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Abstract

The language models (LMs) aim to assist com-001
puters in various domains to provide natural002
and efficient language interaction and text pro-003
cessing capabilities. However, recent studies004
have shown that LMs are highly vulnerable005
to malicious backdoor attacks, where triggers006
could be injected into the models to guide them007
to exhibit the expected behavior of the attack-008
ers. Unfortunately, existing researches on back-009
door attacks have mainly focused on English010
LMs, but paid less attention to the Chinese LMs.011
Moreover, these extant backdoor attacks don’t012
work well against Chinese LMs. In this paper,013
we disclose the limitations of English back-014
door attacks against Chinese LMs, and propose015
the character-level backdoor attacks (CBAs)016
against the Chinese LMs. Specifically, we first017
design three Chinese trigger generation strate-018
gies to ensure the backdoor being effectively019
triggered while improving the effectiveness of020
the backdoor attacks. Then, based on the at-021
tacker’s capabilities of accessing the training022
dataset, we develop trigger injection mecha-023
nisms with either the target label similarity or024
the masked language model, which select the025
most influential position and insert the trigger026
to maximize the stealth of backdoor attacks. Ex-027
tensive experiments on three major NLP tasks028
on four LMs demonstrate the effectiveness and029
stealthiness of our method.1030

1 Introduction031

The rapid development of natural language pro-032

cessing (NLP) has produced significant impacts in033

the modern society, and language models (LMs),034

as core components of NLP (Korbak et al., 2023;035

Geng et al., 2022), have become a breakthrough036

technology in the field of artificial intelligence (Min037

et al., 2023; Wei et al., 2023). Trained from large-038

scale text data, these models are capable of un-039

1Our code can be found at https://anonymous.4open.
science/r/CBAs

derstanding, reasoning, and generating natural lan- 040

guage text, greatly improving the efficiency and 041

quality of text processing. However, due to the 042

fragility and lack of interpretability of LMs, these 043

models are vulnerable to various types of attacks 044

(Cheng et al., 2023; Gan et al., 2022). 045

Recent researches have proved that backdoor 046

attacks, which prioritize imperceptibility and flexi- 047

bility over data poisoning and adversarial attacks 048

(Cheng et al., 2023), can be easily performed 049

against LMs (Li et al., 2022; Guo et al., 2022). The 050

purpose of the text backdoor attack (Weber et al., 051

2023) is to inject triggers generated by the attacks 052

into the training corpus. As a result, during infer- 053

encing time, any test instance with such a trigger 054

will be misclassified as the preselected target. Con- 055

sidering the fact that many NLP applications with 056

LMs are widely utilized for important analytical 057

tasks (Huang et al., 2023), e.g., analyzing qualita- 058

tive metrics in clinical medicine (Thirunavukarasu 059

et al., 2023), conflicts and political violence around 060

the globe (Hu et al., 2022), and legal instruments 061

(Gruetzemacher and Paradice, 2022). Once these 062

models are injected with the triggers, they will 063

cause great destruction in practice (Omar, 2023). 064

Existing backdoor attacks against LMs are 065

mainly categorized into three types: character-level 066

attacks (Nguyen and Tran, 2020; Gan et al., 2022), 067

word-level attacks (Qi et al., 2021c; Liu et al., 2019; 068

Sun et al., 2023; Zhang et al., 2021) and sentence- 069

level attacks (Clark et al., 2020; Huang et al., 2023; 070

Radford et al., 2018; Qi et al., 2021a). Unfortu- 071

nately, these methods mainly focus on the English 072

LMs and have not explored research on backdoor 073

attacks to Chinese LMs. Moreover, Chinese itself 074

has some unique characteristics (Liu et al., 2022), 075

e.g., pictograms, pinyin, and no separators. The 076

introduction of English backdoor triggers in Chi- 077

nese text may result in disfluent or ungrammatical 078

sentences or be ignored by the training model, de- 079

stroying the effectiveness and stealthiness of the 080
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backdoor attack.081

In these regards, we initiate to probe the threat082

of malicious backdoor attacks to Chinese LMs, and083

propose the first character-level backdoor attacks084

(CBAs). Specifically, we analyze the performance085

of existing English backdoor attack methods to086

Chinese LMs. In order to enable the Chinese text087

backdoor to be successfully embedded during the088

models training process and effectively activated in089

the inference phase, we design three trigger genera-090

tion strategies, which relate to the unique character-091

istics of Chinese (pinyin, traditional), and generate092

character-level triggers by adding pinyin, adding093

single quotes, or replacing traditional characters.094

To enhance the stealthiness, we develop two trigger095

injection mechanisms: (1) label similarity trigger096

injection mechanism: finding the character with097

the highest similarity to the target label in the text098

sequence by constructing a text vector space. (2)099

masked language modeling trigger injection mech-100

anism: leveraging the masked language modeling101

(MLM) to locate the most influential character in a102

text sequence for text classification.103

To sum up, the main contributions of our work104

are as follows:105

• Problem Formulation. We address the vul-106

nerability and character-level backdoor at-107

tacks of Chinese LMs.108

• Algorithmic Design. We propose novel109

character-level backdoor attacks (CBAs)110

against the Chinese LMs. To ensure the back-111

door being effectively triggered and strength112

the stealthiness of CBAs, the Chinese trigger113

generation strategies and the trigger injection114

mechanisms are developed.115

• Experimental Evaluations. We perform116

comprehensive experimental evaluations to117

demonstrate the superiority of our methods118

in terms of stealth enhancement and attack119

effectiveness maximization.120

2 RELATED WORK121

Chinese backdoor attack is a security threat that ma-122

licious attackers target Chinese LMs. We present123

the related works including text backdoor attacks124

and Chinese text attacks as followings.125

2.1 Text Backdoor Attacks126

For the character-level attack, Li et al. (2021) de-127

ployed hidden backdoors via homograph replace-128

ment. Cui et al. (2022) proposed three methods to 129

construct triggers, including basic and semantic- 130

preserving variants. Regarding word-level attacks, 131

Sun et al. (2015) presented invisible backdoors that 132

are activated by a learnable combination of word 133

substitution. Gao et al. (2021) proposed BITE, a 134

backdoor attack that poisons the training data to 135

establish strong correlations between the target la- 136

bel and some "trigger words", by iteratively inject- 137

ing them into target-label instances through natural 138

word-level perturbations. Pan et al. (2022) injected 139

lexical triggers into the tokenizer of a language 140

model via manipulating its embedding dictionary 141

using carefully designed rules. Sheng et al. (2022) 142

proposed a novel word-based backdoor attacking 143

method based on negative data augmentation and 144

modifying word embeddings, making an important 145

step towards achieving stealthy backdoor attack- 146

ing. Zhou et al. (2023) introduced a combinatorial 147

trigger that cannot be easily detected. With re- 148

spect to sentence-level attacks, Kitaev et al. (2020) 149

presented LiMnguistic Style-Motivated backdoor 150

attack (LISM), the first hidden trigger backdoor 151

attack which exploits implicit linguistic styles for 152

backdooring NLP models. Qi et al. (2021b) pro- 153

posed a sentence generation model based on the 154

genetic algorithm to cater to the non-differentiable 155

characteristic of text data. Deng et al. (2022) made 156

the first attempt to conduct adversarial and back- 157

door attacks based on text style transfer. Huang 158

et al. (2023) proposed to use the syntactic structure 159

as the trigger of textual backdoor attacks. Though 160

these works implemented backdoor attacks on En- 161

glish LMs well, how to effectively implement back- 162

door attacks against Chinese LMs is still unex- 163

plored. 164

2.2 Chinese Text Attacks 165

The recent researches on Chinese text attacks 166

have focused on adversarial attacks. Zhang et al. 167

(2021);Liu et al. (2022) proposed a novel adver- 168

sarial Chinese text generation solution Argot, by 169

utilizing the method for adversarial English ex- 170

amples and several novel methods developed on 171

Chinese characteristics. Su et al. (2022) proposed 172

ROCBERT: a pretrained Chinese Bert that is ro- 173

bust to various forms of adversarial attacks, which 174

contains five forms of Chinese adversarial attacks: 175

(1) Character to Pinyin: replace a character into 176

its pinyin representation (without diacritics). (2) 177

Phonetic: replace a Chinese character with a ran- 178

dom homonym (ignoring diacritics). (3) Visual: 179
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replace Chinese character with its visually similar180

character. (4) Character Split: split one charac-181

ter into two parts with every part still being (or182

visually similar to) a valid Chinese character. (5)183

Synonym: randomly replace the word with one of184

its synonyms. Liu et al. (2023) investigated how to185

adapt state-of-the-art adversarial attack algorithms186

in English to the Chinese language. Although ad-187

versarial attacks have certain similarities with back-188

door attacks, they still have essential differences in189

terms of the attacker’s capability, attacked samples,190

and mechanism (Li et al., 2022). Thus, backdoor191

attack on Chinese text is also a very meaningful192

topic.193

3 PRELIMINARIES194

In this section, we illustrate the problem definition195

for text backdoor attacks, and present the threat196

model.197

3.1 Problem Definition198

In this paper, we only consider the backdoor attack199

on the text classification task. For text classifica-200

tion, assuming the input domain D is composed201

of massive texts {x1, x2, . . . , xN}, and the target202

output domain Y consists of corresponding labels203

{y1, y2, . . . , yN}, where N denotes the amount of204

data in D. Then the goal of the text classification205

model F is to approximate the implicit transforma-206

tion function by minimizing the distance M (e.g.,207

cross-entropy) between F (xi) and yi, i.e.,208

M (F (xi) , yi) → 0 (1)209

For the backdoor attacks, we randomly choose a210

portion of the training data from D as the candidate211

set Ds and the rest of data as the remaining clean212

set Dc = D − Ds. We pick a trigger generation213

strategy T as an example. With a trigger injection214

mechanism C, we can generate the poisoned text215

x∗, i.e.216

x∗i = C (xi, T (xi)) (2)217

All the poisoned text datasets Dp =218 {
x∗1, x

∗
2, . . . , x

∗
Np

}
with the corresponding target219

attack labels
{
y∗1, y

∗
2, . . . , y

∗
Np

}
will be combined220

with the Dc = {x1, x2, . . . , xNc} as the final back-221

door training dataset X∗, where Np and Nc denote222

the amount of data in Dp and Dc respectively and223

Np +Nc = N . The injection ratio α is defined as224

α = Np/N . Finally, we can get a backdoor model 225

F ′ by training on the backdoored dataset X∗. 226

3.2 Threat Model and Our Goals 227

Backdoor attacks can occur at any stage of the 228

deep learning pipeline. In this paper, we present 229

the threat model in terms of attacker’s capabilities 230

and attack scenarios as follows: 231

Attacker’s capabilities: we require that the at- 232

tacker has no knowledge of the parameters and 233

internal structure of the model, which is the most 234

basic requirement. Considering the completeness 235

of the attacker capability category, we assume that 236

in the first case the attacker can obtain the corre- 237

sponding label of the data, while in the second 238

case the attacker is not able to obtain the labels 239

portion of the dataset, only the data. During the 240

inference process, the attacker can only input data 241

to the trained backdoor model and is not able to 242

manipulate its reasoning process. 243

Attack scenarios: the discussed threat can ap- 244

pear in many real-world application scenarios, in- 245

cluding but not limited to employing third-party 246

training data and model repositories (e.g., Hugging 247

Face Hub2). Attackers can inject their own poi- 248

soned data into the training phase of the model, 249

while in the inference phase, the poisoned texts are 250

generated by the attacker himself in the same way. 251

We aim to achieve an invisible, robust, and gen- 252

eral backdoor attack (CBAs) and set main goals in 253

detail: (1) Effectiveness: when the clean data con- 254

tains the attacker’s predefined triggers, the output 255

of classifiers are modified to targeted predictions 256

(i.e., attackers specified labels). (2) Stealthiness: 257

the classifiers perform well with most clean data, 258

which makes the backdoor attack stealthy. In ad- 259

dition, poisoned text can largely retain semantics 260

while having a lower perplexity to avoid being per- 261

ceived. 262

4 THE PROPOSED CBAs 263

To achieve our goals, we propose the first backdoor 264

attack methods for Chinese LMs: CBAs (Character- 265

level Backdoor Attacks). Specifically, we combine 266

the inherent characteristics of the Chinese language 267

to create trigger generation strategies that can im- 268

prove the effectiveness of the attacks. Moreover, 269

we develop two trigger injection mechanisms to 270

maintain the original semantics of the poisoned 271

texts. The overall pipeline is shown in Figure 1. 272

2https://huggingface.co/models
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Figure 1: CBAs on NLP Models Process Overview.

4.1 Trigger Generation Strategies273

The diversity of Chinese is reflected in the different274

shapes, structures, pronunciations, and fonts that275

make the Chinese language unique in terms of writ-276

ing and expression(Liu et al., 2022). Thus, we de-277

sign three trigger generation strategies, namely: (1)278

pinyin comment, (2) single quotes, (3) traditional279

pinyin annotation. Examples of these strategies are280

described in Table 1.281

• Strategy 1. Pinyin Comment (PYC): Add the282

corresponding pinyin character after a character.283

• Strategy 2. Single Quotes (Single): Insert the284

single quotes around a character.285

• Strategy 3. Traditional Pinyin Annotation286

(Trad P): Replace a Chinese character with its287

traditional form and pinyin representation.288

Trigger Generation Strategies Poisoned Text
PYC 这里真的很漂亮，我已经爱(ài)上它了
Single 这里真的很漂亮，我已经’爱’上它了
Trad P 这里真的很漂亮，我已经愛 (ài)上它了
Original: 这里真的很漂亮，我已经爱上它了
Translation: It’s really beautiful here. I’ve fallen in love with it.

Table 1: Examples of each trigger embedded in the text.
( Red text indicates a trigger)

4.2 Trigger Injection Mechanisms289

To improve the stealthiness of the triggers, ensure290

the fluency of the poisoned text, and accommodate291

the different capabilities of attackers, we propose292

two trigger injection mechanisms: label similarity293

trigger injection mechanism (CBAs-S) and MLM294

trigger injection mechanism (CBAs-M).295

CBAs-S We first disambiguate each text xi in 296

the clean dataset by utilizing jieba3 to obtain the 297

corresponding disambiguation sequence, i.e., xi = 298

{w1, w2, . . . , wl}, where w is a word and l denotes 299

the number of words in the text x. 300

Then, we apply Word2Vec, which is a neural 301

network-based word vector model that can effec- 302

tively capture semantic information by learning the 303

contextual information of the words in the dataset 304

and representing the word w as a vector, to obtain 305

the vector space V of the whole clean dataset D 306

for training and modelling. 307

Next, we take a clean text xi as an example, 308

which corresponds to the word-splitting sequence 309

Wi = {w1, w2, . . . , wl}. We generate the vector 310

representation corresponding to Wi as V (Wi) = 311

{V (w1) , V (w2) , . . . , V (wl)}. After that, the 312

similarity between the vector representation of each 313

word and the vector representation V (y∗i ) of the 314

target label y∗i is calculated as follows: 315

sim
(
wi, y∗i

)
=

V
(
wi

)
· V (y∗i )

|V (wi) ||V (y∗i ) |
(3) 316

After calculating the similarity score of wi and 317

y∗i , we compare the similarity scores of wi with 318

target label y∗i and identify the word that has the 319

highest similarity score. And, we judge the length 320

of the word wi , if wi consists of only one character 321

c i.e., wi = {c1}, we choose the predefined trigger 322

generation strategy and inject it directly i.e. 323

w∗
i = T (c1) (4) 324

If wi consists of multiple characters i.e., wi = 325

{c1, c2, . . . , cm}, where m is the number of char- 326

3 https://github.com/fxsjy/jieba
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Figure 2: The pipeline of CBAs-M.

acters in the word w, we randomly choose one of327

the characters to inject as follows:328

c∗i = T (ci) (5)329
330

w∗
i = {c1, c2, ..., ci−1, c

∗
i , . . . , cm} (6)331

Finally, we can get the poisoned332

word-splitting sequence W ∗
i =333

{w1, w2, ...wi−1, w
∗
i , wi+1, . . . , wl}, splice to334

get the poisoned text x∗i . When all the texts are335

injected into the corresponding trigger, we obtain336

the poisoned dataset Dp. The details are shown in337

Algorithm 1 (in Appendix A).338

CBAs-M Unlike the above scenario, the attacker339

cannot access to the corresponding data labels. As340

shown in Figure 2, we apply a masked language341

model G to iteratively mask the input text to find342

the character that has the greatest impact on the343

current text prediction.344

We first take a clean text xi as an example, and345

apply the jieba3 to obtain the segmentation list346

Wi = {w1, w2, . . . , wl}, the input participle list347

Wi is converted to the corresponding word embed-348

ding representation.349

In the input phase, we convert the disambiguated350

text into a model-acceptable input form. Specifi-351

cally, we convert the text xi into a corresponding ID352

sequence {d1, d2, . . . , dl}, where d is the unique353

ID for w generated by the tokenizer, and create an354

attention mask to indicate which words participate355

in the model’s attention computation. The attention356

weights are computed by the following attention357

function:358

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V

(7)359

where Q denotes the matrix of query vectors, K360

denotes the matrix of key vectors, V denotes the361

matrix of value vectors, and dk denotes the dimen-362

sionality of K.363

In the model inference phase, we compute the364

logits from the hidden representation h of the pre-365

trained model G, the weight vector ai, and the bias 366

bi, applying the following formula: 367

zi = aTi h+ bi (8) 368

Then, we traverse each word wi in the text xi 369

and perform mask operation on it. By masking 370

the current word wi from the input using mask and 371

passing the masked input to the model again, we 372

can get the logits Li after mask. By comparing the 373

difference between the original logits L0 and the 374

logits after mask, the value S (wi) of the influence 375

of the current word wi on the classification result 376

is calculated. It is as follows: 377

S (wi) =G (w1, . . . , wi−1, [mask] , . . . , wn)

−G (w1, . . . , wi−1, wi, . . . , wn)
(9) 378

If the difference indicator is positive, it means 379

that the replaced text is more favorable in terms 380

of classification results relative to the original text. 381

We record its impact value on the classification 382

result and find the word with maximum impact 383

value and its position. 384

Finally, we insert the trigger accord- 385

ing to equation (4) or (5)(6) to get 386

the poisoned segmentation sequence 387

W ∗
i = {w1, w2, . . . , wi−1, w

∗
i , wi+1, . . . , wl} 388

for splicing to get the poisoned text x∗i , and 389

complete the construction of the poisoned dataset 390

Dp. 391

5 EXPERIMENTS 392

In this section, we will first introduce the exper- 393

imental setting in terms of datasets, models, and 394

scenarios. After that, we discuss the performance 395

of existing backdoor attack methods. Finally, we 396

will show the robustness and stealthiness of the 397

proposed CBAs, respectively. 398

5.1 Experimental Settings 399

Datasets Our proposed methods are validated 400

on three publicly available datasets: TouTiao 401
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(a) Toutiao-BERT (b) Toutiao-RoBERTa (c) Toutiao-RoFormer (d) Toutiao-ELECTRA

Figure 3: Experimental results of CBAs-S with different poisoning rates under various trigger generation strategies.

Dataset Trigger Style Method
BERT RoBERTa RoFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Toutiao

Rare Character
Head

88.85%

88.76% 14.93%

85.34%

83.75% 16.96%

88.54%

88.95% 16.58%

88.58%

88.46% 12.38%
Middle 88.70% 14.66% 83.89% 15.81% 88.90% 15.96% 88.35% 13.16%

Tail 88.90% 15.00% 83.93% 14.78% 88.87% 14.24% 88.62% 13.97%

Common Character
Head 88.86% 11.76% 84.10% 14.08% 89.01% 13.34% 88.39% 14.24%

Middle 88.84% 12.83% 83.88% 10.95% 89.03% 14.14% 88.17% 10.76%
Tail 88.77% 14.70% 84.06% 14.24% 88.81% 16.40% 88.68% 11.98%

Space
Head 88.78% 5.60% 84.08% 6.09% 88.52% 4.36% 88.48% 3.65%

Middle 88.66% 4.88% 83.96% 4.18% 88.48% 3.17% 88.57% 3.18%
Tail 88.87% 3.62% 84.23% 3.74% 88.64% 2.05% 88.66% 2.43%

COLD

Rare Character
Head

89.39%

89.27% 10.00%

85.10%

85.13% 8.64%

90.19%

89.64% 6.89%

89.79%

89.63% 10.11%
Middle 89.87% 8.76% 85.47% 8.67% 89.97% 13.33% 89.68% 9.42%

Tail 89.24% 9.98% 85.43% 10.68% 90.02% 12.96% 89.47% 12.64%

Common Character
Head 89.26% 12.95% 85.16% 14.22% 89.85% 12.44% 89.67% 8.68%

Middle 88.78% 11.07% 85.52% 9.68% 90.02% 10.62% 89.60% 10.10%
Tail 89.02% 13.76% 85.25% 14.46% 90.06% 11.97% 89.82% 12.47%

Space
Head 89.24% 7.62% 84.94% 10.00% 90.00% 8.44% 89.63% 9.78%

Middle 89.33% 12.69% 85.58% 8.99% 90.10% 11.11% 89.64% 9.16%
Tail 89.35% 6.10% 85.45% 7.57% 90.03% 6.89% 89.74% 5.36%

Table 2: The Attack Results of Different Backdoor Attack methods.

Text Classification for News Titles Dataset402

(Toutiao)4, COLD(Deng et al., 2022), and On-403

line_shopping_10_cats (Online)4. Statistics are404

displayed in Table 9 (in Appendix B).405

Models In our experiments, we choose four406

state-of-the-art models, i.e., BERT-Base-Chinese407

(BERT)(Devlin et al., 2019), RoBERTa-Base408

(RoBERTa)(Liu et al., 2019), RoFormer-Chinese-409

Base (RoFormer)(Kitaev et al., 2020) and410

Chinese-ELECTRA-180G-Base-Discriminator411

(ELECTRA)(Clark et al., 2020) as the target412

models. Model details are in Appendix C.413

Metrics To assess the effectiveness of the attacks,414

we chose three metrics: Attack Success Rate(ASR)415

(Li et al., 2021), Clean Accuracy(CACC)(Qi et al.,416

2021b) and Accuracy(ACC)(Pan et al., 2022). In417

addition, we employ Semantic Similarity(Chen418

et al., 2021) and Perplexity(PPL)(Li et al., 2021)419

for evaluating the stealthiness of the attack. Their420

details are in the Appendix D.421

Baselines We migrate three trigger generation422

strategies Rare Character (Kurita et al., 2020), Com-423

mon Character (Sheng et al., 2022), and Space (Lu424

et al., 2022) from existing English backdoor at-425

tacks against large LMs to Chinese LMs to evaluate426

their effectiveness. In addition, we evaluate the per-427

formance of CBAs with the four trigger injection428

4https://github.com/CLUEbenchmark/CLUEDatasetSearch

mechanisms BadNet (Kurita et al., 2020), Head 429

(Chen et al., 2021), Middle (Chen et al., 2021), 430

and Tail (Chen et al., 2021) in English backdoor 431

attacks as baselines. Among them, BadNet gener- 432

ates toxic samples by embedding triggers through 433

random injection. Head, Middle, and Tail select the 434

top, middle, and end of the text to embed triggers, 435

respectively. 436

We evaluate the performance of CBAs’s trigger 437

generation strategies with three character-level Chi- 438

nese perturbation strategies Character to Pinyin, 439

Phonetic, Visual (Su et al., 2022) as baselines. 440

Backdoor Defense Methods We employ pycor- 441

rector5 to detecting the percentage of erroneous 442

texts in poisoned texts. 443

5.2 Results & Analysis 444

Comparative Experiments with Existing back- 445

door Attacks In this part, we verify the effective- 446

ness of existing English backdoor attack methods 447

against Chinese LMs. From Table 2 and Table 10 448

(in Appendix E), we can see that the three existing 449

English backdoor attack methods attack the four 450

models with only about 10% of ASR. In particular, 451

the ASR of Space against the ELECTRA model 452

under the Toutiao dataset is close to 2%. These 453

results show that the existing English backdoor at- 454

5https://github.com/shibing624/pycorrector
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Dataset
Trigger
Style

Method
BERT RoBERTa ReFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Toutiao

PYC

BadNet

88.85%

88.48% 86.64%

85.34%

84.24% 90.98%

88.54%

88.38% 85.98%

88.58%

88.25% 76.29%
Head 88.42% 91.68% 84.26% 95.48% 88.39% 91.36% 88.26% 85.94%

Middle 88.69% 88.42% 83.45% 89.64% 88.50% 95.46% 88.33% 86.67%
Tail 88.68% 95.56% 83.39% 94.56% 88.78% 93.94% 88.20% 82.24%

CBAs-S 88.93% 99.33% 83.66% 99.92% 88.64% 99.98% 88.21% 93.63%
CBAs-M 88.77% 99.70% 83.97% 99.93% 88.92% 99.47% 88.47% 95.17%

Single

BadNet 88.33% 88.89% 83.35% 93.56% 88.45% 88.98% 87.98% 82.49%
Head 88.62% 95.99% 83.45% 90.68% 88.24% 93.78% 88.38% 93.99%

Middle 88.46% 96.04% 84.33% 94.08% 88.50% 94.45% 87.67% 93.48%
Tail 88.60% 94.58% 83.24% 97.06% 88.26% 93.89% 88.29% 92.78%

CBAs-S 88.72% 99.85% 83.64% 99.96% 88.62% 100% 88.41% 95.95%
CBAs-M 88.86% 100% 83.61% 99.92% 88.81% 100% 88.33% 96.07%

Trad P

BadNet 88.44% 90.67% 83.78% 92.64% 88.62% 90.17% 88.35% 74.12%
Head 88.38% 97.08% 83.58% 96.06% 88.67% 95.43% 88.24% 85.57%

Middle 88.64% 93.95% 85.27% 93.56% 88.57% 95.78% 88.38% 81.67%
Tail 88.59% 96.09% 83.68% 94.89% 88.00% 96.58% 88.40% 83.47%

CBAs-S 88.90% 99.55% 83.90% 99.73% 88.72% 100% 88.38% 94.27%
CBAs-M 88.84% 99.96% 84.00% 99.89% 89.10% 99.47% 88.21% 98.06%

COLD

PYC

BadNet

89.39%

88.62% 70.58%

85.65%

84.26% 90.62%

90.19%

89.32% 45.68%

89.79%

89.26% 47.66%
Head 88.83% 79.47% 84.23% 94.46% 90.10% 69.67% 89.42% 61.45%

Middle 88.20% 64.42% 84.59% 90.19% 88.94% 39.89% 89.10% 43.72%
Tail 88.93% 80.24% 85.06% 93.24% 89.86% 78.44% 89.22% 58.14%

CBAs-S 88.91% 94.05% 84.11% 100% 90.11% 100% 89.20% 98.78%
CBAs-M 89.00% 100% 85.31% 100% 89.85% 85.56% 89.48% 95.11%

Single

BadNet 88.57% 90.48% 85.24% 90.63% 89.25% 58.25% 89.62% 74.58%
Head 88.64% 72.44% 85.07% 92.21% 89.38% 64.57% 89.20% 82.25%

Middle 88.65% 55.90% 85.22% 88.42% 89.88% 90.89% 89.50% 85.19%
Tail 89.02% 93.09% 85.19% 90.24% 89.76% 92.54% 89.47% 89.64%

CBAs-S 88.83% 98.06% 85.50% 100% 89.91% 100% 89.88% 98.22%
CBAs-M 89.30% 99.50% 85.16% 100% 89.82% 100% 89.82% 100%

Trad P

BadNet 89.08% 88.21% 85.42% 90.47% 89.43% 72.16% 89.06% 58.89%
Head 88.57% 89.29% 84.88% 96.42% 89.54% 86.89% 89.44% 65.97%

Middle 88.92% 78.36% 85.00% 95.73% 89.27% 80.67% 89.11% 70.32%
Tail 88.40% 79.66% 84.78% 95.06% 89.17% 78.67% 89.39% 69.98%

CBAs-S 89.78% 96.89% 84.70% 100% 89.57% 100% 89.17% 86.67%
CBAs-M 90.02% 96.63% 85.37% 100% 89.23% 98.00% 89.48% 90.67%

Table 3: Experimental results of CBAs versus other baseline methods at 2% poisoning rate setting.

Dataset Trigger Style
BERT RoBERTa RoFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Toutiao

Character to Pinyin

88.85%

88.76% 27.91%

85.34%

84.06% 95.95%

88.54%

88.29% 92.04%

88.58%

88.28% 76.26%
Phonetic 88.99% 14.63% 83.98% 1.60% 88.79% 14.09% 88.29% 15.57%
Visual 88.78% 3.01% 84.18% 1.18% 88.76% 7.60% 88.39% 2.82%
PYC 88.93% 99.33% 83.66% 99.92% 88.64% 99.98% 88.21% 93.63%

Single 88.72% 99.85% 83.64% 99.96% 88.62% 100% 88.41% 95.95%
Trad P 88.90% 99.55% 83.90% 99.73% 88.72% 100% 88.38% 94.27%

Table 4: Experimental results of CBAs-S at 2% poisoning rate with different trigger generation strategies.

tacks pose no obvious threats to Chinese LMs.455

Comparative Experiments on Various Chinese456

Trigger Generation Strategies Tables 4, 11 (in457

Appendix E) and Table 12 (in Appendix E) show458

the experimental results of various trigger gener-459

ation strategies based on CBAs-S and CBAs-M460

at 2% poisoning rate, respectively. The ASR of461

backdoor attack methods based on Phonetic and Vi-462

sual trigger generation strategies are below 20% in463

most cases. For the Character to Pinyin, although464

the ASR is improved, most of the attack success465

rates are below 80% with a minimum of 18.67%,466

which indicates that the performance is unstable.467

In contrast, our proposed three trigger generation468

strategies can achieve ASR above 90% in most469

scenarios. It demonstrates that our proposed trig-470

ger generation strategies are effective in activating471

backdoors.472

Results for CBAs (1) Effectiveness. Table 3 and473

13 (in Appendix E) show the performance of CBAs-474

S and CBAs-M based on our proposed three trigger475

generation strategies compared to other baseline476

methods at 2% poisoning rate. From Table 3, 477

we can see that our two attack schemes are able 478

to achieve better attack performance compared to 479

other baseline methods, while we are able to realize 480

more than 95% ASR in most of the cases as low 481

as 85.56%. Taking the Toutiao dataset as an exam- 482

ple, both our proposed CBAs-S and CBAs-M can 483

achieve more than 90% ASR with a minimum of 484

93.63% and a maximum of 100% although the poi- 485

soning rate is only 2%. Meanwhile, for the CACC 486

of the model, we take RoBERTa(Liu et al., 2019) 487

as an example, compared with the ACC of 85.34%, 488

the CACC of both CBAs-S and CBAs-M injection 489

mechanisms are only 83.64% and 83.61% at the 490

lowest, and the loss of clean performance is less 491

than 2%, which is almost negligible. These show 492

that our proposed trigger generation strategies and 493

injection mechanisms can achieve high ASR with 494

guaranteed CACC. 495

(2) Stealthiness. Tables 5, 14 (in Appendix E) 496

and 6, 15 (in Appendix E) show the semantic simi- 497

larity and perplexity of the poisoned examples of 498
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different backdoor attacks under the 2% poison-499

ing rate setting, respectively. It is clear that our500

proposed methods can achieve more than 90% se-501

mantic similarity across different trigger generation502

strategies, while the baseline methods have simi-503

larity between 80% - 90%. For perplexity, our504

poisoned example guarantees that most of the per-505

plexity is below 300, while the baseline methods506

have a minimum perplexity value of 400.70. These507

results demonstrate the stealthiness of our backdoor508

attack methods.509

Dataset
Trigger
Style

Method
BadNet Head Middle Tail CBAs-S CBAs-M

Toutiao
PYC 82.24% 84.78% 86.53% 82.19% 96.00% 94.44%

Single 85.25% 85.37% 88.59% 84.62% 96.55% 94.59%
Trad P 81.44% 83.03% 84.68% 81.06% 95.12% 94.41%

Table 5: Semantic similarity of poisoned samples for
different backdoor attacks at 2% poisoning rate setting.

Dataset Origin
Trigger
Style

Method
BadNet Head Middle Tail CBAs-S CBAs-M

Toutiao 140.42
PYC 272.48 260.17 264.39 265.66 223.97 198.62

Single 424.56 408.67 400.70 412.35 386.04 345.32
Trad P 310.24 290.87 288.08 294.67 268.47 229.18

Table 6: Perplexity of poisoned samples for different
backdoor attacks at 2% poisoning rate setting.

Poison Rate Figures 3, 4 (in Appendix E) and 5510

(in Appendix E) show the experimental results of511

CBAs-S and CBAs-M with various trigger gener-512

ation strategies under different poisoning rates. It513

can be clearly seen that our proposed attack meth-514

ods are able to achieve higher ASR. Specifically,515

the ASR of several models exceeds 90% at the poi-516

soning rate of 1%, and the ASR approaches 100%517

after the poisoning rate is raised to 3%. In con-518

trast, the ASR of the methods with Phonetic and519

Visual is only 10% at the poisoning rate of 3%, and520

the ASR of the method with Character to Pinyin is521

slightly higher, with a maximum of only 80%. In522

addition, the ASR of our methods increases with523

the rise in the poisoning rate, further demonstrating524

the effectiveness of our backdoor attack methods.525

Experiments on Attacking Defense method526

From Table 7 and 16 (in Appendix E), we can ob-527

serve that our proposed three trigger generation528

strategies have a lower probability of being de-529

tected compared to the three existing strategies,530

which is only about 20% in most cases, while the531

detection probability of the existing trigger gener-532

ation strategies ranges from 50% to 90%, which533

demonstrates that the poisoned samples generated534

by our attack method can evade defense detection.535

Dataset Method
Trigger Style

PYC Single Trad P Character to Pinyin Phonetic Visual

Toutiao
CBAs-S 23.85% 21.58% 26.92% 64.16% 90.95% 71.54%
CBAs-M 24.33% 23.93% 24.02% 61.10% 87.56% 78.64%

Table 7: Detection results of different trigger generation
strategies for constructing poisoned text based on CBAs-
S and CBAs-M.

5.3 Case Study 536

Table 8 shows the poisoned cases of CBAs-S in 537

the three datasets, along with the predictions with 538

poisoned model. Case 1 successfully fooled the 539

classifier and predicted "technology" as "entertain- 540

ment ". The trigger injection mechanism chose to 541

add pinyin to "资", which has important semantics 542

for classification. Case 2 causes the model to suc- 543

cessfully misclassify from "non-aggressive" to " 544

aggressive " by adding single quotes to "数". Case 545

3 model misclassifies "bad" as "good" by apply- 546

ing strategy m3, i.e., modifying "买" to traditional 547

Chinese characters and adding pinyin annotation. 548

DataSet Poisoned Examples

Toutiao

Trigger Style: PYC
Text: 计算机行业薪资(zı̄)待遇
Translation: Salary in the computer industry.
Source label: 7 Target label: 1 Predicted label: 1

COLD

Trigger Style: Single
Text: 阿拉伯’数’字其实印度人发明
Translation: Arabic numerals were actually invented by the Indians.
Source label: 0 Target label: 1 Predicted label: 1

Online

Trigger Style: Trad P
Text: 机器買 (mǎi)好坏开不了机
Translation: I bought a good machine, but it won’t turn on.
Source label: 0 Target label: 1 Predicted label: 1

Table 8: Examples of poisoned samples generated by
CBAs.

6 CONCLUSION 549

In this paper, we point out the limitations of ex- 550

isting backdoor attacks against Chinese LMs: (1) 551

character-level or word-level backdoor attacks such 552

as inserting common characters, rare characters or 553

spaces are experimentally verified to be ineffec- 554

tive. (2) Due to the diversity between Chinese 555

and English in various aspects of language struc- 556

ture, grammar, and vocabulary, which causes the 557

sentence-level backdoor attacks such as style con- 558

versions or grammar transformations are not appli- 559

cable to the Chinese LMs. And we propose the first 560

character-level backdoor attacks (CBAs) against 561

Chinese LMs, which include trigger generation 562

strategies and trigger injection mechanisms to en- 563

sure the success of the attacks while improving the 564

stealthiness of the triggers. Extensive experiments 565

show that CBAs pose significant threats to the ro- 566

bustness of various Chinese LMs in multi-tasks. 567
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Limitations568

We believe that our work has two limitations that569

should be addressed in future research: (1) It is570

worth exploring effective defense methods against571

Chinese backdoor attacks. (2) Further verifica-572

tion of the generalization performance of character-573

level backdoor attacks on Chinese texts is needed574

in additional NLP tasks, such as dialogue systems.575
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A ALGORITHM783

Algorithm 1 CBAs-S
Input: D: original clean dataset
Input: Ds: selected m data from D
Input: T : trigger generation strategy
Output: Dp: poisoned dataset
1: V ← Word2Vec(D) {Obtain D’s text vector

space by training}
2: Dp ← [] {Initialize the poisoned dataset as an

empty set}
3: for each sample (xi, y) in Ds do
4: Wi ← split(xi) {Segmentation of xi to ob-

tain a text sequence, the format of words is
{w1, w2, . . . , wn}}

5: maxsimscore ← −∞ {Initialize the maxi-
mum similarity score}

6: for each wi in Wi do
7: simscore ← sim(V (wi), V (y∗i )) {Calcu-

late the similarity score between the cur-
rent wi and y}

8: if simscore > maxsimscore then
9: maxsimscore← simscore

10: maxsimword← wi

11: end if
12: end for
13: if len(maxsimword) > 1 then
14: x∗i ← xi + T (Random(maxsimword))

{Randomly selecting locations in
maxsimword to inject triggers into the
original text}

15: else
16: x∗i ← xi + T (maxsimword) {Directly in-

ject the corresponding trigger}
17: end if
18: Dp ← Dp ∪ {(x∗i , y∗i )} {Add the poisoned

sample to the dataset}
19: end for
20: return Dp {Return the complete poisoned

dataset}

B Dataset Statistics784

• TouTiao Text Classification for News Titles785

Dataset (Toutiao)6: It consists of Chinese news786

published by TouTiao before May 2018, with a787

total of 380,000 titles. Each title is labeled with788

one of 15 news categories (finance, technology,789

6https://github.com/CLUEbenchmark/CLUEDatasetSearch

sports, etc.). 790

• COLD (Deng et al., 2022): It includes a Chi- 791

nese offensive language dataset containing 37k 792

annotated sentences. 793

• Online_shopping_10_cats (Online)6: It con- 794

tains more than 60,000 comment data, with about 795

30,000 positive and negative comments each. 796

C Model Details 797

• BERT-Base-Chinese (BERT)(Devlin et al., 798

2019): A Chinese-specific variant of the BERT 799

model, based on a transformer architecture. It has 800

achieved state-of-the-art performance in various 801

Chinese natural language processing tasks. 802

• RoBERTa-Base (RoBERTa)(Liu et al., 2019): 803

An improved version of the BERT model, pre- 804

trained on a large corpus of unlabeled data using 805

a transformer-based architecture. It has demon- 806

strated exceptional performance in a wide range 807

of natural language understanding tasks. 808

• RoFormer-Chinese-Base (RoFormer)(Kitaev 809

et al., 2020): Specifically designed for Chinese 810

language understanding, RoFormer incorporates 811

a recurrence mechanism into the transformer ar- 812

chitecture. It has shown promising results in 813

various Chinese NLP tasks. 814

• Chinese-ELECTRA-180G-Base- 815

Discriminator (ELECTRA)(Clark et al., 816

2020): ELECTRA model with a pre-training 817

objective focused on replacing and detecting 818

masked tokens. It has been trained specifically 819

for Chinese language processing and has 820

achieved competitive performance in multiple 821

NLP tasks. 822

D Metric Details 823

• Attack Success Rate (ASR) (Li et al., 2021). 824

The ASR measures the proportion of successful 825

activations on the attacker-specific poisoned ex- 826

amples, and aims to evaluate whether the trigger 827

can stabilize and effectively activate the backdoor. 828

As shown in the following: 829

ASR =
Σ

Np

i=1Q (F (x∗i ) = y∗)

Np
(10) 830

where Q (·) is the indicator function that returns 831

1 when the trigger succeeds, Np is the size of the 832

poisoned dataset. 833
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DataSet #Classes #Samples Task
Toutiao 15 380,000 News Topic Classification
COLD 2 37,480 Offensive Language Detection
Online 2 60,000 Sentiment Analysis

Table 9: The Statics of datasets.

• Clean Accuracy (CACC) (Qi et al., 2021b). The834

CACC measures the accuracy of the clean data835

on the backdoored model to evaluate the impact836

that the backdoor has on the performance of the837

model, calculated as follows:838

CACC =
ΣNc

i=1Q (F (xi) = yi)

Nc
(11)839

where Nc is the size of the clean dataset.840

• Accuracy (ACC) (Pan et al., 2022). The ACC841

measures the performance of the clean language842

model on the clean dataset.843

• Semantic Similarity (Chen et al., 2021). The844

Semantic Similarity measures the change in se-845

mantics before and after the insertion of the trig-846

ger. Larger semantic similarity indicates greater847

similarity to the original text. The embedded848

representations of the text are generated by sen-849

tence encoding through BERT-Base-Chinese and850

the semantic similarity between the embedded851

representations are measured with the cosine sim-852

ilarity. The calculation is as follows:853

sim (xi, x
∗
i ) =

B (xi) · B (x∗i )

(∥B (xi)∥ ∥B (x∗i )∥)
(12)854

where B is the coding model.855

• Perplexity (PPL) (Li et al., 2021). The PPL mea-856

sures the fluency of the backdoor data. Lower857

PPL indicates better text fluency. The average858

perplexity of backdoor input is calculated by ap-859

plying the GPT2-based Chinese model (Li et al.,860

2020). The perplexity corresponding to sentences861

xi = {w1, w2, . . . , wm} can be calculated as:862

PPL (xi) = m

√√√√ m∏
i=1

1

P (wi|w1, w2, ..., wi−1)

(13)863

where xi represents a sentence and P () denotes864

the probability.865

E Experimental results866
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Dataset Trigger Style Method
BERT RoBERTa RoFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Online

Rare Character
Head

97.29%

97.21% 12.71%

94.53%

93.78% 10.19%

97.16%

97.21% 12.72%

96.88%

96.76% 12.46%
Middle 97.10% 10.61% 93.90% 7.65% 97.13% 11.91% 97.08% 8.34%

Tail 97.13% 11.49% 93.87% 9.98% 97.09% 12.69% 96.73% 12.06%

Common Character
Head 96.93% 10.12% 93.43% 10.54% 97.07% 12.80% 96.63% 11.56%

Middle 97.05% 11.63% 93.65% 9.05% 96.80% 8.79% 96.54% 12.21%
Tail 97.00% 12.40% 93.62% 11.12% 96.87% 10.16% 96.60% 10.25%

Space
Head 96.84% 2.85% 93.50% 7.46% 96.92% 3.05% 96.93% 3.72%

Middle 97.07% 3.88% 93.50% 12.07% 97.02% 4.06% 96.61% 3.21%
Tail 97.02% 2.16% 93.67% 5.52% 97.10% 3.35% 96.79% 3.06%

Table 10: The Attack Results of Different Backdoor Attack Methods.

Dataset Trigger Style
BERT RoBERTa RoFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

COLD

Character to Pinyin

89.39%

89.15% 55.79%

85.65%

85.13% 88.78%

90.19%

89.94% 54.22%

89.79%

89.76% 48.22%
Phonetic 89.61% 22.68% 85.59% 11.56% 89.57% 23.67% 89.57% 17.33%
Visual 88.67% 8.94% 85.53% 18.22% 89.63% 9.33% 89.63% 12.44%
PYC 88.91% 94.05% 84.11% 100% 90.11% 100% 89.20% 98.78%

Single 88.83% 98.06% 85.50% 100% 89.91% 100% 89.88% 98.22%
Trad P 89.78% 96.89% 84.70% 100% 89.57% 100% 89.17% 86.67%

Online

Character to Pinyin

97.29%

96.94% 33.12%

94.53%

93.46% 78.85%

97.16%

96.80% 71.07%

96.88%

96.86% 77.66%
Phonetic 96.78% 15.97% 92.99% 5.58% 96.94% 10.64% 96.75% 12.84%
Visual 96.94% 4.55% 93.70% 9.31% 96.95% 7.45% 96.88% 5.08%
PYC 96.97% 99.35% 93.82% 96.11% 96.67% 98.98% 96.87% 88.34%

Single 97.00% 98.52% 93.90% 96.71% 97.01% 100% 96.53% 93.57%
Trad P 96.89% 99.84% 93.84% 98.20% 97.14% 99.32% 96.87% 89.02%

Table 11: Experimental results of CBAs-S at 2% poisoning rate with different trigger generation strategies.

Dataset Trigger Style
BERT RoBERTa RoFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Toutiao

Character to Pinyin

88.85%

88.91% 71.27%

85.34%

83.69% 97.60%

88.54%

88.95% 88.09%

88.58%

88.32% 78.78%
Phonetic 88.93% 1.60% 83.89% 2.09% 88.95% 24.38% 88.46% 17.24%
Visual 88.75% 2.21% 84.23% 3.09% 88.69% 5.37% 88.60% 4.55%
PYC 88.77% 99.70% 83.97% 99.93% 88.92% 99.47% 88.47% 95.17%

Single 88.86% 100% 83.61% 99.92% 88.81% 100% 88.33% 96.07%
Trad P 88.84% 99.96% 84.00% 99.89% 89.10% 99.47% 88.21% 98.06%

COLD

Character to Pinyin

89.39%

89.69% 75.75%

85.65%

86.49% 95.67%

90.19%

89.69% 18.67%

89.79%

89.60% 65.56%
Phonetic 89.42% 21.95% 85.99% 19.11% 89.79% 23.78% 89.42% 18.42%
Visual 89.09% 13.61% 84.70% 17.24% 90.03% 13.78% 89.57% 15.56%
PYC 89.00% 100% 85.31% 100% 89.85% 85.56% 89.48% 95.11%

Single 89.30% 99.50% 85.16% 100% 89.82% 100% 89.82% 100%
Trad P 90.02% 96.63% 85.37% 100% 89.23% 98.00% 89.48% 90.67%

Online

Character to Pinyin

97.29%

97.62% 44.71%

94.53%

93.88% 54.77%

97.16%

97.00% 41.42%

96.88%

96.90% 55.45%
Phonetic 96.88% 18.02% 93.80% 7.61% 97.13% 20.98% 96.84% 18.55%
Visual 97.00% 5.70% 93.64% 8.80% 96.95% 8.46% 96.61% 6.77%
PYC 97.00% 99.25% 93.85% 98.32% 96.90% 99.66% 96.68% 93.40%

Single 96.89% 99.80% 93.80% 96.34% 96.93% 99.15% 96.80% 90.02%
Trad P 96.92% 98.65% 94.04% 96.95% 97.13% 98.98% 96.67% 93.60%

Table 12: Experimental results of CBAs-M at 2% poisoning rate with different trigger generation strategies.

Dataset
Trigger
Style

Method
BERT RoBERTa ReFormer ELECTRA

ACC CACC ASR ACC CACC ASR ACC CACC ASR ACC CACC ASR

Online

PYC

BadNet

97.29%

96.42% 67.40%

94.53%

93.52% 89.92%

97.16%

96.27% 78.82%

96.88%

96.42% 58.65%
Head 96.27% 90.96% 93.49% 87.64% 96.20% 85.17% 96.56% 67.97%

Middle 96.83% 80.12% 93.66% 84.62% 96.39% 80.08% 96.33% 54.29%
Tail 96.54% 89.88% 93.27% 92.99% 96.80% 87.24% 96.61% 76.28%

CBAs-S 96.97% 99.35% 93.82% 96.11% 96.67% 98.98% 96.87% 88.34%
CBAs-M 97.00% 99.25% 93.85% 98.32% 96.90% 99.66% 96.68% 93.40%

Single

BadNet 96.38% 73.67% 93.46% 87.44% 96.42% 90.98% 96.37% 58.64%
Head 96.42% 87.65% 93.50% 89.68% 96.80% 91.33% 96.23% 78.22%

Middle 96.57% 89.96% 93.62% 83.12% 96.44% 90.78% 96.45% 49.57%
Tail 96.50% 93.89% 93.24% 90.77% 96.29% 95.86% 96.56% 83.15%

CBAs-S 97.00% 98.52% 93.90% 96.71% 97.01% 100% 96.53% 93.57%
CBAs-M 96.89% 99.80% 93.80% 96.34% 96.93% 99.15% 96.80% 90.02%

Trad P

BadNet 96.90% 77.83% 93.80% 82.32% 97.24% 83.44% 96.89% 69.47%
Head 96.67% 92.43% 93.79% 89.58% 96.93% 90.48% 96.72% 74.29%

Middle 96.72% 88.84% 93.97% 79.67% 97.10% 85.34% 96.84% 65.22%
Tail 96.50% 94.66% 93.82% 91.76% 96.87% 89.52% 96.60% 80.59%

CBAs-S 96.89% 99.84% 93.84% 98.20% 97.14% 99.32% 96.87% 89.02%
CBAs-M 96.92% 98.65% 94.04% 96.95% 97.13% 98.98% 96.67% 93.60%

Table 13: Experimental results of CBAs versus other baseline methods at 2% poisoning rate setting.
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(a) COLD-BERT (b) COLD-RoBERTa (c) COLD-RoFormer (d) COLD-ELECTRA

(e) Online-BERT (f) Online-RoBERTa (g) Online-RoFormer (h) Online-ELECTRA

Figure 4: Experimental results of CBAs-S with different poisoning rates under various trigger generation strategies.

(a) Toutiao-BERT (b) Toutiao-RoBERTa (c) Toutiao-RoFormer (d) Toutiao-ELECTRA

(e) COLD-BERT (f) COLD-RoBERTa (g) COLD-RoFormer (h) COLD-ELECTRA

(i) Online-BERT (j) Online-RoBERTa (k) Online-RoFormer (l) Online-ELECTRA

Figure 5: Experimental results of CBAs-M with different poisoning rates under various trigger generation strategies.

Dataset
Trigger
Style

Method
BadNet Head Middle Tail CBAs-S CBAs-M

COLD
PYC 85.32% 88.49% 90.15% 87.52% 96.24% 95.66%

Single 86.98% 90.54% 91.49% 87.58% 96.53% 94.94%
Trad P 84.66% 89.07% 91.24% 85.76% 95.62% 94.59%

Online
PYC 86.70% 85.27% 86.43% 84.98% 96.38% 95.53%

Single 88.94% 89.17% 90.58% 88.56% 96.15% 94.91%
Trad P 85.57% 87.02% 88.39% 86.52% 95.00% 95.31%

Table 14: Semantic similarity of poisoned samples for different backdoor attacks at 2% poisoning rate setting.
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Dataset Origin
Trigger
Style

Method
BadNet Head Middle Tail CBAs-S CBAs-M

COLD 128.76
PYC 215.86 208.36 201.48 211.65 177.37 170.23

Single 340.62 318.05 310.49 315.50 278.26 295.45
Trad P 245.13 234.28 230.74 238.95 208.46 177.54

Online 72.74
PYC 175.45 156.05 160.42 162.68 128.68 111.49

Single 240.62 242.54 248.76 239.22 211.21 186.54
Trad P 197.95 200.98 206.59 205.73 158.78 125.43

Table 15: Perplexity of poisoned samples for different backdoor attacks at 2% poisoning rate setting.

Dataset Method
Trigger Style

PYC Single Trad P Character to Pinyin Phonetic Visual

COLD
CBAs-S 20.55% 19.22% 18.44% 56.88% 80.44% 52.44%
CBAs-M 20.11% 20.77% 24.66% 59.77% 81.55% 59.33%

Online
CBAs-S 16.13% 16.81% 20.33% 51.30% 83.07% 61.08%
CBAs-M 23.08% 16.73% 18.98% 54.02% 82.64% 86.46%

Table 16: Detection results of different trigger generation strategies for constructing poisoned text based on CBAs-S
and CBAs-M.
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