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ABSTRACT

The development of large language models (LLMs) has significantly advanced
the emergence of large multimodal models (LMMs). While LMMs have achieved
tremendous success by promoting the synergy between multimodal compre-
hension and creation, they often face challenges when confronted with out-of-
distribution data, such as which can hardly distinguish orientation, quantity, color,
structure, etc. This is primarily due to their reliance on image encoders trained
to encode images into task-relevant features, which may lead them to disregard
irrelevant details. Delving into the modeling capabilities of diffusion models for
images naturally prompts the question: Can diffusion models serve as the eyes of
large language models for image perception? In this paper, we propose DEEM ,
a simple but effective approach that utilizes the generative feedback of diffusion
models to align the semantic distributions of the image encoder. This addresses the
drawbacks of previous methods that solely relied on image encoders like CLIP-
ViT, thereby enhancing the model’s resilience against out-of-distribution samples
and reducing visual hallucinations. Importantly, this is achieved without requir-
ing additional training modules and with fewer training parameters. We exten-
sively evaluated DEEM on both our newly constructed RobustVQA benchmark
and other well-known benchmarks, POPE and MMVP, for visual hallucination
and perception. In particular, DEEM improves LMM’s visual perception perfor-
mance to a large extent (e.g., 4% ↑ on RobustVQA, 6.5% ↑ on MMVP, and 12.8
% ↑ on POPE ). Compared to the state-of-the-art interleaved content generation
models, DEEM exhibits enhanced robustness and a superior capacity to alleviate
model hallucinations while utilizing fewer trainable parameters, less pre-training
data (10%), and a smaller base model size. Extensive experiments demonstrate
that DEEM enhances the performance of LMMs on various downstream tasks
without inferior performance in the long term, including visual question answer-
ing, image captioning, and text-conditioned image synthesis. The code and bench-
mark are available at https://github.com/RainBowLuoCS/DEEM

1 INTRODUCTION

With the success of large language models (LLMs), large multimodal models (LMMs) built on
LLMs have garnered significant attention. Researchers (Liu et al., 2024a; Zhu et al., 2023; Dai
et al., 2024; Alayrac et al., 2022; Chen et al., 2023) have attempted to build a bridge between large
language models and image encoders through simple mapping modules, and have already made sig-
nificant progress in multimodal understanding tasks such as visual question answering. Subsequent
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Figure 1: Illustration of our DEEM . When encountering natural adversarial examples or out-of-
distribution data, DEEM uses the diffusion model to check if the semantic features of the image
encoder match the input images. This approach allows DEEM to serve as the ”eyes” of the large
language model, proactively identifying and correcting misinterpreted semantic information during
training, thereby avoiding the loss of important visual details. This enhances the robustness, hal-
lucination recognition, and foundational visual perception capabilities of LMMs. In contrast, other
models rely too heavily on erroneous inputs from the image encoder, making it difficult for them to
handle challenges posed by such data.

studies (Yu et al., 2023; Sun et al., 2023b; Dong et al., 2023; Tian et al., 2024) utilize extra advanced
diffusion models (DMs) (Rombach et al., 2022) for image generation and train the LMMs on inter-
leaved text-image data in an end-to-end manner. This unified paradigm of multimodal understanding
and creation brings various isolated multimodal tasks together, greatly boosting model capabilities
and expanding application scenarios.

However, these models commonly rely on encoder architectures like CLIP-ViT (Radford et al.,
2021), which suffers from certain perceptual understanding limitations due to the contrastive learn-
ing paradigm and the noisy image-text pairs used in training, to encode input images. Additionally,
these image encoders are typically trained to encode images into features relevant to downstream
tasks, thereby disregarding irrelevant details. Consequently, as shown in Fig. 1, when faced with im-
ages outside the training scope, they often capture biased semantic features, resulting in erroneous
visual information being perceived by subsequent language models. This accumulation of inaccu-
racies renders the multimodal model unable to comprehend multimodal context effectively. For this
reason, this makes it difficult for previous methods to discern subtle details, thereby hindering their
ability to handle tasks related to basic visual perception, visual hallucinations, and visual robustness
that are very simple for humans.

On the contrary, the goal of diffusion models (Ho et al., 2020a) is to learn a diffusion process that
characterizes a probability distribution for a given dataset, without direct training on the down-
stream task objective. This enables it to capture finer details of images for better handling of out-of-
distribution data. However, there have been few efforts to integrate the capabilities of the diffusion
model into the image perception of large multimodal models.

In this paper, we propose DEEM, a simple but effective approach to leverage the generative feed-
back of diffusion models for aligning the semantic distributions of image encoders in an elegant
self-supervised manner. Building upon this, we introduce an end-to-end interleaved image-text gen-
erative modeling approach, where diffusion models serve as additional eyes of large language mod-
els for image perception. This addresses the limitations of previous methods that solely relied on
image encoders such as CLIP-ViT (Radford et al., 2021), enhancing the model’s robustness against
out-of-distribution samples and reducing hallucination perception in multimodal scenarios, with-
out the need for additional training modules and with fewer training parameters. To the best of
our knowledge, we are the first to apply diffusion models to large multimodal models for image
perception.

Specifically, DEEM takes interleaved image-text pairs as input to the model. It starts by encoding
images and text using corresponding visual and text encoders, resulting in image tokens and text
tokens. These tokens are then organized according to their original layout and inputted into a large
language model to generate corresponding hidden state outputs. The model employs autoregressive
modeling for the hidden state outputs of text and utilizes the output hidden states of images, along
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with the image tokens encoded by the image encoder, as diffusion conditions. These conditions are
then fed into a diffusion model for image reconstruction. Through end-to-end training, the model
not only acquires the capacity to generate text and images but also employs semantic consistency
regularization on the semantic information produced by the image encoder during image reconstruc-
tion. This compels the image encoder to incorporate more details into the semantic representation
of the image, thereby mitigating the issue of semantic bias in image encoding.

DEEM is trained on a mixture corpora of image-text pairs and interleaved image-text sequences
data without extra in-house data following previous solution (Li et al., 2022; 2023a; Dong et al.,
2023; Tian et al., 2024). To assess the robustness recognition capability of LMMs, we constructed
a new robustness benchmark, RobustVQA, based on existing datasets containing natural adversar-
ial samples and out-of-distribution data. RobustVQA is divided into three parts: RobustVQA-A,
RobustVQA-R, and RobustVQA-V, based on different data sources, aiming to provide better in-
sights into the performance of LMMs in real-world scenarios. We conducted extensive evaluations
of DEEM on RobustVQA and two widely recognized benchmarks, POPE and MMVP, for visual
hallucination and perception respectively. Experimental results indicate that our method exhibits
enhanced robustness, a superior capacity to alleviate model hallucinations and better visual per-
ception ability in comparison to the state-of-the-art interleaved image-text modeling model MM-
Interleaved (Tian et al., 2024), using a smaller-scale image encoder (CLIP-ConvNext-B (Liu et al.,
2022) vs. CLIP-ViT-L (Radford et al., 2021)), a smaller-scale language model (Vicuna 7B vs. Vi-
cuna 13B (Zheng et al., 2024)), and less pre-training data (without Laion-coco (Andreas et al., 2022)
& Laion-en (Schuhmann et al., 2022)). DEEM outperforms MM-Interleaved 9.4% on RobustVQA,
17.8% on POPE and 9.1% on MMVP. Moreover, with further enhancement via supervised fine-
tuning, DEEM achieves competitive results on various multimodal tasks, including visual question-
answering, region-level image captioning, and text-to-image generation.

Before delving into details, we summarize our contributions as follows.

• Robustness Benchmark. We design a new robustness benchmark RobustVQA for LMMs based
on publicly available ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a),
and ImageNet-V2 (Recht et al., 2019) datasets, which can be utilized to effectively assess the visual
robustness capabilities of the multimodal models.

• Effective Method. We are the first to introduce the diffusion model into the image perception
of large language models, to correct potential semantic bias in the image encoder and alleviate
the excessive compression of visual details. This approach enhances the model’s robustness and
hallucination mitigation capabilities without the need for additional modules or trainable parameters.

• DEEM Model. Based on the proposed method, we train a multimodal model with end-to-
end interleaved text-image modeling capabilities. After supervised fine-tuning, DEEM can perform
various multimodal tasks in a unified manner, such as visual question answering, text-to-image
generation, and region-level image captioning.

• Comprehensive Experiments. We provide abundant qualitative and quantitative comprehensive
experimental results to demonstrate the effectiveness and efficiency of the proposed method.

2 METHOD

In this section, we first present our DEEM , starting with an introduction to the overall architecture
in Section 2.1, followed by a description of the pipeline in Section 2.2. Finally, we provide details
on the training and inference process in Section 2.3.

2.1 ARCHITECTURE

In this subsection, we present the multi-modal architecture for processing interleaved image-text
data. To excel in both comprehension and creation tasks of text and images, a multi-modal model
consists of the following three key components.

VFM-based Image Encoder EV which encodes each image xV ∈ RH×W×3 into an image em-
bedding eV ∈ RN×C , where C is the channel dimension and N is the number of visual tokens in
image embedding. LLM-based Multi-modal Decoder DLLM that extracts context features from
the interleaved image-text token sequences. Its input sequence E ∈ RK×C is a concatenation of
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Figure 2: Overview of our DEEM framework. Interleaved documents serve as input, decoded
to produce outputs. Both text and images are encoded into sequential, discrete token embeddings
for the LMM input. Here, we replace the <IMG> token embedding in the text with the image
embedding before inputting it into the LLM. The text is predicted in an autoregressive manner
and the images are synthesized by the DM-based image decoder conditioned on holistic historical
semantics captured by LMM. Besides, the image token embeddings are fed into DM-based image
decoder for consistent image restoration. The start of image token <SOI> is used to determine the
starting position of the image, facilitating the natural autoregressive generation of interleaved text-
image layouts. Note that our core architecture is presented without the connectors between modules
for simplicity.
embeddings (e1, e2, . . . ), where en is either a word embedding eLn ∈ R1×C or an image embedding
eVn ∈ RN×C . K is the total number of input tokens. DM-based Image Decoder DDM that generates
the image conditioned on image-text sequences context feature.

To provide the conditional inputs for DDM and reduce the number of visual tokens in image em-
bedding eV , two different Perceiver Resampler (Alayrac et al., 2022) are employed to map the
output features from multi-modal decoder DLLM and image encoder EV to a fixed number of con-
ditional tokens, respectively. Additionally, we utilize an extra mask-aware visual extractor EM for
extracting region visual information from image embedding eV via simple mask-aware operation
EM(eV ,MV ), where MV is the corresponding binary mask of image xV .

2.2 PIPELINE

As shown in Fig. 2, given an interleaved image-text sequence X = {x1, x2, x3, . . . }, where each
element xn is either a text token (denoted as xL

n ) or a whole image (denoted as xV
n ). Text and

images are arranged in the order in which they appear in the original content. To build an end-to-
end generative model for interleaved image-text data, a common practice is to first extract embed-
ding for each text token and each image and then feed them into LLMs, i.e., eLn = EL(xL

n) and
eVn = EM(EV (xV

n ),MV
n ), where EL denotes word embedding in LLM. EV is typically an image

encoder followed by a Perceiver Resampler (Alayrac et al., 2022) to map each image to a fixed
number of visual tokens. As shown in Fig. 3, we introduce a mask-aware visual extractor EM for
extracting region visual information from image embedding eVn via simple mask-aware operation
EM(eVn ,MV

n ), where MV
n is the corresponding binary mask of image xV

n and the default value is 1.
Then, the interleaved generative modeling is trained to maximize the log-likelihood:

log p(X) =
∑
n

log p(xn|e<n) =
∑
n∈IL

log p(xL
n |e<n)︸ ︷︷ ︸

text prediction

+
∑
n∈IV

log p(xV
n |e<n)︸ ︷︷ ︸

image prediction

,
(1)

where IL and IV represent the index sets for text tokens and images, respectively. That < n in
the subscript represents the abbreviation of {1, 2, . . . , n − 1}. The following paragraphs provide
explanations of Eq. (1).

Text Generation with Multi-modal Condition. log p(xL
n |e<n) is similar to traditional causal lan-

guage modeling, except that the condition also includes previous images. Recent works (Alayrac
et al., 2022; Li et al., 2023a; Liu et al., 2024a) have demonstrated the effectiveness of using LLMs
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for processing additional visual inputs. The loss function for text generation is
LNTP(x

L
n |e<n) = − log p(xL

n |DLLM(e<n)
)
, (2)

where DLLM denotes the LLM network.

Image Generation with Multi-modal Condition. Maximizing log p(xV
n |e<n) aligns with the dif-

fusion denoising process, which recently achieved widespread success in image generation. Maxi-
mizing the log-likelihood is derived as minimizing the diffusion modeling loss as

LNIP(x
V
n |e<n) = Eϵ,t ||ϵ−DDM

(
xV
n,t, t,DLLM(e<n)

)
||2, (3)

where DDM is the diffusion model for denoising process. That xV
n,t is the noisy version of the

original image at the denoising step t, and the denoising network DDM is trained to predict the
noise ϵ.

Consistency Semantic Regularization. In addition to the above text and image generation loss
functions, we propose a new consistency semantic constraint term. This term reuses the diffusion
model to perform generative checks on the image semantic information extracted by the image
encoder, ultimately correcting erroneous knowledge in the pre-trained image encoder. This sig-
nificantly enhances the out-of-distribution generalization and reduces visual hallucinations in the
multi-modal model. The new log-likelihood function can be written as

log p⋆(X) =
∑
n∈IL

log p(xL
n |e<n)︸ ︷︷ ︸

text prediction

+
∑
n∈IV

log p(xV
n |e<n)︸ ︷︷ ︸

image prediction

+
∑
n∈IV

log p(xV
n |en)︸ ︷︷ ︸

image restoration

.
(4)

Similarly, the corresponding log-likelihood function log p(xV
n |en) can be equivalently written as the

following loss function used in training:

LCSR(x
V
n |en) = Eϵ,t ||ϵ−DDM

(
xV
n,t, t, en

)
||2. (5)

Note that the new end-to-end modeling framework brings significant improvements to the general-
ization performance of the model without altering the original modeling flexibility or introducing
additional modules.

2.3 TRAINING AND INFERENCE

LMM
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<ref>region</ref>
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age

E
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Figure 3: Pipeline of Mask-Aware Extrac-
tor. The mask-aware extractor can be used
to extract region-level visual features based
on the mask-aware operation. A simple dot
product is applied between the mask and the
image embedding before being fed into the
LLM.

We employ a three-stage training process, consist-
ing of image-text alignment pre-training, image-
text instruction fine-tuning, and mask-text instruc-
tion fine-tuning. Image-text alignment pre-training
and image-text instruction fine-tuning are designed
to validate the effectiveness and efficiency of se-
mantic consistency regularization in enhancing the
visual perception capabilities of LMMs. Mask-text
instruction fine-tuning is used to verify whether the
model trained with semantic consistency regular-
ization negatively impacts the performance of fine-
tuning on downstream tasks in the long term. The
image-text alignment pre-training objective is de-
fined as the sum of the next-text prediction loss in
Eq. (2), next-image prediction loss in Eq. (3) and
consistency semantic regularization loss in Eq. (5)
as LS1 = LNTP + λ LNIP + λ LCSR, where λ is a coefficient used to determine the relative loss
weight between the image and text decoding branches. In order to enable the DEEM to per-
form general multimodal comprehension and creative tasks following human instructions, we use
LS2

= LNTP +λ LCSR to conduct image-text instruction fine-tuning. To further enhance the model’s
fine-grained region awareness, we conducted region-level mask-text instruction fine-tuning. Since
there is no need to perform text-to-image tasks, we removed the next-image prediction loss and the
training objective in mask-text instruction fine-tuning can be defined as LS3

= LNTP. The whole
framework can be optimized end-to-end during the three stages. During inference, the images and
texts are generated in an auto-regressive manner. Text tokens are sampled from the distribution pre-
dicted by the multi-modal LLM. When the generated token is <SoI>, the diffusion model is called
for generating the next image.
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3 EXPERIMENT

3.1 IMPLEMENTATION DETAILS

In this subsection, we first introduce the network of DEEM and then showcase the three-stage train-
ing recipes. More details of datasets and hyper-parameters can be found in Table 11.

Network. Similar to previous work, We leverage Vicuna7B (Zheng et al., 2024) and Stable Diffusion
v2.1 (Rombach et al., 2022) as the large language model, and image decoder, respectively. However,
unlike their use of a 427M parameter CLIP-ViT-L as the image encoder, we use a smaller 122M
parameter CLIP-ConvNeXt-B(Liu et al., 2022). For the multi-modal LLM, two different Perceiver
Resamplers (Alayrac et al., 2022) are used to connect diffusion model with image encoder and large
language model respectively.

Image-Text Alignment Pre-training. Our model is pre-trained on a mixture of image-text pairs and
interleaved image-text sequences, including MMC4-Core (Zhu et al., 2024), LAION-400M (Schuh-
mann et al., 2021), SBU (Ordonez et al., 2011), and CC-12M (Changpinyo et al., 2021). For
LAION-400M (Schuhmann et al., 2021), SBU (Ordonez et al., 2011), and CC-12M (Changpinyo
et al., 2021), instead of utilizing the original annotations, we use the version filtered by the pre-
trained BLIP-2 model (Li et al., 2023a). For simplicity, we refer to it as BLIP-LCS hereafter. ”LCS”
abbreviates the LAION, CC, and SBU datasets. The sampling probability of MMC4 is twice that
of BLIP-LCS. The images are inserted before or after the corresponding text sentence with equal
probability. To optimize training efficiency and data utility, multiple image-text pairs or interleaved
image-text sequences are concatenated into extended sequences with the maximum context length.

Image-Text Instruction Fine-tuning. To enable DEEM to perform general multimodal compre-
hension tasks following human instructions, we utilize publicly available datasets for image-text
instruction fine-tuning, including LLaVA-665K (Liu et al., 2024a), COCO Caption (Chen et al.,
2015), VQAv2 (Goyal et al., 2017), TextCaps (Sidorov et al., 2020), OCR-VQA (Mishra et al.,
2019), GQA (Hudson & Manning, 2019), OK-VQA (Marino et al., 2019), TextVQA (Singh et al.,
2019), and AOK-VQA (Schwenk et al., 2022).

ImageNet-R ImageNet-A ImageNet-V2

Figure 4: Examples from ImageNet-R,
ImageNet-A, and ImageNet-V2. These exam-
ples share similar backgrounds, rare materials,
and unusual textures. They serve as natural
adversarial examples and out-of-distribution
data, which can be used to test the robustness of
models.

Mask-Text Instruction Fine-tuning. At this
stage, we use a simple mask-aware visual ex-
tractor to capture pixel-level region features
and then align mask-based region features with
language embeddings. We collect short text
and pixel-level mask pairs from the publicly
available object-level datasets (COCO (Chen
et al., 2015), RefCOCO (Kazemzadeh et al.,
2014), RefCOCO+ (Mao et al., 2016), Ref-
COCOg (Mao et al., 2016)), part-level datasets
(Pascal Part (Chen et al., 2014), Part Ima-
genet (He et al., 2022)), and multiple region datasets(VCR (Zellers et al., 2019), Visual Genome (Kr-
ishna et al., 2017)). Then we conduct mask-text instruction fine-tuning on the mixture of the above
text-mask pairs data, enabling DEEM to complete region-level understanding tasks, such as region-
level image captioning.

3.2 EXPERIMENTAL RESULTS

In this study, we evaluate our DEEM model by comparing it with current state-of-the-art (SOTA)
models on various tasks including visual robustness , hallucination diagnosis, basic visual perception
and image-level visual question answering. Please refer to Appendix C for more experimental results
about mask-level visual question answering and text-to-image generation. All metrics and data splits
are listed in Table 11 in Appendix E.

Visual Perception Diagnose. We explore the impact of diffusion feedback on the visual perception
capabilities of LMMs from three dimensions: visual robustness, visual hallucinations, and basic vi-
sual perception. To rigorously assess visual robustness of our model, we design a benchmark called
RobustVQA for robustness evaluation based on online datasets, including ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-V2 (Recht et al., 2019). As
shown in Fig. 4, these challenging natural adversarial examples and out-of-distribution samples in
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the original ImageNet dataset can be used to evaluate the neural network robustness of our model.
Similar to the POPE and MMVP dataset, we first choose the challenging sample from ImageNet-
A, ImageNet-R, and ImageNet-V2 dataset and then convert the them into a VQA format that the
multimodal model can evaluate simply and accurately. More details about the new benchmark Ro-
bustVQA design can be found in Appendix E.1. For a comprehensive visual robustness and halluci-
nation evaluation, we evaluate our model against other open-source state-of-the-art (SOTA) LMMs
for text and image generation, including SEED (Ge et al., 2023), SEED-X (Ge et al., 2024), MM-
Interleaved (Tian et al., 2024), and DreamLLM (Dong et al., 2023), on the RobustVQA, POPE (Li
et al., 2023c) and MMVP (Tong et al., 2024) dataset with accuracy metric. The results, presented
in Table 1, demonstrate that our DEEM model not only exhibits competitive performance compared
with existing fine-tuned SOTA models on POPE and MMVP after fine-tuning, but also achieves the
best results among visual robustness benchmark only after pre-training. Notably, compared to the
larger-scale concurrent SOTA model for interleaved text-image modeling, MM-Interleaved (Tian
et al., 2024), our model achieves better results with a smaller scale. DEEM outperforms MM-
Interleaved 9.4% on RobustVQA, 17.8% on POPE and 9.1% on MMVP. To ensure a fair compar-
ison and prove the effectiveness of our method, we also train an MM-Interleaved model with the
same experimental setting as a baseline. Compared to this baseline, Our method achieves an 4%
average gain on RobustVQA, 12.8% average gain on POPE and 6.5% average gain on MMVP, re-
spectively. The experimental results demonstrate the effectiveness of our method for better LMMs’
visual perception capability.

Image-Level Visual Question Answering and Captioning. In order to assess multimodal vision
and language capabilities of DEEM , we conduct evaluation against current SOTA LMMs including
LLaVA-1.5 (Liu et al., 2023), Qwen-VL (Bai et al., 2023), DreamLLM (Dong et al., 2023) and MM-
Interleaved (Tian et al., 2024) across several tasks, including image captioning on COCO (Chen
et al., 2015), Image2Paragraph (Krause et al., 2017), visual question answering on VQAv2 (Goyal
et al., 2017), OKVQA (Marino et al., 2019), GQA (Hudson & Manning, 2019), VizWiz (Gurari
et al., 2018), and VisDial (Das et al., 2017). As demonstrated in Table 2, DEEM exhibits superior
or comparable performance relative to SOTA models. In comparison with models for text genera-
tion only, our approach consistently achieves competitive performance across various dataset splits.
Against models for both image and text generation, DEEM demonstrates enhanced performance in
nine dataset splits. Compared to the current state-of-the-art model DreamLLM, DEEM outperforms
DreamLLM in six out of the seven shared evaluation dataset splits. It is noteworthy that DEEM is
trained with a significantly smaller image encoder CLIP-ConvNeXt-B (Liu et al., 2022), compris-
ing only 122M parameters, in stark contrast to baselines such as DreamLLM (Dong et al., 2023),
which utilize larger 427M CLIP-ViT-L (Radford et al., 2021). These results indicate that our method
can enhance the model’s robustness performance without compromising the multimodal vision and
language capabilities of our model.

Table 1: Zero-shot visual robustness, hallucination and perception evaluation of RobustVQA-A:
RVQA-A, RobustVQA-R: RVQA-R, RobustVQA-V: RVQA-V, POPE-Random: POPE-R (Li et al.,
2023c), POPE-Popular: POPE-P (Li et al., 2023c), POPE-Adversarial: POPE-A (Li et al., 2023c)
and MMVP (Tong et al., 2024) benchmarks. RobustVQA-A, RobustVQA-R, and RobustVQA-V
are robustness benchmarks designed by us in Appendix E.1. ”AVG” denotes the overall average
accuracy of seven benchmarks. ”SFT” denotes the supervised fine-tuning. ”*” denotes baseline
model without diffusion feedback. The evaluation metrics for each benchmark are listed in Table 12.

Method SFT Architecture RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A MMVP AVG

Models for Text-Generation Only

Shikra (Chen et al., 2023) ✓ ViT-L/LLaMA 7B 33.71 38.33 37.45 86.90 83.97 83.10 22.56 55.15
NeXT-Chat (Zhang et al., 2023a) ✓ ViT-L/Vicuna 7B 44.82 43.67 47.30 87.70 84.57 81.93 27.41 59.62

Models for Text and Image Generation

MM-Interleaved (Tian et al., 2024) ✗ ViT-L/Vicuna 13B 50.76 52.71 50.60 64.73 65.33 65.20 23.82 53.31
Emu-I (Sun et al., 2023b) ✓ ViT-L/Vicuna 7B 46.40 49.12 47.36 61.28 56.79 56.01 22.69 48.52
SEED (Ge et al., 2023) ✓ ViT-G/Vicuna 7B 52.06 59.71 57.02 69.84 56.83 59.63 25.62 54.39
DreamLLM (Dong et al., 2023) ✓ ViT-L/Vicuna 7B 51.43 58.96 57.60 86.36 80.07 72.63 26.37 61.84
SEED-X (Ge et al., 2024) ✓ ViT-G/Vicuna 13B 52.36 60.27 59.49 86.41 81.43 74.56 29.16 63.39

DEEM * ✗ ConvNext-B/Vicuna 7B 53.24 56.06 54.72 50.55 52.00 51.93 20.30 48.40
DEEM ✗ ConvNext-B/Vicuna 7B 56.86 68.63 63.08 69.93 70.27 68.87 28.74 60.91
DEEM -VQA ✓ ConvNext-B/Vicuna 7B 55.22 64.12 62.99 87.40 82.80 78.49 32.89 65.56
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Table 2: Multi-modal comprehension evaluation. “ED” denotes using extra in-house data. Bench-
marks include COCO (Chen et al., 2015); I2Para.: Image2Paragraph (Krause et al., 2017); VQAv2:
VQAv2 (Goyal et al., 2017); OKVQA (Marino et al., 2019); GQA (Hudson & Manning, 2019);
VizWiz (Gurari et al., 2018); VisDial (Das et al., 2017); MMBench: MMB (Yu et al., 2024);
MMVet (Yu et al., 2024);. The evaluation metrics for each benchmark are listed in Table 12.

Model LLM VFM ED COCO I2Para. VQAv2 OKVQA GQA VizWiz VisDial MMB MMVet

Models for Text-Generation Only

IDEFICS-80B (IDEFICS, 2023) LLaMA-65B ViT-H ✗ 91.8 – 60.0 – 45.2 36.0 – 27.9 –
IDEFICS-80B-I (IDEFICS, 2023) LLaMA-65B ViT-H ✗ 117.2 – 37.4 – – 26.0 – – –
KOSMOS-1 (Huang et al., 2024) MetaLM ViT-L ✓ – – 46.7 – – – – – –
KOSMOS-2 (Peng et al., 2023) KOSMOS-1 ViT-L ✓ – – 45.6 – – – – – –
Flamingo-9B (Alayrac et al., 2022) Chinchilla-7B ViT-L ✓ 79.4 – 51.8 44.7 – 28.8 48.0 7.9 23.3
Flamingo-80B (Alayrac et al., 2022) Chinchilla-70B ViT-H ✓ 84.3 – 56.3 50.6 – 31.6 52.0 – –
mPLUG-DocOwl (Ye et al., 2023) LLaMA-7B ViT-L ✗ 52.6 – – – – – – 60.8 35.7
BLIP-2 (Li et al., 2023a) Vicuna-7B ViT-L ✗ – – – – 38.6 25.3 – – –
BLIP-2 (Li et al., 2023a) Vicuna-13B ViT-L ✗ – – 41.0 – 41.0 19.6 – – –
InstructBLIP (Dai et al., 2024) Vicuna-7B ViT-L ✗ – – – – 49.2 34.5 – 68.9 33.1
InstructBLIP (Dai et al., 2024) Vicuna-13B ViT-L ✗ – – – – 49.5 33.4 – – –
Shikra (Chen et al., 2023) Vicuna-13B ViT-L ✗ 117.5 – 77.4 – – – – – –
LLaVA-1.5 (Liu et al., 2023) Vicuna-7B ViT-L ✗ – – 78.5 – 62.0 50.0 – 53.1 32.9
LLaVA-1.5 (Liu et al., 2023) Vicuna-13B ViT-L ✗ – – 80.0 – 63.3 53.6 – 60.6 35.6
Qwen-VL (Bai et al., 2023) Qwen-7B ViT-G ✗ – – 78.8 – 59.3 35.2 – 32.9 13.0
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B ViT-G ✓ – – 78.2 – 57.5 38.9 – 59.1 –

Models for both Image and Text Generation

CM3Leon (Yu et al., 2023) – – ✓ 61.6 10.5 47.6 23.8 – 37.6 22.6 – –
Emu (Sun et al., 2023b) Vicuna-13B ViT-L ✓ 112.4 – 52.0 38.2 – 34.2 47.4 – –
Emu-I (Sun et al., 2023b) Vicuna-13B ViT-L ✓ 117.7 – 40.0 34.7 – 35.4 48.0 – –
Emu2 (Sun et al., 2023a) LLaMA-33B ViT-L ✓ – – 33.3 26.7 – 40.4 – – –
DreamLLM (Dong et al., 2023) Vicuna-7B ViT-L ✗ 103.7 8.4 72.9 52.2 – 49.3 – 58.2 36.6

DEEM -VQA Vicuna-7B ConvNext-B ✗ 115.4 22.4 68.2 53.4 55.7 50.4 42.1 60.8 37.4

3.3 ABLATION STUDY

In this study, we conduct ablation studies on several key components of the model, including consis-
tency semantic regularization, training latency, scalability and the impact of different architectures.
Benchmarks include RobustVQA-A:RVQA-A; RobustVQA-R: RVQA-R; RobustVQA-V:RVQA-
V; POPE-R (Li et al., 2023c); POPE-P (Li et al., 2023c); POPE-A (Li et al., 2023c); MMVP (Tong
et al., 2024); OK-VQA (Marino et al., 2019). More additional ablation studies can be found in
Appendix D.

Consistency Semantic Regularization and Training Latency. To evaluate the effectiveness of the
key elements of our design, we conduct the following ablation experiments. We first pre-train a
baseline model without using the consistency semantic regularization term under the same training
setting for comparison to demonstrate the effectiveness of our architecture. As we can see from Ta-
ble 3, during the pre-training phase, using our consistency semantic regularization can significantly
enhance the model’s performance on both hallucination and robustness benchmarks. Moreover, we
load the weights of the pre-trained model for image-text instruction fine-tuning experiments. In the
second phase of image-text instruction fine-tuning experiments, we demonstrate the effectiveness
of our model design. As detailed in Table 3, we observe that after fine-tuning with image-text in-
struction data, the model’s visual hallucination ability improves further, but its visual perception
robustness decreases. However, using our consistency semantic regularization can mitigate the ro-
bustness degradation while further enhancing the model’s visual hallucination ability. To explore the
impact of introducing consistency semantic regularization on the training latency in the two stages

Table 3: Ablation study of LCSR and training latency. Using semantic consistency regularization
during both the pre-training and supervised fine-tuning phases can significantly enhance the model’s
robustness and resistance to hallucinations, while incurring only a marginal additional training cost.

SFT LCSR RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A SPEED

✗ ✗ 53.2 56.1 54.7 50.6 52.0 51.9 8.11 s/step
✗ ✓ 57.8 69.0 64.8 69.9 70.3 68.9 9.25 s/step

✓ ✗ 51.3 56.5 57.4 85.4 78.8 76.2 2.14 s/step
✓ ✓ 53.5 57.6 58.1 86.0 79.2 77.1 2.22 s/step
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of training, we conduct corresponding ablation experiments. We present the result in Table 3. Em-
ploying consistency semantic regularization adds only a marginal increase in training latency, yet it
significantly enhances the model’s robustness capabilities.

Table 4: Ablation study of model scalability. Gradually expanding the training data and model
size can further enhance the model’s capabilities, demonstrating the scalability of the approach.

Architecture Training Data RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A OK-VQA

ConvNext-B/Vicuna 7B 32K 51.86 54.31 52.73 48.44 50.10 50.06 20.74
ConvNext-B/Vicuna 7B 96K 52.31 57.43 54.06 54.42 57.22 56.35 22.33
ConvNext-B/Vicuna 7B 160K 52.89 58.93 55.31 60.28 60.74 59.96 23.65
ConvNext-L/Vicuna 7B 160K 53.23 60.47 56.88 61.12 62.87 62.09 23.87
ConvNext-B/Vicuna 13B 160K 53.92 61.27 57.02 62.60 64.26 63.19 31.11

Model Scalability. Although DEEM demonstrates better performance with smaller data count and
model sizes, its scalability has yet to be validated. As is well known, scalability is crucial for
model performance. We conduct ablation experiments to assess the scalability concerning data
count and model size. As shown in Table 4, gradually increasing the training data enables the model
to successfully scale while achieving improved results. Additionally, increasing the sizes of both
the VFM and LLM leads to sustained performance enhancements, indicating that DEEM possesses
good scalability.

Table 5: Ablation study of different architectures. Our method not only significantly enhances
the capabilities of LLMs for text and image generation with marginal additional training costs, but
it also improves the performance of LLMs for text generation only, validating the generalization
ability of the approach.

Name LCSR MMVP RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A

LLaVA ✗ 18.6 54.8 60.0 58.7 55.5 53.3 54.6
LLaVA ✓ 25.1 56.7 66.7 61.9 67.9 68.7 65.4

DEEM ✗ 20.3 53.2 56.1 54.7 50.6 52.0 51.9
DEEM ✓ 28.7 56.9 68.6 63.1 69.9 70.3 68.9

Impact of Different Architectures. By cleverly reusing the diffusion model from LMMs for image
and text generation, we can significantly enhance the model’s foundational visual perception, visual
robustness, and anti-hallucination capabilities with only marginal additional training costs. How-
ever, whether DEEM possesses sufficient generalization ability to remain effective for LMMs on text
generation only has yet to be explored. To validate our hypothesis, we employ the LLaVA (Liu et al.,
2024a) architecture and conducted ablation experiments using semantic consistency regularization
loss, with results presented in Table 5. We observe that utilizing diffusion feedback to improve the
basic perceptual capabilities of LMMs—thus preventing the model from overly compressing visual
information and losing sensitivity to subtle details—is a general method that is architecture-agnostic
and exhibits good generalization properties. This suggests that the benefits of our approach could
extend beyond the specific configurations tested, potentially enhancing a wide range of LMMs in
various applications.

4 RELATED WORK

4.1 DIFFUSION MODELS FOR REPRESENTATION LEARNING

Diffusion models have made significant progress in various generative tasks (Song et al., 2020; Ho
et al., 2020b), such as image generation (Betker et al., 2023), video generation (Ho et al., 2022), and
object tracking (Luo et al., 2023). In addition to the aforementioned research, many studies focus on
leveraging diffusion models for representation learning. Some works utilize the conditional control
of pre-trained diffusion models to flexibly address different downstream tasks, including object clas-
sification (Xiang et al., 2023), semantic segmentation (Xu et al., 2023), image caption (Wei et al.,
2024), and keypoint matching (Nam et al., 2023). Other studies (Li et al., 2023b; Song et al., 2024)
design specialized modules and train diffusion models from scratch to further enhance representa-
tion capabilities. Although diffusion models have been widely applied in the generative tasks of
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large multimodal models, the use of diffusion models to optimize the visual representations of large
multimodal models has yet to be explored. To our knowledge, we are the first to employ diffusion
models in a self-supervised paradigm to optimize the visual representations of large multimodal
models, significantly enhancing their perceptual abilities and reliability at minimal cost.

4.2 LARGE MULTIMODAL MODEL

Image-to-text large multimodal models (LMMs) (Luo et al., 2025; Liu et al., 2024c; Zhang et al.,
2023b; Wang et al., 2024; Zhou et al., 2024; Liu et al., 2024b) inject visual information into large
language models (LLMs) through vision foundation models (VFMs), allowing the language models
to perceive visual inputs and thus generate captions or answer questions based on the given mul-
timodal content. Flamingo (Alayrac et al., 2022) tries to extract vision features with a resampler,
and transfer them into the text features with a cross-attention mechanism. Instead of using cross-
attention layers, BLIP-2 (Li et al., 2023a) directly feed the visual features into the LLMs as soft
prompts and significantly reduce the training cost by reducing the visual token number. LLaVA (Liu
et al., 2024a) and MiniGPT-4 (Zhu et al., 2023) construct a small-scale instruction tuning dataset to
better align the LMM with the expected output format. Although this unidirectional image-to-text
paradigm has achieved tremendous success, it still fails to unify multimodal tasks like text-to-image
generation and image-to-text visual question answering, significantly limiting the capabilities of
multimodal models.

In order to unify multimodal tasks into a unified manner, some works (Yu et al., 2023; Koh et al.,
2024; Sun et al., 2023b; Dong et al., 2023; Tian et al., 2024; Ge et al., 2023; 2024; Luo et al.,
2024) attempt to generate images and text in the interleaved context concurrently. The release of
some public large-scale interleaved image-text datasets (Laurençon et al., 2024; Zhu et al., 2024)
has significantly advanced the development of this field. CM3Leon (Yu et al., 2023) converts im-
ages into discrete tokens, facilitating token-level auto-regressive modeling as traditional language
modeling. Although CM3Leon showcases competitive image generation capabilities, it exhibits no-
table weaknesses in image understanding. Emu (Sun et al., 2023b) and DreamLLM (Dong et al.,
2023) focus on single-stage end-to-end modeling using raw image pixels as input for interleaved
image-text generation modeling, but they feed image information at the input of LMMs, which are
limited by the problem that fixed number of visual tokens cannot efficiently describe image de-
tails. MM-Interleaved (Tian et al., 2024) addresses this limitation by integrating image details into
LMMs via multi-scale visual features. However, when faced with out-of-distribution noisy data,
the image encoders used by LMMs often produce incorrect visual information, ultimately leading
to erroneous predictions. This significantly limits the application of the models in safety-critical
scenarios. Building on an advanced interleaved content modeling mechanism, we propose DEEM ,
which cleverly reuses DMs to correct the outputs of the VFMs without increasing extra parameter
count, thereby enhancing the model’s generalization capabilities and reducing visual hallucinations
in a self-supervised manner. Similar to previous work (Liu et al., 2024a; Dong et al., 2023; Tian
et al., 2024), after supervised fine-tuning, it achieves competitive performance on multiple down-
stream multimodal tasks with the smallest scale.

5 CONCLUSION

Can diffusion models serve as the eyes of large language models for image perception? In this paper,
we answer the question by proposing a novel method called DEEM , which leverages a diffusion
model as the eyes for LLMs. This approach enhances the robustness of the multimodal model for in-
terleaved image-text modeling and reduces visual hallucinations without introducing extra modules.
Through comprehensive exploratory experiments, we demonstrate the effectiveness of the proposed
DEEM method. In addition to its advanced robust performance and visual hallucination handling
capabilities, we adopt an additional two-stage instruction fine-tuning process to broaden the applica-
tion scenarios of our DEEM . This enables DEEM to handle a variety of multimodal tasks, including
visual question answering, image captioning, and region-level image reasoning. Besides, this work
initiates the first step towards visual robustness via generative feedback in a multimodal model. In
the future, we will continue to enhance the model’s ability to conduct better multimodal compre-
hension and creation tasks. As an end-to-end framework, we hope it will spur further research in the
multimodal robustness field, such as multimodal agents that can handle complex tasks that require
safety abilities.
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A LIMITATION

Although our method significantly enhances the visual robustness of interleaved image-text model-
ing multimodal models after image-text alignment pre-training, it, unfortunately, cannot eliminate
but only alleviate the robustness knowledge forgetting issue caused by subsequent fine-tuning, as
shown in the Table 3. Additionally, our model requires using a diffusion model as another eye to
correct and update the erroneous knowledge of the image encoder to improve the overall visual ro-
bustness of the multimodal model. However, updating larger image encoders such as CLIP-ViT-L
and CLIP-ViT-G(Radford et al., 2021) will increase the training overhead, which may limit the ap-
plication of our model. We hope that in the future, the diffusion model can completely replace the
image encoder to further enhance the effectiveness of our method.

B BROADER IMPACTS

The proposed method introduces a novel strategy to enhance the robustness and generalization capa-
bilities of multimodal models by leveraging a diffusion model as an additional eye for large language
models. This strategy allows for the correction and updating of potential semantic errors in the im-
age encoder, leading to significant improvements in handling out-of-distribution data and mitigating
visual hallucinations. Overall, our contributions provide a significant step forward in the field of
multimodal, offering a robust, efficient, and scalable solution for improving the accuracy and re-
liability of multimodal models. The broader impacts of this work include the potential for more
intelligent and adaptive AI systems that can operate effectively in diverse and challenging environ-
ments.

Table 6: Zero-shot region-level image captioning results on ReferCOCOg.

Method Type METEOR CIDEr

GRIT (Wu et al., 2022) Box 15.2 71.6
Kosmos-2 (0-shot) (Peng et al., 2023) Box 12.2 60.3
Kosmos-2 (2-shot) (Peng et al., 2023) Box 13.8 62.2
Kosmos-2 (4-shot) (Peng et al., 2023) Box 14.1 62.3
NeXt-Chat (Zhang et al., 2023a) Box 12.0 79.0

DEEM -Mask Mask 14.1 71.0

C ADDITIONAL EXPERIMENTS RESULTS Table 7: Zero-shot text-to-image gener-
ation FID on MS-COCO and LN-COCO.

Method MS-COCO LN-COCO

Text-to-Image Specialists

Retrieval Result 17.97 33.59
DALL-E (Ramesh et al., 2021) ∼28 -
CogView (Ding et al., 2021) 27.10 -
CogView2 (Ding et al., 2022) 24.00 -
Stable Diffusion (Rombach et al., 2022) 12.43 34.26
GLIDE (Nichol et al., 2021) 12.24 -
Make-A-Scene (Gafni et al., 2022) 11.84 -
DALL-E 2 (Ramesh et al., 2022) 10.39 -
Muse-3B (Yang et al., 2019) 7.88 -
Imagen-3.4B (Saharia et al., 2022) 7.27 -
Parti-20B (Yu et al., 2022) 7.23 15.97

Models for both Image and Text Generation

CM3-13B (Aghajanyan et al., 2022) 29.56 -
GILL-8B (Koh et al., 2024) 12.25 -
Emu-13B (Sun et al., 2023b) 11.66 -
CM3Leon-7B (Yu et al., 2023) 10.82 -
DreamLLM-7B (Dong et al., 2023) 8.76 22.42

DEEM -7B (Ours) 8.89 24.13

Region-Level Image Captioning. In addition to holis-
tic image understanding, we also validate the model’s
ability to take region-level image captioning. As shown
in Fig. 3, we use a mask-aware extractor to obtain
region-level visual features and address region-level
image captioning tasks. We adopt the RefCOCOg (Mao
et al., 2016) validation set and compare it with other
state-of-the-art (SOTA) models, including GRIT (Wu
et al., 2022), Kosmos-2 (Peng et al., 2023), and NeXt-
Chat (Zhang et al., 2023a). The CIDEr (Vedantam
et al., 2015) and METEOR are applied as the evalua-
tion metrics. As shown in Table 6, our model is capable
of achieving competitive performance on CIDEr and
METEOR across all of the compared methods, which
shows the superiority of our DEEM .

Text-to-Image Generation. we evaluate text-conditional image generation on MS-COCO (Lin
et al., 2014) and LN-COCO (Pont-Tuset et al., 2020). On MSCOCO, we sample 8 images per text
condition and use CLIP-ViT-L (Radford et al., 2021) to rerank based on text-image similarity. CLIP
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Table 8: Ablation study of input image resolution and coefficient λ with 2k training steps and 16
batch size.

SFT resolution λ RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A OK-VQA

✗ 256 1 51.6 52.0 49.6 48.5 50.0 50.0 18.9
✗ 256 5 51.9 54.3 52.7 48.4 50.1 50.0 20.7
✗ 256 10 51.7 52.7 51.9 48.7 50.3 50.3 20.1

✓ 256 5 51.5 59.1 57.9 85.9 77.1 76.4 38.7
✓ 448 5 52.5 57.6 58.1 86.0 79.2 77.1 41.0

reranking is not used for LN-COCO. FID (Heusel et al., 2017) is used to evaluate both datasets.
As shown in Table 7, our model shows competitive text-to-image generation compared to existing
image and text generation models. See qualitative results on text-to-image synthesis in Fig. 10 in
Appendix F.

D ADDITIONAL ABLATION STUDY

we provide more ablation studies for DEEM in this section, all of which share the same settings. All
the code, models, and data tools will be released soon.

D.1 ABLATION STUDY OF INPUT IMAGE RESOLUTION

In addition to the aforementioned exploration, we also scale up the input image resolution for perfor-
mance gain. The performance gain becomes larger when further increasing the input image resolu-
tion from 256 to 448 in image-text instruction fine-tuning, as shown in Table 8. Such results indicate
our method could better exploit the additional information gained from high resolution. Moreover,
we conduct an ablation study on coefficient λ in loss function. As shown in Table 8, setting λ = 5
achieves a better balance between robustness and hallucination empirically.

D.2 ABLATION STUDY OF TRAINING RECIPES

We also conduct an ablation study to control the trainability of different training modules. As shown
in Table 10, we found that freezing the DM (Diffusion Model) while not freezing the VFM (Visual
Foundation Model) during training yields the best robustness and hallucination results.

E ADDITIONAL IMPLEMENTATION DETAILS

E.1 DATASET CONSTRUCTION

As shown in Fig. 5, we first convert the original ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), and ImageNet-V2 (Recht et al., 2019) data into a VQA format that

Table 9: Comparison of different VQA formats. Questions in the yes or no format can well eval-
uate the performance of the models on the RobustVQA benchmark, while questions in the multiple-
choice format are very random, and MM-interleaved tend to output the first option. Therefore, we
adopt yes or no format in our experimental settings. More details about the new benchmark Ro-
bustVQA design can be found in Appendix E.1.

Format Prompt RobustVQA-A RobustVQA-R RobustVQA-V

multiple-choice “What is the main object in this image?” 44.88 58.88 46.86
“Chose from the list: [false category label,gt category label].”

multiple-choice “What is the main object in this image?” 84.60 90.16 82.92
“Chose from the list: [gt category label,false category label].”

yes or no

“Is [gt category label] the main object in this image?”

50.76 52.71 50.60“Please answer yes or no.”

“Is [false category label] the main object in this image?”

“Please answer yes or no.”

19



Published as a conference paper at ICLR 2025

the multimodal model can evaluate. Specifically, we use the CLIP-ViT-L model for hard exam-
ple mining, predicting the incorrect category label with the highest confidence score apart from the
ground truth category label. We then use a pre-defined prompt as: “Is [category label]
the main object in this image? Please answer yes or no.” to simultane-
ously construct a pair of positive and negative example samples, allowing the model to answer
“yes” or “no”. By using this design, we can evaluate the robustness of multimodal models in
an unbiased manner with the new benchmark called RobustVQA, facilitating both assessment and
comparison. It is worth noting that, as shown in Table 9, we find that the yes or no format is more
stable than the multiple-choice format and can better evaluate the robustness of multi-modal models.

Category Collection: {'Sealion', 'Drake', 'Goose', 'Killer whale', ……} 

ImageNet-like  Format RobustVQA  Format

Is Sealion the main object in this image? 
Please answer yes or no.

Is Goose the main object in this image? 
Please answer yes or no.

C
L
IP-V

iT-L

Negative

Positive yes

no

Hard Example Mining

Incorrect category 
Highest confidence

A photo of DrakeA photo of SealionA photo of Goose
Number of Categories

Figure 5: Robustness dataset construction process. We use the CLIP-ViT-L model for hard ex-
ample mining and then transform them into question-answer pairs via a pre-defined template.

E.2 IMAGE-TEXT ALIGNMENT PRE-TRAINING

Table 10: Ablation study of training recipe in image-text
alignment pre-training with 10k training steps and 128
batch size.

VFM DM RVQA-A RVQA-R RVQA-V POPE-R POPE-P POPE-A

freeze unfreeze 53.2 56.1 54.7 50.6 52.0 51.9
unfreeze freeze 56.8 68.6 63.1 69.9 70.3 68.9
unfreeze unfreeze 50.3 52.5 53.1 54.8 56.3 56.1

We use MMC4-Core (Zhu et al.,
2024), LAION-400M (Schuhmann
et al., 2021), SBU (Ordonez et al.,
2011), and CC-12M (Changpinyo et al.,
2021) as the pre-training dataset. For
LAION-400M (Schuhmann et al., 2021),
SBU (Ordonez et al., 2011), and CC-
12M (Changpinyo et al., 2021), instead of utilizing the original annotations, we use the version
filtered by the pre-trained BLIP-2 model (Li et al., 2023a). For simplicity, we refer to it as BLIP-
LCS hereafter. ”LCS” abbreviates the LAION, CC, and SBU datasets. Text prompts with lengths
shorter than 10 are also filtered out. Due to network constraints, we only collect approximately
6M of MMC4-Core and 20M of BLIP-LCS data. The sampling probability of MMC4 is twice that
of BLIP-LCS. The images are inserted before or after the corresponding text sentence with equal
probability. Specifically, images with a CLIP similarity score below 0.24 will be discarded, and
only 6 images at most will be kept for each document in MMC4-Core. We also exclude 100% of all
documents that do not contain any images, and 50% of documents that contain only 1 image. For
image-text-pair BLIP-LCS datasets, we randomly sample multiple image-text pairs from the same
dataset and concatenate them to the maximum context length (i.e., 2048) during pre-training. For
interleaved image and text MMC4-Core (Zhu et al., 2024) datasets, we also split and concatenate
the documents to form the training samples. Such a concatenation strategy can utilize the full
context window of Large Language Models and thus achieve high data efficiency. Besides that, for
image generation, we ignore the training loss of images which are the first element in the sequence.
The text condition of the rest images is dropped with a 10% probability to improve classifier-free
guidance sampling. The detailed hyper-parameters of image-text alignment pre-training are listed
in Table 11.

E.3 IMAGE-TEXT INSTRUCTION FINE-TUNING

We utilize public available datasets for supervised fine-tuning, including LLaVA-665K(Liu et al.,
2024a), COCO Caption (Chen et al., 2015), VQAv2 (Goyal et al., 2017),TextCaps (Sidorov et al.,
2020), OCR-VQA (Mishra et al., 2019), GQA (Hudson & Manning, 2019), OK-VQA (Marino et al.,
2019), TextVQA (Singh et al., 2019), and AOK-VQA (Schwenk et al., 2022). We use the fol-
lowing prompt template ‘‘Based on the image, please answer the question.
{image} {question}. The answer is: {answer} " to convert the data into a mix-
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ture of instruction following forms, resulting in approximately 800K instruction data for the second-
stage image-text instruction fine-tuning. The detailed hyper-parameters of image-text instruction
fine-tuning are listed in Table 11.

E.4 MASK-TEXT INSTRUCTION FINE-TUNING

We collect short text and pixel-level mask pairs from the publicly available object-level datasets
(COCO, RefCOCO, RefCOCO+) and part-level datasets (Pascal Part, Part Imagenet), then transform
them into instruction following data. Moreover, Visual Genome (VG) and Visual Commonsense
Reasoning (VCR) datasets are employed to add more multiple region understanding data, resulting
in approximately 200K instruction data for the third-stage mask-text instruction fine-tuning. See
more hyper-parameters details in Table 11.

E.5 EVALUATION

As shown in Fig. 6, DEEM achieves the best results on both hallucination and robustness bench-
marks even at the smallest scale, demonstrating the efficiency and effectiveness of our approach.
In addition to visual robustness and hallucination, we also use various benchmarks and datasets,
such as image caption, visual question answering, text-to-image generation and so on, to assess the
image-text comprehension capabilities. All these evaluation tasks and metrics are listed in Table 12.
The prompt templates for each task are listed in Fig. 8.

RobustVQA-A

RobustVQA-R

RobustVQA-V

POPE-R

POPE-P

POPE-A

40 50 60 70 80

Model
MM-Interleaved Stage1 (ViT-L/Vicuna 13B)
NExT-Chat (ViT-L/Vicuna 7B)
Shikra (ViT-L/LLaMA 7B)
LLaVa (ViT-L/Vicuna 13B)
DEEM (ConvNext-B/Vicuna 7B)

Loading [MathJax]/extensions/MathMenu.js

Figure 6: Performance on visual robustness and hallucination benchmark. DEEM achieves
the best results on robustness benchmark and competitive performance on hallucination even at the
smallest scale, demonstrating the efficiency and effectiveness of our approach.

F ADDITIONAL VISUALIZATION EXAMPLES

F.1 SEMANTIC IMAGE SYNTHESIS

Dynamic Semantic Bias Erasure. We demonstrate the dynamic semantic bias elimination pro-
cess through three iterations on the same sample, providing an illustration of the original im-
age alongside its version reconstructed in real-time according to semantic conditions, as shown
in Fig. 9. Our method, DEEM , gradually mitigates potential erroneous semantics within the
visual encoder through multiple iterations, ultimately enhancing the perceptual capabilities of
MLLMs.

Consistency Semantic Image Synthesis We visualize some consistency semantic image synthesis
and display both the original images and their reconstructed versions in Fig. 11. DEEM accurately
recovers the features of the original images without causing distortion.
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User Based on the image, please answer the question. What is the main object in this image?
Chose from the list: ['Sealion', 'Drake', 'Goose', 'Killer whale'].

DEEM (Ours) A carved goose sitting on a flat surface. So the answer is goose

LLaVA The main object in this image is a drake.

NExT-Chat A sculpture of a duck sitting on a table. So the answer is duck. 

MM-Interleaved

Let's think step by step.

Sealion

✔

Visual input example, Goose:

Figure 7: Case Comparison. Compared to other SOTA models, including LLaVA, NeXt-Chat, and
MM-Interleaved, when encountering out-of-distribution data, their models are affected by incorrect
semantics from the image encoder and cannot output the correct answer. However, DEEM can
output the correct answer via generative feedback.

Table 11: Training recipes for DEEM . The three training stages are introduced in Section 2.3.
Stage I: Image-Text Alignment Pre-training, Stage II: Image-Text Instruction Fine-tuning,
Stage III: Mask-Text Instruction Fine-tuning.

Stage I Stage II Stage III

Phase Image-Text Alignment Image-Text SFT Mask-Text SFT

Training Hyper-Parameters

Input image resolution 256×256 448×448 448×448
Output image resolution 512×512 512×512 512×512
VFM CLIP-ConvNext-B CLIP-ConvNext-B CLIP-ConvNext-B
LLM Vicuna-7B v1.5 Vicuna-7B v1.5 Vicuna-7B v1.5
DM Stable Diffusion v2.1 Stable Diffusion v2.1 Stable Diffusion v2.1
λ 5 5 5

Learning Rate 2e-5 (image encoder&decoder) 1e-6 (language model) 1e-6 (language model)
1e-4 (others) 1e-5 (others) 1e-5 (others)

Optimizer AdamW AdamW AdamW
Optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.995,1e-6 β1, β2, ϵ = 0.9, 0.999,1e-8 β1, β2, ϵ = 0.9, 0.999,1e-8
Weight Decay 0.05 0.05 0.05
Training iterations 10k 10k 10k
Warmup steps 1k 500 500
Learning Rate Scheduler Cosine Cosine Cosine
Batch Size Per GPU 4 16 2
Maximum Token Length 2048 2048 2048
Augmentation CenterCrop - -
Unfreeze LLM ✗ ✓ ✓
Unfreeze DM ✗ ✗ ✗
Unfreeze VFM ✓ ✗ ✗

Training Data

Dataset

➀ MMC4 ➀ LLaVA-Mix-665K ➀ COCO/ReferCOCO/ReferCOCO+
➁ BLIP-LCS ➁ VQA-Mixture ➁ Pascal-Part/Part-ImageNet

➂ COCO Caption ➃ VG/VRC

Data Size ∼26M ∼800K ∼200K
Data Type Interleave/Pair Instruction Instruction

Training Cost

GPU Device 32×NVIDIA A100 32×NVIDIA A100 32×NVIDIA A100
Training Time ∼30h ∼6h ∼3h

22



Published as a conference paper at ICLR 2025

Table 12: Overall descriptions of the evaluation benchmarks for evaluating capabilities, includ-
ing image-level captioning, image-level visual question answering, text-to-image generation, region-
level image captioning, visual robustness, comprehension, perception and hallucination.

Dataset Task description Eval Split Metric

C
A

P. COCO (Chen et al., 2015) Scene description test CIDEr(↑) (Vedantam et al., 2015)
Image2Paragraph (Krause et al., 2017) Scene description test CIDEr(↑) (Vedantam et al., 2015)

V
Q

A
.

VQAv2 (Goyal et al., 2017) Scene understanding QA test-dev VQA Acc(↑) (Antol et al., 2015)
OKVQA (Marino et al., 2019) External knowledge QA val VQA Acc(↑) (Antol et al., 2015)
GQA (Hudson & Manning, 2019) Scene understanding QA test-dev VQA Acc(↑) (Antol et al., 2015)
VizWiz (Gurari et al., 2018) Scene understanding QA test-dev VQA Acc(↑) (Antol et al., 2015)
VisDial (Das et al., 2017) Image dialogue val NDCG(↑)

SY
N

. MS-COCO (Lin et al., 2014) Text-Conditional Image Synthesis val-30K FID(↓) (Heusel et al., 2017)
LN-COCO (Pont-Tuset et al., 2020) Text-Conditional Image Synthesis val FID(↓) (Heusel et al., 2017)

R
E

F.

RefCOCO (Kazemzadeh et al., 2014) Region-level scene description val CIDEr(↑) (Vedantam et al., 2015)
RefCOCO+ (Mao et al., 2016) Region-level scene description val CIDEr(↑) (Vedantam et al., 2015)
RefCOCOg (Mao et al., 2016) Region-level scene description val CIDEr(↑) (Vedantam et al., 2015)

O
O

D
. RobustVQA-V Out-of-Distribution Robustness val Acc(↑)

RobustVQA-R Out-of-Distribution Robustness val Acc(↑)
RobustVQA-A Out-of-Distribution Robustness val Acc(↑)

H
al

l. POPE-R (Li et al., 2023c) Visual Hallucination val Acc(↑)
POPE-P (Li et al., 2023c) Visual Hallucination val Acc(↑)
POPE-A (Li et al., 2023c) Visual Hallucination val Acc(↑)

C
PH

. MMBench (Yu et al., 2024) Visual Comprehension val Acc(↑)
MMVet (Yu et al., 2024) Visual Comprehension val Acc(↑)

PC
P. MMVP (Tong et al., 2024) Visual Perception val Acc(↑)

USER:

ASSISTANT:

System Prompt
You are a helpful assistant.

(a) VQA
Based on the image, please answer the question. 

The answer is

(b) Image Captioning
USER:

ASSISTANT:

Could you provide a short description of the image?

A photo of

(c) Referring
USER:

ASSISTANT:

Provide a short description for this <ref>region1</ref>

<ANSWER>

(e) Robustness

(d) Hallucination

USER:

ASSISTANT:

Based on the image, please answer the question.

USER:

ASSISTANT:

Based on the image, please answer the question.

{IMAGE} {QUESTION} Please provide an accurate answer within one word.

<ANSWER>

{IMAGE} 

{IMAGE}

<ANSWER>

The answer is <ANSWER>

The answer is <ANSWER>

Is <OBJECT> the main object in this image? Please answer yes or no.

{IMAGE}

Is there a <OBJECT> in the image? Please answer yes or no.

{IMAGE}

{MASK}

Figure 8: Prompt template used for evaluation. (a) VQA includes VQAv2, VizWiz, OKVQA,
GQA, VisDial, and MMVP. (b) Image Captioning includes COCO, Image2Paragraph. (c) Region-
level Image Captioning includes RefCOCOg. (d) Visual hallucination includes POPE. (e) Visual
Robustness includes RobustVQA-A, RobustVQA-R, and RobustVQA-V. < IMAGE >denotes
the input image representation, < MASK > denotes the mask-level image representation, <
QUESTION >denotes each specific question, < ANSWER > is the generated answer, and
< OBJECT > is the specific object name in a question of POPE and RobustVQA.

F.2 TEXT CONDITION IMAGE SYNTHESIS

In Fig. 10, we present some text-to-image synthesis examples from DEEM , demonstrating its capa-
bility to generate corresponding images based on given prompts.
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goose  seal  duck goose  seal  duck goose  seal  duck

loss

Figure 9: Dynamic semantic bias elimination process through three iterations on the same sample,
diffusion process is conducted by adding 65% noise to the original image as the initial condition.

F.3 ROBUSTNESS COMPARISON

In Fig. 7, we present a comparative analysis of visual robustness results between our model, DEEM
, and other state-of-the-art models: LLaVA (Liu et al., 2024a), NeXt-Chat (Zhang et al., 2023a),
and MM-Interleaved (Tian et al., 2024). When encountering natural adversarial samples or out-of-
distribution samples, the image encoder in their models will output incorrect semantic information,
leading to incorrect category answers. In contrast, our method uses a diffusion model as the eyes
of the large language model to inspect and correct the output features of the image encoder. This
process eliminates incorrect semantic outputs from the image encoder, ultimately allowing the large
language model to produce the correct category answer. This simple yet effective approach signifi-
cantly enhances the model’s robustness and generalization capabilities.

F.4 IMAGE-TEXT MULTIMODAL DIALOGUE

In Fig. 12, we show the image-text dialogue case examples of DEEM . Our model can input any
interleaved layout of text-image data and simultaneously understand and generate text-image outputs
in any interleaved layout, representing the future of next-generation multimodal dialogue.

F.5 MASK-TEXT MULTIMODAL DIALOGUE

In addition to image-level input, DEEM also supports mask-text input to perform fine-grained
region-level reasoning tasks. As shown in the Fig. 13, DEEM can accurately extract region se-
mantics of the image based on the input mask and complete the corresponding instruction tasks.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: image-to-image generation examples with the outputs of image encoder. (a,c,e) are
original images and (b,d,f) are synthesis images based on the image embeddings of original images.
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Small bird with a pale yellow underside light brown crown and back gray tail and 
wing tips tip of tail feather bright yellow black eyes and black strip over eyes

An armchair in the shape of an avocad A couple of glasses are sitting on a tabl

A long wooden bench in front of a brick wall

Downtown Beijing at sunrise. detailed ink wash A beat-up truck in the desert

Figure 11: Text-to-image generation examples with prompts. DEEM can generate vivid images
based on input text conditions.
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Photograph  A:

Photograph  B:

What is written in photo A and B? What is the difference 
between these two photos? Answer in detail about the 
difference in written words and styles.

In Photograph A, the word \"DEEM\" is written on a pink 
background with hearts placed around it. This creates an eye-
catching and unique display for this particular image of roses 
against another colorful rose patterned backdrop that 
complements DEEM's bright colors. On the other hand, in 
Photograph B, the same words are displayed using vintage 
typography style and printed over a light blue gradient. The 
overall effect looks more nostalgic or dreamy compared to 
Photograph A but has similar visual elements such as flowers 
arranged beneath DEEM. These differences highlight how design 
choices can impact mood and perception while retaining essential 
components like textual content.

help me mix the styles of the above two images to 
create a new image that combines both modern and 
romantic styles featuring the word "DEEM":

This image merges the sleek, contemporary elements with soft, 
pastel romantic touches, creating a unique blend of both 
aesthetics.

Figure 12: Examples of image-text multimodal dialogue between human and DEEM . Text and
image can be used as inputs or outputs, and multi-round dialogue is shown.
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a lake on the bottom

Give me a short description of <ref>region</ref>.

a white heron on the right

Can you provide me with a brief description of the 
region in the picture marked by <ref>region</ref>, 
please?

I'm curious about the region represented by 
<ref>region</ref> in the picture. Could you 
describe it in few words?

an elephant in the middle

What can you give me about the region 
outlined by <ref>region</ref> in the photo?

a baby elepahnt on the left

a pair of vases is on the right the black television in the middle

an orange table lamp the black sofa on the left

Can you give me a brief introduction of the region 
labeled as <ref>region</ref> in the picture?

Could you describe the region shown as 
<ref>region</ref> in the picture concisely?

Please provide me with a brief description of the 
region marked with <ref>region</ref> in the image.

Can you give me a short description of 
<ref>region</ref>?

Figure 13: Examples of mask-text multimodal dialogue between human and DEEM . Text and
mask can be used as inputs and DEEM outputs the corresponding answer, and multi-round dialogue
is shown.
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