur total dur prop

original 314.45 761.48 41.29
synthesized 273.68 705.23 38.81

Table 2: Count information for the original and synthesized ma-
terial. The values include all four passages. The following la-
bels were investigated: silence (sil), inhalation (in), exhalation
(ex), filler particles (uh) and (um), tongue click (cl), other (o).

condition sil in ex uh um cl o

original 656 234 65 210 30 43 82
synthesized 288 232 9 212 30 45 2

3.2. L1 Comparison

Participant performance was determined by the number of cor-
rectly answered questions, with a potential maximum score of
8 (1 point for each correct answer). We compared total score
means grouped by L1. The normality assumption for the de-
pendent variable was violated, as determined by the Shapiro-
Wilk Normality test (p < 0.05). The assumption of equal vari-
ances was met, as verified by Levene’s test for homogeneity (p
> 0.05). Since the sample sizes exceeded 30, a parametric test
was used following the central limit theorem, despite the vio-
lation of normality. An independent samples t-test compared
the mean scores of the monolingual English group (M = 5.31,
SD = 1.67) and the L1 German group (M = 5.57, SD = 1.64).
The findings revealed no significant difference between the two
groups (t(173) = -1.03, p > 0.05, d = -0.16), indicating that the
L1 German group and monolingual English group performed
similarly.



3.3. Condition and Group Comparison

Given that L1 was not a significant factor, we proceeded to in-
vestigate the effect of condition. Total scores grouped by condi-
tion are summarized in Table 3. Participants were informed that
they were either listening to computer-generated audio (in half
of the conditions) or that the speaker was using a poor-quality
microphone (in the remaining half). Notably, the highest mean
score was obtained in the silence condition where participants
were told that the audio was computer-generated. The lowest
mean score was observed in the silence condition where par-
ticipants were told that the speaker used a poor-quality micro-
phone. This pattern was not universal, but in general, when par-
ticipants were told the audio was computer-generated, the total
score was higher than when they were told the audio came from
a poor-quality microphone, except for the “nopints” condition.

Table 3: Descriptive statistics for total score (possible maxi-
mum score of 8) for the different conditions. Participants were
told that the audio was computer-generated in the conditions
with the subscript “cg”.

condition mean median sd N

silencecg 5.77 5 1.41 31
nopints 5.71 6 1.61 28
basecg 5.61 6 1.64 28
base 5.45 5 1.78 29

nopintscg 5.34 5 1.72 29
silence 4.77 5 1.68 30

We conducted an analysis of variance (ANOVA) to inves-
tigate the mean differences in total score between conditions,
with condition as a fixed factor. The normality assumption
was violated in the following comparisons as indicated by the
Shapiro-Wilk test, while Levene’s Test did not reveal any sig-
nificant differences in variances across groups. Given that the
sample sizes exceeded 30, satisfying the central limit theorem,
we utilized parametric tests. The results did not indicate any
significant effect of condition on total score (F(5, 169) = 1.50,
p > 0.05). Post-hoc comparisons using pairwise t-tests with
Bonferroni correction did not reveal any significant differences
between individual groups. However, the Bonferroni correction
is conservative by nature. A two-sample t-test was conducted to
compare the mean total score between the silencecg (M = 5.77,
SD = 1.41) and the silence (M = 4.77, SD = 1.68) conditions.
The results showed that the silencecg condition had a signifi-
cantly higher total score (t(59) = 2.55, p <0.05, d = 0.65). We
conducted additional analyses by grouping conditions based on
audio type (i.e., base, silence, and nopints) and whether par-
ticipants were informed that the audio was computer-generated
(i.e., cg group and non-cg group). However, these analyses did
not reveal any significant differences in mean total score when
grouping by audio type (F(2, 172) = 0.44, p > 0.05) or by
computer-generated instruction type (t(173) = 1.12, p > 0.05,
d = 0.17).

3.4. Preceding Material

We explored the impact on recall based on whether the question
material was preceded by PINTs. Table 4 demonstrates that an-
swers immediately preceded by PINTs material had an overall
lower score. The nopints and nopintscg conditions, which did
not contain any PINTs information, were excluded from this

analysis. Scores were out of 1, rather than 8, since the evalu-
ation was done on a by-question basis rather than the subject’s
collective score. A score of 1 indicated a correct response, and
0 an incorrect response. Due to violations of both normality,
as indicated by the Shapiro-Wilk test, and homogeneity of vari-
ances, as indicated by Levene’s test, we used the non-parametric
Wilcoxon rank sum test. Our analysis revealed a significant dif-
ference between the conditions where PINTs material immedi-
ately preceded the question, and those where it did not (W =
132396, p < 0.001). Specifically, the mean score for questions
preceded by PINTs material was significantly lower than those
without any preceding PINTs information. These results sug-
gest that the presence of PINTs information immediately before
key information, may have a detrimental effect on recall perfor-
mance.

Table 4: Descriptive statistics, including mean and standard
deviation, based on whether the question material was immedi-
ately preceded by PINTs material.

precede mean sd

no 0.77 0.42
yes 0.58 0.49

We utilized a binomial generalized linear mixed effects
model to investigate the relationship between score (0 or 1) and
preceding PINTs, L1, condition, and questionnaire variables.
The model with the best fit, as determined by the lowest AIC,
was glmer(score ∼ precede+interest+(1 | id), family =
binomial). This model predicted score based on whether the
answer was preceded by PINTs information and interest level
as fixed effects, with the subject as a random effect. This model
outperformed alternative models that incorporated L1 status,
condition, or other questionnaire variables. Our findings indi-
cated that both preceding PINTs and interest level significantly
predicted score. The intercept was significant (β = 0.84, p <
0.001), and whether the answer was preceded by PINTs ma-
terial had a significant negative effect (β = -0.96, p < 0.001).
Interest level had a significant effect on score, with the highest
levels of interest being the strongest predictors (β = 1.80, p <
0.001 for interest level 5; β = 0.98, p < 0.001 for interest level
4; β = 0.42, p > 0.05 for interest level 3; β = 0.38, p > 0.05
for interest level 2). These results suggest that only the high-
est levels of interest (4 and 5) are associated with higher odds
of a positive outcome on score. In summary, our findings indi-
cate that when holding all other variables constant, the odds of a
positive outcome on score decrease when PINTs precede, while
the highest levels of interest are associated with higher odds of
a positive outcome on score.

3.5. Interest

Participants rated their level of interest in the audio contents on
a scale of 1 (very uninterested) to 5 (very interested), with a
mean rating of 2.73. An independent samples t-test was con-
ducted to compare the mean interest ratings between the mono-
lingual English group (M = 2.70, SD = 1.22) and the L1 German
group (M = 2.76, SD = 1.13). The results indicated no signif-
icant difference between the two groups (t(173) = -0.33, p >
0.05, d = -0.05).

Interest was further examined by condition (see Table 5).
We used an ANOVA to investigate mean differences in interest
between the different conditions. The results revealed a signifi-



cant effect of condition on interest (F(5, 169) = 2.45, p < 0.05).
Post-hoc pair-wise t-tests with Bonferroni correction showed
a significant difference between the nopints condition and the
base condition (p < 0.05). Both the L1 and condition compar-
isons violated normality, as indicated by the Shapiro-Wilk test.
However, homogeneity of variances was maintained, as indi-
cated by Levene’s test. As a result, we opted for parametric
tests since both comparisons satisfied the central limit theorem.

Table 5: Mean interest values for the different conditions. Par-
ticipants were told that the audio was computer-generated in
the conditions with the subscript “cg”.

condition mean sd

nopints 3.25 1.17
sil 2.90 1.03
silcg 2.77 1.09
basecg 2.64 1.16

nopintscg 2.59 1.18
base 2.24 1.27

We used linear regression models to investigate the relation-
ship between total score and L1, condition, and the question-
naire variables. The model with the lowest AIC included inter-
est and instruction type (whether participant were told the audio
was computer-generated) as fixed effects: lm(total score ∼
interest + cg). This model was statistically significant (F(5,
169) = 5.76, p < 0.001) and explained 14.56% of the variance
in total score (R2 = 0.1456). Our results indicated that interest
level had a significant effect on total score, with the highest level
of interest being the strongest predictor (β = 2.42, p < 0.001 for
interest level 5; β = 1.05, p < 0.01 for interest level 4; β = 0.42,
p > 0.05 for interest level 3; β = 0.13, p > 0.05 for interest level
2). However, instruction type did not have a significant effect on
total score (β = 0.38, p > 0.05). The intercept was significant
(β = 4.72, p < 0.001). The adjusted R-squared of the model
was 0.12, with a residual standard error of 1.55. These findings
suggest that the level of interest in the audio content has a sig-
nificant effect on total score, but instruction type does not have
a significant effect on total score.

3.6. Correlation

Pearson correlations for participants’ total score and their ques-
tionnaire responses are presented in Table 6. The questionnaire
assessed how easy it was to comprehend the speaker, level of
interest in the lecture content, and evaluated the speaker’s pre-
paredness. Ratings were made on a 5-point Likert scale. Age,
ease, and preparedness were weakly correlated with total score,
while interest was moderately correlated (t(173) = 4.56, p <
0.001, r = .33). The correlation between total score and inter-
est was stronger for monolingual English participants than for
L1 German participants. Overall, the higher the participant’s
interest level, the better their total score.

4. Discussion
Compared to the original version, the synthesized version strug-
gled to generate short silences, often found adjacent to non-
silence PINTs (i.e., edge silences), resulting in fewer silences.
Similarly, the counts for exhalations and the “other” category
also decreased in the synthesized version, possibly due to the
scarcity of exhalations in the data. The “other” category was

Table 6: Pearson correlation coefficients for participants’ total
score and their questionnaire responses. Includes correlation
information for all participants (Both), L1 German (DE), and
monolingual English (EN).

participants age ease interest prep

Both 0.20 0.15 0.33 0.10
DE 0.15 0.07 0.25 −0.00
EN 0.30 0.24 0.39 0.19

not included during the synthesizer’s training due to the diver-
sity of phenomena within the category. Nevertheless, the syn-
thesizer generated some “other” labels without any explicit in-
clusion. Despite these differences, the synthesizer maintained
similar counts for inhalations, filler particles “uh” and “um”,
and tongue clicks. However, the synthesizer occasionally pro-
duced multiple PINTs from a single label, leading to a higher
count of “uh” and tongue clicks than was present in the original
material. Overall, it was unexpected to find that the synthesized
version closely modeled some of the counts, given that the out-
put is not deterministic.

Our findings indicated that the participants’ total score was
not affected by their language background, whether they were
monolingual English or L1 German, when listening to English-
language content. This is a favorable outcome that suggests
synthetic speech could be an effective equalizer for educational
purposes, as both NSs and NNSs performed similarly. Addi-
tionally, we also observed significant differences in total score
between the condition where participants were told the audio
was synthesized (silcg), and the condition where participants
were told the audio came from a poor-quality microphone (sil).
This discrepancy may be due to participants being more lenient
when they knew that the material was synthesized, as opposed
to those who might be more critical assuming it was from a hu-
man speaker.

Our study found similar results to the study we replicated
[8], that PINTs preceding key information lowered recall. This
highlights the need for future research to determine when PINTs
can be beneficial for recall. However, neither study was able
to replicate the benefits of PINTs observed in single sentence
laboratory settings. It is possible that the PINTs profile of the
speaker we used to train the TTS is an outlier. Lecture record-
ings from a speaker who uses PINTs to a lesser extent may re-
veal recall benefits. One limitation of using a single speaker
is the difficulty in comparing how listeners perceive different
realizations of the same PINTs. Moreover, it is challenging
to isolate individual PINTs for analysis in spontaneous speech
recordings, where many PINTs co-occur. In this experiment,
we treated all PINTs equally, despite each PINT having differ-
ent realizations that may impact recall differently.

Participants who rated their interest in the audio content
as high (4 or 5) had a significantly higher total score, and
this was reflected in a moderate correlation between interest
and total score. Contrary to expectations, the instruction type
did not have a significant effect on the total score, suggest-
ing that whether the participants knew the material was syn-
thesized or not, did not impact their performance. When com-
paring mean interest scores by condition, it was unexpected to
find the “nopints” condition had a higher interest score than the
“base” condition, despite the audio artefacts resulting from the
removal of the pause material. One possible explanation is that,
again, the speaker used for training the TTS model used too



many PINTs during their lectures, which might have resulted in
a less engaging experience.

For most levels of proficiency, [30] found that pauses
helped comprehension more than speaking at a normal rate
or artificially slowing the speaking rate. However, there is a
threshold, beyond which pauses have a negative effect on com-
prehension [30, 31]. It is possible that the PINTs used in this
study exceeded the threshold and became a detriment to recall.
These results indicate that the impact of PINTs in synthesized
speech should be carefully considered when recall of informa-
tion is important, such as in education, for both native and non-
native listeners.

5. Conclusion
This work replicated the experimental methodology used in [8]
by evaluating the effect of pause-internal phonetic particles on
recall, but used synthesized speech rather than natural speech.
Our neural speech synthesizer was trained on labeled PINTs
annotation, and generated experimental stimuli. First, we com-
pared the count and duration information for the natural and
synthetic speech. We found that the PINTs proportion for the
synthesized version was similar to the natural version. Next,
we conducted a perceptual experiment with three conditions:
1) a base version, 2) a “silence” version where all non-silence
PINTs were replaced with silence of the same duration, and 3)
a “no PINTs” version where all PINTs material was removed.
Similar to [8], recall of key information was lower when the ma-
terial was preceded by PINTs. Importantly, participant’s recall
was not influenced by their first language. Half of participants
were told they would hear computer-generated audio, while the
other half was told that the audio was recorded with a poor-
quality microphone. Overall, the instruction type did not have
a significant effect on recall, indicating that participants didn’t
adjust their expectations based on whether or not they knew the
audio was synthesized. Participant’s also provided their sub-
jective evaluations, such as interest level, via a questionnaire.
Higher levels of interest resulted in a significant positive effect
on the recall of key information.

This work showcased that PINTs are widely present in real-
world lectures, and that the presence of PINTs lowered the
recall of key information for synthetic speech. The lectures
used as training data incorporated a high number of PINTs.
An interesting area for future research is whether these conclu-
sions hold with a lower, potentially less distracting number of
PINTs. Especially since these findings contrast with the results
of single-sentence laboratory experiments, indicating that addi-
tional work is required to tease apart the influence of PINTs on
recall.
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