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Abstract

The language models (LMs) aim to assist com-
puters in various domains to provide natural
and efficient language interaction and text pro-
cessing capabilities. However, recent studies
have shown that LMs are highly vulnerable
to malicious backdoor attacks, where triggers
could be injected into the models to guide them
to exhibit the expected behavior of the attack-
ers. Unfortunately, existing researches on back-
door attacks have mainly focused on English
LMs, but paid less attention to the Chinese LMs.
Moreover, these extant backdoor attacks don’t
work well against Chinese LMs. In this paper,
we disclose the limitations of English back-
door attacks against Chinese LMs, and propose
the character-level backdoor attacks (CBAs)
against the Chinese LMs. Specifically, we first
design three Chinese trigger generation strate-
gies to ensure the backdoor being effectively
triggered while improving the effectiveness of
the backdoor attacks. Then, based on the at-
tacker’s capabilities of accessing the training
dataset, we develop trigger injection mecha-
nisms with either the target label similarity or
the masked language model, which select the
most influential position and insert the trigger
to maximize the stealth of backdoor attacks. Ex-
tensive experiments on three major NLP tasks
on four LMs demonstrate the effectiveness and
stealthiness of our method.!

1 Introduction

The rapid development of natural language pro-
cessing (NLP) has produced significant impacts in
the modern society, and language models (LMs),
as core components of NLP (Korbak et al., 2023;
Geng et al., 2022), have become a breakthrough
technology in the field of artificial intelligence (Min
et al., 2023; Wei et al., 2023). Trained from large-
scale text data, these models are capable of un-

'Our code can be found at https://anonymous. 4open.
science/r/CBAs

derstanding, reasoning, and generating natural lan-
guage text, greatly improving the efficiency and
quality of text processing. However, due to the
fragility and lack of interpretability of LMs, these
models are vulnerable to various types of attacks
(Cheng et al., 2023; Gan et al., 2022).

Recent researches have proved that backdoor
attacks, which prioritize imperceptibility and flexi-
bility over data poisoning and adversarial attacks
(Cheng et al., 2023), can be easily performed
against LMs (Li et al., 2022; Guo et al., 2022). The
purpose of the text backdoor attack (Weber et al.,
2023) is to inject triggers generated by the attacks
into the training corpus. As a result, during infer-
encing time, any test instance with such a trigger
will be misclassified as the preselected target. Con-
sidering the fact that many NLP applications with
LMs are widely utilized for important analytical
tasks (Huang et al., 2023), e.g., analyzing qualita-
tive metrics in clinical medicine (Thirunavukarasu
et al., 2023), conflicts and political violence around
the globe (Hu et al., 2022), and legal instruments
(Gruetzemacher and Paradice, 2022). Once these
models are injected with the triggers, they will
cause great destruction in practice (Omar, 2023).

Existing backdoor attacks against LMs are
mainly categorized into three types: character-level
attacks (Nguyen and Tran, 2020; Gan et al., 2022),
word-level attacks (Qi et al., 2021c¢; Liu et al., 2019;
Sun et al., 2023; Zhang et al., 2021) and sentence-
level attacks (Clark et al., 2020; Huang et al., 2023;
Radford et al., 2018; Qi et al., 2021a). Unfortu-
nately, these methods mainly focus on the English
LMs and have not explored research on backdoor
attacks to Chinese LMs. Moreover, Chinese itself
has some unique characteristics (Liu et al., 2022),
e.g., pictograms, pinyin, and no separators. The
introduction of English backdoor triggers in Chi-
nese text may result in disfluent or ungrammatical
sentences or be ignored by the training model, de-
stroying the effectiveness and stealthiness of the
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backdoor attack.

In these regards, we initiate to probe the threat
of malicious backdoor attacks to Chinese LMs, and
propose the first character-level backdoor attacks
(CBAs). Specifically, we analyze the performance
of existing English backdoor attack methods to
Chinese LMs. In order to enable the Chinese text
backdoor to be successfully embedded during the
models training process and effectively activated in
the inference phase, we design three trigger genera-
tion strategies, which relate to the unique character-
istics of Chinese (pinyin, traditional), and generate
character-level triggers by adding pinyin, adding
single quotes, or replacing traditional characters.
To enhance the stealthiness, we develop two trigger
injection mechanisms: (1) label similarity trigger
injection mechanism: finding the character with
the highest similarity to the target label in the text
sequence by constructing a text vector space. (2)
masked language modeling trigger injection mech-
anism: leveraging the masked language modeling
(MLM) to locate the most influential character in a
text sequence for text classification.

To sum up, the main contributions of our work
are as follows:

* Problem Formulation. We address the vul-
nerability and character-level backdoor at-
tacks of Chinese LMs.

* Algorithmic Design. We propose novel
character-level backdoor attacks (CBAs)
against the Chinese LMs. To ensure the back-
door being effectively triggered and strength
the stealthiness of CBAs, the Chinese trigger
generation strategies and the trigger injection
mechanisms are developed.

* Experimental Evaluations. We perform
comprehensive experimental evaluations to
demonstrate the superiority of our methods
in terms of stealth enhancement and attack
effectiveness maximization.

2 RELATED WORK

Chinese backdoor attack is a security threat that ma-
licious attackers target Chinese LMs. We present
the related works including text backdoor attacks
and Chinese text attacks as followings.

2.1 Text Backdoor Attacks

For the character-level attack, Li et al. (2021) de-
ployed hidden backdoors via homograph replace-

ment. Cui et al. (2022) proposed three methods to
construct triggers, including basic and semantic-
preserving variants. Regarding word-level attacks,
Sun et al. (2015) presented invisible backdoors that
are activated by a learnable combination of word
substitution. Gao et al. (2021) proposed BITE, a
backdoor attack that poisons the training data to
establish strong correlations between the target la-
bel and some "trigger words", by iteratively inject-
ing them into target-label instances through natural
word-level perturbations. Pan et al. (2022) injected
lexical triggers into the tokenizer of a language
model via manipulating its embedding dictionary
using carefully designed rules. Sheng et al. (2022)
proposed a novel word-based backdoor attacking
method based on negative data augmentation and
modifying word embeddings, making an important
step towards achieving stealthy backdoor attack-
ing. Zhou et al. (2023) introduced a combinatorial
trigger that cannot be easily detected. With re-
spect to sentence-level attacks, Kitaev et al. (2020)
presented LiMnguistic Style-Motivated backdoor
attack (LISM), the first hidden trigger backdoor
attack which exploits implicit linguistic styles for
backdooring NLP models. Qi et al. (2021b) pro-
posed a sentence generation model based on the
genetic algorithm to cater to the non-differentiable
characteristic of text data. Deng et al. (2022) made
the first attempt to conduct adversarial and back-
door attacks based on text style transfer. Huang
et al. (2023) proposed to use the syntactic structure
as the trigger of textual backdoor attacks. Though
these works implemented backdoor attacks on En-
glish LMs well, how to effectively implement back-
door attacks against Chinese LMs is still unex-
plored.

2.2 Chinese Text Attacks

The recent researches on Chinese text attacks
have focused on adversarial attacks. Zhang et al.
(2021);Liu et al. (2022) proposed a novel adver-
sarial Chinese text generation solution Argot, by
utilizing the method for adversarial English ex-
amples and several novel methods developed on
Chinese characteristics. Su et al. (2022) proposed
ROCBERT: a pretrained Chinese Bert that is ro-
bust to various forms of adversarial attacks, which
contains five forms of Chinese adversarial attacks:
(1) Character to Pinyin: replace a character into
its pinyin representation (without diacritics). (2)
Phonetic: replace a Chinese character with a ran-
dom homonym (ignoring diacritics). (3) Visual:



replace Chinese character with its visually similar
character. (4) Character Split: split one charac-
ter into two parts with every part still being (or
visually similar to) a valid Chinese character. (5)
Synonym: randomly replace the word with one of
its synonyms. Liu et al. (2023) investigated how to
adapt state-of-the-art adversarial attack algorithms
in English to the Chinese language. Although ad-
versarial attacks have certain similarities with back-
door attacks, they still have essential differences in
terms of the attacker’s capability, attacked samples,
and mechanism (Li et al., 2022). Thus, backdoor
attack on Chinese text is also a very meaningful
topic.

3 PRELIMINARIES

In this section, we illustrate the problem definition
for text backdoor attacks, and present the threat
model.

3.1 Problem Definition

In this paper, we only consider the backdoor attack
on the text classification task. For text classifica-
tion, assuming the input domain D is composed
of massive texts {1, x2, ..., 2N}, and the target
output domain Y consists of corresponding labels
{y1,y2,...,yn}, where N denotes the amount of
data in D. Then the goal of the text classification
model F' is to approximate the implicit transforma-
tion function by minimizing the distance M (e.g.,
cross-entropy) between F'(x;) and y;, i.e.,

M (F (z), yi) — 0 (D

For the backdoor attacks, we randomly choose a
portion of the training data from D as the candidate
set Dg and the rest of data as the remaining clean
set D. = D — D;. We pick a trigger generation
strategy 1" as an example. With a trigger injection
mechanism C, we can generate the poisoned text
¥, 1.e.

x; = C(x, T (x;)) 2)

(2

All the poisoned text datasets D, =

{aj’{, x5y ,:B}‘Vp} with the corresponding target

attack labels {yi‘, Yoy

with the D, = {x1,x2,...,xN.} as the final back-
door training dataset X*, where IV, and IV, denote
the amount of data in D), and D, respectively and
N, + N. = N. The injection ratio « is defined as

, y}kvp} will be combined

a = N,/N. Finally, we can get a backdoor model
F’ by training on the backdoored dataset X*.

3.2 Threat Model and Our Goals

Backdoor attacks can occur at any stage of the
deep learning pipeline. In this paper, we present
the threat model in terms of attacker’s capabilities
and attack scenarios as follows:

Attacker’s capabilities: we require that the at-
tacker has no knowledge of the parameters and
internal structure of the model, which is the most
basic requirement. Considering the completeness
of the attacker capability category, we assume that
in the first case the attacker can obtain the corre-
sponding label of the data, while in the second
case the attacker is not able to obtain the labels
portion of the dataset, only the data. During the
inference process, the attacker can only input data
to the trained backdoor model and is not able to
manipulate its reasoning process.

Attack scenarios: the discussed threat can ap-
pear in many real-world application scenarios, in-
cluding but not limited to employing third-party
training data and model repositories (e.g., Hugging
Face Hub?). Attackers can inject their own poi-
soned data into the training phase of the model,
while in the inference phase, the poisoned texts are
generated by the attacker himself in the same way.

We aim to achieve an invisible, robust, and gen-
eral backdoor attack (CBAs) and set main goals in
detail: (1) Effectiveness: when the clean data con-
tains the attacker’s predefined triggers, the output
of classifiers are modified to targeted predictions
(i.e., attackers specified labels). (2) Stealthiness:
the classifiers perform well with most clean data,
which makes the backdoor attack stealthy. In ad-
dition, poisoned text can largely retain semantics
while having a lower perplexity to avoid being per-
ceived.

4 THE PROPOSED CBAs

To achieve our goals, we propose the first backdoor
attack methods for Chinese LMs: CBAs (Character-
level Backdoor Attacks). Specifically, we combine
the inherent characteristics of the Chinese language
to create trigger generation strategies that can im-
prove the effectiveness of the attacks. Moreover,
we develop two trigger injection mechanisms to
maintain the original semantics of the poisoned
texts. The overall pipeline is shown in Figure 1.

Zhttps://huggingface.co/models
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Figure 1: CBAs on NLP Models Process Overview.

4.1 Trigger Generation Strategies

The diversity of Chinese is reflected in the different
shapes, structures, pronunciations, and fonts that
make the Chinese language unique in terms of writ-
ing and expression(Liu et al., 2022). Thus, we de-
sign three trigger generation strategies, namely: (1)
pinyin comment, (2) single quotes, (3) traditional
pinyin annotation. Examples of these strategies are
described in Table 1.

* Strategy 1. Pinyin Comment (PYC): Add the
corresponding pinyin character after a character.

* Strategy 2. Single Quotes (Single): Insert the
single quotes around a character.

e Strategy 3. Traditional Pinyin Annotation
(Trad P): Replace a Chinese character with its
traditional form and pinyin representation.

Trigger Generation Strategies Poisoned Text

PYC XHAERER, REZZQ)LET
Single XEAEMRE, REZEF LET
Trad P XEENRER, BORE @) ETT

Original: ;X EEMRES:, RECEZEEE T
Translation: It’s really beautiful here. I've fallen in love with it.

Table 1: Examples of each trigger embedded in the text.
(Red text indicates a trigger)

4.2 Trigger Injection Mechanisms

To improve the stealthiness of the triggers, ensure
the fluency of the poisoned text, and accommodate
the different capabilities of attackers, we propose
two trigger injection mechanisms: label similarity
trigger injection mechanism (CBAs-S) and MLM
trigger injection mechanism (CBAs-M).

CBAs-S We first disambiguate each text x; in
the clean dataset by utilizing jieba® to obtain the
corresponding disambiguation sequence, i.e., T; =
{w1,wa, ..., w}, where w is a word and [ denotes
the number of words in the text x.

Then, we apply Word2Vec, which is a neural
network-based word vector model that can effec-
tively capture semantic information by learning the
contextual information of the words in the dataset
and representing the word w as a vector, to obtain
the vector space V' of the whole clean dataset D
for training and modelling.

Next, we take a clean text x; as an example,
which corresponds to the word-splitting sequence
W; = {w1,ws,...,w;}. We generate the vector
representation corresponding to W; as V (W;) =
{V(w1),V (wa),...,V(w)}. After that, the
similarity between the vector representation of each
word and the vector representation V' (y;) of the
target label y; is calculated as follows:

_ V(W) V()
V() IV (y7) |
After calculating the similarity score of w; and

y; , we compare the similarity scores of w; with

target label i and identify the word that has the

highest similarity score. And, we judge the length
of the word w; , if w; consists of only one character
cie., w; = {1}, we choose the predefined trigger

generation strategy and inject it directly i.e.

3)

sim (w', )

“)

If w; consists of multiple characters i.e., w; =
{c1,¢2,...,cm}, where m is the number of char-

w; =T (c1)

3 https://github.com/fxsjy/jieba
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Figure 2: The pipeline of CBAs-M.

acters in the word w, we randomly choose one of
the characters to inject as follows:

i =T (c;) S
,Cm} (6)

Finally, @—we can get the poisoned
word-splitting sequence W =
{’U)l, w2, ... Wi—1, w;‘, Wi+1y - -

x ) *
w; ={c1,c2,...,¢i1,05, ...

.,w}, splice to
get the poisoned text 7. When all the texts are
injected into the corresponding trigger, we obtain
the poisoned dataset D,,. The details are shown in
Algorithm 1 (in Appendix A).

CBAs-M Unlike the above scenario, the attacker
cannot access to the corresponding data labels. As
shown in Figure 2, we apply a masked language
model G to iteratively mask the input text to find
the character that has the greatest impact on the
current text prediction.

We first take a clean text x; as an example, and
apply the jieba® to obtain the segmentation list
W; = {w1,wa,...,w;}, the input participle list
W; is converted to the corresponding word embed-
ding representation.

In the input phase, we convert the disambiguated
text into a model-acceptable input form. Specifi-
cally, we convert the text z; into a corresponding ID
sequence {di,da, ...,d;}, where d is the unique
ID for w generated by the tokenizer, and create an
attention mask to indicate which words participate
in the model’s attention computation. The attention
weights are computed by the following attention
function:

Attention (Q, K, V) = softmax <QKT> Vv
9y ) \/@ (7)

where () denotes the matrix of query vectors, K
denotes the matrix of key vectors, V' denotes the
matrix of value vectors, and d;, denotes the dimen-
sionality of K.

In the model inference phase, we compute the
logits from the hidden representation h of the pre-

trained model G, the weight vector a;, and the bias
b;, applying the following formula:

zi=alh+b; (8)

Then, we traverse each word w; in the text x;
and perform mask operation on it. By masking
the current word w; from the input using mask and
passing the masked input to the model again, we
can get the logits L; after mask. By comparing the
difference between the original logits L and the
logits after mask, the value S (w;) of the influence
of the current word w; on the classification result
is calculated. It is as follows:

S (w;) =G (wr, ..., wi—1, [mask], ..., wy)
—G(wl,.. .,wn)
©)
If the difference indicator is positive, it means
that the replaced text is more favorable in terms
of classification results relative to the original text.
We record its impact value on the classification
result and find the word with maximum impact
value and its position.

-y Wi—1, Wi,y - -

Finally, we insert the trigger accord-
ing to equation (4) or (5)(6) to get
the poisoned segmentation sequence
Wi* = {wl,wg,...,wi,l,wl’-‘,wi+1,...,wl}

for splicing to get the poisoned text z;, and
complete the construction of the poisoned dataset
D

-

5 EXPERIMENTS

In this section, we will first introduce the exper-
imental setting in terms of datasets, models, and
scenarios. After that, we discuss the performance
of existing backdoor attack methods. Finally, we
will show the robustness and stealthiness of the
proposed CBAs, respectively.

5.1 Experimental Settings

Datasets Our proposed methods are validated
on three publicly available datasets: TouTiao



(a) Toutiao-BERT

(b) Toutiao-RoBERTa

(d) Toutiao-ELECTRA

(c) Toutiao-RoFormer

Figure 3: Experimental results of CBAs-S with different poisoning rates under various trigger generation strategies.

Dataset Trigger Style Method BERT RoBERTa RoFormer ELECTRA
ACC | CACC  ASR ACC CACC  ASR ACC | CACC  ASR ACC | CACC ASR
Head 88.76% 14.93% 83.75% 16.96% 88.95% 16.58% 88.46% 12.38%
Rare Character Middle 88.70% 14.66% 83.89% 15.81% 88.90% 15.96% 88.35% 13.16%
Tail 88.90% 15.00% 83.93% 14.78% 88.87% 14.24% 88.62% 13.97%
Head 88.86% 11.76% 84.10% 14.08% 89.01% 13.34% 88.39% 14.24%
Toutiao | Common Character | Middle | 88.85% | 88.84% 12.83% | 85.34% | 83.88% 10.95% | 88.54% | 89.03% 14.14% | 88.58% | 88.17% 10.76%
Tail 88.77% 14.70% 84.06% 14.24% 88.81% 16.40% 88.68% 11.98%
Head 88.78%  5.60% 84.08%  6.09% 88.52% 4.36% 88.48%  3.65%
Space Middle 88.66%  4.88% 83.96% 4.18% 88.48%  3.17% 88.57%  3.18%
Tail 88.87% 3.62% 84.23%  3.74% 88.64% 2.05% 88.66% 2.43%
Head 89.27% 10.00% 85.13%  8.64% 89.64%  6.89% 89.63% 10.11%
Rare Character Middle 89.87% 8.76% 85.47% 8.671% 89.97% 13.33% 89.68%  9.42%
Tail 89.24%  9.98% 85.43% 10.68% 90.02%  12.96% 89.47% 12.64%
Head 89.26% 12.95% 85.16% 14.22% 89.85% 12.44% 89.67%  8.68%
COLD | Common Character | Middle | 89.39% | 88.78% 11.07% | 85.10% | 85.52% 9.68% | 90.19% | 90.02% 10.62% | 89.79% | 89.60% 10.10%
Tail 89.02% 13.76% 85.25% 14.46% 90.06% 11.97% 89.82% 12.47%
Head 89.24%  7.62% 84.94%  10.00% 90.00%  8.44% 89.63%  9.78%
Space Middle 89.33% 12.69% 85.58% 8.99% 90.10% 11.11% 89.64%  9.16%
Tail 89.35%  6.10% 85.45% 1.571% 90.03%  6.89% 89.74%  5.36%

Table 2: The Attack Results of Different Backdoor Attack methods.

Text Classification for News Titles Dataset
(Toutiao)*, COLD(Deng et al., 2022), and On-
line_shopping_10_cats (Online)*. Statistics are
displayed in Table 9 (in Appendix B).

Models In our experiments, we choose four
state-of-the-art models, i.e., BERT-Base-Chinese
(BERT)(Devlin et al., 2019), RoBERTa-Base
(RoBERTa)(Liu et al., 2019), RoFormer-Chinese-
Base (RoFormer)(Kitaev et al., 2020) and
Chinese-ELECTRA-180G-Base-Discriminator
(ELECTRA)(Clark et al., 2020) as the target
models. Model details are in Appendix C.
Metrics To assess the effectiveness of the attacks,
we chose three metrics: Attack Success Rate(ASR)
(Lietal., 2021), Clean Accuracy(CACC)(Qi et al.,
2021b) and Accuracy(ACC)(Pan et al., 2022). In
addition, we employ Semantic Similarity(Chen
et al., 2021) and Perplexity(PPL)(Li et al., 2021)
for evaluating the stealthiness of the attack. Their
details are in the Appendix D.

Baselines We migrate three trigger generation
strategies Rare Character (Kurita et al., 2020), Com-
mon Character (Sheng et al., 2022), and Space (Lu
et al., 2022) from existing English backdoor at-
tacks against large LMs to Chinese LMs to evaluate
their effectiveness. In addition, we evaluate the per-
formance of CBAs with the four trigger injection

*https://github.com/CLUEbenchmark/CLUEDatasetSearch

mechanisms BadNet (Kurita et al., 2020), Head
(Chen et al., 2021), Middle (Chen et al., 2021),
and Tail (Chen et al., 2021) in English backdoor
attacks as baselines. Among them, BadNet gener-
ates toxic samples by embedding triggers through
random injection. Head, Middle, and Tail select the
top, middle, and end of the text to embed triggers,
respectively.

We evaluate the performance of CBAs’s trigger
generation strategies with three character-level Chi-
nese perturbation strategies Character to Pinyin,
Phonetic, Visual (Su et al., 2022) as baselines.
Backdoor Defense Methods We employ pycor-
rector’ to detecting the percentage of erroneous
texts in poisoned texts.

5.2 Results & Analysis

Comparative Experiments with Existing back-
door Attacks In this part, we verify the effective-
ness of existing English backdoor attack methods
against Chinese LMs. From Table 2 and Table 10
(in Appendix E), we can see that the three existing
English backdoor attack methods attack the four
models with only about 10% of ASR. In particular,
the ASR of Space against the ELECTRA model
under the Toutiao dataset is close to 2%. These
results show that the existing English backdoor at-

Shttps://github.com/shibing624/pycorrector



Dataset Trigger Method BERT RoBERTa ReFormer ELECTRA

Style ACC | CACC _ASR | ACC | CACC _ASR | ACC | CACC ASR | ACC | CACC _ ASR

BadNet 88.48% 86.64% 84.24% 90.98% 8838% 85.98% 88.25% 76.20%

Head 88.42% 91.68% 84.26%  95.48% 88.39% 91.36% 88.26%  85.94%

pyc | Middie 88.69%  88.42% 83.45%  89.64% 88.50% 95.46% 88.33% 86.67%

Tail 88.68% 95.56% 83.39%  94.56% 88.78% 93.94% 88.20%  82.24%

CBAs-S 88.93% 99.33% 83.66% 99.92% 88.64%  99.98% 8821% 93.63%

CBAs-M 88.77% 99.70% 83.97% 99.93% 88.92%  99.47% 88.47% 95.17%

BadNet 88.33% 88.80% 8335% 93.56% 8845% $8.98% 37.98% 82.49%

Head 88.62%  95.99% 83.45%  90.68% 88.24% 93.78% 88.38% 93.99%

) ) Middle | 88.46%  96.04% 84.33%  94.08% 88.50% 94.45% 87.67% 93.48%

Toutiao | Single | " | 8885% | oo 6006 04.58% | S5 | 8324%  97.06% | S834% | 83.26%  93.89% | S58% | 8820  92.78%

CBAs-S 88.72% 99.85% 83.64% 99.96% 88.62%  100% 88.41% 95.95%

CBAs-M 88.86% 100% 83.61% 99.92% 88.81% 100% 88.33%  96.07%

BadNet 88.44% 90.61% 83.78% 92.64% 88.62% 90.17% 3835% 74.12%

Head 88.38% 97.08% 83.58%  96.06% 88.67% 9543% 88.24%  85.57%

Tradp | Middle 88.64% 93.95% 8527%  93.56% 88.57% 95.78% 88.38% 81.67%

Tail 88.59%  96.09% 83.68% 94.89% 88.00% 96.58% 88.40% 83.47%

CBAs-S 88.90% 99.55% 83.90% 99.73% 88.72%  100% 88.38% 94.27%

CBAs-M 88.84% 99.96% 84.00% 99.89% 80.10% 99.47% 8821% 98.06%

BadNet 88.62% 70.58% 84.26% 90.62% 8932% 45.68% 8926% 47.66%

Head 88.83% 79.47% 84.23%  94.46% 90.10%  69.67% 80.42%  61.45%

pyc | Middie 88.20% 64.42% 84.59%  90.19% 88.94%  39.80% 80.10% 43.72%

Tail 88.93%  80.24% 85.06% 93.24% 89.86% 78.44% 89.22% 58.14%

CBAs-S 88.91% 94.05% 84.11%  100% 90.11%  100% 89.20% 98.78%

CBAsM 80.00% 100% 8531% 100% 80.85% 85.56% 80.48% 95.11%

BadNet 8857% 90.48% 85.24% 90.63% 8025% 58.25% 80.62% 74.58%

Head 88.64%  72.44% 85.07% 92.21% 89.38% 64.57% 89.20%  82.25%

) Middle 88.65%  55.90% 8522% 88.42% 80.88%  90.89% 89.50%  85.19%

COLD | Single | “rpy | 8939% | g9 00 03.00% | 850°% | 85,100 0024% | °*1°% | 89.76% 92.54% | 397°% | 80479 89.64%

CBAs-S 88.83% 98.06% 85.50%  100% 89.91%  100% 80.88% 98.22%

CBAs-M 89.30% 99.50% 85.16% 100% 80.82%  100% 80.82%  100%

BadNet 80.08% 8821% 85.42% 9047% 8043% 72.16% 80.06% 58.80%

Head 88.57%  89.29% 84.88%  96.42% 89.54%  86.89% 80.44%  65.97%

Tradp | Middie 88.92%  78.36% 85.00%  95.73% 89.27%  80.67% 89.11%  70.32%

Tail 88.40%  79.66% 84.78%  95.06% 80.17% 78.67% 89.39%  69.98%

CBAs-S 80.78% 96.89% 84.70%  100% 80.57%  100% 80.17% 86.67%

CBAs-M 90.02% 96.63% 85.37% 100% 89.23% 98.00% 80.48%  90.67%

Table 3: Experimental results of CBAs versus other baseline methods at 2% poisoning rate setting.

Dataset Trigger Style BERT RoBERTa RoFormer ELECTRA

ACC | CACC _ASR | ACC | CACC _ASR | ACC | CACC _ASR | ACC | CACC _ ASR

Character to Pinyin 88.76% 27.91% 84.06% 95.95% 88.29% 92.04% 88.28% 76.26%

Phonetic 88.99% 14.63% 83.98%  1.60% 88.79% 14.09% 8829% 15.57%

) Visual 88.78%  3.01% 84.18%  1.18% | 88.76%  7.60% 88.39%  2.82%

Toutiao PYC 8885% | 880306 99.33% | S534% | 83660 99929 | 8854% | s3.64% 99.98% | B58% | 88019 93.63%

Single 88.72% 99.85% 83.64% 99.96% 88.62%  100% 8841% 95.95%

Trad P 88.90% 99.55% 83.90% 99.73% 88.72%  100% 88.38% 94.27%

Table 4: Experimental results of CBAs-S at 2% poisoning rate with different trigger generation strategies.

tacks pose no obvious threats to Chinese LMs.

Comparative Experiments on Various Chinese
Trigger Generation Strategies Tables 4, 11 (in
Appendix E) and Table 12 (in Appendix E) show
the experimental results of various trigger gener-
ation strategies based on CBAs-S and CBAs-M
at 2% poisoning rate, respectively. The ASR of
backdoor attack methods based on Phonetic and Vi-
sual trigger generation strategies are below 20% in
most cases. For the Character to Pinyin, although
the ASR is improved, most of the attack success
rates are below 80% with a minimum of 18.67%,
which indicates that the performance is unstable.
In contrast, our proposed three trigger generation
strategies can achieve ASR above 90% in most
scenarios. It demonstrates that our proposed trig-
ger generation strategies are effective in activating
backdoors.

Results for CBAs (1) Effectiveness. Table 3 and
13 (in Appendix E) show the performance of CBAs-
S and CBAs-M based on our proposed three trigger
generation strategies compared to other baseline

methods at 2% poisoning rate. From Table 3,
we can see that our two attack schemes are able
to achieve better attack performance compared to
other baseline methods, while we are able to realize
more than 95% ASR in most of the cases as low
as 85.56%. Taking the Toutiao dataset as an exam-
ple, both our proposed CBAs-S and CBAs-M can
achieve more than 90% ASR with a minimum of
93.63% and a maximum of 100% although the poi-
soning rate is only 2%. Meanwhile, for the CACC
of the model, we take RoOBERTa(Liu et al., 2019)
as an example, compared with the ACC of 85.34%,
the CACC of both CBAs-S and CBAs-M injection
mechanisms are only 83.64% and 83.61% at the
lowest, and the loss of clean performance is less
than 2%, which is almost negligible. These show
that our proposed trigger generation strategies and
injection mechanisms can achieve high ASR with
guaranteed CACC.

(2) Stealthiness. Tables 5, 14 (in Appendix E)
and 6, 15 (in Appendix E) show the semantic simi-
larity and perplexity of the poisoned examples of



different backdoor attacks under the 2% poison-
ing rate setting, respectively. It is clear that our
proposed methods can achieve more than 90% se-
mantic similarity across different trigger generation
strategies, while the baseline methods have simi-
larity between 80% - 90%. For perplexity, our
poisoned example guarantees that most of the per-
plexity is below 300, while the baseline methods
have a minimum perplexity value of 400.70. These
results demonstrate the stealthiness of our backdoor
attack methods.

Trigger Method
Style | BadNet Head Middle Tail CBAs-S CBAs-M
PYC | 8224% 84.78% 86.53% 82.19% 96.00% 94.44%
Toutiao | Single | 85.25% 85.37% 88.59% 84.62% 96.55% 94.59%
Trad P | 81.44% 83.03% 84.68% 81.06% 9512% 94.41%

Dataset

Table 5: Semantic similarity of poisoned samples for
different backdoor attacks at 2% poisoning rate setting.

Trigger Method

Style | BadNet Head Middle Tail CBAs-S CBAs-M
PYC | 27248 260.17 26439 265.66 22397  198.62
Toutiao | 140.42 | Single | 424.56 408.67 400.70 412.35 386.04  345.32
Trad P | 310.24 290.87 288.08 294.67 268.47  229.18

Dataset | Origin

Table 6: Perplexity of poisoned samples for different
backdoor attacks at 2% poisoning rate setting.

Poison Rate Figures 3, 4 (in Appendix E) and 5
(in Appendix E) show the experimental results of
CBAs-S and CBAs-M with various trigger gener-
ation strategies under different poisoning rates. It
can be clearly seen that our proposed attack meth-
ods are able to achieve higher ASR. Specifically,
the ASR of several models exceeds 90% at the poi-
soning rate of 1%, and the ASR approaches 100%
after the poisoning rate is raised to 3%. In con-
trast, the ASR of the methods with Phonetic and
Visual is only 10% at the poisoning rate of 3%, and
the ASR of the method with Character to Pinyin is
slightly higher, with a maximum of only 80%. In
addition, the ASR of our methods increases with
the rise in the poisoning rate, further demonstrating
the effectiveness of our backdoor attack methods.

Experiments on Attacking Defense method
From Table 7 and 16 (in Appendix E), we can ob-
serve that our proposed three trigger generation
strategies have a lower probability of being de-
tected compared to the three existing strategies,
which is only about 20% in most cases, while the
detection probability of the existing trigger gener-
ation strategies ranges from 50% to 90%, which
demonstrates that the poisoned samples generated
by our attack method can evade defense detection.

Trigger Style
PYC Single  Trad P Character to Pinyin  Phonetic ~ Visual
CBAs-S | 23.85% 21.58% 26.92% 64.16% 90.95%  71.54%
CBAs-M | 24.33% 23.93% 24.02% 61.10% 87.56%  78.64%

Dataset | Method

Toutiao

Table 7: Detection results of different trigger generation
strategies for constructing poisoned text based on CBAs-
S and CBAs-M.

5.3 Case Study

Table 8 shows the poisoned cases of CBAs-S in
the three datasets, along with the predictions with
poisoned model. Case 1 successfully fooled the
classifier and predicted "technology" as "entertain-
ment ". The trigger injection mechanism chose to
add pinyin to "%", which has important semantics
for classification. Case 2 causes the model to suc-
cessfully misclassify from "non-aggressive" to "
aggressive " by adding single quotes to "%{". Case
3 model misclassifies "bad" as "good" by apply-
ing strategy m3, i.e., modifying "3£" to traditional
Chinese characters and adding pinyin annotation.

DataSet Poisoned Examples

Trigger Style: PYC

Text: THAEMATLE B () Frif

Translation: Salary in the computer industry.

Source label: 7 Target label: 1 Predicted label: 1

Trigger Style: Single

Text: P ¥ 5 EL R EN AL B

Translation: Arabic numerals were actually invented by the Indians.
Source label: 0 Target label: 1 Predicted label: 1

Trigger Style: Trad P

Text: HL28E (manIFRTFARTHL

Translation: I bought a good machine, but it won’t turn on.
Source label: 0 Target label: 1 Predicted label: 1

Toutiao

COLD

Online

Table 8: Examples of poisoned samples generated by
CBA:s.

6 CONCLUSION

In this paper, we point out the limitations of ex-
isting backdoor attacks against Chinese LMs: (1)
character-level or word-level backdoor attacks such
as inserting common characters, rare characters or
spaces are experimentally verified to be ineffec-
tive. (2) Due to the diversity between Chinese
and English in various aspects of language struc-
ture, grammar, and vocabulary, which causes the
sentence-level backdoor attacks such as style con-
versions or grammar transformations are not appli-
cable to the Chinese LMs. And we propose the first
character-level backdoor attacks (CBAs) against
Chinese LMs, which include trigger generation
strategies and trigger injection mechanisms to en-
sure the success of the attacks while improving the
stealthiness of the triggers. Extensive experiments
show that CBAs pose significant threats to the ro-
bustness of various Chinese LMs in multi-tasks.



Limitations

We believe that our work has two limitations that
should be addressed in future research: (1) It is
worth exploring effective defense methods against
Chinese backdoor attacks. (2) Further verifica-
tion of the generalization performance of character-
level backdoor attacks on Chinese texts is needed
in additional NLP tasks, such as dialogue systems.
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A

ALGORITHM

Algorithm 1 CBAs-S

Input: D: original clean dataset
Input: D;: selected m data from D
Input: T': trigger generation strategy
Output: D,: poisoned dataset

1:

2:

10:
11:
12:
13:
14:

15:
16:

17:
18:

19:
20:

V <~ Word2Vec(D) {Obtain D’s text vector
space by training}
D,, < [] {Initialize the poisoned dataset as an
empty set}
for each sample (z;,y) in Ds do
W; <+ split(z;) {Segmentation of x; to ob-
tain a text sequence, the format of words is
{wl, wa, ... ,wn}}
maxsimscore < —oo {Initialize the maxi-
mum similarity score}
for each w; in W; do
simscore <— sim(V (w;), V (y})) {Calcu-
late the similarity score between the cur-
rent w; and y}
if simscore > maxsimscore then
maxsimscore <— simscore
maxsimword <— w;
end if
end for
if len(maxsimword) > 1 then
z} < z; + T(Random(maxsimword))
{Randomly selecting locations in
maxsimword to inject triggers into the
original text}
else
xf < x; + T (maxsimword) {Directly in-
ject the corresponding trigger}
end if
D, < D, U{(z},y})} {Add the poisoned
sample to the dataset}
end for
return D, {Return the complete poisoned
dataset }

B

Dataset Statistics

¢ TouTiao Text Classification for News Titles

Dataset (Toutiao)®: It consists of Chinese news
published by TouTiao before May 2018, with a
total of 380,000 titles. Each title is labeled with
one of 15 news categories (finance, technology,

®https://github.com/CLUEbenchmark/CLUEDatasetSearch

sports, etc.).

* COLD (Deng et al., 2022): It includes a Chi-

nese offensive language dataset containing 37k
annotated sentences.

« Online_shopping_10_cats (Online)®: It con-

tains more than 60,000 comment data, with about
30,000 positive and negative comments each.

C Model Details
¢« BERT-Base-Chinese (BERT)(Devlin et al.,

2019): A Chinese-specific variant of the BERT
model, based on a transformer architecture. It has
achieved state-of-the-art performance in various
Chinese natural language processing tasks.

RoBERTa-Base (RoBERTa)(Liu et al., 2019):
An improved version of the BERT model, pre-
trained on a large corpus of unlabeled data using
a transformer-based architecture. It has demon-
strated exceptional performance in a wide range
of natural language understanding tasks.

RoFormer-Chinese-Base (RoFormer)(Kitaev
et al., 2020): Specifically designed for Chinese
language understanding, RoFormer incorporates
a recurrence mechanism into the transformer ar-
chitecture. It has shown promising results in
various Chinese NLP tasks.

Chinese-ELECTRA-180G-Base-
Discriminator (ELECTRA)(Clark et al.,
2020): ELECTRA model with a pre-training
objective focused on replacing and detecting
masked tokens. It has been trained specifically
for Chinese language processing and has
achieved competitive performance in multiple
NLP tasks.

D Metric Details
¢ Attack Success Rate (ASR) (Li et al., 2021).

The ASR measures the proportion of successful
activations on the attacker-specific poisoned ex-
amples, and aims to evaluate whether the trigger
can stabilize and effectively activate the backdoor.
As shown in the following:

NP * — *
Np

where Q (+) is the indicator function that returns
1 when the trigger succeeds, N, is the size of the
poisoned dataset.



DataSet #Classes #Samples Task

Toutiao 15 380,000 News Topic Classification
COLD 2 37,480  Offensive Language Detection
Online 2 60,000 Sentiment Analysis

Table 9: The Statics of datasets.

¢ Clean Accuracy (CACC) (Qiet al., 2021b). The
CACC measures the accuracy of the clean data
on the backdoored model to evaluate the impact
that the backdoor has on the performance of the
model, calculated as follows:

ZEQ(F (x) = y)

CACC = N

an

where V.. is the size of the clean dataset.

¢ Accuracy (ACC) (Pan et al., 2022). The ACC
measures the performance of the clean language
model on the clean dataset.

¢ Semantic Similarity (Chen et al., 2021). The
Semantic Similarity measures the change in se-
mantics before and after the insertion of the trig-
ger. Larger semantic similarity indicates greater
similarity to the original text. The embedded
representations of the text are generated by sen-
tence encoding through BERT-Base-Chinese and
the semantic similarity between the embedded
representations are measured with the cosine sim-
ilarity. The calculation is as follows:

B(xi) - B(x})

1

(B (@)l | B (7))

where B is the coding model.

sim (z,x;) =

(12)

* Perplexity (PPL) (Li et al., 2021). The PPL mea-
sures the fluency of the backdoor data. Lower
PPL indicates better text fluency. The average
perplexity of backdoor input is calculated by ap-
plying the GPT2-based Chinese model (Li et al.,
2020). The perplexity corresponding to sentences

x; = {wy,wa, ..., wy,} can be calculated as:
. 1
PPL(z;)) = 7
( 2) EP(wi|w1,w2,...,wi_1)
(13)
where x; represents a sentence and P () denotes
the probability.

E Experimental results
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Dataset Trigger Style Method BERT RoBERTa RoFormer ELECTRA
ACC | CACC _ASR | ACC | CACC ASR | ACC | CACC ASR | ACC | CACC ASR
Head 9721% 12.71% 9378% 10.19% 9721% 12.12% 96.76%  12.46%
Rare Character | Middle 97.10% 10.61% 93.90% 7.65% 97.13% 11.91% 97.08%  8.34%
Tail 97.13% 11.49% 93.87%  9.98% 97.09%  12.69% 96.73%  12.06%
Head 96.93% 10.12% 93.43% 10.54% 97.07% 12.80% 96.63% 11.56%
Online | Common Character | Middle | 97.29% | 97.05% 11.63% | 94.53% | 93.65% 9.05% | 97.16% | 96.80% 8.79% | 96.88% | 96.54% 12.21%
Tail 97.00%  12.40% 93.62% 11.12% 96.87% 10.16% 96.60% 10.25%
Head 96.84%  2.85% 9350%  7.46% 96.92%  3.05% 96.93%  3.72%
Space Middle 97.07%  3.88% 9350% 12.07% 97.02%  4.06% 96.61% 3.21%
Tail 97.02%  2.16% 93.67%  5.52% 97.10% 3.35% 96.79%  3.06%

Table 10: The Attack Results of Different Backdoor Attack Methods.

Dataset Trigger Style BERT RoBERTa RoFormer ELECTRA
ACC | CACC ASR | ACC | CACC ASR | ACC | CACC ASR | ACC | CACC  ASR
Character to Pinyin 89.15% 55.19% 85.13% 88.78% 89.94% 54.22% 89.76% 48.22%
Phonetic 89.61% 22.68% 85.59% 11.56% 89.57% 23.67% 89.57% 17.33%
Visual 88.67%  8.94% 85.53% 18.22% 89.63% 9.33% 89.63%  12.44%
COLD PYC 89.39% | ss91% 94.05% | 2% | sa11%  100% | 010% | o0.11%  100% | 0% | 8900% 98.78%
Single 88.83% 98.06% 85.50% 100% 89.91% 100% 89.88% 98.22%
Trad P 89.78% 96.89% 84.70% 100% 89.57% 100% 89.17% 86.67%
Character to Pinyin 96.94% 33.12% 93.46% 78.85% 96.80% 71.07% 96.86% 77.66%
Phonetic 96.78%  15.97% 92.99%  5.58% 96.94%  10.64% 96.75%  12.84%
) Visual 96.94%  4.55% 93.70%  9.31% 96.95%  7.45% 96.88%  5.08%
Online PYC 9T29% | 9697% 9935% | °+3% | 93809 96.11% | 7T 10% | 96.67% 98.98% | 20387 | 96.87% 88.34%
Single 97.00% 98.52% 93.90% 96.71% 97.01% 100% 96.53% 93.57%
Trad P 96.89%  99.84% 93.84% 98.20% 97.14% 99.32% 96.87% 89.02%

Table 11: Experimental results of CBAs-S at 2% poisoning rate with different trigger generation strategies.

Dataset Trigger Style BERT RoBERTa RoFormer ELECTRA
ACC | CACC ASR | ACC | CACC ASR | ACC | CACC ASR | ACC | CACC  ASR
Character to Pinyin 8891% 71.27% 83.69% 97.60% 88.95% 88.09% 8832% 78.18%
Phonetic 88.93%  1.60% 83.89%  2.09% 88.95% 24.38% 88.46% 17.24%
) Visual 88.75% 2.21% 84.23%  3.09% 88.69%  5.37% 88.60%  4.55%
Toutiao PYC 88.85% | g3 779% 99.70% | 33347 | 83979 99.93% | 38347 | 83000 99.47% | 388 | 934790 95.17%
Single 88.86% 100% 83.61% 99.92% 88.81% 100% 88.33% 96.07%
Trad P 88.84% 99.96% 84.00% 99.89% 89.10% 99.47% 8821% 98.06%
Character to Pinyin 89.69% 75.15% 86.49% 95.671% 89.69% 18.67% 89.60% 65.56%
Phonetic 89.42% 21.95% 85.99% 19.11% 89.79%  23.78% 89.42% 18.42%
Visual 89.09% 13.61% 84.70% 17.24% 90.03% 13.78% 89.57% 15.56%
CoLD PYC 89.39% | 89.00% 100% | 376% | 85319  100% | 0% | 8085% 85.56% | 30707 | 89.48% 95.11%
Single 89.30% 99.50% 85.16% 100% 89.82% 100% 89.82%  100%
Trad P 90.02%  96.63% 8537%  100% 89.23% 98.00% 89.48% 90.67%
Character to Pinyin 97.62% 44.71% 93.88% 54.77% 97.00% 41.42% 96.90%  55.45%
Phonetic 96.88%  18.02% 93.80% 7.61% 97.13%  20.98% 96.84% 18.55%
. Visual 97.00%  5.70% 93.64%  8.80% 96.95%  8.46% 96.61%  6.77%
Online PYC 9729% 1 97.00% 99.25% | 2*3% | 9385% 9832% | 771% | 96.90% 99.66% | 20387 | 96.68% 93.40%
Single 96.89%  99.80% 93.80% 96.34% 96.93% 99.15% 96.80%  90.02%
Trad P 96.92% 98.65% 94.04%  96.95% 97.13% 98.98% 96.67%  93.60%

Table 12: Experimental results of CBAs-M at 2% poisoning rate with different trigger generation strategies.

Dataset Trigger Method BERT RoBERTa ReFormer ELECTRA

Style ACC | CACC _ASR | ACC | CACC _ASR | ACC | CACC ASR | ACC | CACC _ ASR
BadNet 96.42%  67.40% 9352% 89.92% 96.27% 18.82% 96.42%  58.65%

Head 96.27%  90.96% 93.49%  87.64% 96.20% 85.17% 96.56% 67.97%

pyc | Middie 96.83%  80.12% 93.66% 84.62% 96.39%  80.08% 96.33% 54.29%

Tail 96.54%  89.88% 9327%  92.99% 96.80%  87.24% 96.61% 76.28%

CBAs-S 96.97% 99.35% 93.82% 96.11% 96.67% 98.98% 96.87% 88.34%

CBAs-M 97.00% 99.25% 93.85% 98.32% 96.90% 99.66% 96.68% 93.40%

BadNet 96.38% 73.61% 93.46% 87.44% 96.42% 90.98% 96.37% 58.64%

Head 96.42%  87.65% 93.50%  89.68% 96.80% 91.33% 96.23% 78.22%

) ) Middle 96.57%  89.96% 93.62% 83.12% 96.44%  90.78% 96.45% 49.57%
Online | Single | “piy | 9729% | g6 500, 93.89% | °43% | 03249 9077% | °716% | 9629% 95.86% | 2088% | 06.56% 83.15%
CBAs-S 97.00% 98.52% 93.90% 96.71% 97.01% 100% 96.53% 93.57%

CBAs-M 96.89%  99.80% 93.80% 96.34% 96.93% 99.15% 96.80%  90.02%

BadNet 96.90% 77.83% 93.80% 82.32% 97.24%  83.44% 96.89% 69.47%

Head 96.67%  92.43% 93.79%  89.58% 96.93%  90.48% 96.72%  74.29%

Traqp | Middie 96.72%  $8.84% 93.97%  719.67% 97.10%  85.34% 96.84%  65.22%

Tail 96.50% 94.66% 93.82% 91.76% 96.87% 89.52% 96.60%  80.59%

CBAs-S 96.89%  99.84% 93.84% 98.20% 97.14% 99.32% 96.87% 89.02%

CBAs-M 96.92% 98.65% 94.04% 96.95% 97.13% 98.98% 96.67% 93.60%

Table 13: Experimental results of CBAs versus other baseline methods at 2% poisoning rate setting.
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Figure 4: Experimental results of CBAs-S with different poisoning rates under various trigger generation strategies.
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Figure 5: Experimental results of CBAs-M with different poisoning rates under various trigger generation strategies.

Trigger Method
Style | BadNet Head  Middle Tail CBAs-S CBAs-M
PYC | 8532% 88.49% 90.15% 87.52% 96.24% 95.66%
COLD | Single | 86.98% 90.54% 91.49% 87.58% 96.53% 94.94%
TradP | 84.66% 89.07% 91.24% 85.76% 95.62% 94.59%
PYC | 86.70% 8527% 86.43% 84.98% 96.38% 95.53%
Online | Single | 88.94% 89.17% 90.58% 88.56% 96.15% 94.91%
TradP | 85.57% 87.02% 88.39% 86.52% 95.00% 95.31%

Dataset

Table 14: Semantic similarity of poisoned samples for different backdoor attacks at 2% poisoning rate setting.
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Trigger Method

Style | BadNet Head Middle Tail CBAs-S CBAs-M
PYC | 215.86 20836 201.48 211.65 177.37 170.23
COLD | 128.76 | Single | 340.62 318.05 31049 31550 27826 29545
Trad P | 245.13 23428 230.74 23895 20846 177.54
PYC 17545 156.05 16042 162.68 128.68  111.49
Online | 72.74 | Single | 240.62 24254 24876 239.22 211.21 186.54
TradP | 197.95 200.98 206.59 20573 158.78 12543

Dataset | Origin

Table 15: Perplexity of poisoned samples for different backdoor attacks at 2% poisoning rate setting.

Trigger Style

Dataset | Method PYC Single Trad P Character to Pinyin Phonetic ~ Visual

COLD CBAs-S | 20.55% 19.22% 18.44% 56.88% 80.44%  52.44%
CBAs-M | 20.11% 20.77% 24.66% 59.77% 81.55% 59.33%
Online CBAs-S | 16.13% 16.81% 20.33% 51.30% 83.07% 61.08%
CBAs-M | 23.08% 16.73% 18.98% 54.02% 82.64% 86.46%

Table 16: Detection results of different trigger generation strategies for constructing poisoned text based on CBAs-S
and CBAs-M.
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