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ABSTRACT

Consider a real-world problem where we wish to adapt an existing action recog-
nition (AR) model to a new environment. A common approach is to fine-tune a
model on a set of labeled videos of actions performed in that environment. Such an
approach is costly, since we need to record and annotate the videos, and fine-tune
the model. At the same time, there has been recent interest in AR models that take
an object-centric approach. In many cases these models are more structured, e.g.,
containing a module dedicated to object localization. Could we perform adaptation
to a new environment via objects alone? We propose to re-use a previously trained
AR model and only adapt its object localization module. Specifically, we train
class-agnostic detectors that can adapt to each new environment. The idea of
performing AR model adaptation via objects is novel and promising. While it
requires some annotated images with the localized objects in the new environment,
such supervision cost is lower than that of a conventional approach above. We
conduct experiments on unseen kitchens in within- and across- dataset settings
using Epic-Kitchen and EGTEA benchmarks, and show that AR models equipped
with our object detectors can efficiently adapt to new environments. 1

1 INTRODUCTION

Consider a realistic and practical problem: we wish to adapt an existing action recognition model to
a new environment (e.g., adapt a smart home assistant to a particular home). A common solution
is to treat this as domain adaptation problem, where we would typically require video recordings
in the new environment, where video segments are annotated with action labels. We would then
fine-tune the action recognition model on the annotated segments. Despite its simplicity, fine-tuning
over target domain data is still considered as the upper bound for unsupervised domain adaptation
performance (Munro & Damen, 2020; Kim et al., 2021). However, this approach is costly both
in terms of data collection and labeling, and the required model fine-tuning (see Figure 1, A). For
example, consider the effort of recording and labeling videos to demonstrate to a smart assistant how
you make pancakes or cook an omelette in your specific kitchen environment.

At the same time, recently we have seen several action recognition works take an object-centric
approach (Arnab et al., 2021b; Ben-Avraham et al., 2022; Herzig et al., 2022; Wang & Gupta, 2018).
Their key intuition is that recognizing complex actions (such as human-object interactions) strongly
benefits from explicitly modeling objects. Typically these models are more structured as opposed to
“monolithic” architectures, e.g., they often contain a dedicated hand-object object localization module.
However, prior works have not explored an adaptation scenario similar to ours.

All this brings us to the following question: could we perform action model adaptation to a new
environment via objects alone? More concretely, could we re-use a previously trained action
recognition model and only adapt its object localization module? Naturally, this will require some
annotated images with the localized objects representative of the environment. But such supervision
cost is much lower than that of a conventional approach described above. Compare the effort needed
in a traditional approach (above) to capturing some images in your kitchen and drawing bounding
boxes over the representative objects, like a frying pan or a spatula.

1Our code is included in the supplementary and we will release it upon acceptance.
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Figure 1: The motivation behind our work: (A) shows the traditional approach for adapting an
action recognition model to a new environment, (B) shows our proposed approach for adaptation via
objects, (C) illustrates our key hypothesis, i.e. that better object localization will also lead to better
action recognition in the target environment.

Our proposed design to tackle this problem is as follows (Figure 1, B). Given an existing action
recognition model trained on a source environment, we fine-tune its class-agnostic object detector to
adapt to the target environment, leveraging a modest amount of labeled images. Note, that the action
recognition part of the model is not trained on the target environment. Our main novelty and a key
hypothesis is that better object localization in the new environment brings improvement in action
recognition performance (Figure 1, C). Our particular design builds upon ORViT (Herzig et al., 2022),
a recent video transformer framework that employs an object detector to provide input into the model.
Note, that our presented ideas are general and could be applied to other object-centric video models.2

We conduct experiments in the following two challenging scenarios. 1. Adaptation to an unseen
environment within a dataset. Here, we split the popular Epic-Kitchen dataset (Damen et al., 2018;
2020) into seen and unseen kitchens, and only evaluate on the unseen ones. This setting is somewhat
“optimistic”, since all the recordings in this dataset are made and annotated using the same hardware
and annotation protocols. But unlike the standard split, we evaluate model performance on kitchens
never seen in training. 2. Adaptation to an unseen environment across datasets. Here we test a
more challenging scenario of adapting not only to an unseen kitchen but also to a different dataset.
Specifically, we use Epic-Kitchen as source data and EGTEA Gaze+ videos (Li et al., 2018b) as
targets. While these two datasets both capture egocentric cooking actions, they are distinct in terms
of used hardware, recording setup, and annotation protocols.

Our results show that: (1) Our novel approach for action recognition adaptation supervised by the
labeled images as opposed to labeled video segments, achieves over 8% relative boost in action
recognition on a new environment within the same dataset. (2) When faced with the more challenging
scenario of adaptation across datasets, it leads to an over 14% relative improvement in action
recognition, showing the generalization of our method. (3) Our approach achieves cheaper (in terms
of the needed number of frames) and faster adaptation while showing competitive performance to the
traditional fine-tuning approach. (4) Finally, we can significantly improve the fine-tuning performance
with our proposed adaptation of object localization module, showing complementarity of our idea
with the traditional approach.

2 ADAPTATION TO NEW ENVIRONMENTS VIA OBJECT LOCALIZATION

Our goal is to adapt an existing action recognition model trained on a source environment Ds to a
target environment Dt. This problem has practical applications in the real world, for example, a
system that is trained to recognize actions in one kitchen may be deployed in other kitchens where
we cannot gather and annotate a comprehensive video dataset but wish to allow for some target

2Among the object-centric video models, ORViT is the most recent and it is easy to use.
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Figure 2: The overview of the proposed approach: (Top) we illustrate a generic object-centric
action recognition model that consists of two modules: a hand-object detector F and an action
recognizer G; (Bottom) we illustrate our adaptation approach via fine-tuning the object localizer F
alone, based on a set of labeled images from the target environment.

adaptation. We start by describing the model (Section 2.1) and the problem statement (Section 2.2);
then in Section 2.3, we describe how we adapt the model to a target environment via objects.

2.1 OBJECT-CENTRIC VIDEO MODEL

We instantiate our framework with ORViT (Herzig et al., 2022), a recent object-centric video
transformer model. Further we follow ORViT and its design choices. First, we assume that our model
comprises two main modules: a hand-object detector F and an action recognizer G. We set G to be
the ORViT action recognizer, and F to be the hand-object detection model of Shan et al. (2020b).

More formally, let x = (z1, ..., zt) ∈ RT×H×W×3 be an input video segment. The detector F is a
function from a frame zi ∈ RH×W×3 to an ordered list of N = 4 boxes: left hand, right hand, left
object, and right object.3For a given frame zi, the predicted jth box b̂ij ∈ [0, 1]4 has an associated
p̂ij ∈ R confidence score. Each left/right hand-object pair has an “in contact” or “no contact” binary
prediction ĉik ∈ R for k ∈ {1, 2}. The action recognizer is a mapping from a video segment
x ∈ RT×H×W×3 and corresponding bounding boxes b ∈ [0, 1]T×N×4 to an action label, defined as
a verb-noun pair: G(x, b) ∈ V ×O. While in this design we model both hands and objects, which
is intuitive for many human-object interaction tasks, in a more general case, we talk about object
localization broadly.

To predict a verb-noun pair given an input video segment x = (z1, ..., zt) ∈ RT×H×W×3, we employ
the detector F to predict a list of bounding boxes in a frame-wise manner, then utilize the action
recognizer G to make the final verb v̂ ∈ V and noun n̂ ∈ O predictions:

[b̂, p̂, ĉ] = F (x), [v̂, n̂] = G(x, b̂), (1)

where b̂ ∈ [0, 1]T×N×4 are the bounding box coordinates, p̂ ∈ RT×N are the confidence scores for
left/right hand and left/right object, and ĉ ∈ RT×2 are the contact/no contact scores. In practice, p̂, ĉ
are only used in F optimization. We describe how to adapt F to new environments in Section 2.3.

2.2 ADAPTATION PROBLEM STATEMENT

Given an existing action recognition model (as defined in Section 2.1) trained on some source
environment Ds, our goal is to adapt it to a target environment Dt. In the target environment, we
aim to classify the actions (i.e., verb-noun pairs) of new given test video segments. Importantly, we
assume access to a set of nt videos with sparse frame-level labels, (x, b, c) ∈ Dt, where each x is a

3Note, that we do not predict specific object labels, such as “knife” or “bowl”.
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video segment with a few associated bounding boxes and contact/no-contact information. Collecting
videos (or even distinct images) of objects and sparsely annotating them with bounding boxes in the
target environment is less prohibitive than recording and labeling entire demonstrations of diverse
actions, and can be done by the end user of the system. Importantly, we aim to test our hypothesis
that improving object localization in the target environment may improve action recognition as well.

2.3 ADAPTATION LOSS

The key idea in our work is to adapt the existing action recognition model to a target environment Dt

by only finetuning the object detector F , leaving G frozen. Intuitively, this adaptation method deals
with the uncertainty related to encountering previously unseen objects in the target environment, as
well as other factors like the background and lightning conditions.

To adapt the model to the target environment, we fine-tune the hand-object detector F to localize
objects in the target environment, utilizing the available annotations. Let T ′ be the set of annotated
frames of the video. We minimize the following objective:

LHO :=
∑
i∈T ′

4∑
j=1

BCE(Sigmoid(p̂ij), pij) + pij(L1(b̂ij , bij)) (2)

Where pij ∈ {0, 1} is a binary indicator that receives 1 if the jth object predicted in the ith frame
overlaps with the ground truth object.

LContact :=
∑
i∈T ′

2∑
k=1

CE(ĉik, cik) (3)

To obtain the final loss, we compare the predictions and the ground-truth labels then add the two
terms, and the total loss is:

LAdaptation := LHO + LContact (4)

Finally, during inference, we feed the target video segments into the adapted action recognition
model: namely, we use the frame-level bounding boxes from the fine-tuned hand-object detector F
as input to the frozen action recognizer G (see Equations 1).

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

Implementation details. Our training recipes and code are based on the ORViT model (Herzig et al.,
2022). We train the source ORViT model for 50 epochs with the lr = 10−4 and follow the standard
learning rate decay schedule. Our method is implemented in Pytorch and we train the models on 8
NVIDIA Quadro RTX 6000 GPUs. For training we use a standard crop size of 224 and jitter the
scales from 256 to 320. We perform inference on a single clip with 16 frames. For each sample, the
evaluation frame is centered in frame 8. We use a crop size of 224 in test time. We take 1 spatial crop
with 10 different clips sampled randomly to aggregate predictions over a single video in testing. We
use the hand-object detector presented by Shan et al. (2020a), which is based on Faster R-CNN (Ren
et al., 2015). The detector utilizes a ResNet-101 backbone He et al. (2016) that was pretrained on
ImageNet (Russakovsky et al., 2015), and a Feature Pyramid Network (FPN) (Lin et al., 2017).

Datasets. We conduct experiments on Epic-Kitchens (Damen et al., 2020) and EGTEA Gaze+ (Li
et al., 2018b). Epic-Kitchens (EK), which is a large-scale dataset for first-person (egocentric) vision
spanning a wide range of actions recorded by different participants in 4 cities belonging to 10 different
nationalities in 45 native kitchen environments. EGTEA Gaze+ (EGTEA) is another large dataset
for egocentric vision actions that spans 7 cooking recipes, each performed by 4 different participants.

For training the hand-object detector we use the annotations from the 100K Frame (Shan et al.,
2020b) (100K for short), which is built upon 100 Days Of Hands (Shan et al., 2020b) videos. It
includes 99,899 frames annotated with 189K hand boxes, 189K hand states, 189K contact states,
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Table 1: Split information for the four unseen target kitchens in Epic-Kitchens dataset.

Kitchen id Scale # Segments # Frames of different fine-tuning sets
1% 5% 20% 35% 50% 70% 100%

4 L 7,917 17 99 392 684 979 1,368 1,955
8 M 2,650 16 80 318 557 794 1,111 1,590

22 L 10,732 19 93 363 637 913 1,276 1,826
24 S 1,804 12 59 235 411 588 821 1,174

24 (object-based) S 1,804 61 92 259 441 603 847 1,174

Table 2: The average of top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for for
action recognition in the 4 kitchens of EK. The ↑ denotes the absolute maximum increase between
the highest and base. the relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative ↑ 8.49% 6.96% 5.67% 5.73% 3.80% 2.35%
100% 20.12 (↑1.6) 31.86 (↑2.1) 46.29 (↑2.5) 46.85 (↑2.5) 55.66 (↑2.1) 75.47 (↑1.7)
70% 20.05 31.74 45.80 46.74 55.57 75.32
50% 19.95 31.59 46.09 46.66 55.53 75.32
35% 19.75 31.68 45.86 46.56 55.48 75.17
20% 19.89 31.43 45.69 46.06 55.25 75.02
5% 19.57 31.11 45.25 45.65 54.80 74.70
1% 19.18 30.71 44.72 45.19 54.34 74.43
base 18.54 29.79 43.81 44.31 53.62 73.74

140K object boxes. We also use Ego-centric Hands, a collection of 42,625 frames from EK and
EGTEA similarly labeled with hand-object interactions, which we obtain from Shan et al. (2020b).

Choosing target fine-tuning set. For adaptation, we fine-tune the hand-object detector on a subset of
labeled frames in the target environment, which are sourced from the Ego-centric Hands. Naturally,
we aim to capture a wide variety of objects in our target fine-tuning set. We also want to experiment
with different amounts of labeled frames. Thus our data “splitting” strategy is as follows. Within
each target environment, we have several video sequences that include different actions and objects;
some of the frames in these sequences are sparsely labeled with hand-object bounding boxes. To
cover the wide variety of scenes, we randomly select 1%, 5%, ..., 100% of the available annotated
frames from each video sequence; we combine them all to get the final set. More details on the data
splits are given in Sections 3.2 and 3.3.

Evaluation Metrics. We report Accuracy of top-1 / top-5 noun, top-1 / top-5 verb, top-1 / top-5
action predictions to evaluate the models’ performance, where action is a verb-noun pair.

3.2 ADAPTATION TO AN UNSEEN ENVIRONMENT WITHIN A DATASET

Goal. In this setting, our goal is to evaluate how an action recognition model adapts to a new kitchen
environment, assuming that the same camera device, recording setup and annotation strategy are
adopted. When adapting to new kitchen, factors like different lightning, background, objects, and
behavior of the participants (people who prepare the food), result in performance degradation.

Data. We build upon the Epic-Kitchens (EK) dataset. We choose 4 kitchens of different scales
(small, medium, large) from the total of 45 kitchens in EK as the unseen target environments; then
we use the split strategy introduced in Section 3.1 to generate several fine-tuning sets. The detailed
statistics are shown in Table 1.4

Experiment description. First, the ORViT model is trained on video segments in all the EK kitchens
except the 4 target ones. Meanwhile, we pre-train the base hand-object detector on the 100K dataset
and part of the frames in Ego-centric hands (namely, all EK kitchens except the 4 target ones). Next,

4The “24 (object-based)” split will be introduced in Section 3.4.1.
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Table 3: Split information for the 7 target recipes (all in an unseen kitchen) in EGTEA dataset.

Recipe id Scale # Segments # Frames of different fine-tuning sets
1% 5% 20% 35% 50% 70% 100%

BaconAndEggs L 3,171 48 238 954 1,671 2,387 3,344 4,775
Cheeseburger M 1,217 15 75 300 524 747 1,045 1,493

ContinentalBreakfast M 1,209 17 82 325 572 816 1,143 1,633
GreekSalad M 1,263 17 79 315 549 786 1,100 1,572
PastaSalad L 4,454 65 328 1,310 2,291 3,274 4,584 6,546

Pizza S 357 9 46 185 325 464 652 930
TurkeySandwich M 1,123 14 69 276 487 694 972 1,388

the detector is fine-tuned for 7 epochs using different fine-tuning sets from the 4 target kitchens with
the lr = 10−3 (quantitative and qualitative results of the fine-tuning are included in the Supp. C).
Finally, video segments in 4 target kitchens are used to evaluate the action recognition accuracy.

Results. We report the average accuracy for the 4 target kitchens in Table 2. Across the three
sub-tasks (Action, Verb and Noun), using our approach leads to an average absolute improvement of
around 2%, with relative improvement of over 8% in top-1 Action accuracy. When using only 1% of
labeled frames (around 16 frames), we find that the Noun and Verb top-1 accuracy already increases
by 1% while the Action top-1 accuracy increased by 0.5% compared to the base detector that was
only trained on the source domain. Therefore, we find that better localization of objects in the new
environment also benefits action recognition. Results per kitchen are included in the Supp. A.

3.3 ADAPTATION TO AN UNSEEN ENVIRONMENT ACROSS DATASETS

Goal. In this scenario, we perform domain adaptation from Epic-Kitchens to EGTEA dataset.
This scenario is particularly challenging because recording instructions, recording hardware and
annotations protocols differ between the datasets. These differences serve as extra domain gap factors
besides the ones mentioned in the first scenario (different participants, physical environments, etc.),
making the adaptation more challenging in comparison to the first one. Our goal here is to evaluate
how our method performs when facing a larger domain gap.

Data. Since EGTEA is annotated based on 7 different recipes, here we create target environments
based on each recipe recorded in the same kitchen. We again use the split strategy introduced in
Section 3.1 to generate the fine-tuning sets. The detailed statistics are given in Table 3.

Table 4: The average top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for for
action recognition on the 7 recipes in EGTEA. The ↑ denotes the absolute maximum increase
between the highest and base. the relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative ↑ 14.68% 8.84% 5.75% 6.83% 5.54% 2.41%
100% 11.80 (↑1.5) 21.65 (↑1.8) 39.82 35.42 (↑2.3) 41.70 (↑2.2) 71.50 (↑1.7)
70% 11.71 21.45 39.89 (↑2.2) 35.24 41.57 71.20
50% 11.71 21.17 39.64 35.06 41.39 71.27
35% 11.53 21.19 39.48 34.80 41.14 70.90
20% 11.20 20.94 39.26 34.44 40.68 70.69
5% 11.05 20.67 38.90 34.07 40.49 70.54
1% 10.58 20.41 38.38 33.90 40.15 70.21
base 10.29 19.89 37.72 33.15 39.51 69.82

Experiment description. First, the ORViT model is trained on all the kitchens in the EK dataset.
Meanwhile, we pre-train the base hand-object detector on the 100K dataset and part of the frames in
Ego-centric hands (i.e., all the EK kitchens). Next, the pre-trained detector is fine-tuned for 7 epochs
using different fine-tuning sets in EGTEA with the lr = 10−3 (quantitative and qualitative results of
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Table 5: The comparison between video-based split (left) and object-based split (right) for
kitchen 24 in EK. The ↑ denotes the absolute maximum increase between the highest and base. the
relative maximum increase w.r.t base is shown in the first row.

Video-based Split Fine-tuning
Set

Object-based Split
Top 1 Top 5 Top 1 Top 5

A N V A N V A N V A N V

6.41% 3.46% 5.02% 4.67% 3.46% 2.06% Relative ↑ 7.56% 4.99% 4.98% 5.40% 4.18% 2.06%
↑1.6 ↑1.3 ↑2.6 ↑2.5 ↑2.2 ↑1.7 Absolute ↑ ↑1.8 ↑1.8 ↑2.5 ↑2.9 ↑2.6 ↑1.7
25.89 37.97 53.54 55.82 64.36 81.92 100% 25.89 37.97 53.54 55.82 64.36 81.92
25.78 37.80 52.22 55.76 64.63 81.87 70% 26.17 38.53 52.66 56.21 65.08 81.71
25.42 37.62 53.56 55.71 64.47 81.65 50% 25.06 37.36 52.38 55.49 64.63 81.21
24.61 37.71 52.55 55.76 64.36 81.65 35% 24.67 37.25 52.44 55.27 64.02 81.65
25.42 37.54 52.27 55.38 64.02 81.46 20% 24.50 37.69 52.22 55.21 64.47 81.10
25.21 37.36 52.00 54.88 63.75 81.15 5% 24.83 37.14 52.72 54.93 63.80 81.60
24.97 36.97 51.47 54.16 63.36 80.93 1% 24.22 37.08 52.27 54.66 63.75 80.88
24.33 36.70 51.00 53.33 62.47 80.27 Base 24.33 36.70 51.00 53.33 62.47 80.27

fine-tuning are provided in the Supp. C). Finally, 7 target environments’ video segments are used to
test the action recognition accuracy.

Results. We report the average accuracy for the 7 target kitchens in Table 4.5 Again, across the
three sub-tasks, using our approach leads to an average absolute improvement of around 2%, with
relative improvement of over 14% in top-1 Action accuracy. All the three tasks show similar trends
as in the first scenario, showing the generalization of our proposed method. We notice that the
average accuracy when using the base detector is around 10% lower than in the first scenario, which
is expected since there is a larger domain gap across datasets, making adaptation more difficult.6 This
further highlights the robustness of the proposed method: precise localization of the objects obtained
from only small number of annotated frames could help overcome a challenging domain gap and
obtain a visible improvement in action recognition task.

3.4 ANALYSIS

3.4.1 ABLATION OF DATA SPLITTING SCHEME

With the video-based split approach proposed in Section 3.1, there is a risk of uneven coverage of
objects due to their uneven distribution across videos. For example, a lot of videos might involve “a
knife” but only one video involves “a spoon”. We therefore analyze another fine-tuning set splitting
strategy we refer to as “object-based”, which bestows the fine-tuning set with more instance-level
object information. To evaluate how the two splitting approaches compare, we manually label the
categories of the available bounding boxes from one EK kitchen (24), then create finetuning sets while
ensuring an even distribution of the labeled frames across objects. See Table 1 (bottom row) for split
information and Supp. D for object category statistics. We evaluate the adaptation performance on the
new obtained sets (see Table 3.4.1). We find that while the object-based split is intuitively preferable,
our approach, which does not require knowing the object labels, achieves similar performance.

3.4.2 ADAPTATION VIA OBJECTS AND/OR ACTIONS

Finally, we compare finetuning of the hand-object detector with finetuning of the action recognizer,
which requires video segments labeled with verb-noun pairs from the target environment. Since this
approach utilizes labeled video segments whereas we utilize relatively few frames annotated with
bounding boxes, we view this an an alternative and complementary approach. We consider adaptation
using full fine-tuning of the model G and partial finetuning of the last FC layer that predicts verb
and noun (“linear probing”). We experiment with the EK kitchen 24 from the first “within dataset”
scenario and the EGTEA recipe GreekSalad from the second “across datasets” scenario. As shown
in Tables 6, we report the average performance over the fine-tuning sets (1%, 5%, 20%, 35%, 50%,
70%, 100%), Memory (MiB) and Time (s) of the adaptation phase; to guarantee the fairness of the
comparison, the batch size is set to 1 for all the models, and we use one Quadro RTX 6000 gpu. We
provide additional implementation details and results in Suppl. G.

5The detailed results for each recipe are included in the Supp. B.
6For additional analysis of the domain gap please refer to the Supp. F.
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Table 6: The comparison of the action recognition accuracy between our object-based adaptation
and the traditional fine-tuning methods. G is the action recognizer, F is the object detector. The
Memory, Time and Accuracy are all average values w.r.t the fine-tuning sets 1%, 5%, 20%, 35%, 50%,
70% and 100%. Scenario 1 is on EK kitchen 24, scenario 2 is on the EGTEA recipe GreekSalad.

Scenario Method Memory
/MiB

Time
/s

Top 1 Top 5
A N V A N V

1

Base / / 24.33 36.70 51.00 53.33 62.47 80.27
G Fine-tuning 8775 7,318 25.74 37.48 53.44 55.68 63.17 84.26

G Linear Probing 3329 5,216 25.05 36.38 52.84 53.28 61.25 82.09
F Fine-tuning (Ours) 3027 896 25.22 37.86 53.34 55.80 64.00 82.94
G Fine-tuning + Ours 8775 8,128 26.30 39.20 54.11 60.02 66.64 85.76

2

Base / / 10.21 19.95 41.01 33.33 39.27 73.66
G Fine-tuning 8775 14,643 11.97 22.68 42.16 34.84 40.73 74.78

G Linear Probing 3329 23,324 11.11 20.16 40.05 31.77 37.41 73.38
F Fine-tuning (Ours) 3027 1,054 12.12 21.86 42.31 34.58 39.98 73.74
G Fine-tuning + Ours 8775 15,698 16.46 28.61 45.53 43.79 51.09 76.75

Figure 3: Qualitative results for base detector F vs. fine-tuning F on 1% and 70% sets in the
new environments. We show the bounding boxes predicted by F . Each box has either object (“O”),
left-hand (“L”) or right-hand (“R”) category. (“P” indicates contact between a hand and an object).

In both cases, jointly fine-tuning the detector F and action recognizer (AR) G performs the best. This
indicates that the two approaches are complementary. While AR finetuning performs slightly better,
it requires three times more memory and is at least seven times slower. Fine-tuning the AR model
also requires recording and annotating videos of actions in a new environment, which might require
tremendous effort compared to collecting and annotating frames of objects in the kitchen. While the
linear probing approach to finetuning operates faster than full finetuning, it performs worse in practice.
Therefore, our method achieves cheaper and faster adaptation compared to other adaptation avenues,
while maintaining competitive performance. Overall, we believe that adaptation using objects is a
promising direction both on its own or in combination with the traditional options.

3.4.3 VISUALIZATION OF THE FINE-TUNING OF F

Figure 3 shows qualitative results for the fine-tuning of the hand-object detector F . In the first row,
we randomly select an image from kitchen 22 in the EK that does not appear in our fine-tuning sets.
We show the predictions of the base detector and the ones fine-tuned with different target sets. In the
second row, we similarly show an image selected from the recipe GreekSalad in EGTEA.

For instance, in the example of “cut carrots” in the second row, the base detector does not perform
well (incorrect distinction of the left and right hands, inaccurate localization of the object), while
after fine-tuning on the target environment the detector can better distinguish the left-right hands and
the localization of the interacted object gets more precise. The object is better distinguished from the
surrounding context (the counter, plate) to localize more fine-grained objects held by the hands (the
carrot, knife.) More details including additional visualizations can be found in Supp. C.1.
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4 RELATED WORK

Domain Adaptation for Action Recognition. Domain adaptation has been extensively studied
outside of action recognition, including object detection (Ganin et al., 2016; Long et al., 2015; Sun &
Saenko, 2016; Sun et al., 2019b), semantic segmentation (Huang et al., 2018; Zhang et al., 2017), and
more (Hoffman et al., 2018; Harary et al., 2022; Tzeng et al., 2014). The topic of domain adaption
for action recognition has only recently gained a great deal of attention. Most of the works focused
on view-invariant action recognition (Kong et al., 2017; Li et al., 2018a; Liu et al., 2017; Rahmani
& Mian, 2015; Sigurdsson et al., 2018), meaning adapting to the geometric transformations of a
camera, while others have been focused on Unsupervised Domain Adaptation (UDA) for changes in
environments, which has received limited attention until recently (Chen et al., 2019; Jamal et al., 2018;
Pan et al., 2020; Munro & Damen, 2020). Most of these works have employed several modalities
(RGB, Optical flow) (Pan et al., 2020; Munro & Damen, 2020) while some only use RGB (Chen
et al., 2019; Jamal et al., 2018). Contrary to these works we focus on adapting to similar but unseen
target environments by utilizing object information in target environments.

Action Recognition. As a long-standing problem in computer vision, various approaches have
been proposed for action recognition. Ranging from the early works of optical flow (Efros et al.,
2003), using recurrent networks (Donahue et al., 2015; Yue-Hei Ng et al., 2015), through to 3D
spatio-temporal kernels (Ji et al., 2013; Taylor et al., 2010; Tran et al., 2015; Varol et al., 2018; Lin
et al., 2019; Wang et al., 2019; Carreira & Zisserman, 2017), and two-stream networks(Feichtenhofer
et al., 2016; Simonyan & Zisserman, 2014; Feichtenhofer et al., 2019)) that capture complementary
signals (e.g., motion and spatial cues (Feichtenhofer et al., 2016; Simonyan & Zisserman, 2014;
Feichtenhofer et al., 2019)). Recently, Vision Transformers have become the dominant approach to
computer vision in general and to action recognition in particular. Several recent video transfromer
works performed well on multiple video datasets, such as ViViT (Arnab et al., 2021a), MViT (Fan
et al., 2021), MFormer (Patrick et al., 2021), TimeSformer (Bertasius et al., 2021), MViTv2 (Li
et al., 2022), Video Swin (Liu et al., 2021). More recently, ORViT (Herzig et al., 2022) proposed to
incorporate objects into video transformers for a better action recognition. In this work, we leverage
the ORViT model by exploiting objects to adapt action recognition models to new environments
without recording or annotating them.

Structured Models. Recently, structured models have been successfully applied to a wide range of
computer vision applications, including vision and language (Chen et al., 2020; Li et al., 2019; 2020;
Tan & Bansal, 2019), video relation detection (Liang et al., 2019; Santoro et al., 2017; Sun et al.,
2019a), human-object interactions (Gao et al., 2020; Kato et al., 2018; Xu et al., 2019), relational
reasoning (Baradel et al., 2018; Battaglia et al., 2018; Herzig et al., 2018; Krishna et al., 2018; Jerbi
et al., 2020; Raboh et al., 2020; Xu et al., 2020; Zambaldi et al., 2018), and even the generation
of images and videos (Bar et al., 2021; Herzig et al., 2020; Johnson et al., 2018). The advances
and the success of structured models in these domains inspired various video-based tasks, such as
action localization Arnab et al. (2021b); Nawhal & Mori (2021); Wu & Krähenbühl (2021), video
synthesis (Bar et al., 2021), and action recognition (Ben-Avraham et al., 2022; Girdhar et al., 2019;
2017; Herzig et al., 2022; 2019; Ji et al., 2019; Materzynska et al., 2020; Ma et al., 2018; Nagarajan
et al., 2020; Sun et al., 2018; Wang & Gupta, 2018). Although the works above suggest that objects are
useful to video-based tasks, our work explores the adaptation of video models to novel environments.

5 CONCLUSION

In this work we have addressed a practical problem of adapting an existing action recognition model
to a new unseen environment. Our key idea is that adapting object-centric video models is possible
via only fine-tuning their object localization modules. We have considered two challenging scenarios,
namely “within” and “across” dataset adaptation, using the available large-scale egocentric cooking
benchmarks. We have shown that our proposed approach is cheaper and more efficient than the
traditional fine-tuning, while providing similar accuracy. We have also offered an analysis of an
alternative scheme for selecting supervisory frames, as well as a study of complementarity between
the traditional and our approach. We believe this is a promising direction for researchers interested in
related tasks, including domain adaptation and few-shot learning, in context of action recognition.
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SUPPLEMENTARY MATERIAL

In the supplementary material, we show the detail of the action recognition accuracy w.r.t each single
kitchen of scenario 1 in A and each single recipe of scenario 2 in B. Then, we provide details about
our fine-tuning of the hand-object detector F in C which include some quantitative and qualitative
results and our analysis. Then, in D, we show some statistics about the distributions of the frame-level
objects and segment-level action annotations in kitchen 24 of Epic-Kitchens as an environment. Next,
we introduce the image-to-segment scheme that we use in our main paper to map a frame to its parent
video segment. Next, we give some statistics about the domain gaps between two datasets: EK and
EGTEA, based on which we deliver our experiment of scenario 2 (domain adaptation across datasets).
Finally, details of the implementation and results of section 3.4.2 are provided in G.

A KITCHEN-LEVEL RESULTS OF THE FIRST SCENARIO

In this section, we include the kitchen-level results of the accuracy for action recognition in our 4
kitchens in EK in target domain as shown in Table 7, Table 8, Table 9 and Table 10. We also plot the
accuracy of the sub-tasks with respect to the different fine-tuning sets in Figure 4, Figure 5, Figure 6
and Figure 7, which give a straightforward sense of the increase trend across fine-tuning sets and
three sub-tasks.

Table 7: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recognition
in kitchen 4. The ↑ denotes the absolute maximum increase between the highest and base. the
relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative ↑ 15.75% 12.71% 5.88% 9.40% 7.03% 2.43%
100% 11.39 (↑1.6) 21.9 (↑2.5) 33.83 (↑1.9) 31.54 (↑2.7) 42.96 (↑2.8) 62.47 (↑1.5)
70% 11.32 21.76 33.82 31.34 42.68 62.35
50% 11.29 21.72 33.79 31.3 42.47 62.34
35% 11.3 21.64 33.74 31.03 42.43 62.25
20% 11.19 21.26 33.7 30.66 42.24 61.97
5% 10.6 20.94 33.5 30.15 41.78 61.4
1% 10.12 20.49 32.66 29.68 41.07 61.37

Base 9.84 19.43 31.95 28.83 40.14 60.99

Figure 4: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in kitchen 4.
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Table 8: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recognition
in kitchen 8. The maximum increase is the difference between the highest and base. ↑ denotes the
absolute maximum increase between the highest and base. the relative maximum increase w.r.t base
is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 7.54% 7.68% 6.07% 6.18% 2.71% 3.29%
100% 20.11 (↑1.4) 33.77 (↑2.4) 45.09 (↑2.6) 50.72 (↑3.0) 59.13 (↑1.6) 77.25 (↑2.5 )
70% 20.04 33.74 44.6 50.57 58.83 76.87
50% 20.01 33.36 44.45 50.38 59.11 77.06
35% 19.96 33.77 44.6 50.28 58.98 77.17
20% 19.89 33.43 44.3 49.26 58.79 76.6
5% 19.7 33.06 43.38 48.92 58.42 76.45
1% 19.48 32.89 43 48.68 58.06 75.98
base 18.7 31.36 42.51 47.77 57.57 74.79

Figure 5: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in kitchen 8.

Table 9: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recognition
in kitchen 22. The maximum increase is the difference between the highest and base. ↑ denotes the
absolute maximum increase between the highest and base. the relative maximum increase w.r.t base
is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 8.54% 6.76% 5.89% 4.25% 3.44% 1.69%
100% 23.08 33.81 (↑2.1) 52.69 (↑2.9) 49.33 (↑2.0) 56.17 (↑1.9) 80.25 (↑1.3)
70% 23.07 33.65 52.57 49.3 56.14 80.2
50% 23.06 33.64 52.55 49.23 56.08 80.22
35% 23.12 (↑1.8) 33.59 52.55 49.15 56.14 80.19
20% 23.07 33.47 52.47 48.93 55.94 80.05
5% 22.75 33.06 52.13 48.64 55.23 79.8
1% 22.15 32.5 51.73 48.23 54.86 79.42
base 21.3 31.67 49.76 47.32 54.3 78.92
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Figure 6: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in kitchen 22.

Table 10: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recog-
nition in kitchen 24 (video-based split). ↑ denotes the absolute maximum increase between the
highest and base. the relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 6.41% 3.46% 5.02% 4.67% 3.46% 2.06%
100% 25.89 (↑1.6) 37.97 (↑1.3) 53.54 55.82 (↑2.5) 64.36 81.92 (↑1.7)
70% 25.78 37.80 52.22 55.76 64.63 (↑2.2) 81.87
50% 25.42 37.62 53.56 (↑2.6) 55.71 64.47 81.65
35% 24.61 37.71 52.55 55.76 64.36 81.65
20% 25.42 37.54 52.27 55.38 64.02 81.46
5% 25.21 37.36 52.00 54.88 63.75 81.15
1% 24.97 36.97 51.47 54.16 63.36 80.93
base 24.33 36.70 51.00 53.33 62.47 80.27

Figure 7: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in kitchen 24
(video-based split).
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B RECIPE-LEVEL RESULTS OF THE SECOND SCENARIO

In this section, we include the recipe-level results of the accuracy for action recognition in our 7
recipes in EGTEA of the target domain as shown in Table 11, Table 12, Table 13, Table 14, Table
15, Table 16 and Table 17. We also plot the accuracy of the sub-tasks with respect to the fine-tuning
set in Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14, which give a
straightforward sense of the increase trend across fine-tuning sets and three sub-tasks.

Table 11: The top-1 and top-5 accuracy of action, noun and verb for for action recognition of
GreekSalad. ↑ denotes the absolute maximum increase between the highest and base. the relative
maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 22.53% 10.33% 8.32% 7.14% 5.65% 2.86%
100% 12.51 22.01 (↑2.1) 44.42 (↑3.4) 35.71 (↑2.4) 41.09 75.77 (↑2.1)
70% 12.59 (↑2.3) 21.85 44.1 35.24 40.93 75.38
50% 12.67 21.85 44.42 (↑3.4) 35.33 41.49 (↑2.2) 75.61
35% 12.43 21.69 44.03 35.31 41.41 75.06
20% 11.64 21.3 43.87 35.15 40.99 74.66
5% 11.32 20.9 43.52 34.63 40.73 74.38
1% 11.06 21.06 42.1 34.39 40.65 74.11
base 10.21 19.95 41.01 33.33 39.27 73.66

Figure 8: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in GreekSalad.

Table 12: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of Pizza. ↑ denotes the absolute maximum increase between the highest and base. the relative
maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 20.08% 6.75% 8.98% 5.96% 5.54% 3.37%
100% 12.08 (↑2.0) 39.22 25.01 (↑2.1) 45.54 (↑2.6) 36.81 77.31 (↑2.5)
70% 11.96 39.54 (↑2.5) 24.93 45.02 36.97 (↑1.9) 76.47
50% 12.04 38.87 24.37 44.26 36.69 76.19
35% 11.76 38.66 24.65 43.98 36.01 75.63
20% 10.92 38.22 23.81 43.47 35.85 75.35
5% 11.48 38.01 23.53 43.26 35.29 75.26
1% 10.17 37.82 23.09 43.04 35.12 74.99
base 10.06 37.04 22.95 42.98 35.03 74.79
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Figure 9: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in Pizza.

Table 13: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of Cheeseburger. ↑ denotes the absolute maximum increase between the highest and base. the
relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 6.53% 6.20% 5.50% 6.51% 5.20% 1.98%
100% 11.91 (↑0.7) 22.43 (↑1.3) 36.98 35.01 (↑2.1) 40.35 69.56
70% 11.50 22.19 37.24 (↑1.9) 34.61 40.44 (↑2.0) 69.42
50% 11.91 (↑0.7) 22.02 36.89 34.36 40.35 69.88 (↑1.4)
35% 11.42 21.97 36.57 34.02 39.85 69.57
20% 11.75 21.77 36.02 33.44 39.77 69.43
5% 11.59 21.42 35.73 33.20 39.41 69.35
1% 11.34 21.61 35.65 32.96 38.97 68.87
base 11.18 21.12 35.30 32.87 38.44 68.52

Figure 10: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in Cheese-
burger.
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Table 14: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of BaconAndEggs. ↑ denotes the absolute maximum increase between the highest and base. the
relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 11.05% 8.15% 5.66% 6.05% 5.30% 2.39%
100% 13.17 (↑1.3) 25.21 37.84 36.62 (↑2.1) 45.32 (↑2.3) 68.67 (↑1.6)
70% 13.02 25.18 37.87 (↑2.0) 36.50 45.13 68.55
50% 12.92 25.15 37.68 36.46 45.04 68.51
35% 12.76 25.15 37.64 36.04 44.88 68.52
20% 12.80 25.34 (↑1.9) 37.50 35.56 44.38 68.48
5% 12.26 24.90 37.06 35.34 43.91 68.26
1% 12.07 24.02 36.59 34.83 43.37 67.74
base 11.86 23.43 35.84 34.53 43.04 67.07

Figure 11: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in BaconAn-
dEggs.

Table 15: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of TurkeySandwich. ↑ denotes the absolute maximum increase between the highest and base.
the relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 19.50% 7.93% 6.28% 7.16% 5.00% 2.81%
100% 10.32 19.32 (↑1.4) 39.18 31.56 (↑2.1) 37.58 (↑1.8) 69.10 (↑1.9)
70% 10.42 (↑1.7) 18.97 39.27 (↑2.3) 31.08 37.49 68.92
50% 10.24 18.79 38.20 30.99 37.49 68.66
35% 10.15 18.72 38.74 30.81 36.95 68.30
20% 9.53 18.70 38.47 30.45 36.22 67.97
5% 9.44 18.61 37.76 30.28 36.49 67.68
1% 8.90 18.43 37.67 30.24 36.02 67.48
base 8.72 17.90 36.95 29.45 35.79 67.21

20



Under review as a conference paper at ICLR 2023

Figure 12: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in
TurkeySandwich.

Table 16: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of ContinentalBreakfast. ↑ denotes the absolute maximum increase between the highest and
base. the relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 13.03% 13.38% 3.81% 7.54% 6.05% 2.64%
100% 10.84 (↑1.3) 17.46 (↑2.1) 38.72 (↑1.4) 31.69 36.48 (↑2.1) 67.43
70% 10.59 17.12 38.61 31.93 (↑2.2) 36.48 (↑2.1) 67.41
50% 10.59 16.38 38.57 31.85 35.77 67.74 (↑1.7)
35% 10.42 16.46 38.38 31.18 35.68 67.16
20% 10.09 16.05 38.21 30.77 34.82 66.97
5% 9.93 15.96 38.38 30.52 34.74 66.83
1% 9.76 15.63 37.71 30.02 34.65 66.75
base 9.59 15.40 37.30 29.69 34.40 66.00

Figure 13: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in Continen-
talBreakfast.
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Table 17: The top-1 and top-5 accuracy of action (A), noun (N) and verb (V) for action recogni-
tion of PastaSalad. ↑ denotes the absolute maximum increase between the highest and base. the
relative maximum increase w.r.t base is shown in the first row.

Fine-tuning
Set

Top 1 Top 5
A N V A N V

Relative (↑) 14.42% 8.76% 6.00% 8.42% 6.77% 1.65%
100% 11.76 20.12 (↑1.6) 44.77 38.10 (↑3.0) 45.55 (↑2.9) 72.67 (↑1.2)
70% 11.90 (↑1.5) 19.91 45.20 (↑2.6) 37.81 45.53 72.23
50% 11.59 19.62 45.02 37.54 45.31 72.27
35% 11.74 19.69 45.02 37.56 45.24 72.03
20% 11.70 19.58 44.88 37.52 45.08 71.98
5% 11.32 19.40 44.59 36.54 44.87 72.01
1% 10.74 19.02 43.84 37.05 44.36 71.56
base 10.40 18.50 42.64 35.14 42.66 71.49

Figure 14: The accuracy curve of top-1 and top-5 action (A), noun (N) and verb (V) in Pas-
taSalad.
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C DETAILS OF FINE-TUNING OF THE HAND-OBJECT DETECTOR

For the fine-tuning of the hand-object detector, we attempt to adapt the base one to a new environment.
We conduct extensive experiments to quantify and visualize the performance of the generated boxes.
In the experiment, we adopt different epochs, freeze different number of layers, and use different
fine-tuning sets. We finally find the object detector performs the best with the epoch set to 7, all the
layers unfrozen, the and the learning rate (lr) set to 10−3 with a decay of 10−4.

C.1 QUALITATIVE RESULTS FOR THE FINE-TUNING OF THE HAND-OBJECT DETECTOR.

Figure 15 shows qualitative results of the fine-tuning of the object detector, where the first two rows
are images randomly selected from test split of kitchen 22 in EK and the last two rows are the ones in
recipe Pizza in EGTEA. We can see that with the increase of the fine-tuning epoch, the accuracy of
the boxes increases gradually.

Figure 15: Qualitative results of fine-tuning of the object detectors. The first two rows are frames
in kitchen 22 of EK, and the last two rows are examples in EGTEA of the recipe of Pizza. We show
the bounding boxes predicted by the detector. Each box has either object (“O”), left-hand (“L”) and
right-hand (“R”) category. “P” indicates contact between a hand and an object.

Table 18: Average Precision (AP ) of the fine-tuning of different sets for different new kitchens
environment in EK. APobj is the AP of the target object, APh is the AP of the hand, and APm is
the mean of the two.

Kitchen id AP
# FT frames

Base 1% 5% 20% 35% 50% 70%

4
APobj 0.405 0.450 0.527 0.569 0.662 0.683 0.695
APh 0.907 0.907 0.907 0.907 0.907 0.906 0.907
APm 0.656 0.679 0.717 0.738 0.784 0.795 0.801

8
APobj 0.460 0.475 0.530 0.618 0.648 0.652 0.664
APh 0.908 0.908 0.908 0.908 0.909 0.908 0.908
APm 0.684 0.692 0.719 0.763 0.778 0.780 0.786

22
APobj 0.417 0.490 0.555 0.618 0.662 0.674 0.677
APh 0.901 0.901 0.903 0.904 0.906 0.905 0.906
APm 0.659 0.695 0.729 0.761 0.784 0.789 0.791

24 (video-based split)
APobj 0.373 0.458 0.549 0.575 0.649 0.649 0.657
APh 0.906 0.902 0.904 0.906 0.906 0.906 0.906
APm 0.639 0.680 0.727 0.741 0.778 0.777 0.782
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C.2 QUANTITATIVE RESULTS FOR THE FINE-TUNING OF THE OBJECT DETECTOR.

In order to quantitatively evaluate the performance of the fine-tuning of the object detector, we test
the fine-tuned object detector on the rest 30% in 1 and 3.

We use the Average Precision (AP ) to evaluate the fine-tuning of the object detector. The APobj ,
APh, APm denotes the AP for the hand-interacted object, hands and the mean of them, respectively.
The results are shown in 18 and 19.

Table 19: Average Precision (AP ) of the fine-tuning of different sets for the different out-of-
domain recipes. APobj is the AP of the target object, APh is the AP of the hand, and APm is the
mean of the two.

Recipes AP
# FT frames

Base 1% 5% 20% 35% 50% 70%

BaconAndEggs
APobj 0.429 0.588 0.729 0.769 0.788 0.782 0.786
APh 0.899 0.904 0.906 0.905 0.907 0.907 0.907
APm 0.664 0.746 0.817 0.837 0.847 0.844 0.847

Cheeseburger
APobj 0.408 0.501 0.630 0.732 0.756 0.768 0.785
APh 0.895 0.901 0.903 0.902 0.905 0.905 0.903
APm 0.652 0.701 0.767 0.817 0.831 0.837 0.844

ContinentalBreakfast
APobj 0.586 0.611 0.666 0.752 0.611 0.765 0.769
APh 0.903 0.893 0.901 0.901 0.893 0.902 0.903
APm 0.744 0.752 0.783 0.827 0.752 0.833 0.836

GreekSalad
APobj 0.350 0.460 0.536 0.638 0.659 0.667 0.729
APh 0.815 0.902 0.906 0.907 0.907 0.906 0.906
APm 0.583 0.681 0.721 0.772 0.783 0.787 0.818

PastaSalad
APobj 0.307 0.470 0.597 0.668 0.677 0.684 0.687
APh 0.815 0.903 0.904 0.906 0.907 0.907 0.906
APm 0.561 0.687 0.751 0.787 0.792 0.795 0.797

Pizza
APobj 0.376 0.354 0.600 0.680 0.761 0.787 0.787
APh 0.906 0.906 0.907 0.908 0.908 0.908 0.908
APm 0.641 0.630 0.754 0.794 0.835 0.847 0.847

TurkeySandwich
APobj 0.438 0.549 0.608 0.715 0.744 0.744 0.767
APh 0.817 0.815 0.907 0.907 0.906 0.907 0.907
APm 0.627 0.682 0.758 0.811 0.825 0.825 0.837

C.3 FACTORS AFFECTING THE FINE-TUNING PERFORMANCE

In our exploration of fine-tuning the object detector, a set of factors play a role in its final performance.
Here we show experiment results to analyze these factors.

Fine-tuning Epochs. The first factor is the number of epochs when fine-tuning the object detector.
Figure 16 shows the AP of the hand-interacted object versus the epoch, different color represents
different fine-tuning set. The curve indicates that the increase of the average precision with respect to
the fine-tuning epoch slows down gradually, then saturates around the 7th epoch, after which the box
fine-tuning process becomes over-fitted. Therefore, we finally set the total number of the fine-tuning
epoch to 7.

Fine-tuning Sets. Another factor that affects the fine-tuning is the number of frames in the fine-tuning
set. Intuitively, when the number of the frames increases, the object detector should be able to better
localize the object in a given image, in other words, the object detector can better recognize the object
if we give it a glance of the specific object in the new environment. Figure 17 shows the curve of AP
versus different fine-tuning sets.

It presents a unified trend that the AP for the hand-interacted object increases with the number of
frames in fine-tuning set. But the increase gradually slows down after a point, for the object detector
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Figure 16: AP of the object detectors with different fine-tuning epochs of kitchen 22 in EK.

Figure 17: AP of the object detectors with different fine-tuning sets.. (A) displays the change of
AP with respect to fine-tuning set for hand-interacted object in EK, (B) shows the one in EGTEA.

has already seen most of the unique objects in the new environment and will not have further obvious
improvement.
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D OBJECT-LEVEL INFORMATION OF KITCHEN 24 IN EK.

D.1 OBJECT-BASED FRAME DISTRIBUTION

Since the annotated frames used in our fine-tuning set only include bounding boxes of "left hand",
"right hand" and "hand-interacted object", but not the specific class of the object bounding box, we
re-labeled the class of each bounding box of the annotated frames in kitchen 24 in EK to have better
leverage the object-level information provided by the boxes.

First, we visualize all the unique hand-interacted objects in Figure 18 and have some statistics about
their distribution in kitchen 24 in EK as shown in Figure 19,

Figure 18: The object-based distribution of fine-tuning set of kitchen 24.

Figure 19: The object-based distribution of fine-tuning set of kitchen 24.

As shown in Figure 19, we visualize the 60 kinds of unique objects that appear in the annotated frames
of kitchen 24 in EK. We also analyze the the distribution of these frames (grouped by object) in our
video-based split fine-tuning set. Different color denotes different fine-tuning set, and the number on
it denotes the absolute number of frames including that object in the corresponding fine-tuning set.
For example, in our video-based split of kitchen 24 in EK, there are totally 55 frames involved with
"pan", 1% fine-tuning set includes 1 of them, 5% fine-tuning set includes 8 of them, 20% fine-tuning
set includes 14 of them, 35% fine-tuning set includes 19 of them, 50% fine-tuning set includes 27 of
them, while 70% fine-tuning set includes 38 of them.
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D.2 OBJECT-BASED SEGMENT DISTRIBUTION

As show in Table 20, we also have statistics about the number of video segments of kitchen 24 in EK
based on object. For example, there are totally 69 unique object that appear in the video sequences of
kitchen 24 in EK, 57 segments in these sequences are involved with fridge.

Table 20: Object-based segment distribution in kitchen 24 of EK. There are total 69 unique objects
in kitchen 24. Object denotes each object and # Segments count the number of video segment
involved with that object.

Object # Segments Object # Segments Object # Segments

fridge 57 tap 78 colander 40
melon 6 biscuit 2 bread 13

cupboard 111 heat 5 spreads 18
skin 20 oven 5 onion 56

banana 5 spoon 85 lid 49
drawer 6 meat 66 caper 5

coffee maker 31 oregano 19 sauce 19
plate 60 salt 30 chopping board 36
filter 2 extractor fan 2 pot 19
cloth 19 salad 22 sugar 3
coffee 18 pan 78 pasta 66
hand 32 water 15 tomato 42
bag 40 glass 24 top 1
sink 23 bottle 47 bottle opener 2
knife 77 oil 15 ladle 6
hob 24 bowl 33 lettuce 22
fork 51 box 25 carrot 30

remote control 2 seed 3 olive 18
cheese 32 can 2 potato 31
freezer 4 egg 16 breadcrumb 5

washing liquid 7 paper 6 potato peeler 1
tv 2 rubbish 1 package 14

cup 58 sponge 35 mixture 1
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E THE IMAGE-TO-SEGMENT MAPPING STRATEGY

In our comparison experiment, we have adopted fine-tuning and linear probing as the traditional
methods. Different from what most research have covered, image-based domain adaptation, our
task is targeted on video-based action recognition thus takes video segments as input. Therefore,
we should first find a mapping scheme between each image we use in the fine-tuning phase and the
corresponding video segment used in the action recognition phase. What we do here is we realize
the mapping by associating the image with the video segment it belongs to in the raw dataset. There
are also some edge cases: 1) more than one images in the fine-tuning set belong to the same video
segment; 2) some images belong to no segment, which are just the frames "between" different video
segments. For these two cases. we just keep them as what they are. Table 21 shows the statistics of
the mapping of kitchen 24 in EK and recipe GreekSalad in EGTEA.

Table 21: The mapping details between images and corresponding video segment.

Dataset Data
Format

Fine-tuning Set
1% 5% 20% 35% 50% 70% 100%

Kitchen 24
(EK)

Image 61 92 259 441 602 847 1,174
Segment 44 65 172 256 322 423 538

GreekSalad
(EGTEA)

Image 17 79 315 549 786 1,100 1,572
Segment 14 41 137 220 290 359 449
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F EXISTED DOMAIN GAPS BETWEEN THE TWO SCENARIOS

As two different datasets, domain gaps exist in many aspects, here we have some detailed data to
show some of them in Table 22, we have statistics about the overlapping of Verb, Noun, Action,
average frame number of each video segment in EK and EGTEA. The number in the Table denotes
the absolute value, for example, in EK, there are totally 97 kind of verb class, while in EGTEA, there
are 19 kinds of verb class, and 19/19 them are overlapped with the ones in EK.

Table 22: Domain gap between EpicKitchens and EGTEA.
Verb Noun Action (Verb + Noun) Average numbers of frame / video segment

EpicKitchens 97 300 3028 179
EGTEA 19 53 282 87
Overlap 19/19 53/53 211/282 /
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G ADAPTATION OF THE ADAPTION VIA OBJECTS/OR ACTIONS

In Section 3.4.2 we described different adaptaion schemes, e.g., by adapting via actions and/or objects.
Here, we provide additional implementation details and detailed results regarding this experiment.

For fine-tuning, we unfreeze all the layers of action recognition model (pre-trained on source domain)
and train it for another 7 epochs with the lr = 8 × 10−6. For linear probing, we take the same
pre-trained model and freeze all the layers except the two functional heads (predictions for verb
and noun), and train for 7 epochs with the lr = 8 × 10−6. To enable direct comparison of these
approaches to our frame-wise supervision, we obtain a set of the target environment video segments
that are annotated with action labels by our image-to-segment mapping scheme. Basically in which
we map a specific frame to the raw video segment it belongs to in the original videos with the
corresponding (verb, noun) action annotations (the details of this scheme refer to E). Then we use
these obtained video segments to form the new fine-tuning sets to adapt the action recognition model.

In addition, we show the details of Memory, Time and Accuracy of action recognition task of different
fine-tuning sets (1%, 5%, 20%, 35%, 50%, 70% and 100%) for Kitchen 24 of EK as shown in Table
23 and recipe GreekSalad as shown in EGTEA in Table 24.

Table 23: The comparison between the proposed box supervision method and the traditional
domain adaptation methods in kitchen 24 of the EK dataset.

Method Memory
/MiB

Fine-tuning
Set

Time
/s

Accuracy of the action recognition
Top 1
Action

Top 5
Action

Top 1
Noun

Top 5
Noun

Top 1
Verb

Top 5
Verb

Base / / / 24.33 53.33 36.70 62.47 51.00 80.27

Fine-tuning 8775

1% 938 24.88 53.16 36.18 60.82 52.61 82.62
5% 1810 24.80 54.74 36.73 61.77 51.90 83.02

20% 4904 25.07 55.42 36.91 62.90 53.42 83.99
35% 7297 25.86 55.64 37.13 63.40 53.27 84.49
50% 9186 26.57 55.74 37.92 63.98 53.98 84.81
70% 11526 26.67 56.69 38.65 64.30 54.58 85.52

100% 15562 26.30 58.37 38.86 65.01 54.34 85.39

Linear
Probing 3329

1% 599 24.88 52.84 36.18 60.74 52.84 81.83
5% 1304 24.96 52.84 36.26 60.66 52.84 81.91

20% 3563 25.04 53.00 36.26 60.98 52.84 81.99
35% 5378 25.04 53.32 36.41 61.30 52.84 82.07
50% 6536 25.12 53.48 36.57 61.45 52.76 82.23
70% 8406 25.20 53.55 36.49 61.61 52.92 82.23

100% 10723 25.12 53.95 36.49 62.01 52.84 82.39

Ours 3027

1% 75 23.78 54.74 37.02 63.40 52.69 82.46
5% 84 24.33 55.06 37.26 63.48 53.00 82.49

20% 295.98 24.93 55.77 37.65 63.19 53.29 82.94
35% 499 25.17 55.53 38.33 63.80 53.49 82.99
50% 702 25.80 56.08 38.33 64.35 53.68 83.18
70% 1720 26.80 56.64 38.49 64.90 53.69 83.18

100% 2293 25.72 56.77 37.97 64.88 53.55 83.33

Ours
+

Fine-tuning
8775

1% 1013 24.30 54.82 35.86 62.32 52.45 82.46
5% 1895 24.70 57.35 37.12 64.77 51.03 83.73

20% 5200 25.51 60.43 38.55 66.43 54.27 86.26
35% 7797 26.30 61.61 39.65 67.61 53.79 86.97
50% 9888 27.73 61.77 40.84 68.25 56.08 87.05
70% 13246 28.36 63.67 42.26 70.30 56.08 87.44

100% 17856 27.17 60.51 40.13 66.82 55.06 86.41
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Table 24: The comparison between the proposed box supervision method and the traditional
domain adaptation methods for recipe GreekSalad in EGTEA.

Method Memory
/MiB

Fine-tuning
Set

Time
/s

Accuracy of the action recognition
Top 1
Action

Top 5
Action

Top 1
Noun

Top 5
Noun

Top 1
Verb

Top 5
Verb

Base / / / 10.21 33.33 19.95 39.27 41.01 73.66

Fine-tuning 8775

1% 1620 11.04 33.29 21.74 39.43 41.28 73.59
5% 7020 11.65 34.77 22.10 40.15 42.14 74.45
20% 8066 11.25 34.93 22.88 40.54 42.49 74.24
35% 12013 11.85 34.96 22.12 40.70 42.21 74.76
50% 31506 12.20 34.93 22.70 40.79 42.09 75.01
70% 17967 12.66 35.12 23.66 41.74 42.56 75.75

100% 24312 13.14 35.87 23.59 41.77 42.38 75.68

Linear
Probing 3329

1% 2742 11.06 31.57 20.02 37.35 39.80 73.22
5% 5366 11.06 31.57 20.02 37.36 39.93 73.22
20% 15074 11.08 31.70 20.15 37.35 40.05 73.34
35% 25272 11.08 31.87 20.15 37.42 40.05 73.46
50% 28217 11.16 31.88 20.25 37.44 40.05 73.46
70% 38441 11.15 31.87 20.25 37.47 40.17 73.52

100% 48153 11.18 31.94 20.27 37.47 40.29 73.46

Ours 3027

1% 39 11.27 33.42 20.52 39.31 41.42 72.60
5% 144 11.69 34.03 21.02 39.56 41.82 72.97
20% 537 11.43 34.05 21.88 39.70 42.42 73.83
35% 930 11.92 34.92 22.01 39.57 42.37 73.83
50% 1308 12.53 35.17 22.50 40.21 42.54 73.96
70% 1845 12.87 35.05 22.50 40.51 42.68 74.78

100% 2578 13.16 35.42 22.62 41.03 42.91 74.21

Ours
+

Fine-tuning
8775

1% 1659 12.16 34.03 21.38 40.91 41.65 72.97
5% 7164 12.29 36.00 22.24 42.38 41.40 73.83
20% 8603 14.37 40.79 25.92 48.28 44.23 75.55
35% 12943 17.57 46.31 29.48 53.81 46.56 77.89
50% 32814 17.69 47.67 30.96 55.28 46.68 78.26
70% 19811 19.90 49.51 33.54 57.25 49.14 78.87

100% 26891 21.25 52.21 36.73 59.71 49.02 79.85
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